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1. Introduction. In this paper we consider linear implicit difference equations,
sometimes also termed discrete-time descriptor systems, of the form

Amx
k+m +Am−1x

k+m−1 + . . .+A0x
k = fk, k ∈ N, (1.1)

with coefficients Ai ∈ Cn,n, and the leading coefficient Am is allowed to be a singular
matrix. We prescribe initial conditions

x0 = φ0, x
1 = φ1, . . . , x

m−1 = φm−1, (1.2)

with φi ∈ Cn and we set φ =
[
φTm−1 . . . φT0

]T .
Difference equations of the form (1.1) arise in the discretization of differential-

algebraic equations, e.g., with backward-difference methods [2, 18], from sampling in
dynamical systems [13, 19], or in the context of delay-differential-algebraic systems,
[9, 14]. For a detailed analysis of first order implicit difference equations and further
references, see [3, 4].

The main topic of this paper is to study the stability of the difference equation
(1.1), when it is subjected to perturbations. As usual for linear constant coefficient
systems, the asymptotic stabilty can be characterized via the eigenvalues of the asso-
ciated matrix polynomial P (λ) = Amλ

m +Am−1λ
m−1 + . . .+A1λ+A0, see [12]. We

recall the classical results and extend them to the case of a singular leading coefficient
in Section 2. But typically the coefficient functions are not exactly known, since they
arise, e.g., from a modeling or system identification process, or as coefficient matrices
from a discretization process. Thus, a more realistic scenario for the stability analysis
is to analyze the robustness of the asymptotic stability under small perturbations,
which may also be structured. This is discussed in Section 3. A problem, however,
occurs in the case that the leading coeficient becomes singular under perturbations,
because then consistency conditions between initial values and the inhomogeneities
arise. If these are not met, then the system may not be solvable. To deal with this
problem either a reformulation of the system has to be performed which character-
izes the consistency conditions, or the perturbations have to be further restricted, see
Section 4.

But before we can talk about stability of solutions, we need to introduce a solution
concept for (1.1).
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Definition 1.1. A sequence {xkφ}k∈N is called a solution of equation (1.1) if
{xkφ}k∈N satisfies (1.1) for all k ∈ N. An initial vector φ is called consistent with
(1.1) if the associated initial value problem (1.1) has at least one solution. Equation
(1.1) is called regular if for every consistent initial condition φ, the associated initial
value problem (1.1) has a unique solution.

With this solvability concept at hand, a solution vector xe ∈ Cn is called an
asymptotic equilibrium of (1.1) if the limit

lim
k→∞

fk = (Am +Am−1 + . . .+A0)xe := fe (1.3)

exists. We will employ the following definition of asymptotic stability, see e.g. [8, 21].

Definition 1.2. Consider a regular DAE of the form (1.1). Equation (1.1) is
called asymptotically stable if it is regular and the unique solution {xkφ}k∈N satisfies

lim
k→∞

xkφ = xe, (1.4)

for all consistent initial conditions φ such that max
1≤i≤m

‖xe − φi‖ ≤ η for some η > 0.
The homogeneous equation

Amx
k+m +Am−1x

k+m−1 + . . .+A0x
k = 0, k ∈ N, (1.5)

is called asymptotically stable if it is regular and the solution {xkφ}k∈N satisfies

lim
k→∞

xkφ = 0, (1.6)

for all consistent initial conditions φ such that max
1≤i≤m

‖φi‖ ≤ η for some η > 0,
Having introduced the solvability and asymptotic stability concepts, in the next

section we present the characterization of asymptotic stability via spectral conditions.

2. Characterization of asymptotic stability. In this section we recall and
extend well known results on the asymptotic stability of implicit difference equations.
In the following, we denote the open unit disk in the complex plane by S1 = {s ∈
C | |s| < 1}.

We first consider the first order case m = 1.

2.1. First order implicit difference equations. In the first order case of
(1.1) the equations take the form

A1x
k+1 +A0x

k = fk, k ∈ N, (2.1)

and

A1x
k+1 +A0x

k = 0, k ∈ N, (2.2)

respectively.
If the leading coefficient A1 is invertible, then the well-known theory of linear

difference equations [21] can be used to study the system, but even if A1 is singular,
a complete characterization of solvability is possible and can be carried out via the
canonical form of matrix pairs.
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Definition 2.1. A matrix pair (A1, A0) with A1, A0 ∈ Cn,n is called regular
if there exists λ ∈ C such that det(λA1 − A0) is different from zero. Otherwise, if
det(λA1 −A0) = 0 for all λ ∈ C, then we say that (A1, A0) is singular.

If (A1, A0) is regular, then a complex number λ is called a finite eigenvalue of
(A1, A0) if det(λA1 − A0) = 0. The set of all finite eigenvalues of (A1, A0) is called
the finite spectrum of the pair (A1, A0) and denoted by σ(A1, A0). If A1 is singular
and the pair is regular, then we say that (A1, A0) has the eigenvalue ∞.

Regular pairs (A1, A0) can be transformed to Weierstraß canonical form, see
[7, 11, 18], i.e., there exist nonsingular matrices W, T ∈ Cn,n such that

A1 = W

[
Ir 0
0 N

]
T−1, A0 = W

[
J 0
0 In−r

]
T−1, (2.3)

where Ir, In−r are identity matrices, J ∈ Cr,r and N ∈ C(n−r),(n−r) are matrices in
Jordan canonical form and N is nilpotent. If A1 is invertible, then r = n, i.e., the
second diagonal block does not occur.

Definition 2.2. Consider a regular pair (A1, A0) with A1, A0 ∈ Cn,n in Weier-
straß form (2.3). If r < n and N has nilpotency index ν ∈ N, i.e., Nν = 0, N i 6= 0
for i = 1, 2, ..., ν − 1, then ν is called the index of the pair (A0, A1) and we write
ind(A1, A0) = ν. If r = n then the pair has index ν = 0.

The general theory of existence and uniqueness (even for variable coefficients) has
been been carried out in [3, 4], here we proceed with the regular case.

If the pair (A1, A0) is regular, and if λ̂ ∈ C is such that det(λ̂A1 +A0) 6= 0, then
setting

Â1 = (λ̂A1 +A0)−1A1, Â0 = (λ̂A1 +A0)−1A0, f̂
k = (λ̂A1 +A0)−1fk,

it is easy to see that Â1Â0 = Â0Â1 and equation (2.1) has the same solution set as

Â1x
k+1 + Â0x

k = f̂k, (2.4)

for which an explicit solution formula exists, which uses projectors based on Drazin
inverses, see [6]. Let for a matrix M ∈ Cn,n the Jordan form be given by

M = T−1JT, J =
[
C 0
0 N

]
,

where C is nonsingular and N is nilpotent, then the Drazin inverse of M is defined
as

MD = T−1
[
C−1 0

0 0

]
T.

Using the Drazin inverses ÂD1 , ÂD0 it has been shown in [4, 6] that if (2.4) (with initial
condition x0 = φ0) is uniquely solvable, then it has the explicit solution

xk = (−ÂD1 Â0)kÂD1 Â1φ0 +
k−1∑
j=0

(−ÂD1 Â0)k−1−jÂD1 f̂
j

−(I − ÂD1 Â1)
ν−1∑
i=0

(−ÂD0 Â1)iÂD0 f̂k+i. (2.5)
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By taking k = 0, the following formula presents a condition for the consistency of the
initial condition with respect to the right hand side sequence

(I − ÂD1 Â1)(φ0 +
ν−1∑
i=0

(−ÂD0 Â1)iÂD0 f̂ i) = 0. (2.6)

We also observe that if ν > 1 then the system is non-causal, i.e., the solution xk

depends on fk, . . . , fk+ν−1.
Using the explicit solution, we immediately have a characterization of asymptotic

stability.
Theorem 2.3. Consider the difference equations (2.1) and (2.2). If the pair

(A1, A0) is regular and the initial value φ0 is consistent, then the following statements
are equivalent.

1) Equation (2.1) is asymptotically stable;
2) Equation (2.2) is asymptotically stable;
3) σ(A1,−A0) ⊂ S1.
Proof. It is obvious that 1) implies 2). To show that 2) implies 3), we employ the

solution formula (2.5) and for (2.2) we obtain the solution

xk = (−ÂD1 Â0)kÂD1 Â1φ0

Since we can vary the consistent initial condition φ0 in the set of consistent initial
conditions, it follows from (2.6) that ÂD1 Â1φ0 = φ0 and thus asymptotic stability
implies that limk→∞(−ÂD1 Â0)k = 0, which holds if and only if σ(−ÂD1 Â0) ⊂ S1.
Considering the Weierstraß canonical form (2.3), one obtains that

−ÂD1 Â0 = T

[
−J 0
0 0

]
T−1.

Thus, σ(−ÂD1 Â0) = σ(I,−J) = σ(A1,−A0) and the claim follows.
To prove that 3) implies 1), we partition

T−1xk =
[
yk

zk

]
, W−1fk =

[
fk1
fk2

]
, W−1fe =

[
f1e
f2e

]
,

where yk, fk1 , f1e ∈ Cr. Then, equation (2.1) is equivalent to

yk+1 + Jyk = fk1 ,

Nzk+1 + zk = fk2 ,

with lim
k→∞

fk1 = f1e and lim
k→∞

fk2 = f2e. Since σ(−J) = σ(A0,−A1) ⊂ S1, by the
theory of difference equations [21, 24], the solution sequence {yk}k∈N satisfies

lim
k→∞

yk = ye = (Ir + J)−1f1e.

Since N is nilpotent, we have ND = 0 and hence, by (2.5),

zk =
ν−1∑
i=0

(−1)iN ifk+i,
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which implies that

lim
k→∞

zk =
ν−1∑
i=0

(−1)iN if2e = (N + In−r)−1f2e.

Thus,

lim
t→∞

xk = T lim
k→∞

[
yk

zk

]
= T

[
(Ir + J)−1 0

0 (N + In−r)−1

] [
f1e
f2e

]
= (A1 +A0)−1fe = xe,

and asymptotic stability of (2.1) follows.
As a consequence of the presented results, for regular systems (1.1) the asymptotic

stability is characterized by the finite eigenvalues of (A1, A0) being inside the unit disk,
while the index of the equation ν is not important. However, if the index of the pair
(A1, A0) is larger than 1, then there are consistency relations between the right hand
side and the initial conditions, which may prevent solvability.

2.2. Higher order implicit difference equations. Using the classical con-
cepts of turning high order difference equations into first order difference equations
[12], we can immediately extend the results of Subsection 2.1 to higher order difference
equations. Introducing the matrix polynomial

P (λ) = Amλ
m +Am−1λ

m−1 + . . .+A1λ+A0 (2.7)

and denoting the finite roots of P by σ(P ) = {λ | det(P (λ)) = 0}, we have the
following result.

Theorem 2.4. Consider the difference equations (1.1) and (1.5) and assume
that (1.1) is regular and that the intial condition is consistent. Then, the following
statements are equivalent

1) Equation (1.1) is asymptotically stable;
2) Equation (1.5) is asymptotically stable;
3) σ(P ) ⊂ S1.
Proof. Introduce the companion representation [12] of the difference equation,

i.e., the block matrices

A1 :=


Am 0 . . . 0
0 −In . . . 0
...

...
. . .

...
0 0 . . . −In

 , A0 :=


Am−1 . . . A1 A0
In . . . 0 0
...

. . .
...

...
0 . . . In 0

 ∈ Cnm,nm,

and the block vectors

Xk :=


xk+m−1

xk+m−2

...
xk

 , Xe :=


xe
xe
...
xe

 , F k :=


fk

0
...
0

 ∈ Cnm.

Then equation (1.1) is equivalent to

A1X
k+1 +A0X

k = F k, (2.8)
5



and equation (1.5) is equivalent to

A1X
k+1 +A0X

k = 0. (2.9)

It is then obvious that lim
k→∞

Xk = Xe if and only if lim
k→∞

xk = xe. Thus (1.1) is
asymptotically stable if and only if (2.8) is asymptotically stable, and an analogous
relation holds for (1.5) and (2.9). Moreover, from the theory of matrix polynomials
[12], we immediately have that the pair (A1,A0) is singular if and only if P (λ) is
singular, and that σ(A1,A0) = σ(P ) and thus the assertion follows from Theorem 2.3.

Since the asymptotic stability of the inhomogeneous system (1.1) and the homo-
geneous system (1.5) are equivalent, in the following we only consider (1.5).

It has been shown in [23], that for any matrix tuple (Am, Am−1, . . . , A0), there
always exists a nonsingular matrix W ∈ Cn,n such that

W−1Am =


A

(0)
m

0
0
...
0

 ,W−1Am−1 =


A

(0)
m−1

A
(1)
m−1
0
...
0

 , . . . ,W−1A0 =


A

(0)
0

A
(1)
0

A
(2)
0
...

A
(m)
0

 , (2.10)

where A(0)
m , A

(0)
m−1, . . . , A

(0)
0 ∈ Cd0,n, A(1)

m−1, . . . , A
(1)
0 ∈ Cd1,n, . . . , A(m)

0 ∈ Cdm,n with
d0 + d1 + . . . + dm = n and the blocks A(0)

m , A
(1)
m−1, . . . , A

(m−1)
1 have full row rank.

Furthermore, if (1.5) is regular, then also A(0)
m has full row rank and the matrix

Âm :=


A

(0)
m

...
A

(m)
0

 (2.11)

has full rank. Thus equation (1.5) can be scaled by W−1 to obtain

A(0)
m xk+m +A

(0)
m−1x

k+m−1 + . . .+A
(0)
0 xk = 0,

A
(1)
m−1x

k+m−1 + . . .+A
(1)
0 xk = 0,

...
A

(m)
0 xk = 0.

Shifting the index in the i-th equation by i− 1, we obtain

A(0)
m xk+m +A

(0)
m−1x

k+m−1 + . . .+A
(0)
0 xk = 0,

A
(1)
m−1x

k+m + . . .+A
(1)
0 xk+1 = 0,

...
A

(m)
0 xk+m = 0,

Following the concept of strangeness-index in [14, 18, 23], we make the following
definition.
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Definition 2.5. Equation (1.5) is called strangeness-free if there exists a non-
singular matrix W ∈ Cn,n that transforms the matrix tuple (Am, Am−1, . . . A0) to the
form (2.12) such that the matrix Âm in (2.11) is invertible.

It is easy to show that, although the transformed form (2.12) is not unique (any
nonsingular matrix that operates blocks-wise in the block-rows can be applied), the
strangeness-free property is invariant under the choice of W . If (1.5) is strangeness-
free, then introducing

Âm−1 :=


A

(0)
m−1
...

A
(m−1)
0

0

 , . . . , Â0 :=


A

(0)
0
0
...
0

 ,
the implicit system (2.12) is equivalent to the linear difference equation

xk+m = −Â−1
m Âm−1x

k+m−1 − . . .− Â−1
m Â0x

k, (2.12)

which admits a unique solution that satisfies the consistent initial condition (1.2).
Remark 2.6. Suppose that equation (1.5) is strangeness-free and W and Ŵ are

two nonsingular matrices that both transform the coefficients of the equation to the
form (2.10). Let Â(j)

i be the transformed blocks corresponding to Ŵ . Introduce the
block matrix R = W−1Ŵ and let R = (R(i)

j ) with R(i)
j ∈ Cdi,dj . Then, we have

R


Â

(0)
m

0
0
...
0

 =


A

(0)
m

0
0
...
0

 , R

Â

(0)
m−1

Â
(1)
m−1
0
...
0

 =


A

(0)
m−1

A
(1)
m−1
0
...
0

 , . . . , R

Â

(0)
0

Â
(1)
0

Â
(2)
0
...

Â
(m)
0

 =


A

(0)
0

A
(1)
0

A
(2)
0
...

A
(m)
0

 ,

and it is easy to verify that R is a block upper-triangular matrix, i.e., R(i)
j | 0 ≤ j < i ≤

m are zero blocks. Since R is nonsingular, the diagonal blocks R(i)
i , i = 0, 1, . . . ,m,

are nonsingular. Thus, Ŵ = WR with

R =


R

(0)
0 R

(0)
1 . . . R

(0)
m

0 R
(1)
1 . . . R

(1)
m

...
. . . . . .

...
0 . . . 0 R

(m)
m

 .

As in the first order case, asymptotic stability is characterized by the finite eigen-
value of P (λ) being in the open unit disk, while the part associated with the infinite
eigenvalues may create extra consistency and solvability conditions.

2.3. Positive systems. In order to compute stability radii under real pertur-
bations, we will need the concept of positive systems. In this subsection we introduce
some further notation and characterize positivity of a system, see e.g. [1]. For matri-
ces B = [bij ], C = [cij ] ∈ Rl,q the inequality B ≥ C is to be interpreted as bij ≥ cij for
all 1 ≤ i ≤ l, 1 ≤ j ≤ q, the set of all nonnegative matrices in Rl,q is denoted by Rl,q+ ,
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and the set of all nonpositive matrices by Rl,q− . Denoting the componentwise absolute
value for a matrix P ∈ Rl,q by |P | = (|pij |), for arbitrary matrices B,C ∈ Cl,q we
have the inequalities

|B + C| ≤ |B|+ |C|, |BC| ≤ |B||C|.

For any B ∈ Cl,l, the spectral radius of B is denoted by ρ(B) = max{|λ| |λ ∈ σ(B)},
where σ(B) = {s ∈ C | det(sIl − B) = 0}. The spectral radius has the monotonicity
property that for all C ∈ Cl,l, B ∈ Rl,l+ if |C| ≤ B then ρ(C) ≤ ρ(|C|) ≤ ρ(B). A
norm ‖ · ‖ on Cl is said to be monotonic, if |x| ≤ |y| implies that ‖x‖ ≤ ‖y‖ for all
x, y ∈ Cl. It is easy to see that every p-norm on Cl is monotonic. An operator norm
‖ · ‖ that is induced by a monotonic vector norm then has the monotonicity property
that for all C ∈ Cl,l, B ∈ Rl,l+ with |C| ≤ B we have ‖C‖ ≤ ‖|C|‖ ≤ ‖B‖. Using this
notation, we give a definition of positivity for system (1.5).

Definition 2.7. System (1.5) is called positive if for any consistent initial
condition φ ∈ Rnm+ the corresponding solution {xkφ}k∈N satisfies xkφ ∈ Rn+ for all
k ∈ N.

We have an immediate extension of the results in [22].
Proposition 2.8. If (1.5) is strangeness-free, then it is positive if and only if for

the matrices defined in (2.2) we have Âm, Âm−1, . . . , Â0 ∈ Rn,n− . Moreover, if (1.5)
is positive and asymptotically stable then

ρ(−Â−1
m Âm−1 − . . .− Â−1

m Â0) < 1. (2.13)

Proof. Equation (1.5) is equivalent to the higher order difference equation (2.12).
Therefore, equation (1.5) is positive if and only if the matrices −Â−1

m Âm−1, . . . ,
−Â−1

m Â0 are positive, or equivalently, Â−1
m Âm−1, . . . , Â

−1
m Â0 ∈ Rn,n− , see e.g. [10].

Similarly, if (1.5) is positive and asymptotically stable, then system (2.12) is positive
and asymptotically stable, and therefore, see e.g. [17], this implies that

ρ(−Â−1
m Âm−1 − . . .− Â−1

m Â0) < 1.

The results in this section show that the asymptotic stability of a linear implicit
difference equation can be characterized by the spectral properties of the matrix poly-
nomial P (λ). In the next section we use these results to compute stability radii.

3. Stability radii under restricted perturbations. Using the results from
the previous section we can compute the eigenvalues of the matrix polynomial P (λ) to
characterize asymptotic stability of (1.1). Typically, however, the coefficient functions
are not exactly known. Thus, a more realistic scenario for the stability analysis is to
analyze the robustness of the asymptotic stability under small perturbations. To
perform this analysis, in this section we study the behavior of the spectra when
the coefficient matrices (Am, Am−1, . . . , A0) under structured perturbations (see e.g.
[28, 29]).

Consider a perturbed equation (1.5)

Ãmx
k+m + Ãm−1x

k+m−1 + . . .+ Ã0x
k = 0, (3.1)

with restricted perturbations of the form

[Ãm, Ãm−1, . . . , Ã0] = [Am, Am−1 . . . , A0] +D∆E, (3.2)
8



where D ∈ Cn,l, E ∈ Cq,n(m+1) are given structure matrices and ∆ ∈ Cl,q is the
perturbation matrix. Using the abbreviation A = [Am, Am−1, . . . , A0] and introducing
the set

∆K =
{
∆ ∈ Kl,q | (3.1) is either singular or not asymptotically stable

}
,

where K = R or K = C, we have the following definition.
Definition 3.1. Suppose that system (1.5) is asymptotically stable and let ‖·‖ be

an operator norm on Cl,q that is induced by a vector norm. Then the stability radius
of (1.5) with respect to structured perturbations of the form (3.2) is defined via

rD,EK (A) = {‖∆‖ |∆ ∈ ∆K} . (3.3)

If ∆K = ∅ then we set rD,EK (A) =∞. Define

L(s) :=


smIn
sm−1In

...
In

 , E(s) := EL(s), (3.4)

and the transfer function G(s) = E(s)P (s)−1D. In the following we will make use
of the notion of structured distance to singularity of a nonsingular matrix B ∈ Cn,n.
Suppose that D ∈ Cn,l and E ∈ Cq,n are given structure matrices and ‖ · ‖ is an
operator norm induced by a vector norm, then this distance is defined by

dD,EC (B) = inf{‖∆‖ |∆ ∈ Cl,q such that B +D∆E is singular}. (3.5)

It has been shown in [27] that the structured distance of B to singularity is given by
the formula

dD,EC (B) = 1
‖EB−1D‖

.

We have the following explicit formula for the complex structure stability radius.

Theorem 3.2. Suppose that system (1.5) is asymptotically stable and subjected
to structured perturbations of the form (3.2). Then the complex stability radius of
(1.5) is given by

rD,EC (A) = 1
sup|s|∈{1,∞} ‖G(s)‖ . (3.6)

Proof. If the perturbed equation (3.1) is singular or it is regular but not asymp-
totically stable for ∆ ∈ Cl,q, then this means that det(P̃ (s0)) = 0 for some s0 ∈ C\S1,
where P̃ (s0) = Ãms

m
0 + Ãm−1s

m−1
0 + . . .+ Ã0. By Definition 3.4, we obtain

P̃ (s0) = [Ãm, Ãm−1, . . . , Ã0]L(s0)
= ([Am, Am−1, . . . , A0] +D∆E)L(s0)
= [Am, Am−1, . . . , A0]H(s0) +D∆EL(s0)
= P (s0) +D∆E(s0).
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Since system (1.5) is asymptotically stable, it follows that P (s0) is invertible. Hence,
using the structured distance of P (s0) to singularity, we get

‖∆‖ ≥ dD,E(s0)
C (P (s0)

)
= 1
‖E(s0)P (s0)−1D‖

= 1
‖G(s0)‖ ≥

1
sups∈C\S1 ‖G(s)‖ .

Since this inequality holds for any disturbance matrix ∆ ∈ Cl,q such that D∆E
destroys regularity or asymptotic stability of (1.5), we obtain

rD,EC (A) ≥ 1
sups∈C\S1 ‖G(s)‖ .

To prove the converse inequality, we consider first the case that

0 < sup
s∈C\S1

‖G(s)‖ <∞.

For any small ε > 0 such that sups∈C\S1 ‖G(s)‖− 2ε > 0, there exists sε ∈ C \S1 such
that

‖E(sε)P (sε)−1D‖ − ε = ‖G(sε)‖ − ε ≥ sup
s∈C\S1

‖G(s)‖ − 2ε.

Using the structured distance to singularity, it follows that there exists a perturbation
∆ε such that

‖∆ε‖ ≤
1

‖E(sε)P (sε)−1D‖ − ε

and the perturbed matrix P̃ (sε) = P (sε)+D∆εE(sε) is not invertible. Hence, system
(3.1) is not asymptotically stable when the perturbation ∆ε is applied, and thus,

rD,EC (A) ≤ ‖∆ε‖ ≤
1

‖G(sε)‖ − ε
≤ 1

sups∈C\S1 ‖G(s)‖ − 2ε .

Letting ε → 0, we get the required converse inequality. If sups∈C\S1 ‖G(s)‖ = 0 then
the converse inequality holds trivially, thus it remains to consider the final case that
sups∈C\S1 ‖G(s)‖ = ∞. In this case, there exists a sequence {sn} ⊂ C \ S1 such that
lim
n→∞

‖G(sn)‖ =∞ and a sequence of perturbations {∆n} destroying the asymptotic
stability of (1.5) such that

rD,EC (A) ≤ ‖∆n‖ ≤
2

‖G(sn)‖ .

Letting n→∞, we get the converse inequality. Thus, we obtain

rD,EC (A) = 1
sups∈C\S1 ‖G(s)‖ .

Note that the function G(s) = E(s)P (s)−1D is analytic on C \ S1. By the maximum
principle, [20], ‖G(·)‖ either reaches its maximum value on the boundary ∂S1 or
sups∈C\S1 ‖G(s)‖ = lims→∞ ‖G(s)‖. Thus, we obtain

rD,EC (A) = 1
sup|s|∈{1,∞} ‖G(s)‖ ,
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and the proof is complete.
Remark 3.3. Formula (3.6) for the stability radius of (1.5) is different from the

formula for the stability radius of explicit difference equations as in [17, 25]. The
reason is that we have to consider also the case that the function ‖G(s)‖ obtains its
supremum at infinity.

Unlike for the complex stability radius, a general formula for the real stability
radius measured by an arbitrary matrix norm is not available. However, if we consider
as vector norm the Euclidean norm, then a computable formula for the real stability
radius can be established. For a matrix M ∈ Cq,l, the real structured singular value
of M is defined by

µR(M) := (inf{‖∆‖2 |∆ ∈ Rl,q, and det(Il +∆M) = 0})−1, (3.7)

and it has been shown in [26] that the real structured singular value of M ∈ Cq,l is
given by

µR(M) = inf
γ∈(0,1]

σ2

[
ReM −γ ImM

1
γ ImM ReM

]
, (3.8)

where σ2(H) denotes the second largest singular value of the matrix H.
Using this result, we obtain a formula for the real stability radius.
Theorem 3.4. Suppose that (1.5) is asymptotically stable and subjected to struc-

tured perturbations of the form (3.2). Then the real stability radius of (1.5) (with
respect to the Euclidean norm) is given by the formula

rD,ER (A) =
(

sup
s∈C\S1

inf
γ∈(0,1]

σ2

[
ReG(s) −γ ImG(s)

1
γ ImG(s) ReG(s)

])−1

. (3.9)

Proof. Suppose that the perturbed system (3.1) is singular or it is regular but
not asymptotically stable for a given ∆ ∈ Rl,q. This means that

det(P (s0) +D∆E(s0)) = det(P̃ (s0)) = 0

for some s0 ∈ C\S1, and thus det(In+P (s0)−1D∆E(s0)) = 0. Since for two matrices
B ∈ Cn,l, C ∈ Cl×n one has det(In + BC) = 0 if and only if det(Il + CB) = 0, this
identity is equivalent to

det(Il +∆E(s0)P (s0)−1D) = det(Il +∆G(s0)) = 0.

The remainder of the proof is analogous to that of Theorem 3.2 and it follows that

rD,ER (A) = 1
sups∈C\S1 µR(G(s)) ,

and by (3.8), we obtain formula (3.9).
Remark 3.5. In formula (3.9), we must take the supremum on C \ S1 because

the function µR(G(s)) may be discontinuous in s for those s for which G(s) is a real
matrix, see [26].

From the definition, it is easy to see that rD,EC (A) ≤ rD,ER (A). Therefore, it
is a natural question to study when the real and complex stability radii are equal.
For linear explicit difference equations, it is known that these radii are equal if the
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system is positive and the structure matrices D,E are positive, see [15, 16, 17]. In
the following we will study this question for linear implicit difference equations. We
need the following proposition which follows from the construction of a rank-one
perturbation destroying the nonsingularity, see [17] or [27].

Proposition 3.6. Consider system (1.5) and suppose that P (s) is nonsingular
and G(s) is a real matrix for some s. Then there exists a real perturbation ∆ ∈ Rl,q
such that ‖∆‖ = ‖G(s)‖−1 and P (s) +D∆E(s) is singular.

For D in (3.2) and Â0 in (2.2), we carry out the following tansformations and
partitions

W−1D =


D(0)

D(1)

...
D(m)

 , Â−1
m = [M (0)

m ,M (1)
m , . . . ,M (m)

m ], (3.10)

with D(i) ∈ Cdi,l,M
(i)
m ∈ Cn,di for all i = 0, . . . ,m. Introducing the matrix function

F (s) :=
∑m
i=0 M

(i)
m D(i)si and defining

Q(s) := Ins
m + Â−1

m Âm−1s
m−1 + . . .+ Â−1

m Â0, I(s) :=


Id0 0 . . . 0
0 sId1 . . . 0
...

...
. . .

...
0 0 . . . smIdm

 ,
(3.11)

we have the following result.
Theorem 3.7. Suppose that (1.5) is strangeness-free, positive, and asymptoti-

cally stable and subjected to structured perturbations of the form (3.2) with E ≥ 0 and
M

(i)
m D(i) ≥ 0 for all i = 0, . . . ,m. Then

rD,EC (A) = rD,ER (A) = 1
max{‖G(1)‖, ‖G(∞)‖} . (3.12)

Proof. We only need to prove the converse inequality rD,EC (A) ≥ rD,ER (A). Con-
sider first the case that sup|s|∈{1,∞} ‖G(s)‖ = sup|s|=1 ‖G(s)‖. Then we have

W−1P (s) = W−1Ams
m +W−1Am−1s

m−1 + . . .+W−1A0

=


A

(0)
m

0
0
...
0

 sm +


A

(0)
m−1

A
(1)
m−1
0
...
0

 sm−1 + . . .+


A

(0)
0

A
(1)
0

A
(2)
0
...

A
(m)
0

 .

Using (2.2) and (3.11) it follows that

I(s)W−1P (s) = Âms
m + Âm−1s

m−1 + . . .+ Â0 = ÂmQ(s),

and hence,

P (s) = WI(s)−1ÂmQ(s),
P (s)−1 = Q(s)−1Â−1

m I(s)W−1,

G(s) = E(s)Q(s)−1Â−1
m I(s)W−1D.

12



Using (3.10) we have

Â−1
m I(s)W−1D =

m∑
i=0

M (i)
m D(i)si = F (s),

and hence G(s) = E(s)Q(s)−1F (s). Since the system (1.5) is strangeness-free and
positive, it follows that the matrices Â−1

m Âm−1, . . . , Â
−1
m Â0 are nonpositive. Therefore,

for all z ∈ C with |z| = 1, we have

| − Â−1
m Âm−1z − . . .− Â−1

m Â0z
m| ≤ −Â−1

m Âm−1 − . . .− Â−1
m Â0.

and thus, by Proposition 2.8, for these z we have

ρ(−Â−1
m Âm−1z − . . .− Â−1

m Â0z
m) < 1.

Hence, for s ∈ C with |s| = 1, and z = 1/s we have

|Q(s)−1| =
∣∣(In − (−Â−1

m Âm−1z − . . .− Â−1
m Â0z

m)
)−1∣∣

=
∣∣∣∣ ∞∑
i=0

(−Â−1
m Âm−1z − . . .− Â−1

m Â0z
m)i
∣∣∣∣

≤
∞∑
i=0
| − Â−1

m Âm−1z − . . .− Â−1
m Â0z

m|i

≤
∞∑
i=0

(−Â−1
m Âm−1 − . . .− Â−1

m Â0)i

=
(
In − (−Â−1

m Âm−1 − . . .− Â−1
m Â0)

)−1 = Q(1)−1.

Moreover, since |s| = 1, we have

|E(s)| = |EH(s)| = E|H(s)| ≤ EH(|s|) = EH(1) = E(1),

|F (s)| =
∣∣∣∣ m∑
i=0

M (i)
m D(i)si

∣∣∣∣ ≤ m∑
i=0
|M (i)

m D(i)||s|i =
m∑
i=0

M (i)
m D(i) = F (1),

and thus we get

|G(s)| ≤ |E(s)||Q(s)−1||F (s)| ≤ E(1)Q(1)−1F (1) = G(1).

Since G(1) is a real matrix, by Proposition 3.6, there exist a real destablizing pertur-
bation ∆ such that

‖∆‖ = 1
‖G(1)‖ = 1

sup|s|=1 ‖G(s)‖ = rD,EC (A),

which implies that rD,ER (A) ≤ ‖∆‖ = rD,EC (A), and hence in this case

rD,EC (A) = rD,ER (A) = 1
‖G(1)‖ .

For the second case that sup|s|∈{1,∞} ‖G(s)‖ = ‖G(∞)‖ = lims→∞ ‖G(s)‖, it follows
that

rD,EC (A) = lim
n→∞

1
‖G(n)‖ .
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Since G(n) = E(n)Q(n)−1F (n) is a real matrix, by Proposition 3.6 there exists a real
destablizing perturbation ∆n such that ‖∆n‖ = 1

‖G(n)‖ and this implies that

rD,ER (A) ≤ lim
n→∞

1
‖G(n)‖ = rD,EC (A).

Thus, in this case, we obtain

rD,EC (A) = rD,ER (A) = 1
‖G(∞)‖ ,

and the proof is complete.
We illustrate our results with the following example.
Example 3.8. Consider the second order implicit difference equation A2x

k+2 +
A1x

k+1 +A0x
k = 0, with

A2 =
[
2 0
0 0

]
, A1 =

[
0 0
0 2

]
, A0 =

[
−1 0
0 −1

]
and suppose that the structurally perturbed system is of the form

[Ã2, Ã1, Ã0] =
[
2 + δ1 0 δ2 δ2 −1 + δ2 0
δ1 0 δ2 2 + δ2 δ2 −1

]
= [A2, A1, A0] +D∆E,

with

D =
[
1
1

]
, E =

[
1 0 0 0 0 0
0 0 1 1 1 0

]
, ∆ = [δ1 δ2],

and disturbance parameters δ1, δ2 ∈ C.
The unperturbed system is strangeness-free and positive and has the transformed

matrices

Â2 =
[
2 0
0 2

]
, Â1 =

[
0 0
0 −1

]
, Â0 =

[
−1 0
0 0

]
.

The spectrum of the matrix polynomial

P (s) =
[
2s2 − 1 0

0 2s− 1

]
satisfies σ(P ) ⊂ S1 and thus this system is asymptotically stable. We have E ≥
0, M (0)

2 D(0) = M
(1)
2 D(1) = 1/2 > 0, and M

(2)
2 D(2) = 0, and by simple algebraic

manipulations we obtain

G(s) = E(s)P (s)−1D =
[
s2 0
s+ 1 s

] 1
2s2 − 1 0

0 1
2s− 1

[11
]

=

 s2

2s2 − 1
s+ 1

2s2 − 1 + s

2s− 1

 .
It follows that G(1) =

[
1 3

]T and G(∞) =
[
1/2 1/2

]T . Then, by Theorem 3.7,
with respect to the maximum norm, we obtain

rD,EC (A) = rD,ER (A) = 1
max{‖G(1)‖, ‖G(∞)‖} = 1

max{3,
√

1/2}
= 1

3 .
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We can also apply the discussed results for the special case of blockwise pertur-
bations of the form

Ãi = Ai +D∆iEi, i = 0, . . . ,m, (3.13)

with ∆i ∈ Cl,qi , Ei ∈ Cqi,n, i = 0, 1, . . . ,m, and D ∈ Cn,l. The perturbed system
(3.13) can be represented in the form

[Am, Am−1, . . . , A0] +D∆E

with E = diag(Em, Em−1, . . . , E0) and ∆ = [∆m, ∆m−1, . . . ,∆0]. Applying Theo-
rems 3.2 and Theorem 3.4 we get the stability radii rD,EC (A), rD,ER (A) of equation
(1.5) under these structured perturbations. As a special case, we consider equation
(1.5) with perturbed coefficients

Ãi = Ai + αi∆i, i = 0, . . . ,m, (3.14)

with αi ∈ C, ∆i ∈ Cn,n, i = 0, . . . ,m. Denoting by rαC(A) the stability radius of
equation (1.5) under the perturbations (3.14) and setting

ξ(s) =
( m∑
i=0
|αi|p|s|ip

)1/p
, (3.15)

we have the following proposition.
Proposition 3.9. Suppose that equation (1.5) is asymptotically stable and sub-

jected to perturbations of the form (3.14). If we consider as norm the p-norm with
0 < p <∞, then

rαC(A) = min
{

1
ξ(1) max|s|=1 ‖P (s)−1‖

,
1

lims→∞ ξ(s)‖P (s)−1‖

}
. (3.16)

Proof. In this case we have D = In and Ei = αiIn, i = 0, . . . ,m, i.e.

E = diag(αmIn, αm−1In, . . . , α0In), E(s) =


αms

mIn
αm−1s

m−1In
...

α0In

 , G(s) = E(s)P (s)−1.

It is easy to see that for v ∈ Cn, we have ‖E(s)v‖p = ξ(s)‖v‖p and this implies that
‖G(s)‖ = ξ(s)‖P (s)−1‖. Note that ξ(s) = ξ(1) for s ∈ C with |s| = 1. Thus, using
Theorem 3.2 the assertion follows.

In this section we have shown that the classical results of [15] on stability radii
for homogeneous systems can be extended to higher order difference equations with
singular leading coefficients. However, in the inhomogeneous case, there are restric-
tions to the initial conditions in terms of the inhomogeneity. In particular, it may
happen that due to the perturbation the index changes and thus for nonhomogeneous
systems and nonzero initial conditions the solvability may be destroyed. This topic is
discussed in the next section.
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4. Index preserving perturbations. It is already known for the case of per-
turbed nonhomogeneous differential-algebraic equations (DAEs) [5], see also [8, 9],
that it is necessary to restrict the perturbations in order to get a meaningful con-
cept of the structured stability radius, since under infinitesimally small perturbations
the solvability may be destroyed when the index changes, because then the consis-
tency conditions for initial conditions and inhomogeneity may change drastically. This
means that a regular system may become singular in this way. We therefore introduce
the following set of admissible perturbations.

Suppose that system (1.5) is asymptotically stable and consider a perturbed sys-
tem

(Am+Dm∆mE)xk+m+(Am−1+Dm−1∆m−1E)xk+m−1+. . .+(A0+D0∆0E)xk = fk,
(4.1)

where ∆i ∈ Cli,q, i = 0, . . . ,m are perturbations and Di ∈ Cn,li , E ∈ Cq,n, i =
0, . . . ,m are matrices that restrict the structure of the perturbations.

Set

∆ =


∆m

∆m−1
...
∆0

 , D =
[
Dm Dm−1 . . . D0

]
, (4.2)

l = l0 + l1 + . . .+ lm and consider the set of destabilizing perturbations

VK = {∆ ∈ Kl,q | (4.1) is non-regular or not asymptotically stable}.

Then we define the structured stability radius of (1.5) subject to structured pertur-
bations as in (4.1) as

rK(A;D,E) = inf{‖∆‖ : ∆ ∈ VK}, (4.3)

where ‖ · ‖ is again a matrix norm induced by a vector norm.
Definition 4.1. Consider a strangeness-free system (1.5) and let W ∈ Cn,n be

such that (2.10) holds. A structured perturbation as in (4.1) is called admissible if
(4.1) is still strangeness-free with the same triple (d0, d1, . . . , dm), i.e., there exists a
nonsingular matrix W̃ ∈ Cn,n such that

W̃−1(Am +Dm∆mE) =


Ã

(0)
m

0
0
...
0

 , W̃−1(Am−1 +Dm−1∆m−1E) =


Ã

(0)
m−1

Ã
(1)
m−1
0
...
0

 ,

W̃−1(A0 +D0∆0E) =


Ã

(0)
0

Ã
(1)
0

Ã
(2)
0
...

Ã
(m)
0

 , (4.4)
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where Ã(0)
m , Ã

(0)
m−1, . . . , Ã

(0)
0 ∈ Cd0,n, Ã(1)

m−1, . . . , Ã
(1)
0 ∈ Cd1,n, . . . Ã(m)

0 ∈ Cdm,n, are
such that 

Ã
(0)
m

Ã
(1)
m−1
...

Ã
(m)
0


is invertible.

Suppose that the matrices Di, i = 0, 1, . . . ,m, that are restricting the structure
have the form

W−1Dm =


D

(0)
m

D
(1)
m

...
D

(m)
m

 ,W−1Dm−1 =


D

(0)
m−1

D
(1)
m−1
...

D
(m)
m−1

 , . . . ,W−1D0 =


D

(0)
0

D
(1)
0
...

D
(m)
0

 , (4.5)

where D(j)
m ∈ Cdj ,lm , D(j)

m−1 ∈ Cdj ,lm−1 , . . . , D
(j)
0 ∈ Cdj ,l0 , j = 0, 1, . . . ,m. According

to [5, Lemma 3.3], if the structured perturbation is admissible, then D(j)
i ∆iE = 0 for

0 ≤ i, j ≤ m such that i+ j > m. This can be achieved by requiring that

D
(j)
i = 0, 0 ≤ i, j ≤ m, i+ j > m. (4.6)

Note that by Remark 2.6, condition (4.6) is invariant with respect to the choice
of the transformation matrix W . Furthermore, it is easy to see that for structured
perturbations satisfying (4.6), if the perturbation ∆ is sufficiently small, then the
strangeness-free property is preserved with the same sizes of the blocks.

We denote the infimum of the norm of all perturbations ∆ such that (4.1) is no
longer strangeness-free or for which the sizes of the blocks d0, d1, . . . , dm change by
dsC(A;D,E), and immediately have the following proposition.

Proposition 4.2. Suppose that equation (1.5) is strangeness-free and subjected
to structured perturbations with Di, i = 0, 1, . . . ,m satisfying (4.6). Then

dsC(A;D,E) =

∥∥∥∥∥∥∥∥∥∥∥
E


A

(0)
m

A
(1)
m−1
...

A
(m)
0


−1 

D
(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0



∥∥∥∥∥∥∥∥∥∥∥

−1

.

Proof. With restriction matricesDi, i = 0, 1, . . . ,m satisfying (4.6), the perturbed
system (4.1) is still strangeness-free with Ã

(0)
j ∈ Cd0,n, j = 0, . . . ,m, Ã(1)

j ∈ Cd1,n,
j = 0, . . . ,m− 1, . . . , Ã(m)

0 ∈ Cdm,n as in (4.4), if and only if
A

(0)
m +D

(0)
m ∆mE

A
(1)
m−1 +D

(1)
m−1∆m−1E
...

A
(m)
0 +D

(m)
0 ∆0E

 =


A

(0)
m

A
(1)
m−1
...

A
(m)
0

+


D

(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0

∆E
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is nonsingular. Thus employing again the distance of a nonsingular matrix to the
nearest singular matrix, we obtain

dsC(A;D,E) =

∥∥∥∥∥∥∥∥∥∥∥
E


A

(0)
m

A
(1)
m−1
...

A
(m)
0


−1 

D
(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0



∥∥∥∥∥∥∥∥∥∥∥

−1

.

Remark 4.3. Again, by Remark 2.6, it is not difficult to show that in fact the
formula in Proposition 4.2 is independent of the choice of the transformation matrix
W .

Defining

D(s) :=
[
smDm sm−1Dm−1 . . . D0

]
, H(s) := EP (s)−1D(s)

we have the following proposition.
Proposition 4.4. Consider an asymptotically stable system of the form (1.5).

If the system is strangeness-free and subjected to structured perturbations as in (4.1)
with structure matrices Di satisfying (4.6) and if the perturbation ∆ satisfies

‖∆‖ < ‖H(∞)‖−1 =
(

lim
s→∞

‖H(s)‖
)−1

,

then the structured perturbation is admissible, i.e., the perturbed equation (4.1) is
strangeness-free with the same block-sizes d0, d1, . . . , dm.

Proof. To prove the assertion, we will show that

(
lim
s→∞

‖H(s)‖
)−1

=

∥∥∥∥∥∥∥∥∥∥∥
E


A

(0)
m

A
(1)
m−1
...

A
(m)
0


−1 

D
(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0



∥∥∥∥∥∥∥∥∥∥∥

−1

. (4.7)

We can rewrite H as

H(s) = EP (s)−1 [smDm sm−1Dm−1 . . . D0
]

= E


A

(0)
m sm +A

(0)
m−1s

m−1 + . . .+A
(0)
0

A
(1)
m−1s

m−1 + . . .+A
(1)
0

...
A

(m)
0


−1 

smD
(0)
m sm−1D

(0)
m−1 . . . D

(0)
0

0 sm−1D
(1)
m−1 . . . D

(1)
0

...
. . . . . .

...
0 . . . 0 D

(m)
0


=: EΨ(s),

and thus it follows that
A

(0)
m sm +A

(0)
m−1s

m−1 + . . .+A
(0)
0

A
(1)
m−1s

m−1 + . . .+A
(1)
0

...
A

(m)
0

Ψ(s) =


smD

(0)
m sm−1D

(0)
m−1 . . . D

(0)
0

0 sm−1D
(1)
m−1 . . . D

(1)
0

...
. . . . . .

...
0 . . . 0 D

(m)
0

 .
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If s 6= 0, then this is equivalent to
A

(0)
m +A

(0)
m−1/s+ . . .+A

(0)
0 /sm

A
(1)
m−1 + . . .+A

(1)
0 /sm−1

...
A

(m)
0

Ψ(s) =


D

(0)
m D

(0)
m−1/s . . . D

(0)
0 /sm

0 D
(1)
m−1 . . . D

(1)
0 /sm−1

...
. . . . . .

...
0 . . . 0 D

(m)
0

 .
Since

lim
s→∞


A

(0)
m +A

(0)
m−1/s+ . . .+A

(0)
0 /sm

A
(1)
m−1 + . . .+A

(1)
0 /sm−1

...
A

(m)
0

 =


A

(0)
m

A
(1)
m−1
...

A
(m)
0


and

lim
s→∞


D

(0)
m D

(0)
m−1/s . . . D

(0)
0 /sm

0 D
(1)
m−1 . . . D

(1)
0 /sm−1

...
. . . . . .

...
0 . . . 0 D

(m)
0

 =


D

(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0

 ,

it follows that

lim
s→∞

Ψ(s) =


A

(0)
m

A
(1)
m−1
...

A
(m)
0


−1 

D
(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0

 .

Thus, we have that

H(∞) = lim
s→∞

H(s) = E lim
s→∞

Ψ(s) = E


A

(0)
m

A
(1)
m−1
...

A
(m)
0


−1 

D
(0)
m 0 . . . 0

0 D
(1)
m−1

. . .
...

...
. . . . . . 0

0 . . . 0 D
(m)
0

 ,

and hence (4.7) holds. By Proposition 4.2, it then follows that if

‖∆‖ < ‖H(∞)‖−1

then the perturbed equation (4.1) is strangeness-free with the same blocksizes d0, d1,
. . . , dm as for (1.5).

We then have the following result characterizing the stability radius for strangeness-
free implicit difference equations under admissible structured perturbations.

Theorem 4.5. Suppose that equation (1.5) is asymptotically stable and strange-
ness-free and subjected to structured perturbations as in (4.1). Then

rC(A;D,E) = 1
sup|s|∈{1,∞} ‖H(s)‖ . (4.8)
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Furthermore, if the structure matrices Di satisfy (4.6) and ‖∆‖ < rC(A;D,E), then
(4.1) is strangeness-free with the same blocksizes d0, d1, . . . , dm as for (1.5).

Proof. If P̃ (s) is the characteristic polynomial of the perturbed equation (4.1),
then we have

P̃ (s) = Ãms
m + Ãm−1s

m−1 + . . .+ Ã0

= (Am +Dm∆mE)sm + (Am−1 +Dm−1∆m−1E)sm−1 + . . .+ (A0 +D0∆0E)
= (Amsm +Am−1s

m−1 + . . .+A0) +
(smDm∆m + sm−1Dm−1∆m−1 + . . .+D0∆0)E

= P (s) +D(s)∆E.

Similar to the proof of Theorem 3.2 we obtain that

rC(A;D,E) = inf
s∈C\S1

d
D(s),E
C (P (s)) = 1

sups∈C\S1 ‖H(s)‖ = 1
sup|s|∈{1,∞} ‖H(s)‖ .

By Proposition 4.4, we then have that (4.1) is strangeness-free if ‖∆‖ < rC(A;D,E).

For the case of positive equations, we get the following result on the real stability
radius.

Theorem 4.6. Let equation (1.5) be strangeness-free and positive. Assume that
(1.5) is asymptotically stable and subjected to structured perturbations as in (4.1) with
E ≥ 0 and M (i)

m D
(i)
j ≥ 0 for all i, j = 0, . . . ,m. Then we have

rC(A;D,E) = rR(A;D,E) = 1
max{‖H(1)‖, ‖H(∞)‖} .

Furthermore, if the structure matrices Di satisfy (4.6) and ‖∆‖ < rC(A;D,E), then
(4.1) is strangeness-free with the same blocksizes d0, d1, . . . , dm as for (1.5).

Proof. The proof is analogous to that of Theorem 3.7.
As a final result we consider the case that equation (1.5) is subjected to blockwise

structured perturbations of the form

Ãmx
k+m + Ãm−1x

k+m−1 + . . .+ Ã0x
k = 0, (4.9)

with

Ãi = Ai +Di∆iEi, (4.10)

where Di ∈ Cn,li , and Ei ∈ Cqi,n, i = 0, . . . ,m are given structure matrices and
∆i ∈ Cli,qi , i = 0, . . . ,m are unknown disturbance matrices.

These perturbation can be described as a blockdiagonal perturbation

Ã = A+D∆bE,

where D = [Dm, Dm−1, . . . , D0], E = diag(Em, Em−1, . . . , E0) and

∆b = diag(∆m, ∆m−1, . . . ,∆0).

We endow the linear space of blockdiagonal perturbations with the norm

‖∆b‖ =
m∑
i=0
‖∆i‖.
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If equation (1.5) is asymptotically stable, then we define

ΞK = {∆b |∆i ∈ Kli,qi , (4.9) is non-regular or not asymptot. stable}

and the stability radius of (1.5) with respect to perturbations of the form (4.10) is
defined as

rbK(A) = inf{‖∆b‖ |∆b ∈ ΞK}.

For each tuple of functions (β0(s), β1(s), . . . , βm(s)) such that βi(s) 6= 0 for all s ∈
C \ S1 and i, j = 0, . . . ,m, we define the transfer functions

Gij(s) =
(
Ei

si

βi(s)

)
P (s)−1

(
Djβj(s)

)
. (4.11)

Extending Theorem 3.8 in [17] to higher order implicit difference equations, we obtain
the following result.

Theorem 4.7. Suppose that equation (1.5) is asymptotically stable and subjected
to structured perturbations of the form (4.10). Then

1
max{sup|s|∈{1,∞} ‖Gij(s)‖ | 0 ≤ i, j ≤ m}

≤ rbC(A)

≤ 1
max{sup|s|∈{1,∞} ‖Gii(s)‖ | 0 ≤ i ≤ m}

. (4.12)

In particular, if Di = ciD, 0 6= ci ∈ C (or Ei = ciE) for all i = 0, . . . ,m, then

rbC(A) = 1
max{sup|s|∈{1,∞} ‖Gii(s)‖ | 0 ≤ i ≤ m}

. (4.13)

Proof. For i = 0, . . . ,m, we restrict the blockdiagonal perturbation ∆b such that
∆j = 0 for all j 6= i. Then it is easy to see that the perturbation (4.10) can be
rewritten in the form Ã = A + Di∆iÊi, with Êi = [0qi,n(m−i), Ei, 0qi,ni]. Using the
formula for the stability radius in Theorem 3.2, it follows that

rbC(A) ≤ rDi,Êi

C (A) = 1
sup|s|∈{1,∞} ‖Gii(s)‖

.

Since this inequality holds for all i = 0, . . . ,m, we obtain the second inequality in
(4.12).

To prove the first inequality in (4.12), let ∆b = diag(∆m, ∆m−1, . . . ,∆0) be a
disturbance which makes the system non-regular or not asymptotical stable. Then
there exists s0 ∈ C \ S1 and a non-zero vector y0 ∈ Cn such that

P̃ (s0)y0 =
( m∑
i=0

(Ai +Di∆iEi)si0
)
y0 = P (s0)y0 +

( m∑
i=0

Di∆iEis
i
0

)
y0 = 0.

Since P (s0) is invertible, it follows that

−P (s0)−1
( m∑
i=0

Diβi(s0)∆iEi
si0

βi(s0)

)
y0 = y0. (4.14)
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Let i0 be an index such that∥∥∥∥(Ei0 si00
βi0(s0)

)
y0

∥∥∥∥ = max
{∥∥∥∥(Ei si0

βi(s0)

)
y0

∥∥∥∥ | 0 ≤ i ≤ m},
then (4.14) implies that

(
Ei0

si00
βi0(s0)

)
y0 6= 0. Multiplying (4.14) with Ei0

si00
βi0(s0)

from the left and taking norms, we obtain
m∑
j=0
‖Gi0j(s0)‖‖∆j‖

∥∥∥∥(Ej sj0
βj(s0)

)
y0

∥∥∥∥ ≥ ∥∥∥∥(Ei0 si00
βi0(s0)

)
y0

∥∥∥∥.
Hence,

‖∆b‖ =
m∑
j=0
‖∆j‖ ≥

1
max{‖Gi0j(s0)‖ | 0 ≤ j ≤ m}

≥ 1
max{‖Gij(s0)‖ | 0 ≤ i, j ≤ m}

≥ 1
sups∈C\S1 max{‖Gij(s)‖ | 0 ≤ i, j ≤ m}

= 1
sup|s|∈{1,∞}max{‖Gij(s)‖ | 0 ≤ i, j ≤ m}

= 1
max{sup|s|∈{1,∞} ‖Gij(s)‖ | 0 ≤ i, j ≤ m}

.

Therefore, also the first inequality in (4.12) holds. If Di = ciD then with βi(s) = 1/ci
for all i = 0, . . . ,m we obtain formula (4.13). If Ei = ciE then we choose βi(s) = sici,
i = 0, . . . ,m in (4.11) and obtain formula (4.13).

Example 4.8. Consider the first order implicit difference equation A1x
k+1 +

A0x
k = 0 with A1 =

[
1 1
0 0

]
, A0 =

[
1 0
−1 1

]
. It is easy to see that the system is

strangeness-free. Assume that the system is perturbed to the form

Ã1 =
[
1 + δ1 1 + δ2

0 0

]
= A1 +D1∆1E, Ã0 =

[
1 0

−1 + δ3 1 + δ4

]
= A0 +D0∆0E,

(4.15)
where

D1 =
[
1
0

]
, D0 =

[
0
1

]
, E = I, ∆1 =

[
δ1 δ2

]
, ∆0 =

[
δ3 δ4

]
, ∆ =

[
δ1 δ2
δ3 δ4

]
.

The spectrum of the matrix polynomial

P (s) =
[
s+ 1 s
−1 1

]
satisfies σ(P ) = {− 1

2} ⊂ S1 and thus this system is asymptotically stable. By simple
algebraic manipulations we get

H(s) = EP (s)−1D(s) =

 1
2s+ 1

−s
2s+ 1

1
2s+ 1

s+ 1
2s+ 1

[s 0
0 1

]
=

 s

2s+ 1
−s

2s+ 1
s

2s+ 1
s+ 1
2s+ 1

 .
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Then, with respect to the maximum norm, we have sup|s|∈{1,∞} ‖H(s)‖ = 2. Hence,
Theorem 4.5 we obtain

rC(A,D,E) = 1
2 ,

and moreover, if the perturbation satisfies ‖∆‖ < 1
2 then the perturbed system is also

strangeness-free. In (4.15) we have restricted perturbations to the first row of the
matrix A1. If the second row of A1 is perturbed, e.g.

Ã1 =
[
1 + δ1 1 + δ2
δ1 δ2

]
,

then it is easy to see that for every small enough ε 6= 0, under the perturbations

∆ε =
[
δ1 δ2
δ3 δ4

]
=
[
0 ε
0 0

]
,

the perturbed system has only finite eigenvalues and is not asymptotically stable.
Example 4.9. Consider the second order implicit difference equation A2x

k+2 +
A1x

k+1+A0x
k = 0 with A2, A1, A0 given in Example 3.8. Suppose that the perturbed

system is of the form

Ã2 =
[
2 + δ1 0
δ2 0

]
= A2 +D2∆2E2, Ã1 =

[
δ3 δ4
δ3 2 + δ4

]
= A1 +D1∆1E1,

Ã0 =
[
−1 + δ5 δ5
δ6 −1 + δ6

]
= A0 +D0∆0E0,

where D2 = D0 = I,D1 =
[
1
1

]
, E2 =

[
1 0

]
, E1 = I, E0 =

[
1 1

]
and

∆2 =
[
δ1
δ2

]
, ∆1 =

[
δ3 δ4

]
, ∆0 =

[
δ5
δ6

]
.

We choose βi(s) = 1 in (4.11) for all s ∈ C \ S1 and obtain

P (s) =
[
2s2 − 1 0

0 2s− 1

]
, Gij(s) = siEiP (s)−1Dj ,

for i, j = 0, 1, 2. With respect to the Euclidean norm, it follows that

sup
|s|∈{1,∞}

‖Gij(s)‖ =


2 if (i, j) ∈ {(0, 1)},√

2 if (i, j) ∈ {(0, 0), (0, 2), (1, 1)},
1 if (i, j) ∈ {(1, 0), (1, 2), (2, 0), (2, 1), (2, 2)}.

Thus, by Theorem 4.7, we obtain

1
2 ≤ r

b
C(A) ≤ 1√

2
.
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5. Conclusion. Characterizations for asymptotic stability and robust asymp-
totic stability of higher order implicit difference equations have been presented under
the assumption that the coefficient matrices are subjected to structured perturbations.
Formulas for the real and complex stability radii have been derived and the equality of
the real and complex stability radii has been studied for the class of strangeness-free
and positive equations under admissible perturbations.

Acknowledgments: This work was done while the second author was visiting
at Vietnam Institute for Advance Study in Mathematics (VIASM) and Technische
Universität Berlin. The second author would like to thank these instituitions for
providing a fruitful research environment and hospitality. The second author was
partially supported by a grant from the Niels Henrik Abel Board. The first author
was supported by DFG Collaborative Research Centre 910, Control of self-organizing
nonlinear systems: Theoretical methods and concepts of application.

REFERENCES

[1] A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic
Press, New York, 1979.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical solution of initial-value problems
in differential algebraic equations, 2nd ed., SIAM Publications, Philadelphia, PA, 1996.

[3] T. Brüll, Existence and uniqueness of solutions of linear variable coefficient discrete-time de-
scriptor systems, Lin. Alg. Appl. 431 (2009), 247–265.

[4] , Explixit solutions of regular linear discrete-time descriptor systems with constant co-
efficients, Electr. J. Lin. Alg. 18 (2009), 317–338.

[5] R. Byers and N.K. Nichols, On the stability radius of a generalized state-space system, Lin.
Alg. Appl. 188-189 (1993), 113–134.

[6] S. L. Campbell, Singular systems of differential equations I, Pitman, San Francisco, CA, 1980.
[7] L. Dai, Singular control systems, Springer-Verlag, Berlin-Heidelberg, 1989.
[8] N.H. Du, V. H. Linh, and V. Mehrmann, Robust stability of differential-algebraic equations,

In: Surveys in Differential-Algebraic Equations I, DAE Forum (2013), 63–95.
[9] N.H. Du, V.H. Linh, V. Mehrmann, and D.D.Thuan, Stability and robust stability of linear

time-invariant delay differential-algebraic equations, SIAM J. Matr. Anal. Appl. 34 (2013),
1631–1654.

[10] L. Farina and S. Rinaldi, Positive linear systems: Theory and applications, Nelson-Wiley, New
York, 2000.

[11] F.R. Gantmacher, The theory of matrices II, Chelsea Publishing Company, New York, NY,
1959.

[12] I. Gohberg, P. Lancaster, and L. Rodman, Matrix polynomials, Academic Press, New York,
1982.

[13] P.M. Gy, Sampling of heterogeneous and dynamic material systems: Theories of heterogeneity,
sampling and homogenizing, Elsevier Publications, Amsterdam, Netherlands, 1992.

[14] P. Ha and V. Mehrmann, Analysis and reformulation of linear delay differential-algebraic
equations, Electr. J. Lin. Alg. 23 (2012), 703–730.

[15] D. Hinrichsen and A. J. Pritchard, Real and complex stability radii: A survey, In: D. Hinrichsen,
B. Martensson eds., Control of Uncertain systems, Progress in System and Control Theory
(1990), 119–162.

[16] D. Hinrichsen and N.K. Son, Stability radii of positive discrete-time systems under affine pa-
rameter perturbations, Int. J. Robust Nonlinear Control 8 (1998), 1169–1188.

[17] D. Hinrichsen, N.K. Son, and P.H.A. Ngoc, Stability radii of higher order positive difference
systems, Systems Control Lett. 49 (2003), 377–388.

[18] P. Kunkel and V. Mehrmann, Differential-algebraic equations. Analysis and numerical solution,
EMS Publishing House, Zürich, Switzerland, 2006.

[19] L. Lang, W. Chen, B.R. Bakshi, P.K. Goel, and S. Ungarala, Bayesian estimation via sequential
monte carlo sampling - constrained dynamic systems, Automatica 43 (2007), 1615–1622.

[20] S. Lang, Complex analysis, Springer Verlag, New York, N.Y., 1999.
[21] J. P. LaSalle, The stability of dynamical systems, SIAM Publications, Philadelphia, PA, 1976.
[22] V. Mehrmann, R. Nabben, and E. Virnik, Generalisation of the Perron-Frobenius theory to

matrix pencils, Lin. Alg. Appl. 428 (2008), 20–38.

24



[23] V. Mehrmann and C. Shi, Transformation of high order linear differential-algebraic systems to
first order, Numer. Alg. 42 (2006), 281–307.

[24] J.M. Ortega, Stability of difference equations and convergence of iterative processes, SIAM J.
Numer. Anal. 10 (1973), 268–282.

[25] G. Pappas and D. Hinrichsen, Robust stability of linear systems described by higher order
dynamic equations, IEEE Trans. Automat. Control 38 (1993), 1430–1435.

[26] L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young, and J.C. Doyle, A formula
for computation of the real stability radius, Automatica 31 (1995), 879–890.

[27] N.K. Son and D.D. Thuan, The structured distance to non-surjectivity and its application
to calculating the controllability radius of descriptor systems, J. Math. Anal. Appl. 388
(2012), 272–281.

[28] F. Tisseur and N.J. Higham, Structured pseudospectra for polynomial eigenvalue problems, with
applications, SIAM J. Matr. Anal. Appl. 23 (2001), 187–208.

[29] L.N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997), 383–406.

25


