ON THE PETERSON HIT PROBLEM

NGUYỄN SUM

Abstract

Let $P_{k}:=\mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ be the polynomial algebra over the prime field of two elements, \mathbb{F}_{2}, in k variables $x_{1}, x_{2}, \ldots, x_{k}$, each of degree 1. We study the hit problem, set up by F. Peterson, of finding a minimal set of generators for P_{k} as a module over the mod-2 Steenrod algebra, \mathcal{A}. In this paper, we study a minimal set of generators for \mathcal{A}-module P_{k} in some so-call generic degrees and apply these results to explicitly determine the hit problem for $k=4$.

Dedicated to Prof. N. H. V. Hu'ng on the occasion of his sixtieth birthday

1. Introduction and statement of results

Let V_{k} be an elementary abelian 2-group of rank k. Denote by $B V_{k}$ the classifying space of V_{k}. It may be thought of as the product of k copies of the real projective space $\mathbb{R} \mathbb{P}^{\infty}$. Then

$$
P_{k}:=H^{*}\left(B V_{k}\right) \cong \mathbb{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{k}\right]
$$

a polynomial algebra in k variables $x_{1}, x_{2}, \ldots, x_{k}$, each of degree 1 . Here the cohomology is taken with coefficients in the prime field \mathbb{F}_{2} of two elements.

Being the cohomology of a space, P_{k} is a module over the mod 2 Steenrod algebra \mathcal{A}. The action of \mathcal{A} on P_{k} can explicitly be given by the formula

$$
S q^{i}\left(x_{j}\right)= \begin{cases}x_{j}, & i=0 \\ x_{j}^{2}, & i=1 \\ 0, & \text { otherwise }\end{cases}
$$

and subject to the Cartan formula

$$
S q^{n}(f g)=\sum_{i=0}^{n} S q^{i}(f) S q^{n-i}(g)
$$

for $f, g \in P_{k}$ (see Steenrod and Epstein [29]).
A polynomial f in P_{k} is called hit if it can be written as a finite sum $f=$ $\sum_{i>0} S q^{i}\left(f_{i}\right)$ for some polynomials f_{i}. That means f belongs to $\mathcal{A}^{+} P_{k}$, where \mathcal{A}^{+} denotes the augmentation ideal in \mathcal{A}. We are interested in the hit problem, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra P_{k} as a module over the Steenrod algebra. In other words, we want to find a basis of the \mathbb{F}_{2}-vector space $Q P_{k}:=P_{k} / \mathcal{A}^{+} . P_{k}=\mathbb{F}_{2} \otimes_{\mathcal{A}} P_{k}$.

The hit problem was first studied by Peterson [21, 22], Wood 36], Singer [27], and Priddy [23], who showed its relationship to several classical problems respectively in cobordism theory, modular representation theory, Adams spectral sequence for

[^0]the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups. The vector space $Q P_{k}$ was explicitly calculated by Peterson [21] for $k=1,2$, by Kameko [14] for $k=3$. The case $k=4$ has been treated by Kameko [16] and by us 30.

Several aspects of the hit problem were then investigated by many authors. (See Boardman 1], Bruner, Hà and Hưng [2, Carlisle and Wood 3, Crabb and Hubbuck [4], Giambalvo and Peterson [5], Hà [6, Hưng [7], Hưng and Nam [8, 9], Hưng and Peterson [10, 11, Janfada and Wood [12, 13, Kameko [14, 15], Minami [17, Mothebe [18], Nam [19, 20], Repka and Selick [24], Singer [28], Silverman [25], Walker and Wood [33, 34, 35], Wood [37, 38] and others.)

The μ-function is one of the numerical functions that have much been used in the context of the hit problem. For a positive integer n, by $\mu(n)$ one means the smallest number r for which it is possible to write $n=\sum_{1 \leqslant i \leqslant r}\left(2^{d_{i}}-1\right)$, where $d_{i}>0$. A routine computation shows that $\mu(n)=s$ if and only if there exists uniquely a sequence of integers $d_{1}>d_{2}>\ldots>d_{s-1} \geqslant d_{s}>0$ such that

$$
\begin{equation*}
n=2^{d_{1}}+2^{d_{2}}+\ldots+2^{d_{s-1}}+2^{d_{s}}-s \tag{1.1}
\end{equation*}
$$

From this it implies $n-s$ is even and $\mu\left(\frac{n-s}{2}\right) \leqslant s$.
Denote by $\left(Q P_{k}\right)_{n}$ the subspace of $Q P_{k}$ consisting of all the classes represented by homogeneous polynomials of degree n in P_{k}.

Peterson 21] made the following conjecture, which was subsequently proved by Wood [36].

Theorem 1.1 (Wood [36]). If $\mu(n)>k$, then $\left(Q P_{k}\right)_{n}=0$.
One of the main tools in the study of the hit problem is Kameko's homomorphism $\widetilde{S q_{*}}: Q P_{k} \rightarrow Q P_{k}$. This homomorphism is induced by the \mathbb{F}_{2}-linear map, also denoted by ${\widetilde{S q_{*}}}_{0}^{0}: P_{k} \rightarrow P_{k}$, given by

$$
\widetilde{S q}_{*}^{0}(x)= \begin{cases}y, & \text { if } x=x_{1} x_{2} \ldots x_{k} y^{2} \\ 0, & \text { otherwise }\end{cases}
$$

for any monomial $x \in P_{k}$. Note that $\widetilde{S q}_{*}^{0}$ is not an \mathcal{A}-homomorphism. However, $\widetilde{S q}_{*}^{0} S q^{2 t}=S q^{t} \widetilde{S q}_{*}^{0}$, and $\widetilde{S q}_{*}^{0} S q^{2 t+1}=0$ for any non-negative integer t.

Theorem 1.2 (Kameko [14]). Let m be a positive integer. If $\mu(2 m+k)=k$, then $\widetilde{S q_{*}}:\left(Q P_{k}\right)_{2 m+k} \rightarrow\left(Q P_{k}\right)_{m}$ is an isomorphism of $G L_{k}$-modules.

Based on Theorems 1.1 and 1.2 the hit problem is reduced to the case of degree n with $\mu(n)=s<k$.

The hit problem in the case of degree n of the form with $s=k-1$, $d_{i-1}-d_{i}>1$ for $2 \leqslant i<k$ and $d_{k-1}>1$ was studied by Crabb and Hubbuck [4, Nam [19] and Repka and Selick [24].

In this paper, we explicitly determine the hit problem for the case $k=4$. First, we study the hit problem for the cases of degree n of the form 1.1 for $s=k-1$. The following theorem gives an inductive formula for the dimension of $\left(Q P_{k}\right)_{n}$ in this case.

Theorem 1.3. Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>$ $d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}$, and let $m=\sum_{1 \leqslant i \leqslant k-2}\left(2^{d_{i}-d_{k-1}}-1\right)$. If $d_{k-1} \geqslant k-1 \geqslant 1$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{m}
$$

For $d_{k-1} \geqslant k$, the theorem follows from the results in Nam [19] and the present author [32]. However, for $d_{k-1}=k-1$, the theorem is new.

Based on Theorem 1.3 we explicitly compute $Q P_{4}$.
Theorem 1.4. Let n be an arbitrary positive integer with $\mu(n)<4$. The dimension of the \mathbb{F}_{2}-vector space $\left(Q P_{4}\right)_{n}$ is given by the following table:

n	$s=1$	$s=2$	$s=3$	$s=4$	$s \geqslant 5$
$2^{s+1}-3$	4	15	35	45	45
$2^{s+1}-2$	6	24	50	70	80
$2^{s+1}-1$	14	35	75	89	85
$2^{s+2}+2^{s+1}-3$	46	94	105	105	105
$2^{s+3}+2^{s+1}-3$	87	135	150	150	150
$2^{s+4}+2^{s+1}-3$	136	180	195	195	195
$2^{s+t+1}+2^{s+1}-3, t \geqslant 4$	150	195	210	210	210
$2^{s+1}+2^{s}-2$	21	70	116	164	175
$2^{s+2}+2^{s}-2$	55	126	192	240	255
$2^{s+3}+2^{s}-2$	73	165	241	285	300
$2^{s+4}+2^{s}-2$	95	179	255	300	315
$2^{s+5}+2^{s}-2$	115	175	255	300	315
$2^{s+t}+2^{s}-2, t \geqslant 6$	125	175	255	300	315
$2^{s+2}+2^{s+1}+2^{s}-3$	64	120	120	120	120
$2^{s+3}+2^{s+2}+2^{s}-3$	155	210	210	210	210
$2^{s+t+1}+2^{s+t}+2^{s}-3, t \geqslant 3$					
$2^{s+3}+2^{s+1}+2^{s}-3$	140	210	210	210	210
$2^{s+u+1}+2^{s+1}+2^{s}-3, u \geqslant 3$					
$2^{s+u+2}+2^{s+2}+2^{s}-3, u \geqslant 2$	140	225	225	225	225
$2^{s+t+u}+2^{s+t}+2^{s}-3, u \geqslant 2, t \geqslant 3$	120	210	210	210	210

The space $Q P_{4}$ was also computed in Kameko [16] by using computer calculation. However the manuscript is unpublished at the time of the writing.

Carlisle and Wood showed in [3] that the dimension of the vector space $\left(Q P_{k}\right)_{m}$ is uniformly bounded by a number depended only on k. In 1990, Kameko made the following conjecture in his Johns Hopkins University PhD thesis [14].

Conjecture 1.5 (Kameko [14]). For every nonnegative integer m,

$$
\operatorname{dim}\left(Q P_{k}\right)_{m} \leqslant \prod_{1 \leqslant i \leqslant k}\left(2^{i}-1\right)
$$

The conjecture was shown by Kameko himself for $k \leqslant 3$ in [14]. From Theorem 1.4, we see that the conjecture is also true for $k=4$.

By induction on k, using Theorem 1.3 we obtain the following.

Corollary 1.6. Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers. If $d_{1}-d_{2} \geqslant$ $2, d_{i-1}-d_{i} \geqslant i-1,3 \leqslant i \leqslant k-1, d_{k-1} \geqslant k-1$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\prod_{1 \leqslant i \leqslant k}\left(2^{i}-1\right)
$$

For the case $d_{i-1}-d_{i} \geqslant i, 2 \leqslant i \leqslant k-1$, and $d_{k-1} \geqslant k$, this result is due to Nam [19]. This corollary also shows that Kameko's conjecture is true for the degree n as given in the corollary.

By induction on k, using Theorems $1.3,1.4$ and the fact that the dual of the Kameko squaring is an epimorphism, one gets the following.

Corollary 1.7. Let $n=\sum_{1 \leqslant i \leqslant k-2}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers and let $d_{k-1}=$ $1, n_{r}=\sum_{1 \leqslant i \leqslant r-2}\left(2^{d_{i}-d_{r-1}-1}\right)-1$ with $r=5,6, \ldots, k$. If $d_{1}-d_{2} \geqslant 4, d_{i-2}-d_{i-1} \geqslant$ i, for $4 \leqslant i \leqslant k$ and $k \geqslant 5$, then

$$
\operatorname{dim}\left(Q P_{k}\right)_{n}=\prod_{1 \leqslant i \leqslant k}\left(2^{i}-1\right)+\sum_{5 \leqslant r \leqslant k}\left(\prod_{r+1 \leqslant i \leqslant k}\left(2^{i}-1\right)\right) \operatorname{dim} \operatorname{Ker}\left(\widetilde{S q_{*}}\right)_{n_{r}}
$$

where $\left(\widetilde{S q}_{*}^{0}\right)_{n_{r}}:\left(Q P_{r}\right)_{2 n_{r}+r} \rightarrow\left(Q P_{r}\right)_{n_{r}}$ denotes the squaring operation $\widetilde{S q}_{*}^{0}$ in degree $2 n_{r}+r$. Here, by convention, $\prod_{r+1 \leqslant i \leqslant k}\left(2^{i}-1\right)=1$ for $r=k$.

This corollary has been proved in [32] for the case $d_{i-2}-d_{i-1}>i+1$ with $3 \leqslant i \leqslant k$.

Obviously $2 n_{r}+r=\sum_{1 \leqslant i \leqslant r-2}\left(2^{e_{i}}-1\right)$, where $e_{i}=d_{i}-d_{r-1}+1$ for $1 \leqslant i \leqslant r-2$. So, in degree $2 n_{r}+r$ of P_{r}, there is a so-called spike $x=x_{1}^{2^{e_{1}}-1} x_{2}^{2^{e_{2}}-1} \ldots x_{r-2}^{2^{e_{r-2}-1}}$, i.e. a monomial whose exponents are all of the form $2^{e}-1$ for some e. Since the class $[x]$ in $\left(Q P_{k}\right)_{2 n_{r}+r}$ represented by the spike x is nonzero and $\widetilde{S q}_{*}^{0}([x])=$ 0 , we have $\operatorname{Ker}\left(\widetilde{S q_{*}}\right)_{n_{r}} \neq 0$, for any $5 \leqslant r \leqslant k$. Therefore, by Corollary 1.7 Kameko's conjecture is not true in degree $n=2 n_{k}+k$ for any $k \geqslant 5$, where $n_{k}=2^{d_{1}-1}+2^{d_{2}-1}+\ldots+2^{d_{k-2}-1}-k+1$.

This paper is organized as follows. In Section 2, we recall some needed information on the admissible monomials in P_{k} and Singer's criterion on the hit monomials. We prove Theorem 1.3 in Section 3 by describing a basis of $\left(Q P_{k}\right)_{n}$ in terms of a given basis of $\left(Q P_{k-1}\right)_{m}$. In Section 4, we recall the results on the hit problem for $k \leqslant 3$. Theorem 1.4 will be proved in Section 5 by explicitly determining all of the admissible monomials in P_{4}.

The first formulation of this paper was given in a 240-page preprint in 2007 [30], which was then publicized to a remarkable number of colleagues. One year latter, we found the negative answer to Kameko's conjecture on the hit problem [31, 32]. Being led by the insight of this new study, we have remarkably reduced the length of the paper.

2. Preliminaries

In this section, we recall some results in Kameko [14] and Singer [28] which will be used in the next sections.

Notation 2.1. Throughout the paper, we use the following notations.

$$
\begin{aligned}
\mathbb{N}_{k} & =\{1,2, \ldots, k\} \\
X_{I} & =X_{i_{1}, i_{2}, \ldots, i_{r}}=x_{1} \ldots \hat{x}_{i_{1}} \ldots \hat{x}_{i_{r}} \ldots x_{k} \\
& =\prod_{i \in \mathbb{N}_{k} \backslash I} x_{i}, \quad I=\left\{i_{1}, i_{2}, \ldots, x_{i_{r}}\right\} \subset \mathbb{N}_{k}
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
& X_{\mathbb{N}_{k}}=1 \\
& X_{\emptyset}=x_{1} x_{2} \ldots x_{k} \\
& X_{i}=x_{1} \ldots \hat{x}_{i} \ldots x_{k}, 1 \leqslant i \leqslant k
\end{aligned}
$$

Let $\alpha_{i}(a)$ denote the i-th coefficient in dyadic expansion of a nonnegative integer a. That means $a=\alpha_{0}(a) 2^{0}+\alpha_{1}(a) 2^{1}+\alpha_{2}(a) 2^{2}+\ldots$, for $\alpha_{i}(a)=0$ or 1 and $i \geqslant 0$. Denote by $\alpha(a)$ the number of one in dyadic expansion of a.

Let $x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}} \in P_{k}$. Denote by $\nu_{j}(x)=a_{j}, 1 \leqslant j \leqslant k$. Set

$$
I_{i}(x)=\left\{j \in \mathbb{N}_{k}: \alpha_{i}\left(\nu_{j}(x)\right)=0\right\}
$$

for $i \geqslant 0$. Then we have

$$
x=\prod_{i \geqslant 0} X_{I_{i}(x)}^{2^{i}}
$$

For a polynomial f in P_{k}, we denote by $[f]$ the class in $Q P_{k}$ represented by f. For a subset $S \subset P_{k}$, we denote

$$
[S]=\{[f]: f \in S\} \subset Q P_{k}
$$

Definition 2.2. For a monomial x, define two sequences associated with x by

$$
\begin{aligned}
\omega(x) & =\left(\omega_{1}(x), \omega_{2}(x), \ldots, \omega_{i}(x), \ldots\right) \\
\sigma(x) & =\left(a_{1}, a_{2}, \ldots, a_{k}\right)
\end{aligned}
$$

where $\omega_{i}(x)=\sum_{1 \leqslant j \leqslant k} \alpha_{i-1}\left(\nu_{j}(x)\right)=\operatorname{deg} X_{I_{i-1}(x)}, i \geqslant 1$.
The sequence $\omega(x)$ is called the weight vector of x (see Wood [37]). The weight vectors and the sigma vectors can be ordered by the left lexicographical order.

Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{i}, \ldots\right)$ be a sequence of nonnegative integers such that $\omega_{i}=0$ for $i \gg 0$. Define $\operatorname{deg} \omega=\sum_{i>0} 2^{i-1} \omega_{i}$. Denote by $P_{k}(\omega)$ the subspace of P_{k} spanned by all monomials y such that $\operatorname{deg} y=\operatorname{deg} \omega, \omega(y) \leqslant \omega$ and $P_{k}^{-}(\omega)$ the subspace of P_{k} spanned by all monomials $y \in P_{k}(\omega)$ such that $\omega(y)<\omega$. Denote by \mathcal{A}_{s}^{+}the subspace of \mathcal{A} spanned by all $S q^{j}$ with $1 \leqslant j<2^{s}$.
Definition 2.3. Let ω be a sequence of nonnegative integers and f, g two homogeneous polynomials of the same degree in P_{k}.
i) $f \equiv g$ if and only if $f-g \in \mathcal{A}^{+} P_{k}$.
ii) $f \simeq_{(s, \omega)} g$ if and only if $f-g \in \mathcal{A}_{s}^{+} P_{k}+P_{k}^{-}(\omega)$.

Since $\mathcal{A}_{0}^{+} P_{k}=0, f \simeq_{(0, \omega)} g$ if and only if $f-g \in P_{k}^{-}(\omega)$. If x is a monomial in P_{k} and $\omega=\omega(x)$, then we denote $x \simeq_{s} g$ if and only if $x \simeq_{(s, \omega(x))} g$.

Obviously, the relations \equiv and $\simeq_{(s, \omega)}$ are equivalence relations.
We recall some relations on the action of the Steenrod squares on P_{k}.
Proposition 2.4. Let f be a homogeneous polynomial in P_{k}.
i) If $i>\operatorname{deg} f$, then $S q^{i}(f)=0$. If $i=\operatorname{deg} f$, then $S q^{i}(f)=f^{2}$.
ii) If i is not divisible by 2^{s}, then $S q^{i}\left(f^{2^{s}}\right)=0$ while $S q^{r 2^{s}}\left(f^{2^{s}}\right)=\left(S q^{r}(f)\right)^{2^{s}}$.

Proposition 2.5. Let x, y be monomials and f, g homogeneous polynomials in P_{k} such that $\operatorname{deg} x=\operatorname{deg} f, \operatorname{deg} y=\operatorname{deg} g$.
i) If $\omega_{i}(x) \leqslant 1$ for $i>s$ and $x \simeq_{s} f$, then $x y^{2^{s}} \simeq_{s} f y^{2^{s}}$.
ii) If $\omega_{i}(x)=0$ for $i>s, x \simeq_{s} f$ and $y \simeq_{r} g$, then $x y^{2^{s}} \simeq_{s+r} f g^{2^{s}}$.

Proof. Suppose that

$$
x+f+\sum_{1 \leqslant i<2^{s}} S q^{i}\left(z_{i}\right)=h \in P_{k}^{-}(\omega(x))
$$

where $z_{i} \in P_{k}$. From this and Proposition 2.4, we have $S q^{i}\left(z_{i}\right) y^{2^{s}}=S q^{i}\left(z_{i} y^{2^{s}}\right)$. Observe that $\omega_{i}\left(x y^{2^{s}}\right)=\omega_{i}(x)$ for $i=1,2, \ldots, s$. If z is a monomial and $z \in$ $P_{k}^{-}(\omega(x))$, then there exists an index $i \geqslant 1$ such that $\omega_{j}(z)=\omega_{j}(x), j=1,2, \ldots, i-$ 1 and $\omega_{i}(z)<\omega_{i}(x)$. If $i>s$, then $\omega_{i}(x)=1, \omega_{i}(z)=0$. Then we have

$$
\left.\alpha_{i-1}\left(\operatorname{deg} x-\sum_{j=1}^{i-1} 2^{j-1} \omega_{j}(x)\right)=\alpha_{i-1}\left(2^{i-1}+\sum_{j>i} 2^{j-1} \omega_{j}(x)\right)\right)=1
$$

On the other hand, since $\operatorname{deg} x=\operatorname{deg} z, \omega_{i}(z)=0$ and $\omega_{j}(z)=\omega_{j}(x), j=$ $1,2, \ldots, i-1$, one gets

$$
\begin{aligned}
\alpha_{i-1}\left(\operatorname{deg} x-\sum_{j=1}^{i-1} 2^{j-1} \omega_{j}(x)\right) & =\alpha_{i-1}\left(\operatorname{deg} z-\sum_{j=1}^{i-1} 2^{j-1} \omega_{j}(z)\right) \\
& =\alpha_{i-1}\left(\sum_{j>i} 2^{j-1} \omega_{j}(z)\right)=0
\end{aligned}
$$

This is a contradiction. Hence $1 \leqslant i \leqslant s$.
From these about equalities and the fact that $h \in P_{k}^{-}(\omega(x))$, one gets

$$
x y^{2^{s}}+f y^{2^{s}}+\sum_{1 \leqslant i<2^{s}} S q^{i}\left(z_{i} y^{2^{s}}\right)=h y^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)
$$

The first part of the proposition is proved.
Suppose that $y+g+\sum_{1 \leqslant j<2^{r}} S q^{j}\left(u_{j}\right)=h_{1} \in P_{k}^{-}(\omega(y))$, where $u_{j} \in P_{k}$. Then

$$
x y^{2^{s}}=x g^{2^{s}}+x h_{1}^{2^{s}}+\sum_{1 \leqslant j<2^{r}} x S q^{j 2^{s}}\left(u_{j}^{2^{s}}\right)
$$

Since $\omega_{i}(x)=0$ for $i>s$ and $h_{1} \in P_{k}^{-}(\omega(y))$, we get $x h_{1}^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)$. Using the Cartan formula and Proposition 2.4 we obtain

$$
x S q^{j 2^{s}}\left(u_{j}^{2^{s}}\right)=S q^{j 2^{s}}\left(x u_{j}^{2^{s}}\right)+\sum_{0<b \leqslant j} S q^{b 2^{s}}(x)\left(S q^{j-b}\left(u_{j}\right)\right)^{2^{s}} .
$$

Since $\omega_{i}(x)=0$ for $i>s$, we have $x=\prod_{0 \leqslant i<s} X_{I_{i}(x)}^{2^{i}}$. Using the Cartan formula and Proposition 2.4 we see that $S q^{b 2^{s}}(x)$ is a sum of polynomials of the form

$$
\prod_{0 \leqslant i<s}\left(S q^{b_{i}}\left(X_{I_{i}(x)}\right)\right)^{2^{i}}
$$

where $\sum_{0 \leqslant i<s} b_{i} 2^{i}=b 2^{s}$ and $0 \leqslant b_{i} \leqslant \operatorname{deg} X_{I_{i}(x)}$. Let ℓ be the smallest index such that $b_{\ell}>0$ with $0 \leqslant \ell<s$. Suppose that a monomial z appears as a term of the polynomial $\left(\prod_{0 \leqslant i<s}\left(S q^{b_{i}}\left(X_{I_{i}(x)}\right)\right)^{2^{i}}\right)\left(S q^{j-b}\left(u_{j}\right)\right)^{2^{s}}$. Then $\omega_{t}(z)=\operatorname{deg} X_{I_{t-1}}(x)=$
$\omega_{t}(x)=\omega_{t}\left(x y^{2^{s}}\right)$ for $t \leqslant \ell$, and $\omega_{\ell+1}(z)=\operatorname{deg} X_{I_{\ell}(x)}-b_{\ell}<\operatorname{deg} X_{I_{\ell}(x)}=\omega_{\ell+1}(x)=$ $\omega_{\ell+1}\left(x y^{2^{s}}\right)$. Hence

$$
\left(\prod_{0 \leqslant i<s}\left(S q^{b_{i}}\left(X_{I_{i}(x)}\right)\right)^{2^{i}}\right)\left(S q^{j-b}\left(u_{j}\right)\right)^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)
$$

This implies $S q^{b 2^{s}}(x)\left(S q^{j-b}\left(u_{j}\right)\right)^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)$ for $0<b \leqslant j$. So one gets

$$
x y^{2^{s}}+x g^{2^{s}}+\sum_{1 \leqslant j<2^{r}} S q^{j 2^{s}}\left(x u_{j}^{2^{s}}\right) \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)
$$

Since $h \in P_{k}^{-}(\omega(x))$, we have $h g^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)$. Using Proposition 2.4 and the Cartan formula, we get

$$
x g^{2^{s}}+f g^{2^{s}}+\sum_{1 \leqslant i<2^{s}} S q^{i}\left(z_{i} g^{2^{s}}\right)=h g^{2^{s}} \in P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right) .
$$

Note that $1 \leqslant j 2^{s}<2^{r+s}$ for $1 \leqslant j<2^{r}$. Combining the above equalities gives $x y^{2^{s}}-f g^{2^{s}} \in \mathcal{A}_{r+s} P_{k}+P_{k}^{-}\left(\omega\left(x y^{2^{s}}\right)\right)$. This implies $x y^{2^{s}} \simeq_{r+s} x g^{2^{s}} \simeq_{r+s} f g^{2^{s}}$. The proposition is proved.

Definition 2.6. Let x, y be monomials of the same degree in P_{k}. We say that $x<y$ if and only if one of the following holds
i) $\omega(x)<\omega(y)$;
ii) $\omega(x)=\omega(y)$ and $\sigma(x)<\sigma(y)$.

Definition 2.7. A monomial x is said to be inadmissible if there exist monomials $y_{1}, y_{2}, \ldots, y_{t}$ such that $y_{j}<x$ for $j=1,2, \ldots, t$ and $x-\sum_{j=1}^{t} y_{j} \in \mathcal{A}^{+} P_{k}$.

A monomial x is said to be admissible if it is not inadmissible.
Obviously, the set of all the admissible monomials of degree n in P_{k} is a minimal set of \mathcal{A}-generators for P_{k} in degree n.

Definition 2.8. A monomial x is said to be strictly inadmissible if and only if there exist monomials $y_{1}, y_{2}, \ldots, y_{t}$ such that $y_{j}<x$, for $j=1,2, \ldots, t$ and $x-\sum_{j=1}^{t} y_{j} \in$ $\mathcal{A}_{s}^{+} P_{k}$ with $s=\max \left\{i ; \omega_{i}(x)>0\right\}$.

It is easy to see that if x is strictly inadmissible, then it is inadmissible. The following theorem is a modification of a result in [14].

Theorem 2.9 (Kameko [14], Sum [32). Let x, y, w be monomials in P_{k} such that $\omega_{i}(x)=0$ for $i>r>0, \omega_{s}(w) \neq 0$ and $\omega_{i}(w)=0$ for $i>s>0$.
i) If w is inadmissible, then $x w^{2^{r}}$ is also inadmissible.
ii) If w is strictly inadmissible, then $x w^{2^{r}} y^{2^{r+s}}$ is inadmissible.

Proposition 2.10 ([32]). Let x be an admissible monomial in P_{k}. Then we have
i) If there is an index i_{0} such that $\omega_{i_{0}}(x)=0$, then $\omega_{i}(x)=0$ for all $i>i_{0}$.
ii) If there is an index i_{0} such that $\omega_{i_{0}}(x)<k$, then $\omega_{i}(x)<k$ for all $i>i_{0}$.

Now, we recall a result of Singer [28] on the hit monomials in P_{k}.
Definition 2.11. A monomial z in P_{k} is called a spike if $\nu_{j}(z)=2^{s_{j}}-1$ for s_{j} a nonnegative integer and $j=1,2, \ldots, k$. If z is a spike with $s_{1}>s_{2}>\ldots>s_{r-1} \geqslant$ $s_{r}>0$ and $s_{j}=0$ for $j>r$, then it is called a minimal spike.

The following is a criterion for the hit monomials in P_{k}.

Theorem 2.12 (Singer [28]). Suppose $x \in P_{k}$ is a monomial of degree n, where $\mu(n) \leqslant k$. Let z be the minimal spike of degree n. If $\omega(x)<\omega(z)$, then x is hit.

From this theorem, we see that if z is a minimal spike, then $P_{k}(\omega(z)) \subset \mathcal{A}^{+} P_{k}$. The following lemmas were proved in [32].

Lemma 2.13 ([32]). Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}>0$, and x a monomial of degree n in P_{k}. If $[x] \neq 0$, then $\omega_{i}(x)=k-1$ for $1 \leqslant i \leqslant d_{k-1}$.

Lemma 2.14 ([32]). Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}>0$, and x a monomial in P_{k} such that $\omega_{i}(x)=k-1$, for $i=1,2, \ldots, s \leqslant d_{k-1}$ and $\omega_{i}(x)=0$ for $i>s$. Suppose y, f and g are polynomials in P_{k} with $\operatorname{deg} f=\operatorname{deg} x$ and $\operatorname{deg} y=\operatorname{deg} g=(n-\operatorname{deg} x) / 2^{s}=$ $2^{d_{1}-s}+\ldots+2^{d_{k-2}-s}+2^{d_{k-1}-s}-k+1$.
i) If $x \simeq_{s} f$, then $x g^{2^{s}} \equiv f g^{2^{s}}$.
ii) If $y \equiv g$, then $x y^{2^{s}} \equiv x g^{2^{s}}$.

For latter use, we set

$$
\begin{aligned}
P_{k}^{0} & =\left\langle\left\{x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}} ; a_{1} a_{2} \ldots a_{k}=0\right\}\right\rangle \\
P_{k}^{+} & =\left\langle\left\{x=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}} ; a_{1} a_{2} \ldots a_{k}>0\right\}\right\rangle
\end{aligned}
$$

It is easy to see that P_{k}^{0} and P_{k}^{+}are the \mathcal{A}-submodules of P_{k}. Furthermore, we have the following.

Proposition 2.15. We have a direct summand decomposition of the \mathbb{F}_{2}-vector spaces

$$
Q P_{k}=Q P_{k}^{0} \oplus Q P_{k}^{+}
$$

Here $Q P_{k}^{0}=P_{k}^{0} / \mathcal{A}^{+} . P_{k}^{0}$ and $Q P_{k}^{+}=P_{k}^{+} / \mathcal{A}^{+} . P_{k}^{+}$.

3. Proof of Theorem 1.3

We denote

$$
\mathcal{N}_{k}=\left\{(i ; I) ; I=\left(i_{1}, i_{2}, \ldots, i_{r}\right), 1 \leqslant i<i_{1}<\ldots<i_{r} \leqslant k, 0 \leqslant r<k\right\}
$$

Let $(i ; I) \in \mathcal{N}_{k}$ and $j \in \mathbb{N}_{k}$. Denote by $r=\ell(I)$ the length of I, and

$$
I \cup j= \begin{cases}I, & \text { if } j \in I, \\ \left(i_{1}, \ldots, i_{t-1}, j, i_{t}, \ldots, i_{r}\right), & \text { if } i_{t-1}<j<i_{t}, 1 \leqslant t \leqslant r+1\end{cases}
$$

Here $i_{0}=0$ and $i_{r+1}=k+1$.
For $2 \leqslant h<k$, we set $\mathcal{N}_{h-1} \cup h=\left\{(i ; I \cup h) ;(i ; I) \in \mathcal{N}_{h-1}\right\}$. Then we have

$$
\begin{equation*}
\mathcal{N}_{k}=\left(\mathcal{N}_{1} \cup 2\right) \cup \ldots \cup\left(\mathcal{N}_{k-1} \cup k\right) \cup\{(1 ; \emptyset), \ldots,(k ; \emptyset)\} \tag{3.1}
\end{equation*}
$$

For $1 \leqslant i \leqslant k$, define the homomorphism $f_{i}=f_{k ; i}: P_{k-1} \rightarrow P_{k}$ of algebras by substituting

$$
f_{i}\left(x_{j}\right)= \begin{cases}x_{j}, & \text { if } 1 \leqslant j<i \\ x_{j+1}, & \text { if } i \leqslant j<k\end{cases}
$$

Definition 3.1. Let $(i ; I) \in \mathbb{N}_{k}$, let $r=\ell(I)$, and let u be an integer with $1 \leqslant u \leqslant r$. A monomial $x \in P_{k-1}$ is said to be u-compatible with $(i ; I)$ if all of the following hold:
i) $\nu_{i_{1}-1}(x)=\nu_{i_{2}-1}(x)=\ldots=\nu_{i_{(u-1)}-1}(x)=2^{r}-1$,
ii) $\nu_{i_{u}-1}(x)>2^{r}-1$,
iii) $\alpha_{r-t}\left(\nu_{i_{u}-1}(x)\right)=1, \forall t, 1 \leqslant t \leqslant u$,
iv) $\alpha_{r-t}\left(\nu_{i_{t}-1}(x)\right)=1, \forall t, u<t \leqslant r$.

Clearly, a monomial x can be u-compatible with a given $(i ; I) \in \mathcal{N}_{k}, r=\ell(I)>0$, for at most one value of u. By convention, x is 1-compatible with $(i ; \emptyset)$.
Definition 3.2. Let $(i ; I) \in \mathcal{N}_{k}, x_{(I, u)}=x_{i_{u}}^{2^{r-1}+\ldots+2^{r-u}} \prod_{u<t \leqslant r} x_{i_{t}}^{2^{r-t}}$ for $1 \leqslant u \leqslant$ $r=\ell(I), x_{(\emptyset, 1)}=1$. For a monomial x in P_{k-1}, we define the monomial $\phi_{(i ; I)}(x)$ in P_{k} by setting

$$
\phi_{(i ; I)}(x)= \begin{cases}\left(x_{i}^{2^{r}-1} f_{i}(x)\right) / x_{(I, u)}, & \text { if there exists } u \text { such that } \\ 0, & x \text { is } u \text {-compatible with }(i, I) \\ \text { otherwise. }\end{cases}
$$

Then we have an \mathbb{F}_{2}-linear map $\phi_{(i ; I)}: P_{k-1} \rightarrow P_{k}$. In particular, $\phi_{(i ; \emptyset)}=f_{i}$.
Let $x=X^{2^{d}-1} y^{2^{d}}$, with y a monomial in P_{k-1} and $X=x_{1} x_{2} \ldots, x_{k-1} \in P_{k-1}$.
If $r<d$, then x is 1-compatible with $(i ; I)$ and

$$
\begin{equation*}
\phi_{(i ; I)}(x)=\phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}(y)^{2^{d}}=x_{i}^{2^{r}-1} \prod_{1 \leqslant t \leqslant r} x_{i_{t}}^{2^{d}-2^{r-t}-1} X_{i, i_{1}, \ldots, i_{r}}^{2^{d}-1} f_{i}(y)^{2^{d}} \tag{3.2}
\end{equation*}
$$

If $d=r, \nu_{j-1}(y)=0, j=i_{1}, i_{2}, \ldots, i_{u-1}$ and $\nu_{i_{u}-1}(y)>0$, then x is u-compatible with $(i ; I)$ and

$$
\begin{equation*}
\phi_{(i ; I)}(x)=\phi_{\left(i_{u} ; J_{u}\right)}\left(X^{2^{d}-1}\right) f_{i}(y)^{2^{d}} \tag{3.3}
\end{equation*}
$$

where $J_{u}=\left(i_{u+1}, \ldots, i_{r}\right)$.
Let B be a finite subset of P_{k-1} consisting of some homogeneous polynomials in degree n. We set

$$
\begin{aligned}
\Phi^{0}(B) & =\bigcup_{1 \leqslant i \leqslant k} \phi_{(i ; \emptyset)}(B)=\bigcup_{1 \leqslant i \leqslant k} f_{i}(B) . \\
\Phi^{+}(B) & =\bigcup_{(i ; I) \in \mathcal{N}_{k}, 0<\ell(I) \leqslant k-1} \phi_{(i ; I)}(B) \backslash P_{k}^{0} . \\
\Phi(B) & =\Phi^{0}(B) \bigcup \Phi^{+}(B) .
\end{aligned}
$$

It is easy to see that if $B_{k-1}(n)$ is a minimal set of generators for P_{k-1} in degree n, then $\Phi^{0}\left(B_{k-1}(n)\right)$ is a minimal set of generators for \mathcal{A}-module P_{k}^{0} in degree n and $\Phi^{+}\left(B_{k-1}(n)\right) \subset P_{k}^{+}$.

Proposition 3.3. Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>d_{2}>\ldots>d_{k-2} \geqslant d_{k-1} \geqslant k-1 \geqslant 1$. If $B_{k-1}(n)$ is a minimal set of generators for \mathcal{A}-module P_{k-1} in degree n, then $B_{k}(n)=\Phi\left(B_{k-1}(n)\right)$ is also a minimal set of generators for \mathcal{A}-module P_{k} in degree n.

For $d_{k-1} \geqslant k$, this proposition is a modification of a result in Nam [19]. For $d_{k-2}=d_{k-1}>k$, it has been proved in 32].

We prepare some lemmas for the proof of this proposition.

Lemma 3.4. Let $j_{0}, j_{1}, \ldots, j_{d-1} \in \mathbb{N}_{k}$. Then there is $(i ; I) \in \mathcal{N}_{k}$ such that

$$
x=\prod_{0 \leqslant t<d} X_{j_{t}}^{2^{t}} \simeq_{d-1} \phi_{(i ; I)}\left(X^{2^{d}-1}\right)
$$

where $i=\min \left\{j_{0}, j_{1}, \ldots, j_{d-1}\right\}$.
Lemma 3.5. Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>$ $d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}>0$, and let y_{0} be a monomial in $\left(P_{k}\right)_{m-1}, y_{i}=y_{0} x_{i}$ for $1 \leqslant i \leqslant k$, and $(i ; I) \in \mathcal{N}_{k}$.
i) If $0<r=\ell(I)<d=d_{k-1}$, then

$$
\phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}} \equiv \sum_{1 \leqslant j<i} \phi_{(j ; I)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}+\sum_{i<j \leqslant k} \phi_{\left(i_{j} ; I_{j}\right)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}
$$

where $i_{j}=\min (j, I), I_{j}=I$ for $j<\min I$, and $I_{j}=(I \cup j) \backslash\left\{i_{j}\right\}$ for $j \geqslant \min I$.
ii) If $r+1<d$, then

$$
\phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}} \equiv \sum_{1 \leqslant j<i} \phi_{(j ; I \cup i)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}+\sum_{i<j \leqslant k} \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}
$$

Denote by $I_{t}=(t+1, t+2, \ldots, k)$ for $1 \leqslant t \leqslant k$. Set

$$
Y_{t}=\sum_{r=t}^{k} \phi_{\left(t ; I_{t}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}, d>k+1-t
$$

Lemma 3.6. For $1<t \leqslant k$,

$$
Y_{t} \simeq{ }_{(k, \omega)} \sum_{(j ; J)} \phi_{(j ; J)}\left(X^{2^{d}-1}\right) x_{j}^{2^{d}}
$$

where the sum runs over some $(j ; J) \in \mathcal{N}_{k}$ with $1 \leqslant j<t, J \subset I_{t-1}, J \neq I_{t-1}$ and $\omega=\omega\left(X_{1}^{2^{d}-1} x_{1}^{2^{d}}\right)$.

We assume that all elements of $B_{k-1}(n)$ are monomials. Denote by $\mathcal{B}=B_{k-1}(n)$. We set

$$
\begin{aligned}
\mathcal{C} & =\left\{z \in \mathcal{B}: \nu_{1}(z)>2^{k-1}-1\right\}, \\
\mathcal{D} & =\left\{z \in \mathcal{B}: \nu_{1}(z)=2^{k-1}-1, \nu_{2}(z)>2^{k-1}-1\right\}, \\
\mathcal{E} & =\left\{z \in \mathcal{B}: \nu_{1}(z)=\nu_{2}(z)=2^{k-1}-1\right\} .
\end{aligned}
$$

Since $\omega_{k}(z) \geqslant k-3$ for all $z \in \mathcal{B}$, we have $\mathcal{B}=\mathcal{C} \cup \mathcal{D} \cup \mathcal{E}$. If $d=d_{k-1}>k-1$, then $\mathcal{D}=\mathcal{E}=\emptyset$. If $d_{k-2}>d_{k-1}=k-1$, then $\mathcal{E}=\emptyset$. We set $\overline{\mathcal{B}}=\left\{\bar{z} ; X^{2^{d}-1} \bar{z}^{2^{d}} \in \mathcal{B}\right\}$. If either $d \geqslant k$ or $I \neq I_{1}$, then $\phi_{(i ; I)}(z)=\phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}(\bar{z})^{2^{d}}$. If $d=d_{k-1}=k-1$, then

$$
\phi_{\left(1 ; I_{1}\right)}(z)= \begin{cases}\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}(\bar{z})^{2^{d}}, & \text { if } z \in \mathcal{C} \tag{3.4}\\ \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right) f_{2}(\bar{z})^{2^{d}}, & \text { if } z \in \mathcal{D} \\ \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right) f_{3}(\bar{z})^{2^{d}}, & \text { if } z \in \mathcal{E}\end{cases}
$$

For any $(i ; I) \in \mathcal{N}_{k}$, we define the homomorphism $p_{(i ; I)}: P_{k} \rightarrow P_{k-1}$ of algebras by substituting

$$
p_{(i ; I)}\left(x_{j}\right)= \begin{cases}x_{j}, & \text { if } 1 \leqslant j<i \\ \sum_{s \in I} x_{s-1}, & \text { if } j=i \\ x_{j-1}, & \text { if } i<j \leqslant k\end{cases}
$$

Then $p_{(i ; I)}$ is a homomorphism of \mathcal{A}-modules. In particular, for $I=\emptyset$, we have $p_{(i ; \emptyset)}\left(x_{i}\right)=0$.
Lemma 3.7. Let $z \in \mathcal{B},(i ; I),(j ; J) \in \mathcal{N}_{k}$ and $\ell(J) \leqslant \ell(I)$.
i) If either $d \geqslant k$ or $d=k-1$ and $I \neq I_{1}$, then

$$
p_{(j ; J)}\left(\phi_{(i ; I)}(z)\right) \equiv \begin{cases}z, & \text { if }(j ; J)=(i ; I) \\ 0, & \text { if }(j ; J) \neq(i ; I)\end{cases}
$$

ii) If $z \in \mathcal{C}$ and $d=k-1$, then

$$
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv \begin{cases}z, & \text { if }(i ; I)=\left(1 ; I_{1}\right) \\ 0 \bmod \langle\mathcal{D} \cup \mathcal{E}\rangle, & \text { if }(i ; I)=\left(2 ; I_{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

iii) If $z \in \mathcal{D}$, then

$$
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv \begin{cases}z, & \text { if }(i ; I)=\left(1 ; I_{1}\right),\left(1 ; I_{2}\right),\left(2 ; I_{2}\right) \\ 0 \bmod \langle\mathcal{E}\rangle, & \text { if }(i ; I)=\left(3 ; I_{3}\right) \\ 0, & \text { otherwise }\end{cases}
$$

iv) If $z \in \mathcal{E}$, then

$$
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv \begin{cases}z & \text { if } I_{3} \subset I \\ 0, & \text { otherwise }\end{cases}
$$

The above lemmas will be proved in the end of the section.
We recall the following.
Lemma 3.8 (Nam [19]). Let x be a monomial in P_{k}. Then $x \equiv \sum \bar{x}$, where \bar{x} are monomials with $\nu_{1}(\bar{x})=2^{t}-1$ and $t=\alpha\left(\nu_{1}(x)\right)$.
Proof of Proposition 3.3. Denote by $\mathcal{P}(n)$ the subspace of $\left(P_{k}\right)_{n}$ spanned by all elements of the set $B_{k}(n)$.

Let x be a monomial of degree n in P_{k} and $[x] \neq 0$. By Lemma 2.13 we have $\omega_{i}(x)=k-1$ for $1 \leqslant i \leqslant d_{k-1}=d$. Hence we obtain $x=\left(\prod_{0 \leqslant t<d} X_{j_{t}}^{2^{t}}\right) \bar{y}^{2^{d}}$, for suitable monomial $\bar{y} \in\left(P_{k}\right)_{m}$, with $m=\sum_{1 \leqslant i \leqslant k-2}\left(2^{d_{i}-d}-1\right)$.

According to Lemmas 3.4 and 2.14 there is $(i ; I) \in \mathcal{N}_{k}$ such that

$$
\begin{equation*}
x=\left(\prod_{0 \leqslant t<d} X_{j_{t}}^{2^{t}}\right) \bar{y}^{2^{d}} \equiv \phi_{(i ; I)}\left(X^{2^{d}-1}\right) \bar{y}^{2^{d}} \tag{3.5}
\end{equation*}
$$

where $r=\ell(I)<d$.
Set $h_{u}=2^{d_{1}-u}+\ldots+2^{d_{k-2}-u}+2^{d_{k-1}-u}-k+1$, for $0 \leqslant u \leqslant d$. We have $h_{0}=n, h_{d}=m, 2 h_{u}+k-1=h_{u-1}$ and $\mu\left(2 h_{u}+k-1\right)=k-1$ for $1 \leqslant u \leqslant d$. By Theorem 1.2 the squaring operation $\left(\widetilde{S q_{*}}\right)_{h_{u}}:\left(Q P_{k-1}\right)_{h_{u-1}} \rightarrow\left(Q P_{k-1}\right)_{h_{u}}$ is an isomorphism of \mathbb{F}_{2}-vector spaces. So the iterated squaring operation

$$
\left(\widetilde{S q}_{*}^{0}\right)^{d}=\left({\widetilde{S q_{*}}}_{*}^{0}\right)_{h_{d}} \ldots\left({\widetilde{S q_{*}}}_{0}^{0}\right)_{h_{1}}:\left(Q P_{k-1}\right)_{n} \rightarrow\left(Q P_{k-1}\right)_{m}
$$

is also an isomorphism of \mathbb{F}_{2}-vector spaces. Hence

$$
\bar{B}_{k-1}(m)=\left(\widetilde{S q}_{*}^{0}\right)^{d}\left(B_{k-1}(n)\right)=\left\{\bar{z} \in\left(P_{k-1}\right)_{m}: X^{2^{d}-1} \bar{z}^{2^{d}} \in B_{k-1}(n)\right\}
$$

is a minimal set of \mathcal{A}-generators for P_{k-1} in degree m.

Now, we prove $[x] \in[\mathcal{P}(n)]$. The proof is divided into many cases.
Case 3.5.1. $\bar{y}=f_{i}(y)$ with $y \in\left(P_{k-1}\right)_{m}$.
Since $y \in\left(P_{k-1}\right)_{m}$, we have $y \equiv \bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{s}$ with \bar{z}_{t} monomials in $\bar{B}_{k-1}(m)$. Using Lemma 2.14, we get

$$
x \equiv \phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}(y)^{2^{d}} \equiv \sum_{1 \leqslant t \leqslant s} \phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}\left(\bar{z}_{t}\right)^{2^{d}}
$$

Since $\phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{(i ; I)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$ and $X^{2^{d}-1} \bar{z}_{t}^{2^{d}} \in B_{k-1}(n)$, we get $[x] \in[\mathcal{P}(n)]$.

Case 3.5.2. $d \geqslant k, \bar{y}=x_{i}^{a} f_{i}(y)$ with $y \in\left(P_{k-1}\right)_{m-a}$.
If $i=1$ and either $I \neq I_{1}$ or $d>k$, then $d-r-1 \geqslant 1$. Applying Lemma 3.5(ii) with $y_{0}=x_{1}^{a-1} f_{1}(y)$, we get

$$
x \equiv \sum_{2 \leqslant j \leqslant k} \phi_{(1 ; I \cup j)}\left(X^{2^{d}-1}\right)\left(x_{1}^{a-1} f_{1}\left(x_{j-1} y\right)\right)^{2^{d}}
$$

From this and the inductive hypothesis, we obtain $[x] \in[\mathcal{P}(n)]$.
If $I=I_{1}$ and $d=k$, then $r=d-1$. Using Lemma 3.5 (i) with $y_{0}=x_{1}^{a-1} f_{1}(y)$ and Lemma 3.6. we get

$$
\begin{aligned}
x & \equiv \sum_{j=2}^{k} \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{k}-1}\right)\left(x_{j} y_{0}\right)^{2^{k}}=Y_{2} y_{0}^{2^{k}} \\
& \equiv \sum_{J \neq I_{1}} \phi_{(1 ; J)}\left(X^{2^{k}-1}\right)\left(x_{1}^{a} f_{1}(y)\right)^{2^{k}} .
\end{aligned}
$$

Since $J \neq I_{1}$, one gets $[x] \in[\mathcal{P}(n)]$.
Suppose $i>1$. Then $r+1<k \leqslant d$. Applying Lemma 3.5(ii) with $y_{0}=x_{i}^{a-1} f_{i}(y)$, we obtain

$$
x \equiv \sum_{1 \leqslant j<i} \phi_{(j ; I \cup i)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}+\sum_{i<j \leqslant k} \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}},
$$

where $y_{j}=x_{j} y_{0}=x_{i}^{a-1} f_{i}\left(x_{j-1} y\right)$ for $j>i$. Using the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$. So the proposition is proved for $d \geqslant k$.

In the remaining part of the proof, we assume that $d=k-1$.
Case 3.5.3. $(i ; I)=\left(2 ; I_{2}\right)$ and $\bar{y}=f_{1}(y)$ with $y \in\left(P_{k-1}\right)_{m}, \nu_{1}(y)>0$.
Since $y \in\left(P_{k-1}\right)_{m}$, we have $y \equiv \bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{s}$ with \bar{z}_{t} monomials in $\bar{B}_{k-1}(m)$. Using Lemma 2.14, we get

$$
x \equiv \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}(y)^{2^{d}} \equiv \sum_{1 \leqslant t \leqslant s} \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}\left(\bar{z}_{t}\right)^{2^{d}}
$$

If $\nu_{1}\left(\bar{z}_{t}\right)>0$, then $\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(1 ; I_{1}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. If $\nu_{1}\left(\bar{z}_{t}\right)=0$, then $f_{1}\left(\bar{z}_{t}\right)=f_{2}\left(\bar{z}_{t}\right)$ and $\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. Hence $[x] \in$ [$\mathcal{P}(n)]$.

Case 3.5.4. $(i ; I)=\left(3 ; I_{3}\right)$ and $\bar{y}=f_{2}(y)$ with $y \in\left(P_{k-1}\right)_{m}, \nu_{1}(y)=0, \nu_{2}(y)>0$.

Since $y \in\left(P_{k-1}\right)_{m}$ and $\nu_{1}(y)=0$, we have $y \equiv \bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{s}$ with \bar{z}_{t} polynomials in $B_{k-1}(m)$ and $\nu_{1}\left(\bar{z}_{t}\right)=0$. Using Lemma 2.14 we get

$$
x \equiv \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right) f_{2}(y)^{2^{d}} \equiv \sum_{1 \leqslant t \leqslant s} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right) f_{2}\left(\bar{z}_{t}\right)^{2^{d}}
$$

If $\nu_{2}\left(\bar{z}_{t}\right)>0$, then $\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right) f_{2}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(1 ; I_{1}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. If $\nu_{2}\left(\bar{z}_{t}\right)=0$, then $f_{2}\left(\bar{z}_{t}\right)=f_{3}\left(\bar{z}_{t}\right)$ and $\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right) f_{2}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. Hence $[x] \in$ [$\mathcal{P}(n)$].

Case 3.5.5. $(i ; I)=\left(4 ; I_{4}\right)$ and $\bar{y}=f_{3}(y)$ with $y \in\left(P_{k-1}\right)_{m}, \nu_{1}(y)=\nu_{2}(y)=0$.
Since $y \in\left(P_{k-1}\right)_{m}$ and $\nu_{1}(y)=\nu_{2}(y)=0$, we have $y \equiv \bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{s}$ with \bar{z}_{t} polynomials in $B_{k-1}(m)$ and $\nu_{1}\left(\bar{z}_{t}\right)=\nu_{2}\left(\bar{z}_{t}\right)=0$. Using Lemma 2.14 we get

$$
x \equiv \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(f_{3}(y)\right)^{2^{d}} \equiv \sum_{1 \leqslant t \leqslant s} \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right) f_{3}\left(\bar{z}_{t}\right)^{2^{d}}
$$

If $\nu_{3}\left(\bar{z}_{t}\right)>0$, then $\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right) f_{3}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(1 ; I_{1}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. If $\nu_{3}\left(\bar{z}_{t}\right)=0$, then $f_{3}\left(\bar{z}_{t}\right)=f_{4}\left(\bar{z}_{t}\right)$ and $\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right) f_{3}\left(\bar{z}_{t}\right)^{2^{d}}=\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1} \bar{z}_{t}^{2^{d}}\right)$. Hence $[x] \in$ [$\mathcal{P}(n)]$.

Case 3.5.6. $\bar{y}=x_{1}^{2^{s}} f_{1}(y)$ with $y \in\left(P_{k-1}\right)_{m-2^{s}}, i=1$ and $\ell(I)<k-2$.
According to Lemma 3.8 $x_{1}^{2^{s}} f_{1}(y)^{2^{d}} \equiv x_{1} f_{1}(g)$, for some polynomial g. So we assume $s=0$. Using Lemma 3.5 ii) with $y_{0}=f_{1}(y)$, we have

$$
x \equiv \sum_{r=2}^{k} \phi_{(1 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(f_{1}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

Hence by Case 3.5.1 $[x] \in[\mathcal{P}(n)]$.
Case 3.5.7. $\bar{y}=x_{2}^{2^{s}} f_{2}(y)$ with $y \in\left(P_{k-1}\right)_{m-2^{s}}, \nu_{1}(y)=0, i=2$ and $\ell(I)<k-3$.
Using Lemma 3.8, we need only to prove $[x] \in[\mathcal{P}(n)]$ for $s=0$. Using Lemma 3.5 (ii) with $y_{0}=f_{2}(y)$, one gets

$$
x \equiv \phi_{(1 ; I \cup 2)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{2}(y)\right)^{2^{d}}+\sum_{r=3}^{k} \phi_{(2 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(f_{2}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

Since $\nu_{1}(y)=0, f_{2}(y)=f_{1}(y)$, from this equalities, Cases 3.5.1 and 3.5.6, we get $[x] \in[\mathcal{P}(n)]$.
Case 3.5.8. $\bar{y}=x_{3}^{2^{s}} f_{3}(y)$, with $y \in\left(P_{k-1}\right)_{m-2^{s}}, \nu_{1}(y)=\nu_{2}(y)=0$ and $i=3$.
We need only to prove $[x] \in[\mathcal{P}(n)]$ for $s=0$. Note that since $\nu_{1}(y)=\nu_{2}(y)=0$, we have $f_{1}(y)=f_{2}(y)=f_{3}(y)$. If $I=I_{3}$, then by Case 3.5.4 $[x] \in[\mathcal{P}(n)]$. If $\ell(I)<k-4$, then using Lemma 3.5(ii) with $y_{0}=f_{3}(y)$, we get

$$
\begin{aligned}
x \equiv \phi_{(1 ; I \cup 3)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{(2 ; I \cup 3)}(& \left.X^{2^{d}-1}\right)\left(f_{2}\left(x_{1} y\right)\right)^{2^{d}} \\
& +\sum_{r=4}^{k} \phi_{(3 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{r-1} y\right)\right)^{2^{d}} .
\end{aligned}
$$

From this equalities and Cases 3.5.1, 3.5.6, 3.5.7, we get $[x] \in[\mathcal{P}(n)]$.

If $d_{k-2}>d_{k-1}$ and $I \neq I_{3}$, then $\omega_{k}(x)=\omega_{1}(y)+1=k-2$. Hence $\alpha_{0}\left(\nu_{j}(y)\right)=1$ for $j=3, \ldots, k-1$. Applying Lemma 3.5(i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we get

$$
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{(2 ; I)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}(y)\right)^{2^{d}}
$$

Hence by Cases 3.5.6 and 3.5.7, we get $[x] \in[\mathcal{P}(n)]$.
Suppose $d_{k-2}=d_{k-1}$ and $\ell(I)=k-4$. Then $I=I_{3, u}=(4, \ldots, \hat{u}, \ldots, k)$ with $4 \leqslant u \leqslant k$. Since $\omega_{k}(x)=\omega_{1}(y)+1=k-3$, we have $\omega_{1}(y)=k-4$. Hence there exists uniquely $3 \leqslant t<k$ such that $\alpha_{0}\left(\nu_{t}(y)\right)=0$.

If $t=u-1$, then using Lemma 3.5 (i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we get

$$
\begin{aligned}
& x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{(2 ; I)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}(y)\right)^{2^{d}} \\
&+\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{t} y\right)\right)^{2^{d}} .
\end{aligned}
$$

By Cases 3.5.5 3.5.6 and 3.5.7, we get $[x] \in[\mathcal{P}(n)]$.
If $u=4<t+1$, then using Lemma 3.5 (i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we get

$$
\begin{aligned}
& x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{(2 ; I)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}(y)\right)^{2^{d}} \\
&+\phi_{\left(5 ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{t} y\right)\right)^{2^{d}}
\end{aligned}
$$

Applying Lemma 3.5(i) with $y_{0}=f_{3}\left(x_{t} y / x_{4}\right)$ and Theorem 2.12 we have

$$
\phi_{\left(5 ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{t} y\right)\right)^{2^{d}} \equiv \sum_{1 \leqslant i \leqslant 3} \phi_{\left(i ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(x_{i} f_{i}\left(x_{t} y / x_{4}\right)\right)^{2^{d}}
$$

Since $\ell\left(I_{5}\right)=k-5<k-4$, using Cases 3.5.6 3.5.7 and the above equalities, we get $[x] \in[\mathcal{P}(n)]$.

Suppose that $4<u \neq t+1$. Using Lemma 3.5(i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we obtain

$$
\begin{aligned}
& x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{(2 ; I)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}(y)\right)^{2^{d}} \\
&+\phi_{(4 ; I \backslash 4)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{t} y\right)\right)^{2^{d}}
\end{aligned}
$$

Applying Lemma 3.5 (i) with $y_{0}=f_{3}\left(x_{t} y / x_{3}\right)$ and Theorem 2.12 we have

$$
\phi_{(4 ; I \backslash 4)}\left(X^{2^{d}-1}\right)\left(f_{3}\left(x_{t} y\right)\right)^{2^{d}} \equiv \sum_{1 \leqslant i \leqslant 3} \phi_{(i ; I \backslash 4)}\left(X^{2^{d}-1}\right)\left(x_{i} f_{i}\left(x_{t} y / x_{3}\right)\right)^{2^{d}}
$$

Since $\ell(I \backslash 4)=k-5<k-4$, using Cases 3.5.6, 3.5.7 and the above equalities, we get $[x] \in[\mathcal{P}(n)]$.
Case 3.5.9. $\bar{y}=x_{3}^{b} x_{4}^{c} f_{4}(y)$ for $y \in\left(P_{k-1}\right)_{m-b-c}$ with $\nu_{j}(y)=0, j=1,2,3$ and $i=4$.

Using Lemmas 3.8 and 2.14 we assume that $b=2^{s}-1$. We prove $[x] \in[\mathcal{P}(n)]$ by double induction on $(\ell(I), c)$. If $c=0$, then by Case 3.5.1. $[x] \in[\mathcal{P}(n)]$. If $I \neq I_{4}$, then applying Lemma 3.5 (ii) with $y_{0}=x_{3}^{b} x_{4}^{c-1} f_{4}(y)$, we have

$$
\begin{aligned}
& x \equiv \phi_{(1 ; I \cup 4)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b} x_{3}^{c-1} y\right)\right)^{2^{d}}+\phi_{(2 ; I \cup 4)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b} x_{3}^{c-1} y\right)\right)^{2^{d}} \\
& +\phi_{(3 ; I \cup 4)}\left(X^{2^{d}-1}\right)\left(x_{3}^{2^{s}} f_{3}\left(x_{3}^{c-1} y\right)\right)^{2^{d}}+\sum_{r=5}^{k} \phi_{(4 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b} x_{4}^{c-1} f_{4}\left(x_{r-1} y\right)\right)^{2^{d}}
\end{aligned}
$$

From this equalities, Cases $3.5 .6,3.5 .7,3.5 .8$ and the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$.

If $I=I_{4}$, then applying Lemma 3.5 (i) with $y_{0}=x_{3}^{b} x_{4}^{c-1} f_{4}(y)$, we obtain

$$
\begin{aligned}
x \equiv \phi_{\left(1 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b} x_{3}^{c-1} y\right)\right)^{2^{d}} & +\phi_{\left(2 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b} x_{3}^{c-1} y\right)\right)^{2^{d}} \\
& +\phi_{\left(3 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{3}^{2^{s}} f_{3}\left(x_{3}^{c-1} y\right)\right)^{2^{d}}+Y_{5} y_{0}^{2^{d}}
\end{aligned}
$$

By Lemma 3.6 and Lemma 2.14

$$
Y_{5} y_{0}^{2^{d}} \equiv \sum \phi_{(j ; J)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}
$$

where $1 \leqslant j<5, J \subset I_{4}$ and $J \neq I_{4}$. From the above equalities, Cases 3.5.6, 3.5.7 3.5 .8 and the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$.

Case 3.5.10. $\bar{y}=x_{3}^{b} f_{3}(y)$ for $y \in\left(P_{k-1}\right)_{m-b}$ with $\nu_{1}(y)=\nu_{2}(y)=0$ and $i=3$.
We prove $[x] \in[\mathcal{P}(n)]$ by double induction on $(\ell(I), b)$. If $b=0$, then by Case 3.5.1 $[x] \in[\mathcal{P}(n)]$. If $I=I_{3}$, then by Case 3.5.4 $[x] \in[\mathcal{P}(n)]$.

Suppose $b>0$. If $\ell(I)<k-4$, then applying Lemma 3.5(ii) with $y_{0}=x_{3}^{b-1} f_{3}(y)$, we obtain

$$
\begin{aligned}
x \equiv \phi_{(1 ; I \cup 3)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b-1} y\right)\right)^{2^{d}} & +\phi_{(2 ; I \cup 3)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}} \\
& +\sum_{r=4}^{k} \phi_{(3 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} f_{3}\left(x_{r-1} y\right)\right)^{2^{d}} .
\end{aligned}
$$

Using Cases 3.5.6 3.5.7 and the inductive hypothesis, we obtain $[x] \in[\mathcal{P}(n)]$.
Suppose that $\ell(\bar{I})=k-4$, and $I=I_{3, u}=(4, \ldots, \hat{u}, \ldots, k), 3<u \leqslant k$. If $d_{k-2}>$ d_{k-1}, then $\omega_{k}(x)=\omega_{1}(y)+1=k-2$. Hence $\alpha_{0}\left(\nu_{j}(y)\right)=1$ for $j=3, \ldots, k-1$. Applying Lemma 3.5(i) with $y_{0}=x_{3}^{b-1} f_{3}(y)$ and Theorem 2.12 we get

$$
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b-1} y\right)\right)^{2^{d}}+\phi_{(2 ; I)}\left(X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}}
$$

Hence by Cases 3.5.6 and 3.5.7, we get $[x] \in[\mathcal{P}(n)]$.
Suppose $d_{k-2}=d_{k-1}$. Since $\omega_{k}(x)=\omega_{1}(y)+1=k-3$, we have $\omega_{1}(y)=k-4$. Hence there exists uniquely $3 \leqslant t \leqslant k-1$ such that $\alpha_{0}\left(\nu_{t}(y)\right)=0$.

If $t=u-1$, then using Lemma 3.5(i) with $y_{0}=x_{3}^{b-1} f_{3}(y)$ and Theorem 2.12 we get

$$
\begin{aligned}
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b-1} y\right)\right)^{d^{d}}+\phi_{(2 ; I)}(& \left.X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}} \\
& +\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} f_{3}\left(x_{t} y\right)\right)^{2^{d}} .
\end{aligned}
$$

From this equalities, Cases 3.5.6 3.5.7 and 3.5.9 we get $[x] \in[\mathcal{P}(n)]$.
If $u=4<t+1$, then using Lemma 3.5(i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we get

$$
\begin{aligned}
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b-1} y\right)\right)^{d^{d}}+\phi_{(2 ; I)}(& \left.X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}} \\
& +\phi_{\left(5 ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} f_{3}\left(x_{t} y\right)\right)^{2^{d}}
\end{aligned}
$$

Applying Lemma 3.5(i) with $y_{0}=x_{3}^{b-1} f_{3}\left(x_{t} y / x_{4}\right)$ and Theorem 2.12 we have

$$
\phi_{\left(5 ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} f_{3}\left(x_{t} y\right)\right)^{2^{d}} \equiv \sum_{1 \leqslant i \leqslant 3} \phi_{\left(i ; I_{5}\right)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} x_{i} f_{3}\left(x_{t} y / x_{4}\right)\right)^{2^{d}}
$$

Since $\ell\left(I_{5}\right)=k-5<k-4$, using the above equalities, Cases 3.5.6 3.5.7 and the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$.

Suppose that $4<u \neq t+1$. Using Lemma 3.5(i) with $y_{0}=f_{3}(y)$ and Theorem 2.12 we obtain

$$
\begin{aligned}
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{2}^{b-1} y\right)\right)^{2^{d}}+\phi_{(2 ; I)}(& \left.X^{2^{d}-1}\right)\left(x_{2} f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}} \\
& +\phi_{(4 ; I \backslash 4)}\left(X^{2^{d}-1}\right)\left(x_{3}^{b-1} f_{3}\left(x_{t} y\right)\right)^{2^{d}}
\end{aligned}
$$

From the above equalities, Cases 3.5.6 3.5.7 and 3.5.9 we get $[x] \in[\mathcal{P}(n)]$.
Case 3.5.11. $\bar{y}=x_{2}^{2^{s}} f_{2}(y)$ for $y \in\left(P_{k-1}\right)_{m-2^{s}}$ with $\nu_{1}(y)=0$ and $i=2$.
It suffices to prove $[x] \in[\mathcal{P}(n)]$ for $s=0$. If $\ell(I)<k-3$, then $[x] \in[\mathcal{P}(n)]$ by Case 3.5.7. If $I=I_{2}$, then by Case 3.5.3, $[x] \in[\mathcal{P}(n)]$.

Suppose $\ell(I)=k-3$. Then $I=I_{2, u}=(3, \ldots, \hat{u}, \ldots, k)$. If $u=3$, then using Lemma 3.5 (i) with $y_{0}=f_{2}(y)$, we get

$$
\begin{aligned}
& x \equiv \phi_{\left(1 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(f_{2}\left(x_{2} y\right)\right)^{2^{d}} \\
&+\sum_{i=4}^{k} \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(f_{2}\left(x_{r-1} y\right)\right)^{2^{d}} .
\end{aligned}
$$

Using Cases 3.5.4 3.5.6 3.5.9, and the above equalities, we obtain $[x] \in[\mathcal{P}(n)]$.
If $u>3$, then using Lemma 3.5(i) with $y_{0}=f_{2}(y)$, we get

$$
\begin{aligned}
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}(y)\right)^{2^{d}}+\phi_{\left(3 ; I_{3}\right)}(& \left.X^{2^{d}-1}\right)\left(f_{2}\left(x_{u-1} y\right)\right)^{2^{d}} \\
& +\sum_{4 \leqslant r \leqslant k, r \neq u} \phi_{(3 ; I \backslash 3)}\left(X^{2^{d}-1}\right)\left(f_{2}\left(x_{r-1} y\right)\right)^{2^{d}} .
\end{aligned}
$$

Using Cases 3.5.4, 3.5.6 3.5.10 and the above equalities, we obtain $[x] \in[\mathcal{P}(n)]$.
Case 3.5.12. $\bar{y}=x_{2}^{a} x_{3}^{b} f_{3}(y)$ for $y \in\left(P_{k-1}\right)_{m-a-b}$ with $\nu_{1}(y)=\nu_{2}(y)=0$ and $i=3$.

According to Lemma 3.8 we assume $a=2^{s}-1$. We prove $[x] \in[\mathcal{P}(n)]$ by double induction on $(\ell(I), b)$.

If $b=0$, then by Case 3.5.1 $[x] \in P[n]$. If $I \neq I_{3}$, then using Lemma 3.5 (ii) with $y_{0}=x_{2}^{a} x_{3}^{b-1} f_{3}(y)$, we get

$$
\begin{aligned}
& x \equiv \phi_{(1 ; I \cup 3)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{1}^{a} x_{2}^{b-1} y\right)\right)^{2^{d}}+\phi_{(2 ; I \cup 3)}\left(X^{2^{d}-1}\right)\left(x_{2}^{2^{s}}\left(f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}}\right. \\
&+\sum_{r=4}^{k} \phi_{(3 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{2}^{a} x_{3}^{b-1} f_{3}\left(x_{r-1} y\right)\right)^{2^{d}}
\end{aligned}
$$

From this, Cases 3.5.6 3.5.7 and the inductive hypothesis we obtain $[x] \in[\mathcal{P}(n)]$.
If $I=I_{3}$, then using Lemma 3.5(i) with $y_{0}=x_{2}^{a} x_{3}^{b-1} f_{3}(y)$, we get

$$
\begin{aligned}
x \equiv & \phi_{\left(1 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{1}^{a} x_{2}^{b-1} y\right)\right)^{2^{d}} \\
& +\phi_{\left(2 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{2}^{2^{s}}\left(f_{2}\left(x_{2}^{b-1} y\right)\right)^{2^{d}}+Y_{4} y_{0}^{2^{d}}\right.
\end{aligned}
$$

By Lemma 3.6 and Lemma 2.14, we have

$$
Y_{4} y_{0}^{2^{d}} \equiv \sum_{(j ; J)} \phi_{(j ; J)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}
$$

where $1 \leqslant j<4$ and $J \subset I_{3}$ and $J \neq I_{3}$. Using Cases 3.5.6, 3.5.11 the above equalities and the induction hypothesis, we obtain $[x] \in[\mathcal{P}(n)]$.

Case 3.5.13. $\bar{y}=x_{2}^{a} f_{2}(y)$ for $y \in\left(P_{k-1}\right)_{m-a}$ with $\nu_{1}(y)=0$ and $i=2$.
We prove $[x] \in[\mathcal{P}(n)]$ by double induction on $(\ell(I), a)$. If $a=0$, then by Case 3.5.1. $[x] \in[\mathcal{P}(n)]$. If $I=I_{2}$, then by Case 3.5.3, $[x] \in[\mathcal{P}(n)]$. Suppose $a>0$ and $\ell(I)<k-3$. Applying Lemma 3.5 (ii) with $y_{0}=x_{2}^{a-1} f_{2}(y)$, we get

$$
x \equiv \phi_{(1 ; I \cup 2)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{1}^{a-1} y\right)\right)^{2^{d}}+\sum_{r=3}^{k} \phi_{(2 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{2}^{a-1} f_{2}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

Using Case 3.5 .6 and the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$.
Suppose that $I=I_{2, u}=(3, \ldots, \hat{u}, \ldots, k), 3 \leqslant u \leqslant k$.
If $u=3$, then $I=I_{3}$. Applying Lemma 3.5(i) with $y_{0}=x_{2}^{a-1} f_{2}(y)$, we get

$$
\begin{aligned}
& x \equiv \phi_{\left(1 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{1}^{a-1} y\right)\right)^{2^{d}}+\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{2}^{a-1} f_{2}\left(x_{2} y\right)\right)^{2^{d}} \\
&+\sum_{r=4}^{k} \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{2}^{a-1} f_{2}(y)\right)^{2^{d}} .
\end{aligned}
$$

Applying Lemma 3.6 and Lemma 2.14 one gets

$$
\begin{aligned}
\sum_{r=4}^{k} \phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{2}^{a-1} f_{2}(y)\right)^{2^{d}} & =Y_{4} y_{0}^{2^{d}} \\
& \equiv \sum_{(j ; J)} \phi_{(j ; J)}\left(X^{2^{d}-1}\right)\left(x_{j} x_{2}^{a-1} f_{2}(y)\right)^{2^{d}}
\end{aligned}
$$

where the last sum runs over some $(j ; J)$ with $1 \leqslant j<4, J \subset I_{3}$ and $J \neq I_{3}$. Since $\ell(J)<\ell\left(I_{3}\right)=k-3$, from the above equalities, Cases 3.5.4, 3.5.6 3.5.12 and the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$.

If $u>3$, applying Lemma 3.5 (i) with $y_{0}=x_{2}^{a-1} f_{2}(y)$, we get

$$
x \equiv \phi_{(1 ; I)}\left(X^{2^{d}-1}\right)\left(x_{1} f_{1}\left(x_{1}^{a-1} y\right)\right)^{2^{d}}+\sum_{r=3}^{k} \phi_{(3 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{2}^{a-1} f_{2}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

From the last equalities, Cases 3.5.6 and 3.5.12, we have $[x] \in[\mathcal{P}(n)]$.
Case 3.5.14. $\bar{y}=x_{1}^{2^{s}} f_{1}(y)$ with $y \in\left(P_{k-1}\right)_{m-2^{s}}$ and $i=1$.
By Lemma 3.8, we need only to prove $[x] \in[\mathcal{P}(n)]$ for $s=0$. If $\ell(I)<k-2$, then $[x] \in[\mathcal{P}(n)]$ by Case 3.5 .6 Suppose $\ell(I)=k-2$ and $I=I_{1, u}=(2, \ldots, \hat{u}, \ldots, k)$. If $u=2$, then $I=I_{2}$. Applying Lemma 3.5(i) with $y_{0}=f_{1}(y)$, one gets

$$
x \equiv \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\left(f_{1}\left(x_{1} y\right)\right)^{2^{d}}+\sum_{r=3}^{k} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(f_{1}\left(x_{r} y\right)\right)^{2^{d}}
$$

From the last equalities and Cases 3.5.3 3.5.12, we have $[x] \in[\mathcal{P}(n)]$.
If $u>2$, then applying Lemma 3.5(i) with $y_{0}=f_{1}(y)$, one obtain

$$
x \equiv \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\left(f_{1}\left(x_{u-1} y\right)\right)^{2^{d}}+\sum_{2 \leqslant r \leqslant k, r \neq u} \phi_{(2 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(f_{1}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

From the above equalities and Cases 3.5.3, 3.5.13, we have $[x] \in[\mathcal{P}(n)]$.

Case 3.5.15. $\bar{y}=x_{1}^{a} x_{2}^{b} f_{2}(y)$ for $y \in\left(P_{k-1}\right)_{m-a-b}$ with $\nu_{1}(y)=0$ and $i=2$.
We prove $[x] \in[\mathcal{P}(n)]$ by double induction on $(\ell(I), b)$. By Lemma 3.8 we assume that $a=2^{s}-1$.

If $b=0$, then $[x] \in[\mathcal{P}(n)]$ by Case 3.5.1. Suppose that $b>0$.
If $I \neq I_{2}$, then applying Lemma 3.5(ii) with $y_{0}=x_{1}^{a} x_{2}^{b-1} f_{2}(y)$, we get

$$
\begin{aligned}
x \equiv & \phi_{(1 ; I \cup 2)}\left(X^{2^{d}-1}\right)\left(x_{1}^{2^{s}} x_{2}^{b-1} f_{2}(y)\right)^{2^{d}} \\
& +\sum_{3 \leqslant r \leqslant k} \phi_{(2 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{1}^{a} x_{2}^{b-1} f_{2}\left(x_{r-1} y\right)\right)^{2^{d}}
\end{aligned}
$$

From the last equalities, Case 3.5.14, and the inductive hypothesis, we have $[x] \in$ [$\mathcal{P}(n)]$.

If $I=I_{2}$, then applying Lemma 3.5 (i) with $y_{0}=x_{1}^{a} x_{2}^{b-1} f_{2}(y)$, we get

$$
x \equiv \phi_{\left(1 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\left(x_{1}^{2^{s}} f_{2}\left(x_{1}^{b-1} y\right)\right)^{2^{d}}+\sum_{3 \leqslant r \leqslant k} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{1}^{a} x_{2}^{b-1} f_{2}(y)\right)^{2^{d}}
$$

By Lemma 3.6 and Lemma 2.14 we have

$$
\begin{aligned}
\sum_{3 \leqslant r \leqslant k} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{1}^{a} x_{2}^{b-1} f_{2}(y)\right)^{2^{d}} & =Y_{3} y_{0}^{2^{d}} \\
& \equiv \sum_{(j ; J)} \phi_{(j ; J)}\left(X^{2^{d}-1}\right)\left(x_{j} x_{1}^{a} x_{2}^{b-1} f_{2}(y)\right)^{2^{d}},
\end{aligned}
$$

where the last sum runs over some $(j ; J)$ with $j=1,2, J \subset I_{2}$ and $J \neq I_{2}$.
From the above equalities, Case 3.5.14 and the inductive hypothesis, we have $[x] \in[\mathcal{P}(n)]$.
Case 3.5.16. $\bar{y}=x_{1}^{a} f_{1}(y)$ for $y \in\left(P_{k-1}\right)_{m-a}$ and $i=1$.
If $a=0$, then by Case 3.5.1, $[x] \in[\mathcal{P}(n)]$. Suppose that $a>0$. If $\ell(I)<k-2$, then applying Lemma 3.5 (ii) with $y_{0}=x_{1}^{a} x_{2}^{b-1} f_{2}(y)$, we get

$$
x \equiv \sum_{r=2}^{k} \phi_{(1 ; I \cup r)}\left(X^{2^{d}-1}\right)\left(x_{1}^{a-1} f_{1}\left(x_{r-1} y\right)\right)^{2^{d}}
$$

Hence by the inductive hypothesis, we have $[x] \in[\mathcal{P}(n)]$.
Suppose that $\ell(I)=k-2$. Then $I=I_{1, u}=(2, \ldots, \hat{u}, \ldots, k)$. If $u=2$, then applying Lemma 3.5(i) with $y_{0}=x_{1}^{a-1} f_{1}(y)$ and Lemma 2.14 we get

$$
x \equiv \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\left(x_{1}^{a-1} f_{1}\left(x_{1} y\right)\right)^{2^{d}}+\sum_{r=3}^{k} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{1}^{a-1} f_{1}(y)\right)^{2^{d}}
$$

By Lemma 3.6 and Lemma 2.14, we have

$$
\begin{aligned}
\sum_{r=3}^{k} \phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\left(x_{r} x_{1}^{a-1} f_{1}(y)\right)^{2^{d}} & =Y_{3} y_{0}^{2^{d}} \\
& \equiv \sum_{(j ; J)} \phi_{(j ; J)}\left(X^{2^{d}-1}\right)\left(x_{j} x_{1}^{a-1} f_{1}(y)\right)^{2^{d}}
\end{aligned}
$$

where the last sum runs over some $(j ; J)$ with $j=1,2, J \subset I_{2}$ and $J \neq I_{2}$.
From the above equalities, Case 3.5 .15 and the inductive hypothesis, we have $[x] \in[\mathcal{P}(n)]$.

If $u>2$, then applying Lemma 3.5 (i) with $y_{0}=x_{1}^{a-1} f_{1}(y)$, we get

$$
\begin{aligned}
x \equiv & \phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\left(x_{u-1}^{a-1} f_{1}\left(x_{1} y\right)\right)^{2^{d}} \\
& +\sum_{3 \leqslant u \leqslant k, r \neq u} \phi_{(2 ; I \backslash 2)}\left(X^{2^{d}-1}\right)\left(x_{1}^{a-1} f_{1}\left(x_{r-1} y\right)\right)^{2^{d}} .
\end{aligned}
$$

From the above equalities, Case 3.5.15 and the inductive hypothesis, we have $[x] \in[\mathcal{P}(n)]$.
Case 3.5.17. $\bar{y}=x_{i}^{a} f_{i}(y)$ for $y \in\left(P_{k-1}\right)_{m-a}$.
If $a=0$, then by Case $3.5 .1,[x] \in[\mathcal{P}(n)]$. If $a>0$ and $i=1,2$, then by Cases 3.5 .15 and 3.5.16, $[x] \in[\overline{\mathcal{P}}(n)]$. If $a>0$ and $i>2$, then applying Lemma 3.5(ii) with $y_{0}=x_{i}^{a-1} f_{i}(y)$, we get

$$
x \equiv \sum_{1 \leqslant j<i} \phi_{(j ; I \cup i)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}+\sum_{i<j \leqslant k} \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}
$$

where $y_{j}=x_{i}^{a-1} f_{i}\left(x_{j-1} y\right)$ for $j>i$. Hence using the inductive hypothesis, we get $[x] \in[\mathcal{P}(n)]$. So we have proved $[x] \in[\mathcal{P}(n)]$ for all $x \in\left(P_{k}\right)_{n}$.

Now we prove that $\left[B_{k}(n)\right]$ is linearly independent in $Q P_{k}$. Suppose that there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{((i ; I), z) \in \mathcal{N}_{k} \times B_{k-1}(n)} \gamma_{(i ; I), z} \phi_{(i ; I)}(z) \equiv 0 \tag{3.6}
\end{equation*}
$$

where $\gamma_{(i ; I), z} \in \mathbb{F}_{2}$.
If $d \geqslant k$, then by induction on $\ell(I)$, we can show that $\gamma_{(i ; I), z}=0$, for all $(i ; I) \in \mathcal{N}_{k}$ and $z \in B_{k-1}(n)$ (see [32] for the case $d>k$).

Suppose that $d=k-1$. By Lemma 3.7, the homomorphism $p_{j}=p_{(j ; \emptyset)}$ sends the relation 3.6 to $\sum_{z \in B_{k-1}(n)} \gamma_{(j ; \emptyset), z} z \equiv 0$. This relation implies $\gamma_{(j ; \emptyset), z}=0$ for any $1 \leqslant j \leqslant k$ and $z \in B_{k-1}(n)$.

Suppose $0<\ell(J)<k-3$ and $\gamma_{(i ; I), z}=0$ for all $(i ; I) \in \mathcal{N}_{k}$ with $\ell(I)<\ell(J)$, $1 \leqslant i \leqslant k$ and $z \in B_{k-1}(n)$. Then using Lemma 3.7 and the relation (3.4), we see that the homomorphism $p_{(j, J)}$ sends the relation (3.6) to $\sum_{z \in B_{k-1}(n)} \gamma_{(j ; J), z} z \equiv 0$. Hence we get $\gamma_{(j ; J), z}=0$ for all $z \in B_{k-1}(n)$.

Now, let $(j ; J) \in \mathcal{N}_{k}$ with $\ell(J)=k-3$. If $J \neq I_{3}$, then using Lemma 3.7, we have $p_{(j ; J)}\left(\phi_{(i ; I)}(z)\right) \equiv 0$ for all $z \in B_{k-1}(n)$ and $(i ; I) \in \mathcal{N}_{k}$ with $(i ; I) \neq(j ; J)$. So we get

$$
p_{(j ; J)}(\mathcal{S}) \equiv \sum_{z \in B_{k-1}(n)} \gamma_{(j ; J), z} z \equiv 0
$$

Hence $\gamma_{(j ; J), z}=0$, for all $z \in B_{k-1}(n)$.
According to Lemma 3.7 $p_{\left(j ; I_{3}\right)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv 0$ for $z \in \mathcal{C}$ and $p_{\left(j ; I_{3}\right)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \in$ $\langle\mathcal{E}\rangle$ for $z \in \mathcal{D} \cup \mathcal{E}$. Hence we obtain

$$
p_{\left(j ; I_{3}\right)}(\mathcal{S}) \equiv \sum_{z \in \mathcal{C} \cup \mathcal{D}} \gamma_{\left(j ; I_{3}\right), z} z \equiv 0 \bmod \langle\mathcal{E}\rangle
$$

So we get $\gamma_{\left(j ; I_{3}\right), z}=0$ for all $z \in \mathcal{C} \cup \mathcal{D}$.
Now, let $(j ; J) \in \mathcal{N}_{k}$ with $\ell(J)=k-2$. Suppose that $I_{3} \not \subset J$. Then using Lemma 3.7. we have $p_{(j ; J)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv 0$ for all $z \in \mathcal{B}$. Hence we get

$$
p_{(j ; J)}(\mathcal{S}) \equiv \sum_{z \in \mathcal{B}} \gamma_{(j ; J), z} z \equiv 0
$$

From this, we obtain $\gamma_{(j ; J), z}=0$ for all $z \in \mathcal{B}$.
Suppose that $I_{3} \subset J$. Then either $J=I_{2}, j=1,2$ or $J=I_{3} \cup 2, j=1$. According to Lemma 3.7. $p_{\left(j ; I_{2}\right)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \in\langle\mathcal{D} \cup \mathcal{E}\rangle$ for all $z \in \mathcal{B}, p_{\left(j ; I_{3} \cup 2\right)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv 0$ for $z \in \mathcal{C} \cup \mathcal{D}$ and $p_{\left(1 ; I_{3} \cup 2\right)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \in\langle\mathcal{E}\rangle$ for $z \in \mathcal{E}$. Hence we obtain

$$
\begin{aligned}
p_{\left(j ; I_{2}\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{C}} \gamma_{\left(j ; I_{2}\right), z} z \equiv 0 \bmod \langle\mathcal{D} \cup \mathcal{E}\rangle \\
p_{\left(1 ; I_{3} \cup 2\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{C} \cup \mathcal{D}} \gamma_{\left(1 ; I_{3} \cup 2\right), z} z \equiv 0 \bmod \langle\mathcal{E}\rangle .
\end{aligned}
$$

So $\gamma_{\left(j ; I_{2}\right), z}=0$ for $z \in \mathcal{C}$ and $\gamma_{\left(1 ; I_{3} \cup 2\right), z}=0$ for $z \in \mathcal{C} \cup \mathcal{D}$. Since $\gamma_{(i ; I), z}=0$, for all $z \in \mathcal{C}$ and $I \neq I_{1}$, applying Lemma 3.7. we have

$$
p_{\left(1 ; I_{1}\right)}(\mathcal{S}) \equiv \sum_{z \in \mathcal{C}} \gamma_{\left(1 ; I_{1}\right), z} z \equiv 0 \bmod \langle\mathcal{D} \cup \mathcal{E}\rangle
$$

Hence $\gamma_{\left(1 ; I_{1}\right), z}=0$ for all $z \in \mathcal{C}$. So the relation (3.6) becomes

$$
\begin{align*}
\mathcal{S}= & \sum_{1 \leqslant i \leqslant 3, z \in \mathcal{E}} \gamma_{\left(i ; I_{3}\right), z} \phi_{\left(i ; I_{3}\right)}(z)+\sum_{z \in \mathcal{E}} \gamma_{\left(1 ; I_{3} \cup 2\right), z} \phi_{\left(1 ; I_{3} \cup 2\right)}(z) \\
& +\sum_{1 \leqslant i \leqslant 2, z \in \mathcal{D} \cup \mathcal{E}} \gamma_{\left(i ; I_{2}\right), z} \phi_{\left(i ; I_{2}\right)}(z)+\sum_{z \in \mathcal{D} \cup \mathcal{E}} \gamma_{\left(1 ; I_{1}\right), z} \phi_{\left(1 ; I_{1}\right)}(z) \equiv 0 . \tag{3.7}
\end{align*}
$$

Using the relation (3.7) and Lemma 3.7,

$$
p_{\left(i ; I_{2}\right)}(\mathcal{S}) \equiv \sum_{z \in \mathcal{D}}\left(\gamma_{\left(i ; I_{2}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0 \bmod \langle\mathcal{E}\rangle, i=1,2
$$

This relation implies $\gamma_{\left(1 ; I_{2}\right), z}=\gamma_{\left(2 ; I_{2}\right), z}=\gamma_{\left(1 ; I_{1}\right), z}$ for all $z \in \mathcal{D}$. On the other hand, using the relation (3.7) and Lemma 3.7 one gets

$$
p_{\left(1 ; I_{1}\right)}(\mathcal{S}) \equiv \sum_{z \in \mathcal{D}}\left(\gamma_{\left(1 ; I_{2}\right), z}+\gamma_{\left(2 ; I_{2}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0 \bmod \langle\mathcal{E}\rangle
$$

So $\gamma_{\left(1 ; I_{2}\right), z}+\gamma_{\left(2 ; I_{2}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}=0$. Hence $\gamma_{\left(1 ; I_{2}\right), z}=\gamma_{\left(2 ; I_{2}\right), z}=\gamma_{\left(1 ; I_{1}\right), z}=0$, for all $z \in \mathcal{D}$. Now, the relation (3.7) becomes

$$
\begin{align*}
\mathcal{S}= & \sum_{1 \leqslant i \leqslant 3, z \in \mathcal{E}} \gamma_{\left(i ; I_{3}\right), z} \phi_{\left(i ; I_{3}\right)}(z)+\sum_{z \in \mathcal{E}} \gamma_{\left(1 ; I_{3} \cup 2\right), z} \phi_{\left(1 ; I_{3} \cup 2\right)}(z) \\
& +\sum_{1 \leqslant i \leqslant 2, z \in \mathcal{E}} \gamma_{\left(i ; I_{2}\right), z} \phi_{\left(i ; I_{2}\right)}\left(f_{i}(z)\right)+\sum_{z \in \cup \mathcal{E}} \gamma_{\left(1 ; I_{1}\right), z} \phi_{\left(1 ; I_{1}\right)}(z) \equiv 0 . \tag{3.8}
\end{align*}
$$

Using the relation (3.8) and Lemma 3.7, one gets

$$
\begin{aligned}
p_{\left(i ; I_{3}\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{E}}\left(\gamma_{\left(i ; I_{3}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0, i=1,2,3, \\
p_{\left(1 ; I_{3} \cup 2\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{E}}\left(\gamma_{\left(1 ; I_{3}\right), z}+\gamma_{\left(2 ; I_{3}\right), z}+\gamma_{\left(1 ; I_{3} \cup 2\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0, \\
p_{\left(1 ; I_{2}\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{E}}\left(\gamma_{\left(1 ; I_{3}\right), z}+\gamma_{\left(3 ; I_{3}\right), z}+\gamma_{\left(1 ; I_{2}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0, \\
p_{\left(2 ; I_{2}\right)}(\mathcal{S}) & \equiv \sum_{z \in \mathcal{E}}\left(\gamma_{\left(2 ; I_{3}\right), z}+\gamma_{\left(3 ; I_{3}\right), z}+\gamma_{\left(2 ; I_{2}\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0,
\end{aligned}
$$

$$
\begin{aligned}
p_{\left(1 ; I_{1}\right)}(\mathcal{S}) \equiv & \sum_{z \in \mathcal{E}}\left(\gamma_{\left(1 ; I_{3}\right), z}+\gamma_{\left(2 ; I_{3}\right), z}+\gamma_{\left(3 ; I_{3}\right), z}\right. \\
& \left.\quad+\gamma_{\left(1 ; I_{2}\right), z}+\gamma_{\left(2 ; I_{2}\right), z}+\gamma_{\left(1 ; I_{3} \cup 2\right), z}+\gamma_{\left(1 ; I_{1}\right), z}\right) z \equiv 0 .
\end{aligned}
$$

From the above relations, we get

$$
\gamma_{\left(i ; I_{3}\right), z}=\gamma_{\left(j ; I_{2}\right), z}=\gamma_{\left(1 ; I_{3} \cup 2\right), z}=\gamma_{\left(1 ; I_{1}\right), z}=0
$$

for all $z \in \mathcal{E}, i=1,2,3, j=1,2$. The proposition is proved.
Proof of Theorem 1.3. Denote by $|S|$ the cardinal of a set S. It is easy to check that $\left|\mathcal{N}_{k}\right|=2^{k}-1$. Let $(i ; I),(j ; J) \in \mathcal{N}_{k}$ with $\ell(J) \leqslant \ell(I)$ and $y, z \in B_{k-1}(n)$. Suppose that $\phi_{(j ; J)}(y)=\phi_{(i ; I)}(z)$. Using Lemma 3.7. we have $y \equiv p_{(j ; J)}\left(\phi_{(i ; I)}(z)\right) \not \equiv 0$. This implies $(i ; I)=(j ; J)$ and $y=z$. Hence

$$
\phi_{(i ; I)}\left(B_{k-1}(n)\right) \cap \phi_{(j ; J)}\left(B_{k-1}(n)\right)=\emptyset .
$$

for $(i ; I) \neq(j ; J)$ and $\left|\phi_{(i ; I)}\left(B_{k-1}(n)\right)\right|=\left|B_{k-1}(n)\right|$. From Proposition 3.3 we have

$$
\begin{aligned}
\operatorname{dim}\left(Q P_{k}\right)_{n} & =\left|B_{k}(n)\right|=\sum_{(i ; I) \in \mathcal{N}_{k}}\left|B_{k-1}(n)\right| \\
& =\left|\mathcal{N}_{k}\right| \operatorname{dim}\left(Q P_{k-1}\right)_{n} \\
& =\left(2^{k}-1\right) \operatorname{dim}\left(Q P_{k-1}\right)_{n} .
\end{aligned}
$$

The iterated squaring operation $\left(\widetilde{S q}_{*}^{0}\right)^{d}:\left(Q P_{k-1}\right)_{n} \rightarrow\left(Q P_{k-1}\right)_{m}$ is an isomorphism of \mathbb{F}_{2}-vector spaces. So we get $\operatorname{dim}\left(Q P_{k-1}\right)_{n}=\operatorname{dim}\left(Q P_{k-1}\right)_{m}$. The theorem is proved.

Remark 3.9. Let $n=\sum_{1 \leqslant i \leqslant k-1}\left(2^{d_{i}}-1\right)$ with d_{i} positive integers such that $d_{1}>d_{2}>\ldots>d_{k-2} \geqslant d_{k-1}>0$, and let $m=\sum_{1 \leqslant i \leqslant k-2}\left(2^{d_{i}-d_{k-1}}-1\right)$. Set $q=\min \left\{k, d_{k-1}\right\}$ and $\mathcal{N}_{k, q}=\left\{(i ; I) \in \mathcal{N}_{k}: \ell(I)<q\right\}$. Then we have $\left|\mathcal{N}_{k, q}\right|=$ $\sum_{1 \leqslant j \leqslant q}\binom{k}{j}$. From the proof of Theorem 1.3 we see that the set

$$
\left[\bigcup_{(i ; I) \in \mathcal{N}_{k, q}} \phi_{(i ; I)}\left(B_{k-1}(n)\right)\right]
$$

is linearly independent in $Q P_{k}$. So, one gets the following formula in Mothebe [18:

$$
\operatorname{dim}\left(Q P_{k}\right)_{n} \geqslant \sum_{1 \leqslant j \leqslant q}\binom{k}{j} \operatorname{dim}\left(Q P_{k-1}\right)_{m}
$$

In the remaining part of the section, we prove Lemmas 3.4-3.7. We need the following for the proof of Lemma 3.4

Lemma 3.10. Let i, j be positive integers such that $0<i<j \leqslant k$, and $a, b>0$ with $a+b=2^{d}-1$. Then

$$
X_{i}^{a} X_{j}^{b} \simeq_{2} X_{i}^{2^{d}-2} X_{j}=\phi_{(i ; j)}\left(X^{2^{d}-1}\right)
$$

Proof. We prove the lemma by induction on b. If $b=1$, then

$$
X_{i}^{a} X_{j}^{b}=X_{i}^{2^{d}-2} X_{j}
$$

So the lemma holds. Suppose that $b>1$. Note that $X_{i}^{a} X_{j}^{b}=x_{i}^{b} x_{j}^{a} X_{i, j}^{2^{d}-1}$. If $\alpha_{0}(b)=0$, then

$$
x \simeq_{0} S q^{1}\left(x_{i}^{b-1} x_{j}^{a} X_{i, j}^{2^{d}-1}\right)+x_{i}^{b-1} x_{j}^{a+1} X_{i, j}^{2^{d}-1} \simeq_{1} X_{i}^{a+1} X_{j}^{b-1} \simeq_{2} X_{i}^{2^{d}-2} X_{j} .
$$

If $\alpha_{0}(b)=1, \alpha_{1}(b)=0$, then

$$
\begin{aligned}
x & \simeq_{0} S q^{1}\left(x_{i}^{b-2} x_{j}^{a+1} X_{i, j}^{2^{d}-1}\right)+S q^{2}\left(x_{i}^{b-2} x_{j}^{a} X_{i, j}^{2^{d}-1}\right)+x_{i}^{b-1} x_{j}^{a+1} X_{i, j}^{2^{d}-1} \\
& \simeq_{2} x_{i}^{b-1} x_{j}^{a+1} X_{i, j}^{2^{d}-1}=X_{i}^{a+1} X_{j}^{b-1} \simeq_{2} X_{i}^{2^{d}-2} X_{j} .
\end{aligned}
$$

If $\alpha_{0}(b)=\alpha_{1}(b)=1$, then

$$
\begin{aligned}
x & \simeq_{0} S q^{1}\left(x_{i}^{b} x_{j}^{a-1} X_{i, j}^{2^{d}-1}\right)+S q^{2}\left(x_{i}^{b-1} x_{j}^{a-1} X_{i, j}^{2^{d}-1}\right)+x_{i}^{b-1} x_{j}^{a+1} X_{i, j}^{2^{d}-1} \\
& \simeq_{2} x_{i}^{b-1} x_{j}^{a+1} X_{i, j}^{2^{d}-1}=X_{i}^{a+1} X_{j}^{b-1} \simeq_{2} X_{i}^{2^{d}-2} X_{j} .
\end{aligned}
$$

The lemma is proved.
Proof of Lemma 3.4. We prove the lemma by induction on d. Suppose $d=2$. If $j_{0}=j_{1}=i$, then $x=\phi_{(i, \emptyset)}\left(X^{3}\right)$. If $j=j_{0}>j_{1}=i$, then $x=X_{i}^{2} X_{j}=\phi_{(i, j)}\left(X^{3}\right)$. If $i=j_{0}<j_{1}=j$, then $x=X_{i} X_{j}^{2} \simeq_{0} S q^{1}\left(X_{\emptyset} X_{i, j}^{2}\right)+X_{i}^{2} X_{j} \simeq_{1} X_{i}^{2} X_{j}=\phi_{(i, j)}\left(X^{3}\right)$. So the lemma holds for $d=2$.

Suppose $d>2$. By the inductive hypothesis, there is $\left(i_{1} ; I^{\prime}\right) \in \mathcal{N}_{k}$ such that $\prod_{0 \leqslant t<d-1} X_{j_{t}}^{2^{t}} \simeq_{d-2} \phi_{\left(\left(i_{1} ; I^{\prime}\right)\right.}\left(X^{2^{d-1}-1}\right)$, where $i_{1}=\min \left\{j_{0}, j_{1}, \ldots, j_{d-2}\right\}$. If $j_{d-1}=$ i_{1}, then the lemma holds with $(i ; I)=\left(i_{1} ; I^{\prime}\right)$. Suppose that $j_{d-1} \neq i_{1}$.

If $I^{\prime}=\emptyset$, then using Lemma 3.10 we have

$$
x \simeq_{d-2} X_{i_{1}}^{2^{d-1}-1} X_{j_{d-1}}^{2^{d-1}} \simeq_{2} \phi_{(i ; j)}\left(X^{2^{d}-1}\right)
$$

where $i=\min \left\{i_{1}, j_{d-1}\right\}=\min \left\{j_{0}, j_{1}, \ldots, j_{d-1}\right\}$. The lemma holds. Suppose $I^{\prime}=$ $\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{r}^{\prime}\right), 0<r<d-1$ and $I_{*}=\left(i_{2}^{\prime}, \ldots, i_{r}^{\prime}\right)$, then

$$
\phi_{\left(i_{1} ; I^{\prime}\right)}\left(X^{2^{d-1}-1}\right)=\phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right) X_{i_{1}}^{2^{d-1}-2^{r}}
$$

If $i_{1}<j_{d-1}$ and $r=d-2$, then $X_{i_{1}} X_{j_{d-1}}^{2} \simeq_{1} X_{i_{1}}^{2} X_{j_{d-1}}$. Hence using Proposition 2.5 (ii), one gets

$$
\begin{aligned}
x & \simeq_{d-2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{d-2}-1}\right)\left(X_{i_{1}} X_{j_{d-1}}^{2}\right)^{2^{d-2}} \\
& \simeq_{d-1} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{d-2}-1}\right)\left(X_{i_{1}}^{2} X_{j_{d-1}}\right)^{2^{d-2}} \\
& =\phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right) X_{j_{d-1}}^{2^{r}} X_{i_{1}}^{2^{d}-2^{r+1}} .
\end{aligned}
$$

If $i_{1}<j_{d-1}$ and $r<d-2$, then using Lemma 3.10 we have $X_{i_{1}}^{2^{d-r-1}-1} X_{j_{d-1}}^{2^{d-r-1}} \simeq_{2}$ $X_{i_{1}}^{2^{d-r}-2} X_{j_{d-1}}$. Hence by Proposition 2.5(ii),

$$
\begin{aligned}
x & \simeq_{d-2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right)\left(X_{i_{1}}^{2^{d-r-1}-1} X_{j_{d-1}}^{2^{d-r-1}}\right)^{2^{r}} \\
& \simeq_{r+2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right)\left(X_{i_{1}}^{2^{d-r}-2} X_{j_{d-1}}\right)^{2^{r}} \\
& \simeq_{d-1} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right) X_{j_{d-1}}^{2^{r}} X_{i_{1}}^{2^{d}-2^{r+1}} \quad(\text { since } r+2<d)
\end{aligned}
$$

By the inductive hypothesis, there is $(j ; I) \in \mathcal{N}_{k}$ such that

$$
\phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right) X_{j_{d-1}}^{2^{r}} \simeq_{r} \phi_{(j ; I)}\left(X^{2^{r+1}-1}\right)
$$

for $0<r \leqslant d-2$. So, from the above equalities and Proposition 2.5(ii), we get $x \simeq_{d-2} \phi_{(j ; I)}\left(X^{2^{r+1}-1}\right) X_{i_{1}}^{2^{d}-2^{r+1}}=\phi_{\left(i_{1} ; I \cup j\right)}\left(X^{2^{d}-1}\right)$. The lemma holds.

If $i_{1}>j_{d-1}$ and $r=d-2$, then

$$
x \simeq_{d-2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{d-2}-1}\right)\left(X_{i_{1}} X_{j_{d-1}}^{2}\right)^{2^{d-2}}=\phi_{\left(j_{d-1} ; I \cup i_{1}\right)}\left(X^{2^{d}-1}\right)
$$

If $i_{1}>j_{d-1}$ and $r<d-2$, then using Lemma 3.10. we have $X_{i_{1}}^{2^{d-r-1}-1} X_{j_{d-1}}^{2^{d-r-1}} \simeq_{2}$ $X_{j_{d-1}}^{2^{d-r}-2} X_{i_{1}}$. Hence by Proposition 2.5 (ii),

$$
\begin{aligned}
x & \simeq_{d-2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right)\left(X_{i_{1}}^{2^{d-r-1}-1} X_{j_{d-1}}^{2^{d-r-1}}\right)^{2^{r}} \\
& \simeq_{r+2} \phi_{\left(i_{1}^{\prime} ; I_{*}\right)}\left(X^{2^{r}-1}\right)\left(X_{j_{d-1}}^{2^{d-r}-2} X_{i_{1}}\right)^{2^{r}}=\phi_{\left(j_{d-1} ; I \cup i_{1}\right)}\left(X^{2^{d}-1}\right) .
\end{aligned}
$$

Since $r+2<d$, the lemma is proved.
From the proof of Lemma 3.4 we easily obtain the following.
Corollary 3.11. Let $(i ; I) \in \mathcal{N}_{k}, j \in \mathbb{N}_{k}$ and a polynomial y in $\left(P_{k}\right)_{m}$. If $j>i$ and $d>r+1$, then
i) $\phi_{(i ; I)}\left(X^{2^{r+1}-1}\right) X_{j}^{2^{d}-2^{r+1}} \simeq_{d-1} \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right)$.
ii) $X_{j}^{2^{d-r-1}-1}\left(\phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\right)^{2^{d-r-1}} \simeq_{d-1} \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right)$.

Proof of Lemma 3.5. Applying the Cartan formula, we have

$$
S q^{1}\left(X_{\emptyset}^{2^{c}-1} y_{0}^{2^{c}}\right)=\sum_{1 \leqslant j \leqslant k} X_{j}^{2^{c}-1} y_{j}^{2^{c}},
$$

where c is a positive integer. From this, we obtain

$$
X_{i}^{2^{c}-1} y_{i}^{2^{c}} \equiv \sum_{1 \leqslant j<i} X_{j}^{2^{c}-1} y_{j}^{2^{c}}+\sum_{i<j \leqslant k} X_{j}^{2^{c}-1} y_{j}^{2^{c}}
$$

If $d>r$, then $\phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}}=\phi_{\left(i_{1} ; I^{+}\right)}\left(X^{2^{r}-1}\right)\left(X_{i}^{2^{c}-1} y_{i}^{2^{c}}\right)^{2^{r}}$, with $c=d-r$ and $I^{+}=\left(i_{2}, i_{3}, \ldots, i_{r}\right)$. Hence using Lemma 2.14 we get

$$
\begin{aligned}
& \phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}} \equiv \sum_{1 \leqslant j<i} \phi_{\left(i_{1} ; I^{+}\right)}\left(X^{2^{r}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r}} \\
&+\sum_{i<j \leqslant k} \phi_{\left(i_{1} ; I^{+}\right)}\left(X^{2^{r}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r}}
\end{aligned}
$$

Applying Corollary 3.11 and Lemma 2.14 we have

$$
\begin{aligned}
& \phi_{\left(i_{1} ; I^{+}\right)}\left(X^{2^{r}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r}}=\phi_{(j ; I)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}, \text { for } j<i \\
& \phi_{\left(i_{1} ; I^{+}\right)}\left(X^{2^{r}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r}} \equiv \phi_{\left(i_{j} ; I_{j}\right)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}, \text { for } j>i
\end{aligned}
$$

Hence the first part of the lemma follows.
If $d>r+1$, then $\phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}}=\phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\left(X_{i}^{2^{c}-1} y_{i}^{2^{c}}\right)^{2^{r+1}}$, with $c=$ $d-r-1$. Hence using Lemma 2.14 we get

$$
\begin{aligned}
& \phi_{(i ; I)}\left(X^{2^{d}-1}\right) y_{i}^{2^{d}} \equiv \sum_{1 \leqslant j<i} \phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r+1}} \\
&+\sum_{i<j \leqslant k} \phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r+1}}
\end{aligned}
$$

According to Corollary 3.11 and Lemma 2.14

$$
\begin{aligned}
& \phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r+1}}=\phi_{(j ; I \cup i)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}, \text { for } j<i \\
& \phi_{(i ; I)}\left(X^{2^{r+1}-1}\right)\left(X_{j}^{2^{c}-1} y_{j}^{2^{c}}\right)^{2^{r+1}} \equiv \phi_{(i ; I \cup j)}\left(X^{2^{d}-1}\right) y_{j}^{2^{d}}, \text { for } j>i
\end{aligned}
$$

So the second part of the lemma is proved.

We need the following lemmas for the proof of Lemma 3.6
Lemma 3.12. For any integer $0<\ell \leqslant k$,

$$
X_{\ell}^{2^{\ell}-1} x_{\ell}^{2^{\ell}} \simeq_{\ell} \sum_{r=\ell}^{k} \sum_{(i ; I) \in \mathcal{N}_{\ell-1}} \phi_{(i ; I \cup r)}\left(X^{2^{\ell}-1}\right) x_{r}^{2^{\ell}}+\sum_{r=\ell+1}^{k} X_{r}^{2^{\ell}-1} x_{r}^{2^{\ell}}
$$

Proof. We prove the lemma by induction on ℓ. For $\ell=1$, the lemma is trivial. Suppose that $\ell \geqslant 1$ and the lemma is true for ℓ. Using the Cartan formula we have

$$
\begin{aligned}
X_{\ell+1}^{2^{\ell+1}-1} x_{\ell+1}^{2^{\ell+1}} & =\sum_{r=1}^{\ell} X_{r}^{2^{\ell+1}-1} x_{r}^{2^{\ell+1}}+\sum_{r=\ell+2}^{k} X_{r}^{2^{\ell+1}-1} x_{r}^{2^{\ell+1}}+S q^{1}\left(X_{\emptyset}^{2^{\ell+1}-1}\right) \\
& \simeq_{1} \sum_{r=1}^{\ell} X_{r}^{2^{\ell+1-r}-1}\left(X_{r}^{2^{r}-1} x_{r}^{2^{r}}\right)^{2^{\ell+1-r}}+\sum_{r=\ell+2}^{k} X_{r}^{2^{\ell+1}-1} x_{r}^{2^{\ell+1}}
\end{aligned}
$$

Using the inductive hypothesis and Proposition 2.5. we have

$$
\begin{aligned}
& X_{r}^{2^{\ell+1-r}-1}\left(X_{r}^{2^{r}-1} x_{r}^{2^{r}}\right)^{2^{\ell+1-r}} \simeq_{\ell+1} X_{r}^{2^{\ell+1-r}-1}\left(\sum_{m=r+1}^{k} X_{m}^{2^{r}-1} x_{m}^{2^{r}}\right. \\
&\left.+\sum_{m=r}^{k} \sum_{(i ; I) \in \mathcal{N}_{r-1}} \phi_{(i ; I \cup m)}\left(X^{2^{r}-1}\right) x_{m}^{2^{r}}\right)^{2^{\ell+1-r}}
\end{aligned}
$$

According to Corollary 3.11,

$$
\begin{aligned}
X_{r}^{2^{\ell+1-r}-1}\left(X_{m}^{2^{r}-1} x_{m}^{2^{r}}\right)^{\ell \ell+-r} & \simeq_{\ell+1} \phi_{(r ; m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}} \\
X_{r}^{2^{\ell+1-r}-1}\left(\phi_{(i ; I \cup m)}\left(X^{2^{r}-1}\right) x_{m}^{2^{r}}\right)^{2^{\ell+1-r}} & \simeq_{\ell+1} \phi_{(i ; I \cup\{r, m\})}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}
\end{aligned}
$$

From the above equalities, we get

$$
\begin{aligned}
& X_{r}^{2^{\ell+1-r}-1}\left(X_{r}^{2^{r}-1} x_{r}^{2^{r}}\right)^{2^{\ell+1-r}} \simeq_{\ell+1} \sum_{(i ; I) \in \mathcal{N}_{r-1}} \phi_{(i ; I \cup r)}\left(X^{2^{\ell+1}-1}\right) x_{r}^{2^{\ell+1}} \\
& \quad+\sum_{m=r+1}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{r-1}} \phi_{(i ; I \cup\{r, m\})}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}+\phi_{(r ; m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}\right)
\end{aligned}
$$

By a direct computation from the above equalities, using the relation (3.1), we have

$$
\begin{aligned}
& \sum_{r=1}^{\ell} X_{r}^{2^{\ell+1-r}-1}\left(X_{r}^{2^{r}-1} x_{r}^{2^{r}}\right)^{2^{\ell+1-r}} \simeq_{\ell+1} \sum_{r=1}^{\ell} \sum_{(i ; I) \in \mathcal{N}_{r-1}} \phi_{(i ; I \cup r)}\left(X^{2^{\ell+1}-1}\right) x_{r}^{2^{\ell+1}} \\
& \quad+\sum_{m=2}^{\ell} \sum_{r=1}^{m-1}\left(\sum_{(i ; I) \in \mathcal{N}_{r-1} \cup r} \phi_{(i ; I \cup m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}+\phi_{(r ; m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}\right) \\
& \quad+\sum_{m=\ell+1}^{k} \sum_{r=1}^{\ell}\left(\sum_{(i ; I) \in \mathcal{N}_{r-1} \cup r} \phi_{(i ; I \cup m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}}+\phi_{(r ; m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{\ell^{\ell+1}}\right) \\
& =\sum_{r=1}^{\ell} \sum_{(i ; I) \in \mathcal{N}_{r-1}} \phi_{(i ; I \cup r)}\left(X^{2^{\ell+1}-1}\right) x_{r}^{2^{\ell+1}}+\sum_{m=2}^{\ell} \sum_{m=\ell+1} \phi_{(i ; I) \in \mathcal{N}_{m-1}}^{k} \sum_{(i ; I) \in \mathcal{N}_{\ell-1}} \phi_{(i ; I \cup m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}} \\
& =\sum_{m=\ell+1}^{k} \sum_{(i ; I) \in \mathcal{N}_{\ell}} \phi_{(i ; I \cup m)}\left(X^{2^{\ell+1}-1}\right) x_{m}^{2^{\ell+1}} .
\end{aligned}
$$

Combining the above equalities, we get

$$
X_{\ell+1}^{2^{\ell+1}-1} x_{\ell+1}^{2^{\ell+1}} \simeq_{\ell+1} \sum_{r=\ell+1}^{k} \sum_{(i ; I) \in \mathcal{N}_{\ell}} \phi_{(i ; I \cup r)}\left(X^{2^{\ell+1}-1}\right) x_{r}^{2^{\ell+1}}+\sum_{r=\ell+2}^{k} X_{r}^{2^{\ell+1}-1} x_{r}^{2^{\ell+1}}
$$

The lemma is proved.
From the proof of this lemma, we obtain
Corollary 3.13. For $2 \leqslant d \leqslant k$, we have

$$
\sum_{r=1}^{d-1} X_{r}^{2^{d}-1} x_{r}^{2^{d}} \simeq_{d} \sum_{r=d}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{d-1}} \phi_{(i ; I \cup r)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right)
$$

Lemma 3.14. For any integer $d>k, 0 \leqslant r \leqslant d-k$ and $0<m<h \leqslant k$,

$$
Z:=\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d-r}-1}\right) X_{h}^{2^{d}-2^{d-r}} \simeq_{k-m+1} \phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right)
$$

Proof. We prove the lemma by double induction on (m, r). If $m=k-1$, then $h=k$. By Lemma 3.10, we have

$$
\phi_{(k-1 ; k)}\left(X^{2^{d-r}-1}\right) X_{k}^{2^{d}-2^{d-r}}=X_{k-1}^{2^{d-r}-2} X_{k}^{2^{d}-2^{d-r}+1} \simeq_{2} \phi_{(k-1 ; k)}\left(X^{2^{d}-1}\right)
$$

So, the lemma holds. Suppose that $0<m<k-1$. If $h=m+1$, we have

$$
Z=\phi_{\left(m+2 ; I_{m+2}\right)}\left(X^{2^{k-m-1}-1}\right)\left(X_{m}^{2^{d-k+m-r+1}-2} X_{m+1}^{2^{d-k+m+1}-2^{d-k+m-r+1}+1}\right)^{2^{k-m-1}}
$$

According to Lemma 3.10

$$
X_{m}^{2^{d-k+m-r+1}-2} X_{m+1}^{2^{d-k+m+1}-2^{d-k+m-r+1}+1} \simeq_{2} X_{m}^{2^{d-k+m+1}-2} X_{m+1}
$$

Hence using Proposition 2.5. we obtain

$$
\begin{aligned}
Z & \simeq_{k-m+1} \phi_{\left(m+2 ; I_{m+2}\right)}\left(X^{2^{k-m-1}-1}\right)\left(X_{m}^{2^{d-k+m+1}-2} X_{m+1}\right)^{2^{k-m-1}} \\
& =\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right)
\end{aligned}
$$

The lemma holds. Suppose that $h>m+1$ and $r=1$. We have

$$
Z=\phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{k-m}-1}\right)\left(X_{m}^{2^{d-k+m-1}-1} X_{h}^{2^{d-k+m-1}}\right)^{2^{k-m}}
$$

Since $X_{m}^{2^{d-k+m-1}-1} X_{h}^{2^{d-k+m-1}} \simeq_{1} X_{m}^{2^{d-k+m-1}} X_{h}^{2^{d-k+m-1}-1}$, applying Proposition 2.5 and the inductive hypothesis, we have

$$
\begin{aligned}
Z & \simeq_{k-m+1} \phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{k-m}-1}\right)\left(X_{m}^{2^{d-k+m-1}} X_{h}^{2^{d-k+m-1}-1}\right)^{2^{k-m}} \\
& =\phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{k-m}-1}\right) X_{h}^{2^{d-1}-2^{k-m}} X_{m}^{2^{d-1}} \\
& \simeq_{k-m} \phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{d-1}-1}\right) X_{m}^{2^{d-1}} \\
& =\phi_{\left(m+2 ; I_{m+2}\right)}\left(X^{2^{k-m-1}-1}\right)\left(X_{m+1}^{2^{d-k+m}-1} X_{m}^{2^{d-k+m}}\right)^{2^{k-m-1}}
\end{aligned}
$$

According to Lemma 3.10

$$
X_{m+1}^{2^{d-k+m}-1} X_{m}^{2^{d-k+m}} \simeq_{2} X_{m}^{2^{d-k+m+1}-2} X_{m+1}
$$

Hence using Proposition 2.5 one gets

$$
\begin{aligned}
Z & \simeq_{k-m+1} \phi_{\left(m+2 ; I_{m+2}\right)}\left(X^{2^{k-m-1}-1}\right)\left(X_{m}^{2^{d-k+m+1}-2} X_{m+1}\right)^{2^{k-m-1}} \\
& =\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right)
\end{aligned}
$$

Now, suppose that $h>m+1$ and $r>1$. Applying Proposition 2.5 and the inductive hypothesis, one gets

$$
\begin{aligned}
Z & =\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d-r}-1}\right) X_{h}^{2^{d-r}} X_{h}^{2^{d}-2^{d-r+1}} \\
& \simeq_{k-m+1} \phi_{\left(m ; I_{m}\right)}\left(X^{2^{d-r+1}-1}\right) X_{h}^{2^{d}-2^{d-r+1}} \\
& \simeq_{k-m+1} \phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right) .
\end{aligned}
$$

The lemma is proved.
Lemma 3.15. For any integer $d \geqslant k$,

$$
X_{k}^{2^{d}-1} x_{k}^{2^{d}} \simeq_{k} \sum_{(i ; I) \in \mathcal{N}_{k-1}} \phi_{(i ; I \cup k)}\left(X^{2^{d}-1}\right) x_{k}^{2^{d}}
$$

Proof. By Lemma 3.12, we have

$$
X_{k}^{2^{k}-1} x_{k}^{2^{k}} \simeq_{k} \sum_{(i ; I) \in \mathcal{N}_{k-1}} \phi_{(i ; I \cup k)}\left(X^{2^{k}-1}\right) x_{k}^{2^{k}}
$$

Hence using Proposition 2.5 we get

$$
X_{k}^{2^{d}-1} x_{k}^{2^{d}}=X_{k}^{2^{k}-1} x_{k}^{2^{k}} X_{\emptyset}^{2^{d}-2^{k}} \simeq_{k} \sum_{(i ; I) \in \mathcal{N}_{k-1}} \phi_{(i ; I \cup k)}\left(X^{2^{k}-1}\right) X_{k}^{2^{d}-2^{k}} x_{k}^{2^{d}}
$$

Let $(i ; I) \in \mathcal{N}_{k-1}$. If $I=\emptyset$, then using Lemma 3.10 we have

$$
\begin{aligned}
\phi_{(i ; I \cup k)}\left(X^{2^{k}-1}\right) X_{k}^{2^{d}-2^{k}} x_{k}^{2^{d}} & =\phi_{(i ; k)}\left(X^{2^{k}-1}\right) X_{k}^{2^{d}-2^{k}} x_{k}^{2^{d}} \\
& =X_{i}^{2^{k}-2} X_{k}^{2^{d}-2^{k}+1} x_{k}^{2^{d}} \\
& \simeq_{2} X_{i}^{2^{d}-2} X_{k} x_{k}^{2^{d}} \\
& =\phi_{(i ; k)}\left(X^{2^{d}-1}\right) x_{k}^{2^{d}}
\end{aligned}
$$

If $I=\left(i_{1}, \ldots, i_{r}\right), r>0$, then $s=k-\ell(I \cup k)>0$. Hence

$$
\begin{aligned}
Y: & =\phi_{(i ; I \cup k)}\left(X^{2^{k}-1}\right) X_{k}^{2^{d}-2^{k}} x_{k}^{2^{d}} \\
& =\phi_{\left(i_{1} ; I^{+} \cup k\right)}\left(X^{2^{k-s}-1}\right)\left(X_{i}^{2^{s}-1} X_{k}^{2^{d-k+s}-2^{s}}\right)^{2^{k-s}} x_{k}^{2^{d}}
\end{aligned}
$$

where $I^{+}=\left(i_{2}, \ldots, i_{r}\right)$. By Lemma 3.10

$$
X_{i}^{2^{s}-1} X_{k}^{2^{d-k+s}-2^{s}} \simeq_{2} X_{i}^{2^{d-k+s}-2} X_{k}
$$

If $(i ; I \cup k) \neq\left(1 ; I_{1}\right)$, then $s \geqslant 2$. Using Proposition 2.5 and Lemma 3.4, one gets

$$
\begin{aligned}
Y & \simeq_{k-s+2} \phi_{\left(i_{1} ; I^{+} \cup k\right)}\left(X^{2^{k-s}-1}\right)\left(X_{k} X_{i}^{2^{d-k+s}-2}\right)^{2^{k-s}} x_{k}^{2^{d}} \\
& =\phi_{\left(i_{1} ; I+\cup k\right)}\left(X^{2^{k-s}-1}\right)\left(X_{k} X_{i}^{2}\right)^{2^{k-s}} X_{i}^{2^{d}-2^{k-s+2}} x_{k}^{2^{d}} \\
& \simeq_{k} \phi_{(i ; I \cup k)}\left(X^{2^{k-s+2}-1}\right) X_{i}^{2^{d}-2^{k-s+2}} x_{k}^{2^{d}} \\
& =\phi_{(i ; I \cup k)}\left(X^{2^{d}-1}\right) x_{k}^{2^{d}} .
\end{aligned}
$$

Suppose that $(i ; I \cup k)=\left(1 ; I_{1}\right)$. Then using Lemma 3.14 and Proposition 2.5, we have

$$
\phi_{\left(1 ; I_{1}\right)}\left(X^{2^{k}-1}\right) X_{k}^{2^{d}-2^{k}} x_{k}^{2^{d}} \simeq_{k} \phi_{\left(1 ; I_{1}\right)}\left(X^{2^{d}-1}\right) x_{k}^{2^{d}}
$$

The lemma is proved.
Lemma 3.16. $Y_{1} \simeq_{(k, \omega)} 0$ with $\omega=\omega\left(X_{1}^{2^{d}-1} x_{1}^{2^{d}}\right)$. More precisely,

$$
Y_{1}=\sum_{0 \leqslant i<k} S q^{2^{i}}\left(y_{i}\right)+h
$$

with y_{i} polynomials in P_{k}, and $h \in P_{k}^{-}(\omega)$.
Proof. First we prove the following by induction on m

$$
\begin{equation*}
Y_{1} \simeq_{(k, \omega)} Y_{m}+\sum_{r=m}^{k} \sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m-1}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}} \tag{3.9}
\end{equation*}
$$

Note that

$$
\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right) x_{m}^{2^{d}}=\phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{k-m}-1}\right)\left(X_{m}^{2^{m}-1} x_{m}^{2^{m}} X_{\emptyset}^{2^{d-k+m}-2^{m}}\right)^{2^{k-m}}
$$

Applying Lemma 3.12 and Proposition 2.5 we have

$$
\begin{aligned}
X_{m}^{2^{m}-1} x_{m}^{2^{m}} X_{\emptyset}^{2^{d-k+m}-2^{m}} & \simeq_{m} \sum_{r=m+1}^{k} X_{r}^{2^{d-k+m}-1} x_{r}^{2^{d-k+m}} \\
& +\sum_{r=m}^{k} \sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{(i ; I \cup r)}\left(X^{2^{m}-1}\right) X_{r}^{2^{d-k+m}-2^{m}} x_{r}^{2^{d-k+m}}
\end{aligned}
$$

Using Lemma 3.14 and Proposition 2.5, we have

$$
\phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{k-m}-1}\right) X_{r}^{2^{d}-2^{k-m}} x_{r}^{2^{d}} \simeq_{k-m} \phi_{\left(m+1 ; I_{m+1}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}
$$

From the above equalities, Proposition 2.5 and Lemma 3.4 one gets

$$
\phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right) x_{m}^{2^{d}} \simeq_{k} Y_{m+1}+\sum_{r=m}^{k} \sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m} \cup r\right)}\left(X^{2^{k}-1}\right) X_{r}^{2^{d}-2^{k}} x_{r}^{2^{d}}
$$

If either $r>m$ or $I \neq(2, \ldots, m-1)$, then $\left(i ; I \cup I_{m} \cup r\right) \neq\left(1 ; I_{1}\right)$. From the proof of Lemma 3.14 we have

$$
\phi_{\left(i ; I \cup I_{m} \cup r\right)}\left(X^{2^{k}-1}\right) X_{r}^{2^{d}-2^{k}} x_{r}^{2^{d}} \simeq_{k} \phi_{\left(i ; I \cup I_{m} \cup r\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}
$$

If $r=m$ and $I=(2, \ldots, m-1)$, then $\left(i ; I \cup I_{m} \cup m\right)=\left(1 ; I_{1}\right)$. By Lemma 3.14 we have

$$
\phi_{\left(1 ; I_{1}\right)}\left(X^{2^{k}-1}\right) X_{m}^{2^{d}-2^{k}} x_{m}^{2^{d}} \simeq_{k} \phi_{\left(1 ; I_{1}\right)}\left(X^{2^{d}-1}\right) x_{m}^{2^{d}}
$$

Combining the above equalities, we get

$$
\phi_{\left(m ; I_{m}\right)}\left(X_{m}^{2^{d}-1}\right) x_{m}^{2^{d}} \simeq_{k} Y_{m+1}+\sum_{r=m}^{k} \sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m} \cup r\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}
$$

Using the above equalities and the inductive hypothesis, we get

$$
\begin{aligned}
Y_{1} \simeq & { }_{(k, \omega)} Y_{m+1}+\sum_{r=m}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m-1}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right) \\
& +\sum_{r=m+1}^{k} \phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}+\sum_{r=m}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m} \cup r\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right) \\
= & Y_{m+1}+\sum_{r=m+1}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{m-1} \cup m} \phi_{\left(i ; I \cup I_{m}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right) \\
& +\sum_{r=m+1}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{m-1}} \phi_{\left(i ; I \cup I_{m}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right)+\sum_{r=m+1}^{k} \phi_{\left(m ; I_{m}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}} \\
& \left(\text { since } m \cup I_{m}=I_{m-1} \text { and } I_{m} \cup r=I_{m} \text { for } r>m\right) \\
= & Y_{m+1}+\sum_{r=m+1}^{k}\left(\sum_{(i ; I) \in \mathcal{N}_{m}} \phi_{\left(i ; I \cup I_{m}\right)}\left(X^{2^{d}-1}\right) x_{r}^{2^{d}}\right)
\end{aligned}
$$

$$
\left(\text { since } \mathcal{N}_{m}=\mathcal{N}_{m-1} \cup\left(\mathcal{N}_{m-1} \cup m\right) \cup\{(m ; \emptyset)\}\right)
$$

The relation 3.9 is proved.
Since $Y_{k}=X_{k}^{2^{d}-1} x_{k}^{2^{d}}$, using the relation 3.9 with $m=k$ and Lemma 3.12 one gets

$$
Y_{1} \simeq_{(k, \omega)} X_{k}^{2^{d}-1} x_{k}^{2^{d}}+\sum_{(i ; I) \in \mathcal{N}_{k-1}} \phi_{(i ; I \cup k)}\left(X^{2^{d}-1}\right) x_{k}^{2^{d}} \simeq_{(k, \omega)} 0
$$

The lemma is proved.
Proof of Lemma 3.6. We have $Y_{m}=Z^{2^{d}-1} Y_{1}\left(x_{m}, \ldots, x_{k}\right)$ with $Z=x_{1} x_{2} \ldots x_{m-1}$. By Lemma 3.16 Y_{m} is a sum of polynomials of the form $f=Z^{2^{d}-1}\left(S q^{2^{2}}(y)+\right.$ h) with $0 \leqslant i \leqslant k-m, y$ a monomial in $P_{k-m+1}=P_{k-m+1}\left(x_{m}, \ldots, x_{k}\right)$ and $h \in P_{k-m+1}^{-}\left(\omega^{*}\right), \omega^{*}=\omega\left(\left(x_{m+1} \ldots x_{k}\right)^{2^{d}-1} x_{m}^{2^{d}}\right)$. Then $Z^{2^{d}-1} h \in P_{k}^{-}(\omega)$ with $\omega=$ $\omega\left(X_{1}^{2^{d}-1} x_{1}^{2^{d}}\right)$. Using the Cartan formula, we have

$$
f \simeq_{(0, \omega)} S q^{2^{i}}\left(Z^{2^{d}-1} y\right)+\sum_{1 \leqslant t \leqslant 2^{i}} S q^{t}\left(Z^{2^{d}-1}\right) S q^{2^{i}-t}(y)
$$

By a direct computation using the Cartan formula, we can show that if $0<t<2^{i}$, then $\omega_{u}\left(S q^{t}\left(Z^{2^{d}-1}\right) S q^{2^{i}-t}(y)\right)<k-1$ for some $u \leqslant d$. Hence one gets

$$
f \simeq{ }_{(k, \omega)} S q^{2^{i}}\left(Z^{2^{d}-1}\right) y \simeq{ }_{(k, \omega)} \sum_{0<j<m} Z^{2^{d}-1} x_{j}^{2^{i}} y .
$$

Since $\omega_{u}\left(Z^{2^{d}-1} x_{j}^{2^{i}}\right)=m-2$ for $i<u \leqslant k$, if $Z^{2^{d}-1} x_{j}^{2^{i}} y \notin P_{k}^{-}(\omega)$, then $\omega_{u}(y)=$ $k-m$ for $i<u \leqslant k$. According to Lemma 3.4 there is $(j ; J) \in \mathcal{N}_{k}$ such that $Z^{2^{d}-1} x_{j}^{2^{i}} y \simeq_{i} \phi_{(j ; J)}\left(X^{2^{d}-1}\right) x_{j}^{2^{d}}$. Here $J \subset I_{m-1}$. Since $0 \leqslant \ell(J)=i \leqslant k-m<$ $\ell\left(I_{m-1}\right)=k-m+1$, we have $J \neq I_{m-1}$. The lemma is proved.

The following will be used in the proof of Lemma 3.7
Lemma 3.17. Let $(j ; J),(i ; I) \in \mathcal{N}_{k}$ with $\ell(I)<d$. Then

$$
p_{(j ; J)} \phi_{(i ; I)}\left(X^{2^{d}-1}\right) \simeq_{0} \begin{cases}X^{2^{d}-1}, & (i ; I) \subset(j ; J), \\ 0, & (i ; I) \not \subset(j ; J) .\end{cases}
$$

Proof. Suppose that $(i ; I) \not \subset(j ; J)$. If $i \notin(j ; J)$, then from (3.2), we see that $p_{(j ; J)}\left(\phi_{(i ; I)}\left(X^{2^{d}-1}\right)\right)$ is a sum of monomials of the form

$$
w=x_{i^{\prime}}^{2^{r}-1} f_{k-1 ; i^{\prime}}(z)
$$

for suitable monomial z in P_{k-2}. Here $i^{\prime}=i$ if $j>i$ and $i^{\prime}=i-1$ if $j<i$. In this case, we have $\alpha_{r}\left(2^{r}-1\right)=0$ and $\omega_{r+1}(w)<k-1$. Hence $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$, where $\omega^{(d)}=\omega\left(X^{2^{d}-1}\right)$. Suppose that $i \in(j ; J)$. Since $(i ; I) \not \subset(j ; J)$, there is $1 \leqslant t \leqslant r$, such that $i_{t} \notin(j ; J)$, then from 3.2 , we see that $p_{(j ; J)}\left(\phi_{(i ; I)}\left(X^{2^{d}-1}\right)\right)$ is a sum of monomials of the form

$$
w=x_{i_{t}-1}^{2^{r}-2^{r-t}-1} f_{k-1 ; i_{t}-1}(z)
$$

for some monomial z in P_{k-2}. It is easy to see that $\alpha_{r-t}\left(2^{r}-2^{r-t}-1\right)=0$ and $\omega_{r-t+1}(w)<k-1$. Hence $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$.

Suppose that $(i ; I) \subset(j ; J)$. If $i=j$, then from 3.2 , we see that the polynomial $p_{(j ; J)}\left(\phi_{(i ; I)}\left(X^{2^{d}-1}\right)\right)$ is a sum of monomials of the form

$$
w=\left(\prod_{1 \leqslant t \leqslant r} x_{i_{t}-1}^{2^{r}-2^{r-t}-1+b_{t}}\right)\left(\prod_{j+1 \in J \backslash I} x_{j}^{2^{d}-1+c_{j}}\right)\left(\prod_{j+1 \notin J} x_{j}^{2^{d}-1}\right),
$$

where $b_{1}+b_{2}+\ldots+b_{r}+\sum_{j+1 \in J \backslash I} c_{j}=2^{r}-1$. If $c_{j}>0$, then $\alpha_{u_{j}}\left(2^{d}-1+c_{j}\right)=0$ with u_{j} the smallest index such that $\alpha_{u_{j}}\left(c_{j}\right)=1$. Hence $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$. If $b_{t}=0$ for suitable $1 \leqslant t \leqslant r$, then $\alpha_{r-t}\left(2^{r}-2^{r-t}-1\right)=0$ and $\omega_{r-t+1}(w)<k-1$. Hence $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$. Suppose that $b_{t}>0$ for any t. Let v_{t} be the smallest index such that $\alpha_{v_{t}}\left(b_{t}\right)=1$. If $v_{t} \neq r-t$, then $\alpha_{v_{t}}\left(2^{r}-2^{r-t}-1+b_{t}\right)=0$ and $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$. So $u_{t}=r-t$ and $b_{t}=2^{r-t}+b_{t}^{\prime}$ with $b_{t}^{\prime} \geqslant 0$. If $b_{t}^{\prime}>0$, then $\alpha_{v_{t}^{\prime}}\left(2^{r}-2^{r-t}-1+b_{t}\right)=\alpha_{v_{t}^{\prime}}\left(2^{r}-1+b_{t}^{\prime}\right)=0$ with v_{t}^{\prime} the smallest index such that $\alpha_{v_{t}^{\prime}}\left(b_{t}^{\prime}\right)=1$. Hence $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$. This implies $b_{t}^{\prime}=0$ for $1 \leqslant t \leqslant r$ and $w=g$.

If $i \in J$, then from 3.2 , we see that the polynomial $p_{(j ; J)}\left(\phi_{(i ; I)}\left(X^{2^{d}-1}\right)\right)$ is a sum of monomials of the form

$$
w=x_{i-1}^{2^{r}-1+b_{0}}\left(\prod_{1 \leqslant t \leqslant r} x_{i_{t}-1}^{2^{r}-2^{r-t}-1+b_{t}}\right)\left(\prod_{j+1 \in J \backslash(i ; I)} x_{j}^{2^{d}-1+c_{j}}\right)\left(\prod_{j+1 \notin J} x_{j}^{2^{d}-1}\right)
$$

where $b_{0}+b_{1}+b_{2}+\ldots+b_{r}+\sum_{j+1 \in J \backslash(i ; I)} c_{j}=2^{d}-1$. By a same argument as above, we see that $w \in P_{k-1}^{-}\left(\omega^{(d)}\right)$ if either $c_{j}>0$ or $b_{t} \neq 2^{r-t}$ for some j, t with $t>0$. Suppose $c_{j}=0$ and $b_{t}=2^{r-t}$ with all j and $t>0$. Then $2^{d}-1=b_{0}+b_{1}+b_{2}+\ldots+b_{r}+\sum_{j+1 \in J \backslash(i ; I)} c_{j}=b_{0}+2^{r}-1$ and $w=X^{2^{d}-1}$. The lemma is proved.

The following is easily be proved by a direct computation.
Lemma 3.18. The following diagram is commutative:

Proof of Lemma 3.7. i) Suppose that either $d \geqslant k$ or $d=k-1$ and $I \neq I_{1}$, then $\phi_{(i ; I)}(z)=\phi_{(i ; I)}\left(X^{2^{d}-1}\right) f_{i}(\bar{z})^{2^{d}}$. Hence the first part of the lemma follows from Lemma 3.17
ii) According to $3.4, \phi_{\left(1 ; I_{1}\right)}(z)=\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right) f_{1}(\bar{z})^{2^{d}}$. Hence from Lemmas 3.17 and 3.18 we have

$$
\begin{aligned}
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) & \equiv p_{(i ; I)}\left(\phi_{\left(2 ; I_{2}\right)}\left(X^{2^{d}-1}\right)\right) p_{(i ; I)}\left(f_{1}(\bar{z})^{2^{d}}\right) \\
& \equiv \begin{cases}z & \text { if }(i ; I)=\left(1 ; I_{1}\right), \\
X^{2^{d}-1} f_{1} p_{\left(1 ; I_{1}\right)}\left(\bar{z}^{2^{d}}\right) \in\langle\mathcal{D} \cup \mathcal{E}\rangle, & \text { if }(i ; I)=\left(2 ; I_{2}\right), \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

iii) Let $z \in \mathcal{D}$. Using the relation (3.4), Lemma 3.17 and Lemma 3.18, one has

$$
\begin{aligned}
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) & \equiv p_{(i ; I)}\left(\phi_{\left(3 ; I_{3}\right)}\left(X^{2^{d}-1}\right)\right) p_{(i ; I)}\left(f_{2}(\bar{z})^{2^{d}}\right) \\
& \equiv \begin{cases}z & \text { if } I_{2} \subset I \\
X^{2^{d}-1} f_{2} p_{\left(2 ; I_{2}\right)}(\bar{z})^{2^{d}} \in\langle\mathcal{E}\rangle, & \text { if }(i ; I)=\left(3 ; I_{3}\right), \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

iv) Let $z \in \mathcal{E}$. Using the relation (3.4, Lemma 3.17 and Lemma 3.18, one gets

$$
\begin{aligned}
p_{\left(4 ; I_{4}\right)}\left(\phi_{\left(4 ; I_{4}\right)}(z)\right) & =p_{\left(4 ; I_{4}\right)}\left(\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\right) p_{\left(4 ; I_{4}\right)}\left(f_{3}(\bar{z})^{2^{d}}\right) \\
& \equiv X^{2^{d}-1} f_{3} p_{\left(3 ; I_{3}\right)}\left((\bar{z})^{2^{d}}\right)
\end{aligned}
$$

If a monomial y is a term of $f_{3} p_{\left(3 ; I_{3}\right)}\left((\bar{z})^{2^{d}}\right)$, then $\omega_{1}(y)<k-3$. According to Theorem $2.12 y \equiv 0$. Hence $X^{2^{d}-1} f_{3} p_{\left(3 ; I_{3}\right)}(\bar{z})^{2^{d}} \equiv 0$. So using Lemma 3.18 one gets

$$
p_{(i ; I)}\left(\phi_{\left(1 ; I_{1}\right)}(z)\right) \equiv p_{(i ; I)}\left(\phi_{\left(4 ; I_{4}\right)}\left(X^{2^{d}-1}\right)\right) p_{(i ; I)}\left(f_{3}(\bar{z})^{2^{d}}\right) \equiv \begin{cases}z & \text { if } I_{3} \subset I \\ 0, & \text { otherwise }\end{cases}
$$

The lemma is completely proved.

4. The cases $k \leqslant 3$

In this section and the next sections, we denote by $B_{k}(n)$ the set of all admissible monomials of degree n in $P_{k}, B_{k}^{0}(n)=B_{k}(n) \cap P_{k}^{0}, B_{k}^{+}(n)=B_{k}(n) \cap P_{k}^{+}$. For an ω-vector $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right)$ of degree n, we set $B_{k}(\omega)=B_{k}(n) \cap P_{k}(\omega)$, $B_{k}^{+}(\omega)=B_{k}^{+}(n) \cap P_{k}(\omega)$. Then $\left[B_{k}(\omega)\right]$ and $\left[B_{k}^{+}(\omega)\right]$, respectively are the basses of the \mathbb{F}_{2}-vector spaces $Q P_{k}(\omega)$ and $Q P_{k}^{+}(\omega)$.

If there is $i_{0}=0, i_{1}, i_{2}, \ldots, i_{r}>0$ such that $i_{1}+i_{2}+\ldots+i_{r}=m$ and $\omega_{i_{1}+\ldots+i_{s-1}+t}=a_{s}, 1 \leqslant t \leqslant i_{s}, 1 \leqslant s \leqslant r$, then we denote $\omega=\left(a_{1}^{\left(i_{1}\right)}, a_{2}^{\left(i_{2}\right)}, \ldots, a_{r}^{\left(i_{r}\right)}\right)$. If $i_{u}=1$, then we denote $a_{u}^{(1)}=a_{u}$.

Using Lemma 5.3.3(i) in Subsection 5.3 and Theorem 2.9 , we easily obtain the following.

Proposition 4.1. For any $s \geqslant 1$,
$B_{k}\left(1^{(s)}\right)=\left\{x_{i_{1}} x_{i_{2}}^{2} \ldots x_{i_{m-1}}^{2^{m-2}} x_{i_{m}}^{2^{s}-2^{m-1}} ; 1 \leqslant i_{1}<\ldots<i_{m} \leqslant k, 1 \leqslant m \leqslant \min \{s, k\}\right\}$.
It is well known that if $n \neq 2^{u}-1$ then $B_{1}(n)=\emptyset$. If $n=2^{u}-1$ for $u \geqslant 0$, then $B_{1}(n)=B_{1}\left(1^{(u)}\right)=\left\{x^{2^{u}-1}\right\}$. It is easy to see that $\Phi\left(B_{1}(0)\right)=\{1\}=B_{2}(0)$, $\Phi\left(B_{1}(1)\right)=\left\{x_{1}, x_{2}\right\}=B_{2}(1)$. According to Proposition 3.3. for $u>1$, we have

$$
B_{2}\left(2^{u}-1\right)=\Phi\left(B_{1}\left(2^{u}-1\right)\right)=\left\{x_{1}^{2^{u}-1}, x_{2}^{2^{u}-1}, x_{1} x_{2}^{2^{u}-2}\right\}
$$

By Theorem 1.1. $B_{2}(n)=\emptyset$ if $n \neq 2^{t+u}+2^{t}-2$ for all nonnegative integers t, u. We define the \mathbb{F}_{2}-linear map $\psi:\left(P_{k}\right)_{m} \rightarrow\left(P_{k}\right)_{2 m+k}$ by $\psi(y)=X_{\emptyset} y^{2}$ for any monomial $y \in\left(P_{k}\right)_{m}$. From Theorem 1.2 and Theorem 1.3, we have

Theorem 4.2 (Peterson [21]). If $n=2^{t+u}+2^{t}-2$, with t, u positive integers, then

$$
\begin{array}{rlr}
B_{2}(n) & =\psi^{t}\left(\Phi\left(B_{1}\left(2^{u}-1\right)\right)\right) \\
& = \begin{cases}\left\{\left(x_{1} x_{2}\right)^{2^{t}-1}\right\}, & u=0 \\
\left\{x_{1}^{2^{t+1}-1} x_{2}^{2^{t}-1}, x_{1}^{2^{t}-1} x_{2}^{2^{t+1}-1}\right\}, & u=1, \\
\left\{x_{1}^{2^{t+u}-1} x_{2}^{2^{t}-1}, x_{1}^{2^{t}-1} x_{2}^{2^{t+u}-1}, x_{1}^{2^{t+1}-1} x_{2}^{2^{t+u}-2^{t}-1}\right\}, & u>1\end{cases}
\end{array}
$$

By Theorems 1.1 and 1.2 for $k=3$, we need only to consider the cases of degree $n=2^{s}-2, n=2^{s}-1$ and $n=2^{s+t}+2^{s}-2$ with s, t positive integers. A direct computation using Theorem 1.3 we have

Theorem 4.3 (Kameko [14]).
i) If $n=2^{s}-2$, then $B_{3}\left(2^{s}-2\right)=\Phi\left(B_{2}\left(2^{s}-2\right)\right)$.
ii) If $n=2^{s}-1$, then $B_{3}\left(2^{s}-1\right)=B_{3}\left(1^{(s)}\right) \cup \psi\left(\Phi\left(B_{2}\left(2^{s-1}-2\right)\right)\right)$.
iii) If $n=2^{s+t}+2^{s}-2$, then

$$
B_{3}(n)=\left\{\begin{array}{lc}
\Phi\left(B_{2}(8)\right) \cup\left\{x_{1}^{3} x_{2}^{4} x_{3}\right\}, & \text { if } s=1, t=2 \\
\Phi\left(B_{2}\left(2^{s+t}+2^{s}-2\right)\right), & \text { otherwise }
\end{array}\right.
$$

5. Proof of Theorem 1.4

For $1 \leqslant i \leqslant k$, define $\varphi_{i}: Q P_{k} \rightarrow Q P_{k}$, the homomorphism induced by the \mathcal{A} homomorphism $\bar{\varphi}_{i}: P_{k} \rightarrow P_{k}$, which is determined by $\bar{\varphi}_{1}\left(x_{1}\right)=x_{1}+x_{2}, \bar{\varphi}_{1}\left(x_{j}\right)=x_{j}$ for $j>1$, and $\bar{\varphi}_{i}\left(x_{i}\right)=x_{i-1}, \bar{\varphi}_{i}\left(x_{i-1}\right)=x_{i}, \bar{\varphi}_{i}\left(x_{j}\right)=x_{j}$ for $j \neq i, i-1,1<i \leqslant k$. Note that the general linear group $G L_{k}$ is generated by $\bar{\varphi}_{i}, 0<i \leqslant k$ and the symmetric group Σ_{k} is generated by $\bar{\varphi}_{i}, 1<i \leqslant k$.

Let B be a finite subset of P_{k} consisting of some monomials of degree n. To prove the set $[B]$ is linearly independent in $Q P_{k}$, we order the set B by the order as in Definition 2.6 and denote the elements of B by $d_{i}=d_{n, i}, 0<i \leqslant b=|B|$ in such away that $d_{n, i}<d_{n, j}$ if and only if $i<j$. Suppose there is a linear relation

$$
\mathcal{S}=\sum_{1 \leqslant j \leqslant b} \gamma_{j} d_{n, j} \equiv 0
$$

with $\gamma_{j} \in \mathbb{F}_{2}$. For $(i ; I) \in \mathcal{N}_{k}$, we explicitly compute $p_{(i ; I)}(\mathcal{S})$ in terms of a minimal set of \mathcal{A}-generators in P_{k-1}. Computing from some relations $p_{(i ; I)}(\mathcal{S}) \equiv 0$ with $(i ; I) \in \mathcal{N}_{k}$ and $\bar{\varphi}_{i}(\mathcal{S}) \equiv 0$, we will obtain $\gamma_{j}=0$ for all j.

5.1. The case of degree $n=2^{s+1}-3$.

In this subsection we prove the following.
Proposition 5.1.1. For any $s \geqslant 1, \Phi\left(B_{3}(n)\right)$ is a minimal set of generators for \mathcal{A}-module P_{4} in degree $n=2^{s+1}-3$.

We need the following lemma for the proof of the proposition.
Lemma 5.1.2. If x is an admissible monomial of degree $2^{s+1}-3$ in P_{4}, then $\omega(x)=\left(3^{(s-1)}, 1\right)$.

Proof. It is easy to see that the lemma holds for $s=1$. Suppose $s \geqslant 2$. Obviously, $z=x_{1}^{2^{s}-1} x_{2}^{2^{s-1}-1} x_{3}^{2^{s-1}-1}$ is the minimal spike of degree $2^{s+1}-3$ in P_{4} and $\omega(z)=$ $\left(3^{(s-1)}, 1\right)$. Since $2^{s+1}-3$ is odd, we get either $\omega_{1}(x)=1$ or $\omega_{1}(x)=3$. If $\omega_{1}(x)=1$, then $\omega(x)<\omega(z)$. By Theorem 2.12 x is hit. This contradicts the fact that x is admissible. Hence we have $\omega_{1}(x)=3$. Using Proposition 2.10 and Theorem 2.12 , we obtain $\omega_{i}(x)=3, i=1,2, \ldots, s-1$. From this, it implies

$$
2^{s+1}-3=\operatorname{deg} x=\sum_{i \geqslant 1} 2^{i-1} \omega_{i}(x)=3\left(2^{s-1}-1\right)+\sum_{i \geqslant s} 2^{i-1} \omega_{i}(x) .
$$

The last equality implies $\omega_{s}(x)=1$ and $\omega_{i}(x)=0$ for $i>s$. The lemma is proved.

From Lemma 3.10, we have the following.
Lemma 5.1.3. The following monomials are strictly inadmissible:

$$
X_{1} x_{1}^{2}, X_{i} X_{j}^{2}, 1 \leqslant i<j \leqslant 4
$$

Proof of Proposition 5.1.1. We have $n=2^{s+1}-3=2^{s}+2^{s-1}+2^{s-1}-3$. Hence the proposition follows from Theorem 1.3 for $s \geqslant 4$. According to Kameko [14],

$$
B_{3}(n)=\left\{v_{1}=X^{2^{s-1}-1} x_{3}^{2^{s-1}}, v_{2}=X^{2^{s-1}-1} x_{2}^{2^{s-1}}, v_{3}=X^{2^{s-1}-1} x_{1}^{2^{s-1}}\right\}
$$

where $X=x_{1} x_{2} x_{3}$.
It is easy to see that $\Phi\left(B_{3}(1)\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Hence the proposition holds for $s=1$. For $s=2$, using Lemma 5.1.3 we see that

$$
\Phi^{+}\left(B_{3}(5)\right)=\left\{x_{1} x_{2} x_{3} x_{4}^{2}, x_{1} x_{2} x_{3}^{2} x_{4}, x_{1} x_{2}^{2} x_{3} x_{4}\right\}
$$

is a minimal set of generators for $\left(P_{4}^{+}\right)_{5}$. A direct computation using Lemmas 5.1.2 and 5.1.3 shows that for $s=3, \Phi^{+}\left(B_{3}(13)\right)$ is the set of 23 following monomials:

$$
X_{i}^{2} X_{j} x_{m}^{4}, 1 \leqslant i<j \leqslant 4, m \neq i, X_{i}^{2} X_{j} x_{i}^{4}, 2 \leqslant i<j \leqslant 4, X_{3}^{3} x_{3}^{4}, X_{4}^{3} x_{4}^{4}
$$

Using Lemmas 5.1.2, 5.1.3 and Theorem 2.12 we see that if x is an admissible monomial of degree 13 in P_{4}^{+}, then $x \in \Phi^{+}\left(B_{3}(13)\right)$. Hence $\left(Q P_{4}^{+}\right)_{13}$ is generated by $\left[\Phi^{+}\left(B_{3}(13)\right)\right]$. Now we prove that the set $\left[\Phi^{+}\left(B_{3}(13)\right)\right]$ is linearly independent.

Suppose there is a linear relation

$$
\begin{equation*}
\sum_{j=1}^{23} \gamma_{j} d_{j} \equiv 0 \tag{5.1.3.1}
\end{equation*}
$$

where $\gamma_{j} \in \mathbb{F}_{2}, 1 \leqslant j \leqslant 23$.
Consider the homomorphisms $p_{(1 ; i)}: P_{4} \rightarrow P_{3}, i=2,3,4$. By a direct computation from 5.1.3.1, we have

$$
\begin{aligned}
& p_{(1 ; 2)}(\mathcal{S}) \equiv \gamma_{1} v_{1}+\gamma_{2} v_{2}+\gamma_{7} v_{3} \equiv 0 \\
& p_{(1 ; 3)}(\mathcal{S}) \equiv \gamma_{3} v_{1}+\left(\gamma_{5}+\gamma_{16}\right) v_{2}+\gamma_{8} v_{3} \equiv 0 \\
& p_{(1 ; 4)}(\mathcal{S}) \equiv\left(\gamma_{4}+\gamma_{15}\right) v_{1}+\gamma_{6} v_{2}+\gamma_{9} v_{3} \equiv 0
\end{aligned}
$$

From the above equalities it implies

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j=1,2,3,6,7,8,9 \tag{5.1.3.2}\\
\gamma_{5}=\gamma_{16}, \quad \gamma_{4}=\gamma_{16}
\end{array}\right.
$$

Substituting 5.1.3.2 into the relation 5.1.3.1, we have

$$
\begin{equation*}
\mathcal{S}=\gamma_{4} d_{4}+\gamma_{5} d_{5}+\sum_{10 \leqslant j \leqslant 23} \gamma_{j} d_{j} \equiv 0 \tag{5.1.3.3}
\end{equation*}
$$

Applying the homomorphisms $p_{(2 ; 3)}, p_{(2 ; 4)}, p_{(3 ; 4)}: P_{4} \rightarrow P_{3}$ to 5.1.3.3, we get

$$
\begin{aligned}
& p_{(2 ; 3)}(\mathcal{S}) \equiv \gamma_{10} v_{1}+\left(\gamma_{12}+\gamma_{16}+\gamma_{18}\right) v_{2}+\gamma_{21} v_{3} \equiv 0 \\
& p_{(2 ; 4)}(\mathcal{S}) \equiv\left(\gamma_{11}+\gamma_{15}+\gamma_{19}\right) v_{1}+\gamma_{13} v_{2}+\gamma_{22} v_{3} \equiv 0 \\
& p_{(3 ; 4)}(\mathcal{S}) \equiv\left(\gamma_{14}+\gamma_{15}+\gamma_{16}+\gamma_{17}\right) v_{1}+\gamma_{20} v_{2}+\gamma_{23} v_{3} \equiv 0
\end{aligned}
$$

Hence we get

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j=10,13,20,21,22,23 \tag{5.1.3.4}\\
\gamma_{12}+\gamma_{16}+\gamma_{18}=\gamma_{11}+\gamma_{15}+\gamma_{19}=0 \\
\gamma_{14}+\gamma_{15}+\gamma_{16}+\gamma_{17}=0
\end{array}\right.
$$

Substituting 5.1.3.4 into the relation 5.1.3.3 we get

$$
\begin{equation*}
\mathcal{S}=\gamma_{4} d_{4}+\gamma_{5} d_{5}+\gamma_{11} d_{11}+\gamma_{12} d_{12}+\sum_{14 \leqslant j \leqslant 19} \gamma_{j} d_{j} \equiv 0 \tag{5.1.3.5}
\end{equation*}
$$

The homomorphisms $p_{(1 ;(2,3))}, p_{(1 ;(2,4))}, p_{(1 ;(3,4))}: P_{4} \rightarrow P_{3}$, send 5.1.3.5 respectively to

$$
\begin{aligned}
& p_{(1 ;(2,3))}(\mathcal{S}) \equiv\left(\gamma_{5}+\gamma_{12}+\gamma_{16}\right) v_{2}+\gamma_{18} v_{3} \equiv 0 \\
& p_{(1 ;(2,4))}(\mathcal{S}) \equiv\left(\gamma_{4}+\gamma_{11}+\gamma_{15}\right) v_{1}+\gamma_{19} v_{3} \equiv 0 \\
& p_{(1 ;(3,4))}(\mathcal{S}) \equiv\left(\gamma_{4}+\gamma_{14}+\gamma_{15}\right) v_{1}+\left(\gamma_{5}+\gamma_{16}+\gamma_{17}\right) v_{2} \equiv 0
\end{aligned}
$$

From this we obtain

$$
\left\{\begin{array}{l}
\gamma_{18}=\gamma_{19}=\gamma_{5}+\gamma_{12}+\gamma_{16}=0 \tag{5.1.3.6}\\
\gamma_{4}+\gamma_{11}+\gamma_{15}=\gamma_{4}+\gamma_{14}+\gamma_{15}=\gamma_{5}+\gamma_{16}+\gamma_{17}=0
\end{array}\right.
$$

Combining 5.1.3.2, 5.1.3.4 and 5.1.3.6, we obtain $\gamma_{j}=0, j=1,2, \ldots, 23$. The proposition is proved.

5.2. The case of degree $n=2^{s+1}-2$.

It is well-known that, Kameko's homomorphism

$$
\widetilde{S q_{*}^{0}}:\left(Q P_{k}\right)_{2 m+k} \rightarrow\left(Q P_{k}\right)_{m}
$$

is an epimorphism. Hence we have

$$
\left(Q P_{k}\right)_{2 m+k} \cong\left(Q P_{k}\right)_{m} \oplus\left(Q P_{k}^{0}\right)_{2 m+k} \oplus\left(\operatorname{Ker} \widetilde{S q}_{*}^{0} \cap\left(Q P_{k}^{+}\right)_{2 m+k}\right)
$$

and $\left(Q P_{k}\right)_{m} \cong\left\langle\left[\psi\left(B_{k}(m)\right)\right]\right\rangle \subset\left(Q P_{k}\right)_{2 m+k}$.
For $k=4$, from Theorem 4.3, it is easy to see that

$$
\Phi\left(B_{3}(2)\right)=\Phi^{0}\left(B_{3}(2)\right)=\left\{x_{i} x_{j} \mid 1 \leqslant i<j \leqslant 4\right\} .
$$

For $m=2^{s}-3, s \geqslant 2$, we have

$$
\begin{aligned}
& \left|\Phi^{0}\left(B_{3}(6)\right)\right|=18,\left|\Phi^{0}\left(B_{3}\left(2^{s+1}-2\right)\right)\right|=22, \text { for } s \geqslant 3 \\
& \left|\psi\left(B_{4}(1)\right)\right|=4, \operatorname{Ker} \widetilde{S q_{*}^{0} \cap\left[B_{4}^{+}(6)\right]=\left\{\left[x_{1} x_{2}^{2} x_{3} x_{4}^{2}\right],\left[x_{1} x_{2} x_{3}^{2} x_{4}^{2}\right]\right\}} .
\end{aligned}
$$

Hence $\operatorname{dim}\left(Q P_{4}\right)_{2}=6, \operatorname{dim}\left(Q P_{4}\right)_{6}=24$.
The main result of this subsection is:
Proposition 5.2.1. For any $s \geqslant 3,\left(Q P_{4}^{+}\right)_{2^{s+1}-2} \cap \operatorname{Ker} \widetilde{S q}_{*}^{0}$ is an \mathbb{F}_{2}-vector space of dimension 13 with a basis consisting of all the classes represented by the following admissible monomials:

$$
\begin{array}{lll}
d_{1}=x_{1} x_{2} x_{3}^{2^{s}-2} x_{4}^{2^{s}-2}, & d_{2}=x_{1} x_{2}^{2} x_{3}^{2^{s}-4} x_{4}^{2^{s}-1}, & d_{3}=x_{1} x_{2}^{2} x_{3}^{2^{s}-3} x_{4}^{2^{s}-2}, \\
d_{4}=x_{1} x_{2}^{2} x_{3}^{2^{s}-1} x_{4}^{2^{s}-4}, & d_{5}=x_{1} x_{2}^{3} x_{3}^{2^{s}-4} x_{4}^{2^{s}-2}, & d_{6}=x_{1} x_{2}^{3} x_{3}^{2^{s}-2} x_{4}^{2^{s}-4}, \\
d_{7}=x_{1} x_{2}^{s^{s}-2} x_{3} x_{4}^{2^{s}-2}, & d_{8}=x_{1} x_{2}^{2^{s}-1} x_{3}^{2} x_{4}^{2^{s}-4}, & d_{9}=x_{1}^{3} x_{2} x_{3}^{2^{s}-4} x_{4}^{2^{s}-2}, \\
d_{10}=x_{1}^{3} x_{2} x_{3}^{2^{s}-2} x_{4}^{2^{s}-4}, & d_{11}=x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{4}, s=3, & d_{11}=x_{1}^{3} x_{2}^{5} x_{3}^{2^{-6}} x_{4}^{2^{s}-4}, s>3, s, \\
d_{12}=x_{1}^{3} x_{2}^{2^{s}-3} x_{3}^{2} x_{4}^{2^{s}-4}, & d_{13}=x_{1}^{2^{s}-1} x_{2} x_{3}^{2} x_{4}^{2^{s}-4}, &
\end{array}
$$

The proof of this theorem is based on some lemmas.
Lemma 5.2.2. If x is an admissible monomial of degree $2^{s+1}-2$ in P_{4} and $[x] \in$ $\operatorname{Ker} \widetilde{S q}_{*}^{0}$, then $\omega(x)=\left(2^{(s)}\right)$.

Proof. We prove the lemma by induction on s. Obviously, the lemma holds for $s=1$. Observe that $z=\left(x_{1} x_{2}\right)^{2^{s}-1}$ is the minimal spike of degree $2^{s+1}-2$ in P_{4} and $\omega(z)=\left(2^{(s)}\right)$. Since $2^{s+1}-2$ is even, using Theorem 2.12 and the fact that $[x] \in \operatorname{Ker} \widetilde{S q}_{*}^{0}$, we obtain $\omega_{1}(x)=2$. Hence $x=x_{i} x_{j} y^{2}$, where y is a monomial of degree $2^{s}-2$ and $1 \leqslant i<j \leqslant 4$. Since x is admissible, by Theorem 2.9 y is also admissible. Now, the lemma follows from the inductive hypothesis.

The following lemma is proved by a direct computation.
Lemma 5.2.3. The following monomials are strictly inadmissible:
i) $x_{i}^{2} x_{j} x_{k}^{3}, x_{i}^{3} x_{j}^{4} x_{k}^{7}, i<j, k \neq i, j, x_{1}^{2} x_{2}^{2} x_{3} x_{4}, x_{1}^{2} x_{2} x_{3}^{2} x_{4}, x_{1}^{2} x_{2} x_{3} x_{4}^{2}, x_{1} x_{2}^{2} x_{3}^{2} x_{4}$.
ii) $x_{1} x_{2}^{6} x_{3}^{3} x_{4}^{4}, x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{6}, x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{4}$.
iii) $x_{1} x_{2}^{7} x_{3}^{10} x_{4}^{12}, x_{1}^{7} x_{2} x_{3}^{10} x_{4}^{12}, x_{1}^{3} x_{2}^{3} x_{3}^{12} x_{4}^{12}, x_{1}^{3} x_{2}^{5} x_{3}^{8} x_{4}^{14}, x_{1}^{3} x_{2}^{5} x_{3}^{14} x_{4}^{8}, x_{1}^{7} x_{2}^{7} x_{3}^{8} x_{4}^{8}$.

Proof of Proposition 5.2.1. Let x be an admissible monomial in P_{4} and $[x] \in \operatorname{Ker} \widetilde{S q}_{*}{ }^{0}$. By Lemma 5.2.2, $\omega_{i}(x)=2$, for $1 \leqslant i \leqslant s$. By induction on s, we see that if $x \neq d_{i}$, for $i=1,2, \ldots, 13$, then there is a monomial w, which is given in Lemma 5.2.3 such that $x=w y^{2^{u}}$ for some monomial y and positive integer u. By Theorem 2.9. x is inadmissible. Hence $\operatorname{Ker} \widetilde{S q}_{*}^{0} \cap\left(Q P_{4}^{+}\right)$is spanned by the classes [d_{i}] with $i=1,2, \ldots, 13$. Now, we prove that the classes $\left[d_{i}\right]$ with $i=1,2, \ldots, 13$, are linearly independent.

Suppose there is a linear relation

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant 13} \gamma_{i} d_{i} \equiv 0 \tag{5.2.3.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$.
According to Kameko [14], for $s \geqslant 3, B_{3}(n) \cap\left(P_{3}^{+}\right)_{n}$ is the set consisting of 4 monomials:

$$
\begin{array}{ll}
w_{1}=x_{1} x_{2}^{2^{s}-2} x_{3}^{2^{s}-1}, & w_{2}=x_{1} x_{2}^{2^{s}-1} x_{3}^{2^{s}-2} \\
w_{3}=x_{1}^{3} x_{2}^{2^{s}-3} x_{3}^{2^{s}-2}, & w_{4}=x_{1}^{2^{s}-1} x_{2} x_{3}^{2^{s}-2}
\end{array}
$$

Apply the homomorphisms $p_{(1 ; 2)}, p_{(3 ; 4)}: P_{4} \rightarrow P_{3}$ to the relation 5.2.3.1 and we obtain

$$
\begin{aligned}
& \gamma_{2} w_{1}+\gamma_{4} w_{2}+\gamma_{3} w_{3}+\gamma_{7} w_{4} \equiv 0 \\
& \gamma_{7} w_{1}+\gamma_{8} w_{2}+\gamma_{12} w_{3}+\gamma_{13} w_{4} \equiv 0
\end{aligned}
$$

From these relations, we get $\gamma_{i}=0, i=2,3,4,7,8,12,13$. Then the relation 5.2.3.1 becomes

$$
\begin{equation*}
\gamma_{1} d_{1}+\gamma_{5} d_{5}+\gamma_{6} d_{6}+\gamma_{9} d_{9}+\gamma_{10} d_{10}+\gamma_{11} d_{11} \equiv 0 \tag{5.2.3.2}
\end{equation*}
$$

Apply the homomorphisms $p_{(1 ; 4)}, p_{(2 ; 3)}: P_{4} \rightarrow P_{3}$ to the relation 5.2 .3 .2 and we get

$$
\begin{aligned}
\left(\gamma_{1}+\gamma_{5}+\gamma_{10}+\gamma_{11}\right) w_{1}+\gamma_{6} w_{3} & \equiv 0 \\
\left(\gamma_{1}+\gamma_{5}+\gamma_{10}+\gamma_{11}\right) w_{2}+\gamma_{9} w_{3} & \equiv 0
\end{aligned}
$$

These equalities imply $\gamma_{6}=\gamma_{9}=\gamma_{1}+\gamma_{5}+\gamma_{10}+\gamma_{11}=0$. Hence we obtain

$$
\begin{equation*}
\gamma_{1} d_{1}+\gamma_{5} d_{5}+\gamma_{10} d_{10}+\gamma_{11} d_{11} \equiv 0 \tag{5.2.3.3}
\end{equation*}
$$

For $s>3$, apply the homomorphisms $p_{(1 ; 3)}, p_{(2 ; 4)}: P_{4} \rightarrow P_{3}$ to 5.2.3.3, we get

$$
\begin{aligned}
& \gamma_{1} w_{2}+\gamma_{5} w_{3} \equiv 0 \\
& \gamma_{1} w_{1}+\gamma_{10} w_{3} \equiv 0
\end{aligned}
$$

From the above equalities, we get $\gamma_{i}=0, i=1,2, \ldots, 13$.
For $s=3$, apply the homomorphisms $p_{(1 ; 3)}, p_{(2 ; 4)}: P_{4} \rightarrow P_{3}$ to 5.2.3.3), we get

$$
\begin{aligned}
& \left(\gamma_{1}+\gamma_{11}\right) w_{2}+\gamma_{8} w_{3} \equiv 0 \\
& \left(\gamma_{1}+\gamma_{11}\right) w_{1}+\gamma_{10} w_{3} \equiv 0
\end{aligned}
$$

From the above equalities, we get $\gamma_{i}=0, i=2, \ldots, 10,12,13$ and $\gamma_{1}=\gamma_{11}$. So the relation 5.2.3.3 becomes

$$
\gamma_{1}\left(d_{1}+d_{11}\right) \equiv 0
$$

Now, we prove that $\left[d_{1}+d_{11}\right] \neq 0$. Suppose the contrary, that the polynomial $d_{1}+d_{11}=x_{1} x_{2} x_{3}^{6} x_{4}^{6}+x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{4}$ is hit. Then by the unstable property of the action of \mathcal{A} on the polynomial algebra, we have

$$
x_{1} x_{2} x_{3}^{6} x_{4}^{6}+x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{4}=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)
$$

for some polynomials $A \in\left(P_{4}^{+}\right)_{13}, B \in\left(P_{4}^{+}\right)_{12}, C \in\left(P_{4}^{+}\right)_{10}$. Let $\left(S q^{2}\right)^{3}$ acts on the both sides of the above equality. Since $\left(S q^{2}\right)^{3} S q^{1}=0$ and $\left(S q^{2}\right)^{3} S q^{2}=0$, we get

$$
\left(S q^{2}\right)^{3}\left(x_{1} x_{2} x_{3}^{6} x_{4}^{6}+x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{4}\right)=\left(S q^{2}\right)^{3} S q^{4}(C)
$$

On the other hand, by a direct computation, it is not difficult to check that

$$
\left(S q^{2}\right)^{3}\left(x_{1} x_{2} x_{3}^{6} x_{4}^{6}+x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{4}\right) \neq\left(S q^{2}\right)^{3} S q^{4}(C)
$$

for all $C \in\left(P_{4}^{+}\right)_{10}$. This is a contradiction. Hence $\left[d_{1}+d_{11}\right] \neq 0$ and $\gamma_{1}=\gamma_{11}=0$. The proposition is proved.
5.3. The case of degree $n=2^{s+1}-1$.

First, we determine the ω-vector of an admissible monomial of degree $2^{s+1}-1$ in P_{4}.

Lemma 5.3.1. If x is an admissible monomial of degree $2^{s+1}-1$ in P_{4} then either $\omega(x)=\left(1^{(s+1)}\right)$ or $\omega(x)=\left(3,2^{(s-1)}\right)$ or $\omega(x)=(1,3)$ for $s=2$.

Proof. Obviously, the lemma holds for $s=1$. Suppose $s \geqslant 2$. By a direct computation we see that if w is a monomial in P_{4} such that $\omega(w)=(1,3,2)$ or $\omega(w)=(1,1,3)$, then w is strictly inadmissible.

Since $2^{s+1}-1$ is odd, we have either $\omega_{1}(x)=1$ or $\omega_{1}(x)=3$. If $\omega_{1}(x)=1$, then $x=x_{i} y^{2}$, where y is a monomial of degree $2^{s}-1$. Hence either $\omega_{1}(y)=1$ or $\omega_{1}(y)=3$. So the lemma holds for $s=2$. Suppose that $s \geqslant 3$. If $\omega_{1}(y)=3$, then $y=X_{i} y_{1}^{2}$, where y_{1} is a monomial of degree $2^{s-1}-2$. Since y_{1} is admissible, using Proposition 2.10, one gets $\omega_{1}\left(y_{1}\right)=2$. Hence x is inadmissible. If $\omega_{1}(y)=1$, then $y=x_{j} y_{1}^{2}$, where y_{1} is an admissible monomial of degree $2^{s-1}-1$. By the inductive hypothesis $\omega\left(y_{1}\right)=\left(1^{(s-1)}\right)$. So we get $\omega(x)=\left(1^{(s+1)}\right)$.

Suppose that $\omega_{1}(x)=3$. Then $x=X_{i} y^{2}$, where y is an admissible monomial of degree $2^{s}-2$. Since x is admissible, by Lemma 5.2.3. $\omega(y)=\left(2^{(s-1)}\right)$. The lemma is proved.

For $s=1$, we have $\left(Q P_{4}\right)_{3}=\left(Q P_{4}^{0}\right)_{3}$. Hence $B_{4}(3)=\Phi^{0}\left(B_{3}(3)\right)$. Using Proposition 4.1 and Theorem 4.3 we have

$$
\begin{aligned}
& \left|\Phi^{0}\left(B_{3}(3)\right)\right|=14,\left|\Phi^{0}\left(B_{3}(7)\right)\right|=26,\left|\Phi^{0}\left(B_{3}(15)\right)\right|=38 \\
& \left|\Phi^{0}\left(B_{3}\left(2^{s+1}-1\right)\right)\right|=42, \text { for } s \geqslant 4 .
\end{aligned}
$$

For $s=2, B_{4}(7)=B_{4}\left(1^{(3)}\right) \cup B_{4}(1,3) \cup B_{4}(3,2)$. By a direct computation, we have $B_{4}(1,3)=\left\{x_{1} X_{1}^{2}\right\}, B_{4}(3,2)=\Phi\left(B_{3}(7)\right)$.

Recall that

$$
B_{3}\left(2^{s+1}-1\right)=B_{3}\left(1^{(s+1)}\right) \cup \psi\left(\Phi\left(B_{2}\left(2^{s}-2\right)\right)\right)
$$

where $B_{2}\left(2^{s}-2\right)=\left\{x_{1}^{2^{s-1}-1} x_{2}^{2^{s-1}-1}\right\}$. Hence $B_{3}\left(3,2^{(s-1)}\right)=\psi\left(\Phi\left(B_{2}\left(2^{s}-2\right)\right)\right)$.

Proposition 5.3.2. For any $s \geqslant 3, B_{4}\left(3,2^{(s-1)}\right)=\left(\Phi\left(B_{3}\left(3,2^{(s-1)}\right)\right) \cup A(s)\right.$, where $A(s)$ is determined as follows:

$$
\begin{aligned}
& A(3)=\left\{x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{7}, x_{1}^{3} x_{2}^{4} x_{3}^{7} x_{4}, x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}, x_{1}^{7} x_{2}^{3} x_{3}^{4} x_{4}, x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{5}\right\} \\
& A(4)=\left\{x_{1}^{3} x_{2}^{4} x_{3}^{11} x_{4}^{13}, x_{1}^{3} x_{2}^{7} x_{3}^{8} x_{4}^{13}, x_{1}^{7} x_{2}^{3} x_{3}^{8} x_{4}^{13}, x_{1}^{7} x_{2}^{7} x_{3}^{8} x_{4}^{9}, x_{1}^{7} x_{2}^{7} x_{3}^{9} x_{4}^{8},\right\} \\
& A(s)=\left\{x_{1}^{3} x_{2}^{4} x_{3}^{2^{s}-5} x_{4}^{2^{s}-3}\right\}, s \geqslant 5
\end{aligned}
$$

Combining Lemma 5.3.1 and Propositions 4.1 5.3.2, we have

$$
B_{4}\left(2^{s+1}-1\right)=B_{4}\left(1^{(s+1)}\right) \cup \Phi\left(B_{3}\left(3,2^{(s-1)}\right)\right) \cup A(s)
$$

The following can easily be proved by a direct computation.
Lemma 5.3.3. The following monomials are strictly inadmissible:
i) $x_{i}^{2} x_{j}, x_{i}^{3} x_{j}^{4}, 1 \leqslant i<j \leqslant 4$.
ii) $X_{2} x_{1}^{2} x_{2}^{2}, \quad X_{1} x_{1}^{2} x_{i}^{2}, i=2,3,4$.
iii) $x_{i}^{3} x_{j}^{12} x_{k} x_{\ell}^{15}, x_{i}^{3} x_{j}^{4} x_{k}^{9} x_{\ell}^{15}, x_{i}^{3} x_{j}^{5} x_{k}^{8} x_{\ell}^{15}, i<j<k, \ell \neq i, j, k$.
iv) $x_{1}^{7} x_{2}^{11} x_{3}^{12} x_{4}, x_{1}^{3} x_{2}^{12} x_{3}^{3} x_{4}^{13}, X_{j} x_{1}^{2} x_{2}^{4} x_{3}^{8} x_{4}^{8} x_{j}^{6}, x_{1}^{7} x_{2}^{11} x_{3}^{4} x_{4}^{8} x_{j}$, $x_{1}^{3} x_{2}^{3} x_{3}^{12} x_{4}^{8} x_{i}^{4} x_{j}, x_{1}^{3} x_{2}^{3} x_{3}^{24} x_{4}^{29} x_{i}^{4}, i=1,2, j=3,4$.

Proof of Proposition 5.3.2. By a direct computation using Lemma 5.3.1. Lemma 5.3.3 and Theorem 2.9 we see that if x is a monomial of degree $2^{s+1}-1$ in P_{4} and $x \notin \Phi\left(B_{3}\left(3,2^{(s-1)}\right)\right) \cup A(s)$, then there is a monomial w which is given in Lemma 5.3.3 such that $x=w y^{2^{u}}$ for some monomial y and integer $u>1$. Hence x is inadmissible.

Now we prove that the set $\left[B_{4}\left(3,2^{(s-1)}\right)\right]$ is linearly independent in $Q P_{4}^{+}$. For $s=3$, we have $\left|B_{4}(3,2,2)\right|=36$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{1 \leqslant i \leqslant 36} \gamma_{i} d_{i} \equiv 0 \tag{5.3.3.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{15, i}$.
A simple computation, we see that $B_{3}(3 ; 2,2)=\psi\left(\Phi\left(B_{2}(6)\right)\right)$ is the set consisting of 6 monomials:

$$
v_{1}=x_{1} x_{2}^{7} x_{3}^{7}, v_{2}=x_{1}^{3} x_{2}^{5} x_{3}^{7}, v_{3}=x_{1}^{3} x_{2}^{7} x_{3}^{5}, v_{4}=x_{1}^{7} x_{2} x_{3}^{7}, v_{5}=x_{1}^{7} x_{2}^{3} x_{3}^{5}, v_{6}=x_{1}^{7} x_{2}^{7} x_{3}
$$

By a direct computation, we have

$$
\begin{aligned}
p_{(1 ; 2)}(\mathcal{S}) \equiv & \gamma_{3} v_{2}+\gamma_{4} v_{3}+\left(\gamma_{9}+\gamma_{22}\right) v_{4}+\left(\gamma_{10}+\gamma_{23}\right) v_{5}+\left(\gamma_{11}+\gamma_{24}\right) v_{6} \equiv 0 \\
p_{(1 ; 3)}(\mathcal{S}) \equiv & \left(\gamma_{1}+\gamma_{16}\right) v_{1}+\gamma_{5} v_{2}+\left(\gamma_{7}+\gamma_{20}\right) v_{3}+\gamma_{13} v_{5}+\left(\gamma_{15}+\gamma_{30}\right) v_{6} \equiv 0 \\
p_{(1 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{2}+\gamma_{19}\right) v_{1}+\left(\gamma_{6}+\gamma_{21}+\gamma_{27}\right) v_{2}+\gamma_{8} v_{3}+\left(\gamma_{12}+\gamma_{29}\right) v_{4}+\gamma_{14} v_{5} \equiv 0 \\
p_{(2 ; 3)}(\mathcal{S}) \equiv & \left(\gamma_{1}+\gamma_{3}+\gamma_{5}+\gamma_{9}\right) v_{1}+\left(\gamma_{16}+\gamma_{22}\right) v_{2} \\
& +\left(\gamma_{18}+\gamma_{20}+\gamma_{23}+\gamma_{26}\right) v_{3}+\gamma_{32} v_{5}+\left(\gamma_{34}+\gamma_{36}\right) v_{6} \equiv 0 \\
p_{(2 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{2}+\gamma_{4}+\gamma_{8}+\gamma_{11}\right) v_{1} \\
& +\left(\gamma_{17}+\gamma_{21}\right) v_{2}+\left(\gamma_{19}+\gamma_{24} v_{3}+\gamma_{31}+\gamma_{35}\right) v_{4}+\gamma_{33} v_{5} \equiv 0 \\
p_{(3 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{12}+\gamma_{13}+\gamma_{14}+\gamma_{15}\right) v_{1}+\left(\gamma_{25}+\gamma_{26}+\gamma_{27}+\gamma_{28}\right) v_{2} \\
& +\left(\gamma_{29}+\gamma_{30}\right) v_{3}+\left(\gamma_{31}+\gamma_{32}+\gamma_{33}+\gamma_{34}\right) v_{4}+\left(\gamma_{35}+\gamma_{36}\right) v_{5} \equiv 0
\end{aligned}
$$

From these equalities, we obtain

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j=3,4,5,8,13,14,32,33 \tag{5.3.3.2}\\
\gamma_{1}=\gamma_{9}=\gamma_{16}=\gamma_{22}, \quad \gamma_{2}=\gamma_{11}=\gamma_{19}=\gamma_{24}, \gamma_{7}=\gamma_{20} \\
\gamma_{1}=\gamma_{9}=\gamma_{16}=\gamma_{22}, \quad \gamma_{10}=\gamma_{23}, \quad \gamma_{17}=\gamma_{21} \\
\gamma_{12}=\gamma_{15}=\gamma_{29}=\gamma_{30}, \quad \gamma_{31}=\gamma_{34}=\gamma_{35}=\gamma_{36} \\
\gamma_{6}+\gamma_{21}+\gamma_{27}=\gamma_{7}+\gamma_{10}+\gamma_{18}+\gamma_{26}=\gamma_{25}+\gamma_{26}+\gamma_{27}+\gamma_{28}=0
\end{array}\right.
$$

A direct computation using 5.3.3.2 and Theorem 2.12 we get

$$
\begin{aligned}
p_{(1 ;(2,3))}(\mathcal{S}) \equiv & \gamma_{18} w_{3}+\gamma_{26} w_{5}+\gamma_{28} w_{6} \equiv 0 \\
p_{(1 ;(2,4))}(\mathcal{S}) \equiv & \left(\gamma_{6}+\gamma_{10}+\gamma_{27}\right) w_{2}+\gamma_{25} w_{4}+\gamma_{27} w_{5} \equiv 0 \\
p_{(1 ;(3,4))}(\mathcal{S}) \equiv & \left(\gamma_{17}+\gamma_{18}\right) w_{1} \\
& +\left(\gamma_{6}+\gamma_{7}+\gamma_{17}+\gamma_{25}+\gamma_{26}+\gamma_{27}\right) w_{2}+\left(\gamma_{17}+\gamma_{28}\right) w_{3} \equiv 0
\end{aligned}
$$

Combining the above equalities and 5.3.3.2, one gets $\gamma_{j}=0$ for $j \neq 1,2,9,11$, $12,15,16,19,22,24,29,30,31$ and $\gamma_{1}=\gamma_{9}=\gamma_{16}=\gamma_{22}, \gamma_{2}=\gamma_{11}=\gamma_{19}=\gamma_{24}$, $\gamma_{12}=\gamma_{15}=\gamma_{29}=\gamma_{30}, \gamma_{31}=\gamma_{34}=\gamma_{35}=\gamma_{36}$. Hence the relation 5.3.3.1 becomes

$$
\begin{equation*}
\gamma_{1} \theta_{1}+\gamma_{2} \theta_{2}+\gamma_{12} \theta_{3}+\gamma_{31} \theta_{4} \equiv 0 \tag{5.3.3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \theta_{1}=d_{1}+d_{9}+d_{16}+d_{22}, \quad \theta_{2}=d_{2}+d_{11}+d_{19}+d_{24} \\
& \theta_{3}=d_{12}+d_{15}+d_{29}+d_{30}, \quad \theta_{4}=d_{31}+d_{34}+d_{35}+d_{36}
\end{aligned}
$$

Now, we prove that $\gamma_{1}=\gamma_{2}=\gamma_{12}=\gamma_{31}=0$.
The proof is divided into 4 steps.
Step 1. Under the homomorphism φ_{1}, the image of 5.3.3.3 is

$$
\begin{equation*}
\gamma_{1} \theta_{1}+\gamma_{2} \theta_{2}+\gamma_{12} \theta_{3}+\gamma_{31}\left(\theta_{4}+\theta_{3}\right) \equiv 0 \tag{5.3.3.4}
\end{equation*}
$$

Combining 5.3.3.3 and 5.3.3.4, we get

$$
\begin{equation*}
\gamma_{31} \theta_{3} \equiv 0 \tag{5.3.3.5}
\end{equation*}
$$

If the polynomial θ_{3} is hit, then we have

$$
\theta_{3}=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)
$$

for some polynomials $A \in\left(P_{4}^{+}\right)_{14}, B \in\left(P_{4}^{+}\right)_{13}, C \in\left(P_{4}^{+}\right)_{11}$. Let $\left(S q^{2}\right)^{3}$ act on the both sides of this equality. We get

$$
\left(S q^{2}\right)^{3}\left(\theta_{3}\right)=\left(S q^{2}\right)^{3} S q^{4}(C)
$$

By a direct calculation, we see that the monomial $x=x_{1}^{8} x_{2}^{7} x_{3}^{4} x_{4}^{2}$ is a term of $\left(S q^{2}\right)^{3}\left(\theta_{3}\right)$. If this monomial is a term of $\left(S q^{2}\right)^{3} S q^{4}(y)$ for a monomial $y \in\left(P_{4}^{+}\right)_{11}$, then $y=x_{2}^{7} f_{2}(z)$ with $z \in P_{3}$ and $\operatorname{deg} z=4$. Using the Cartan formula, we see that x is a term of $x_{2}^{7}\left(S q^{2}\right)^{3} S q^{4}(z)=x_{2}^{7}\left(S q^{2}\right)^{3}\left(z^{2}\right)=0$. Hence

$$
\left(S q^{2}\right)^{3}\left(\theta_{3}\right) \neq\left(S q^{2}\right)^{3} S q^{4}(C)
$$

for all $C \in\left(P_{4}^{+}\right)_{11}$ and we have a contradiction. So $\left[\theta_{3}\right] \neq 0$ and $\gamma_{31}=0$.
Step 2. Since $\gamma_{31}=0$, the homomorphism φ_{2} sends 5.3.3.3 to

$$
\begin{equation*}
\gamma_{1} \theta_{1}+\gamma_{2} \theta_{2}+\gamma_{12} \theta_{4} \equiv 0 \tag{5.3.3.6}
\end{equation*}
$$

Using the relation 5.3.3.6 and by the same argument as given in Step 1, we get $\gamma_{12}=0$.

Step 3. Since $\gamma_{31}=\gamma_{12}=0$, the homomorphism φ_{3} sends 5.3.3.3) to

$$
\begin{equation*}
\gamma_{1}\left[\theta_{1}\right]+\gamma_{2}\left[\theta_{3}\right]=0 . \tag{5.3.3.7}
\end{equation*}
$$

Using the relation (5.3.3.7) and by the same argument as given in Step 2, we obtain $\gamma_{3}=0$.

Step 4. Since $\gamma_{31}=\gamma_{12}=\gamma_{2}=0$, the homomorphism φ_{4} sends 5.3.3.3 to

$$
\gamma_{1} \theta_{2}=0
$$

Using this relation and by the same argument as given in Step 3, we obtain $\gamma_{1}=0$.
For $\left.s \geqslant 4, B_{3}\left(3,2^{(s-1)}\right)\right)=\psi\left(\Phi\left(B_{2}\left(2^{s-1}-2\right)\right)\right)$ is the set consisting of 7 monomials:

$$
\begin{aligned}
& v_{1}=x_{1} x_{2}^{2^{s}-1} x_{3}^{2^{s}-1}, v_{2}=x_{1}^{3} x_{2}^{2^{s}-3} x_{3}^{2^{s}-1}, v_{3}=x_{1}^{3} x_{2}^{2^{s}-1} x_{3}^{2^{s}-3}, v_{4}=x_{1}^{7} x_{2}^{2^{s}-5} x_{3}^{2^{s}-3} \\
& v_{5}=x_{1}^{2^{s}-1} x_{2} x_{3}^{2^{s}-1}, v_{6}=x_{1}^{2^{s}-1} x_{2}^{3} x_{3}^{2^{s}-3}, v_{7}=x_{1}^{2^{s}-1} x_{2}^{2^{s}-1} x_{3}
\end{aligned}
$$

Suppose that $s=4$. Then we have $\left|B_{4}\left(\left(3,2^{(3)}\right)\right)\right|=46$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{1 \leqslant j \leqslant 46} \gamma_{j} d_{j}=0 \tag{5.3.3.8}
\end{equation*}
$$

with $\gamma_{j} \in \mathbb{F}_{2}$ and $d_{i}=d_{31, i}$.
By a direct computation using Theorem 2.12 we have

$$
\begin{aligned}
p_{(1 ; 2)}(\mathcal{S}) \equiv & \gamma_{3} w_{2}+\gamma_{4} w_{3}+\left(\gamma_{9}+\gamma_{25}\right) w_{4}+\gamma_{12} w_{5}+\gamma_{13} w_{6}+\gamma_{14} w_{7} \equiv 0, \\
p_{(1 ; 3)}(\mathcal{S}) \equiv & \left(\gamma_{1}+\gamma_{19}\right) w_{1}+\gamma_{5} w_{2}+\left(\gamma_{7}+\gamma_{23}+\gamma_{37}+\gamma_{39}\right) w_{3} \\
& +\left(\gamma_{10}+\gamma_{28}\right) w_{4}+\gamma_{16} w_{6}+\gamma_{18} w_{7} \equiv 0 \\
p_{(1 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{2}+\gamma_{22}\right) w_{1}+\left(\gamma_{6}+\gamma_{24}+\gamma_{27}+\gamma_{29}+\gamma_{32}+\gamma_{40}\right) w_{2} \\
& +\gamma_{8} w_{3}+\gamma_{11} w_{4}+\left(\gamma_{15}+\gamma_{34}\right) w_{5}+\gamma_{17} w_{6} \equiv 0 .
\end{aligned}
$$

From these equalities, we get

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j=3,4,5,8,11,12,13,14,16,17,18 \tag{5.3.3.9}\\
\gamma_{9}=\gamma_{25}, \gamma_{1}=\gamma_{19}, \gamma_{7}+\gamma_{23}+\gamma_{37}+\gamma_{39}=0, \gamma_{10}=\gamma_{28} \\
\gamma_{2}=\gamma_{22}, \gamma_{6}+\gamma_{24}+\gamma_{27}+\gamma_{29}+\gamma_{32}+\gamma_{40}=0, \gamma_{15}+\gamma_{34}=0
\end{array}\right.
$$

Using the relations (5.3.3.9), and Theorem 2.12 we obtain

$$
\begin{aligned}
p_{(2 ; 3)}(\mathcal{S}) \equiv & \gamma_{1} w_{1}+\gamma_{1} w_{2}+\left(\gamma_{9}+\gamma_{10}+\gamma_{21}+\gamma_{23}+\gamma_{26}+\gamma_{31}+\gamma_{39}\right) w_{3} \\
& +\left(\gamma_{35}+\gamma_{37}\right) w_{4}+\gamma_{43} w_{6} \equiv 0 \\
p_{(2 ; 4)}(\mathcal{S}) \equiv & \gamma_{2} w_{1}+\gamma_{45} w_{7}+\left(\gamma_{20}+\gamma_{24}+\gamma_{38}+\gamma_{40}\right) w_{2}+\gamma_{2} w_{3}+\gamma_{36} w_{4} \\
& +\left(\gamma_{42}+\gamma_{46}\right) w_{5}+\gamma_{44} w_{6} \equiv 0 \\
p_{(3 ; 4)}(\mathcal{S}) \equiv & \gamma_{15} w_{1}+\left(\gamma_{30}+\gamma_{31}+\gamma_{32}+\gamma_{33}\right) w_{2} \\
& +\gamma_{15} w_{3}+\gamma_{41} w_{4}+\left(\gamma_{42}+\gamma_{43}+\gamma_{44}+\gamma_{45}\right) w_{5}+\gamma_{42} w_{6} \equiv 0
\end{aligned}
$$

From these equalities, we get

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j=1,2,15,36,41,42,43,44,45,46 \tag{5.3.3.10}\\
\gamma_{10}+\gamma_{21}+\gamma_{23}+\gamma_{26}+\gamma_{31}+\gamma_{39}=0 \\
\gamma_{35}=\gamma_{37}, \gamma_{20}+\gamma_{24}+\gamma_{38}+\gamma_{40}=0 \\
\gamma_{30}+\gamma_{31}+\gamma_{32}+\gamma_{33}=0
\end{array}\right.
$$

By a direct computation using 5.3.3.9, 5.3.3.10 and Theorem 2.12, we have

$$
\begin{aligned}
p_{(1 ;(2,3))}(\mathcal{S}) \equiv & \left(\gamma_{7}+\gamma_{21}+\gamma_{23}+\gamma_{39}\right) w_{3}+\gamma_{26} w_{4}+\gamma_{31} w_{6}+\gamma_{33} w_{7} \equiv 0 \\
p_{(1 ;(2,4))}(\mathcal{S}) \equiv & \left(\gamma_{6}+\gamma_{9}+\gamma_{20}+\gamma_{24}+\gamma_{27}+\gamma_{29}+\gamma_{32}+\gamma_{38}+\gamma_{40}\right) w_{2} \\
& +\gamma_{27} w_{4}+\gamma_{30} w_{5}+\gamma_{32} w_{6} \equiv 0, \\
p_{(1 ;(3,4))}(\mathcal{S}) \equiv & \left(\gamma_{6}+\gamma_{10}+\gamma_{23}+\gamma_{24}+\gamma_{26}+\gamma_{27}+\gamma_{29}+\gamma_{30}+\gamma_{31}+\gamma_{32}\right) w_{2} \\
& +\left(\gamma_{7}+\gamma_{23}+\gamma_{24}+\gamma_{33}+\gamma_{35}+\gamma_{38}+\gamma_{39}+\gamma_{40}\right) w_{3} \\
& +\left(\gamma_{20}+\gamma_{21}+\gamma_{35}\right) w_{1}+\gamma_{29} w_{4} \equiv 0, \\
p_{(2 ;(3,4))}(\mathcal{S}) \equiv & \left(\gamma_{10}+\gamma_{20}+\gamma_{23}+\gamma_{24}+\gamma_{29}+\gamma_{30}+\gamma_{35}+\gamma_{38}+\gamma_{39}+\gamma_{40}\right) w_{2} \\
& +\left(\gamma_{9}+\gamma_{10}+\gamma_{21}+\gamma_{23}+\gamma_{24}+\gamma_{26}+\gamma_{27}+\gamma_{29}+\gamma_{31}+\gamma_{32}\right) w_{3} \\
& +\left(\gamma_{6}+\gamma_{7}+\gamma_{9}+\gamma_{10}\right) w_{1}+\gamma_{38} w_{4} \equiv 0 .
\end{aligned}
$$

Combining the above equalities, 5.3.3.9 and 5.3.3.10 we get

$$
\left\{\begin{array}{l}
\gamma_{j}=0, j \neq 7,10,21,23,24,28,35,37,39,40 \tag{5.3.3.11}\\
\gamma_{7}=\gamma_{10}=\gamma_{28}, \gamma_{21}=\gamma_{35}=\gamma_{37} \\
\gamma_{7}+\gamma_{21}+\gamma_{23}+\gamma_{39}=0
\end{array}\right.
$$

Hence we obtain

$$
\begin{equation*}
\gamma_{7} \theta_{1}+\gamma_{21} \theta_{2}+\gamma_{39} \theta_{3}+\gamma_{24} \theta_{4} \equiv 0 \tag{5.3.3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{1} & =d_{7}+d_{10}+d_{23}+d_{28} \\
\theta_{2} & =d_{21}+d_{23}+d_{35}+d_{37} \\
\theta_{3} & =d_{23}+d_{39}, \quad \theta_{4}=d_{24}+d_{40}
\end{aligned}
$$

Now, we prove $\gamma_{7}=\gamma_{21}=\gamma_{24}=\gamma_{39}=0$. The proof is divided into 4 steps.
Step 1. The homomorphism φ_{1} sends 5.3.3.12 to

$$
\begin{equation*}
\gamma_{7} \theta_{1}+\gamma_{21}\left(\theta_{2}+\theta_{1}\right)+\gamma_{24} \theta_{3}+\gamma_{39} \theta_{4} \equiv 0 \tag{5.3.3.13}
\end{equation*}
$$

Combining 5.3.3.12 and 5.3.3.13 gives

$$
\begin{equation*}
\gamma_{25} \theta_{1} \equiv 0 \tag{5.3.3.14}
\end{equation*}
$$

By an analogous argument as given in the proof of the proposition for the case $s=3,\left[\theta_{1}\right] \neq 0$. So we get $\gamma_{21}=0$.

Step 2. Applying the homomorphism φ_{2} to 5.3.3.8, we obtain

$$
\begin{equation*}
\gamma_{7} \theta_{2}+\gamma_{24} \theta_{3}+\gamma_{39} \theta_{4}=0 \tag{5.3.3.15}
\end{equation*}
$$

Using 5.3.3.15 and by a same argument as given in Step 1, we get $\gamma_{7}=0$.
Step 3. Under the homomorphism φ_{3}, the image of 5.3 .3 .8 is

$$
\begin{equation*}
\gamma_{24}\left[\theta_{2}\right]+\gamma_{39}\left[\theta_{4}\right]=0 \tag{5.3.3.16}
\end{equation*}
$$

Using 5.3.3.16 and by a same argument as given in Step 3, we obtain $\gamma_{24}=0$.
Step 4. Since $\gamma_{7}=\gamma_{22}=\gamma_{24}=0$, the homomorphism φ_{3} sends 5.3.3.8 to

$$
\gamma_{39}\left[\theta_{3}\right]=0
$$

From this equality and by a same argument as given in Step 3, we get $\gamma_{39}=0$.

For $s \geqslant 5,\left|B_{4}\left(3,2^{(s-1)}\right)\right|=43$. Suppose that there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{1 \leqslant j \leqslant 43} \gamma_{j} d_{j} \equiv 0 \tag{5.3.3.17}
\end{equation*}
$$

with $\gamma_{j} \in \mathbb{F}_{2}$.
Using the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$, for $(j ; J) \in \mathcal{N}_{4}$ and the admissible monomials $v_{i}, i=1,2, \ldots, 7$, we obtain $\gamma_{j}=0$ for any j. The proposition is proved.

5.4. The case of degree $2^{s+t+1}+2^{s+1}-3$.

First of all, we determine the ω-vector of an admissible monomial of degree $n=2^{s+t+1}+2^{s+1}-3$ for any positive integers s, t.

Lemma 5.4.1. Let x be a monomial of degree $2^{s+t+1}+2^{s+1}-3$ in P_{4} with s, t are the positive integers. If x is admissible, then either $\omega(x)=\left(3^{(s)}, 1^{(t+1)}\right)$ or $\omega(x)=\left(3^{(s+1)}, 2^{(t-1)}\right)$.

Proof. Observe that the monomial $z=x_{1}^{2^{s+t+1}-1} x_{2}^{2^{s}-1} x_{3}^{2^{s}-1}$ is the minimal spike of degree $2^{s+t+1}+2^{s+1}-3$ in P_{4} and $\omega(z)=\left(3^{(s)}, 1^{(t+1)}\right)$. Since x is admissible and $2^{s+t+1}+2^{s+1}-3$ is odd, using Theorem 2.12 we obtain $\omega_{1}(x)=3$. Using Theorem 2.12 and Proposition 2.10, we get $\omega_{i}(x)=3$ for $i=1,2, \ldots, s$.

Let $x^{\prime}=\prod_{i \geqslant 1} X_{I_{i+s-1}(x)}^{2^{i-1}}$. Then $\omega_{i}\left(x^{\prime}\right)=\omega_{i+s}(x), i \geqslant 1$ and $\operatorname{deg}\left(x^{\prime}\right)=2^{t+1}-1$. Since x is admissible, using Theorem 2.9, we see that x^{\prime} is also admissible. By Lemmas 5.3.1 either $\omega\left(x^{\prime}\right)=\left(1^{(t+1)}\right)$ or $\omega\left(x^{\prime}\right)=\left(3,2^{(t-1)}\right)$ or $\omega\left(x^{\prime}\right)=(1,3)$ for $t=2$. By a direct computation we see that if $\omega\left(x^{\prime}\right)=(1,3)$, then x is inadmissible. So, the lemma is proved.

Using Theorem 1.3 we easily obtain the following.
Proposition 5.4.2. For any positive integers s, t with $s \geqslant 3, \Phi\left(B_{3}(n)\right)$ is a minimal set of generators for \mathcal{A}-module P_{4} in degree $n=2^{s+t+1}+2^{s+1}-3$.

Hence it suffices to consider the cases $s=1$ and $s=2$.

5.4.1. The subcase $s=1$.

For $s=1, n=2^{t+2}+1=\left(2^{t+2}-1\right)+(2-1)+(2-1)$. Hence $\mu\left(2^{t+2}+1\right)=3$ and Kameko's homomorphism

$$
\widetilde{S q}_{*}^{0}:\left(Q P_{3}\right)_{2^{t+2}+1} \rightarrow\left(Q P_{3}\right)_{2^{t+1}-1}
$$

is an isomorphism. So, we get

$$
B_{3}(n)=\psi\left(B_{3}\left(2^{t+1}-1\right)\right)=\psi\left(B_{3}\left(1^{(t+1)}\right)\right) \cup \psi\left(B_{3}\left(3,2^{(t-1)}\right)\right) .
$$

Proposition 5.4.3. For any positive integer $t, \Phi\left(B_{3}(n)\right) \cup B(t)$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+2}+1$, where the set $B(t)$ is determined as follows:

$$
\begin{aligned}
B(1) & =\left\{x_{1}^{3} x_{2}^{4} x_{3} x_{4}\right\}, \quad B(2)=\left\{x_{1}^{3} x_{2}^{5} x_{3}^{8} x_{4}\right\} \\
B(3) & =\left\{x_{1}^{3} x_{2}^{7} x_{3}^{11} x_{4}^{12}, x_{1}^{7} x_{2}^{3} x_{3}^{11} x_{4}^{12}, x_{1}^{7} x_{2}^{11} x_{3}^{3} x_{4}^{12}, x_{1}^{7} x_{2}^{7} x_{3}^{8} x_{4}^{11}, x_{1}^{7} x_{2}^{7} x_{3}^{11} x_{4}^{8}\right\} \\
B(t) & =\left\{x_{1}^{3} x_{2}^{7} x_{3}^{t^{t+1}-5} x_{4}^{2^{t+1}-4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{t+1}-5} x_{4}^{2^{t+1}-4},\right. \\
& \left.x_{1}^{7} x_{2}^{2^{t+1}-5} x_{3}^{3} x_{4}^{2^{t+1}-4}, x_{1}^{7} x_{2}^{7} x_{3}^{2^{t+1}-8} x_{4}^{2^{t+1}-5}\right\}, \text { for } t>3 .
\end{aligned}
$$

The following lemma is proved by a direct computation.
Lemma 5.4.4. The following monomials are strictly inadmissible:
i) $X_{2} x_{1}^{2} x_{2}^{12}, X_{3}^{3} x_{3}^{4} x_{i}^{4}, i=1,2, X_{j} x_{1}^{2} x_{2}^{4} x_{j}^{8}, X_{2}^{3} x_{2}^{4} x_{j}^{4}, j=3,4$.
ii) $X_{3} x_{1}^{2} x_{2}^{4} x_{3}^{24}, X_{3} x_{1}^{2} x_{2}^{4} x_{j}^{8} x_{4}^{16}, j=3,4$.
iii) $X_{3} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{4}^{12}, X_{4} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{3}^{12}, X_{4} X_{3}^{2} x_{1}^{4} x_{2}^{12} x_{3}^{8}, \quad X_{4} X_{3}^{2} x_{1}^{12} x_{2}^{4} x_{3}^{8}$
iv) $X_{j}^{3} x_{i}^{4} x_{j}^{8} x_{m}^{12}, 1 \leqslant i<j \leqslant 4, m \neq i, j$.
v) $X_{j} X_{2}^{2} x_{1}^{4} x_{3}^{4} x_{2}^{8} x_{4}^{8}, j=3,4, X_{j}^{3} 2 x_{1}^{4} x_{3}^{4} x_{2}^{8} x_{4}^{8}, j=2,4$.
vi) $X_{3}^{3} x_{1}^{4} x_{2}^{4} x_{3}^{24} x_{4}^{24}, X_{3}^{3} x_{1}^{4} x_{2}^{4} x_{i}^{8} x_{4}^{8} x_{3}^{16} x_{4}^{16}, X_{4} X_{2}^{2} x_{1}^{4} x_{2}^{4} x_{i}^{8} x_{4}^{8} x_{3}^{16} x_{4}^{16}, i=1,2$,
$X_{j}^{3} x_{1}^{12} x_{2}^{12} x_{3}^{16} x_{4}^{16}, j=3,4, \quad X_{4} X_{3}^{2} x_{1}^{12} x_{2}^{12} x_{3}^{16} x_{4}^{16}$.
Proof of Proposition 5.4.2. Let x be an admissible monomial of degree $n=2^{t+2}+1$. According to Lemma 5.4.1, $x=X_{i} y^{2}$ with y a monomial of degree $2^{t+1}-1$. Since x is admissible, by Theorem 2.12, y is admissible. By a direct computation, we see that if $y \in B_{4}\left(2^{t+1}-1\right)$ and $X_{i} y^{2} \notin \Phi\left(B_{3}(n)\right) \cup B(t)$, then there is a monomial w which is given in one of Lemma 5.1.3 5.3.3. 5.4.4 such that $X_{i} y^{2}=w z^{2^{u}}$ with some positive integer u and monomial z. By Theorem $2.9, x$ is inadmissible.

For $t=1$, we have $\left|C_{4}^{+}(9)\right|=18$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{18} \gamma_{i} d_{i} \equiv 0 \tag{5.4.4.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$. A direct computation from the relations $p_{(r ; j)}(\mathcal{S}) \equiv 0$, for $1 \leqslant r<j \leqslant$ 4, we obtain $\gamma_{i}=0$ for $i \neq 1,4,9,10,11,12$ and $\gamma_{1}=\gamma_{2}=\gamma_{3}=\gamma_{10}=\gamma_{11}=\gamma_{12}$. Hence the relation (5.4.4.1) becomes $\gamma_{1} \theta \equiv 0$ where $\theta=d_{1}+d_{4}+d_{9}+d_{10}+d_{11}+d_{12}$.

We prove $\gamma_{1}=0$. Suppose θ is hit. Then we get

$$
\theta=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)
$$

for some polynomials $A \in\left(P_{4}^{+}\right)_{8}, B \in\left(P_{4}^{+}\right)_{7}, C \in\left(P_{4}^{+}\right)_{5}$. Let $\left(S q^{2}\right)^{3}$ act on the both sides of this equality. It is easy to check that $\left(S q^{2}\right)^{3} S q^{4}(C)=0$ for all $C \in\left(P_{4}^{+}\right)_{5}$. Since $\left(S q^{2}\right)^{3}$ annihilates $S q^{1}$ and $S q^{2}$, the right hand side is sent to zero. On the other hand, a direct computation shows

$$
\left(S q^{2}\right)^{3}(\theta)=(1,2,4,8)+\text { symmetries } \neq 0
$$

Hence we have a contradiction. So we obtain $\gamma_{1}=0$.
For $t=2,\left|B_{4}^{+}(17)\right|=47$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{47} \gamma_{i} d_{i} \equiv 0 \tag{5.4.4.2}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{17, i}$. A direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$, for $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for $i \neq 1,4,8,9,10,11,17,18$ and $\gamma_{1}=\gamma_{2}=\gamma_{8}=$ $\gamma_{9}=\gamma_{10}=\gamma_{11}=\gamma_{17}=\gamma_{18}$. Hence the relation 5.4.4.2 becomes $\gamma_{1} \theta \equiv 0$ where $\theta=d_{1}+d_{4}+d_{8}+d_{11}+d_{13}+d_{16}+d_{17}+d_{18}$.

By a same argument as given in the proof of the proposition for $t=1$, we see that $[\theta] \neq 0$. Hence $\gamma_{1}=0$.

For $t=3$, we have $\left|B_{4}^{+}(33)\right|=84$, and $\left|B_{4}^{+}\left(2^{t+2}+1\right)\right|=94$ for $t \geqslant 4$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{84} \gamma_{i} d_{i} \equiv 0 \tag{5.4.4.3}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{33, i}$. A direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$, for $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all $i \notin E$ with $E=\{1,3,8,9,13,14,17,24$, $25,42,43,59,60,65,66,67\}$ and $\gamma_{i}=\gamma_{1}$ for all $i \in E$. Hence the relation 5.4.4.3 become $\gamma_{1} \theta \equiv 0$ with $\theta=\sum_{i \in E} d_{i}$.

By a same argument as given in the proof of the proposition for $t=1$, we see that $[\theta] \neq 0$. Therefore $\gamma_{1}=0$.

Now, we prove the set $B_{4}^{+}(n)$ is linearly independent for $t>3$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{94} \gamma_{i} d_{i} \equiv 0 \tag{5.4.4.4}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. A direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$, for $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i.

5.4.2. The subcase $s=2$.

For $s=2$, we have $n=2^{t+3}+5$. According to Theorem 1.2 the iterated Kameko homomorphism

$$
\left(\widetilde{S q}_{*}^{0}\right)^{2}:\left(Q P_{3}\right)_{2^{t+3}+5} \rightarrow\left(Q P_{3}\right)_{2^{t+1}-1}
$$

is an isomorphism. So we get

$$
B_{3}(n)=\psi^{2}\left(B_{3}\left(2^{t+1}-1\right)\right)=\psi^{2}\left(B_{3}\left(1^{(t+1)}\right)\right) \cup \psi^{2}\left(\Phi\left(B_{3}\left(3,2^{(t-1)}\right)\right)\right.
$$

Proposition 5.4.5.

i) $B_{4}(n)=\Phi\left(B_{3}(21)\right) \cup\left\{x_{1}^{7} x_{2}^{9} x_{3}^{2} x_{4}^{3}, x_{1}^{7} x_{2}^{9} x_{3}^{3} x_{4}^{2}, x_{1}^{3} x_{2}^{7} x_{3}^{8} x_{4}^{3}, x_{1}^{7} x_{2}^{3} x_{3}^{8} x_{4}^{3}\right\}$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree 21.
ii) For any integer $t>1, \Phi\left(B_{3}(n)\right)$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+3}+5$.

The following lemma is proved by a direct computation.
Lemma 5.4.6. The following monomials are strictly inadmissible:
i) $X_{2}^{3} x_{3}^{4}, X_{i}^{4} X_{j}^{3}, 1 \leqslant i<j \leqslant 4, X_{2}^{3} x_{1}^{4} x_{2}^{8}$.
ii) $X_{3}^{3} x_{i}^{4} x_{3}^{24}, X_{3}^{3} x_{i}^{4} x_{3}^{8} x_{4}^{16}, X_{4}^{3} x_{i}^{4} x_{3}^{8} x_{4}^{16}, X_{4}^{7} x_{i}^{8} x_{4}^{8}, i=1,2$.
iii) $x_{1}^{7} x_{2}^{11} x_{3}^{17} x_{4}^{2}, X_{j}^{3} x_{2}^{8} x_{j}^{16}, X_{j}^{7} x_{3}^{8} x_{4}^{8}, j=3,4$
iv) $x_{1}^{15} x_{2}^{15} x_{3}^{16} x_{4}^{23}, x_{1}^{15} x_{2}^{15} x_{3}^{23} x_{4}^{16}, x_{1}^{15} x_{2}^{15} x_{3}^{17} x_{4}^{22}$.

Proof of Proposition 5.4.5. Let x be an admissible monomial of degree $n=2^{t+3}+5$. According to Lemma 5.4.1, $x=X_{i} y^{2}$ with y a monomial of degree $2^{t+2}+1$. Since x is admissible, by Theorem 2.12 y is admissible.

By a direct computation, we see that if $y \in B_{4}\left(2^{t+2}+1\right)$ and $X_{i} y^{2}$ is not in the set given in Proposition 5.4.5 then there is a monomial w which is given in one of Lemmas 5.1.3 5.3.3, 5.4.6 such that $X_{i} y^{2}=w z^{2^{u}}$ with some positive integer u and monomial z.

By Theorem 2.9, x is inadmissible. Hence $Q P_{4}(n)$ is generated by the set given in the proposition.

For $t=1$, we have $\left|B_{4}^{+}(21)\right|=66$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{66} \gamma_{i} d_{i} \equiv 0 \tag{5.4.6.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{21, i}$.

By a simple computation, we see that $B_{3}(21)$ is the set consisting of 7 monomials:

$$
\begin{aligned}
& v_{1}=x_{1}^{3} x_{2}^{3} x_{3}^{15}, v_{2}=x_{1}^{3} x_{2}^{7} x_{3}^{11}, v_{3}=x_{1}^{3} x_{2}^{15} x_{3}^{3}, v_{4}=x_{1}^{7} x_{2}^{3} x_{3}^{11} \\
& v_{5}=x_{1}^{7} x_{2}^{11} x_{3}^{3}, v_{6}=x_{1}^{15} x_{2}^{3} x_{3}^{3}, v_{7}=x_{1}^{7} x_{2}^{7} x_{3}^{7}
\end{aligned}
$$

A direct computation, we have

$$
\begin{aligned}
p_{(1 ; 2)}(\mathcal{S}) \equiv & \gamma_{1} v_{1}+\gamma_{2} v_{2}+\gamma_{3} v_{3}+\gamma_{10} v_{4}+\gamma_{11} v_{5}+\gamma_{16} v_{6}+\gamma_{57} v_{7} \equiv 0 \\
p_{(1 ; 3)}(\mathcal{S}) \equiv & \gamma_{4} v_{1}+\gamma_{6}+\gamma_{27} v_{2}+\left(\gamma_{8}+\gamma_{30}+\gamma_{49}\right) v_{3}+\gamma_{12} v_{4} \\
& +\left(\gamma_{14}+\gamma_{38} v_{5}+\gamma_{17}\right) v_{6}+\gamma_{58} v_{7} \equiv 0, \\
p_{(1 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{5}+\gamma_{26}+\gamma_{48}\right) v_{1}+\left(\gamma_{7}+\gamma_{29} v_{2}+\gamma_{9}\right) v_{3}+\left(\gamma_{13}+\gamma_{37}\right) v_{4} \\
& +\gamma_{15} v_{5}+\gamma_{18} v_{6}+\gamma_{59} v_{7} \equiv 0, \\
p_{(2 ; 3)}(\mathcal{S}) \equiv & \gamma_{19} v_{1}+\left(\gamma_{21}+\gamma_{27}+\gamma_{32}+\gamma_{60}\right) v_{2}+\left(\gamma_{23}+\gamma_{30}+\gamma_{34}+\gamma_{38}+\gamma_{40}\right) v_{3} \\
& +\gamma_{43} v_{4}+\left(\gamma_{45}+\gamma_{49}+\gamma_{51}\right) v_{5}+\gamma_{54} v_{6}+\gamma_{63} v_{7} \equiv 0, \\
p_{(2 ; 4)}(\mathcal{S}) \equiv & \left.\left(\gamma_{20}+\gamma_{26}+\gamma_{33}+\gamma_{37}+\gamma_{41}\right) v_{1}+\gamma_{22}+\gamma_{29}+\gamma_{35}+\gamma_{61}\right) v_{2} \\
& +\gamma_{24} v_{3}+\left(\gamma_{44}+\gamma_{48}+\gamma_{52}\right) v_{4}+\gamma_{46} v_{5}+\gamma_{55} v_{6}+\gamma_{64} v_{7} \equiv 0, \\
p_{(3 ; 4)}(\mathcal{S}) \equiv & \left(\gamma_{25}+\gamma_{26}+\gamma_{27}+\gamma_{28}+\gamma_{29}+\gamma_{30}+\gamma_{31}\right) v_{1} \\
& +\left(\gamma_{36}+\gamma_{37}+\gamma_{38}+\gamma_{39}+\gamma_{62}\right) v_{2}+\gamma_{42} v_{3} \\
& +\left(\gamma_{47}+\gamma_{48}+\gamma_{49}+\gamma_{50}+\gamma_{65}\right) v_{4}+\gamma_{53} v_{5}+\gamma_{56} v_{6}+\gamma_{66} v_{7} \equiv 0 .
\end{aligned}
$$

From the above equalities, we get $\gamma_{i}=0$, for $i=1,2,3,4,9,10,11,12,15,16$, $17,18,19,24,42,43,46,53,54,55,56,57,58,59,63,64,66$ and $\gamma_{6}=\gamma_{27} \cdot \gamma_{8}+\gamma_{30}+$ $\gamma_{49}=0, \gamma_{14}=\gamma_{38}, \gamma_{5}+\gamma_{26}+\gamma_{48}=0, \gamma_{7}=\gamma_{29}, \gamma_{13}=\gamma_{37}, \gamma_{6}+\gamma_{21}+\gamma_{32}+\gamma_{60}=$ $0, \gamma_{14}+\gamma_{23}+\gamma_{30}+\gamma_{34}+\gamma_{40} \gamma_{45}+\gamma_{49}+\gamma_{51}=0, \gamma_{20}+\gamma_{26}+\gamma_{33}+\gamma_{37}+\gamma_{41}=$ $0, \gamma_{7}+\gamma_{22}+\gamma_{35}+\gamma_{61}=0, \gamma_{44}+\gamma_{48}+\gamma_{52}=0, \gamma_{6}+\gamma_{7}+\gamma_{25}+\gamma_{26}+\gamma_{28}+\gamma_{30}+\gamma_{31}=$ $0, \gamma_{14}+\gamma_{36}+\gamma_{37}+\gamma_{39}+\gamma_{62}=0, \gamma_{47}+\gamma_{48}+\gamma_{49}+\gamma_{50}+\gamma_{65}=0$.

With the aid of the above equalities have

$$
\begin{aligned}
p_{(1 ;(2,3))}(\mathcal{S}) \equiv & \gamma_{21} v_{2}+\left(\gamma_{8}+\gamma_{23}+\gamma_{30}+\gamma_{45}+\gamma_{49}\right) v_{3}+\gamma_{32} v_{4} \\
& +\left(\gamma_{34}+\gamma_{45}+\gamma_{49}+\gamma_{51}\right) v_{5}+\left(\gamma_{40}+\gamma_{51}\right) v_{6}+\gamma_{60} v_{7} \equiv 0 \\
p_{(1 ;(2,4))}(\mathcal{S}) \equiv & \left(\gamma_{5}+\gamma_{20}+\gamma_{26}+\gamma_{44}+\gamma_{48}\right) v_{1}+\gamma_{22} v_{2} \\
& +\left(\gamma_{33}+\gamma_{44}+\gamma_{48}+\gamma_{52}\right) v_{4}+\gamma_{35} v_{5}+\left(\gamma_{41}+\gamma_{52}\right) v_{6}+\gamma_{61} v_{7} \equiv 0
\end{aligned}
$$

From this, we obtain $\gamma_{i}=0$, for $i=21,22,32,35,60,61$ and $\gamma_{8}+\gamma_{23}+\gamma_{30}+$ $\gamma_{45}+\gamma_{49}=0, \gamma_{34}+\gamma_{45}+\gamma_{49}+\gamma_{51}=0, \gamma_{40}=\gamma_{51}, \gamma_{5}+\gamma_{20}+\gamma_{26}+\gamma_{44}+\gamma_{48}=$ $0, \gamma_{33}+\gamma_{44}+\gamma_{48}+\gamma_{52}=0, \gamma_{41}=\gamma_{52}$. By a direct computation using the above equalities, one gets

$$
\begin{aligned}
p_{(1 ;(3,4))}(\mathcal{S}) \equiv & \left(\gamma_{5}+\gamma_{25}+\gamma_{26}+\gamma_{47}+\gamma_{48}\right) v_{1}+\left(\gamma_{28}+\gamma_{47}+\gamma_{48}+\gamma_{49}+\gamma_{50}\right) v_{2} \\
& +\left(\gamma_{8}+\gamma_{30}+\gamma_{31}+\gamma_{49}+\gamma_{50}\right) v_{3}+\gamma_{36} v_{4}+\gamma_{39} v_{5}+\gamma_{62} v_{7} \equiv 0 \\
p_{(2 ;(3,4))}(\mathcal{S}) \equiv & \left(\gamma_{13}+\gamma_{20}+\gamma_{25}+\gamma_{26}+\gamma_{33}+\gamma_{36}+\gamma_{40}+\gamma_{41}\right) v_{1}+\left(\gamma_{6}+\gamma_{7}\right. \\
& \left.+\gamma_{13}+\gamma_{14}+\gamma_{28}+\gamma_{33}+\gamma_{34}+\gamma_{36}+\gamma_{39}\right) v_{2}+\left(\gamma_{14}+\gamma_{23}+\gamma_{30}+\gamma_{31}\right. \\
& \left.+\gamma_{34}+\gamma_{39}+\gamma_{40}+\gamma_{41}\right) v_{3}+\left(\gamma_{44}+\gamma_{47}+\gamma_{48}+\gamma_{51}+\gamma_{52}\right) v_{4} \\
& +\left(\gamma_{45}+\gamma_{49}+\gamma_{50}+\gamma_{51}+\gamma_{52}\right) v_{5}+\gamma_{65} v_{7} \equiv 0
\end{aligned}
$$

So we obtain $\gamma_{36}=\gamma_{39}=\gamma_{62}=\gamma_{65}=0, \gamma_{5}+\gamma_{25}+\gamma_{26}+\gamma_{47}+\gamma_{48}=0, \gamma_{28}+\gamma_{47}+$ $\gamma_{48}+\gamma_{49}+\gamma_{50}=0, \gamma_{8}+\gamma_{30}+\gamma_{31}+\gamma_{49}+\gamma_{50}=0, \gamma_{13}+\gamma_{20}+\gamma_{25}+\gamma_{26}+\gamma_{33}+\gamma_{40}+\gamma_{41}=$
$0, \gamma_{6}+\gamma_{7}+\gamma_{13}+\gamma_{14}+\gamma_{28}+\gamma_{33}+\gamma_{34}=0, \gamma_{14}+\gamma_{23}+\gamma_{30}+\gamma_{31}+\gamma_{34}+\gamma_{40}+\gamma_{41}=$ $0, \gamma_{44}+\gamma_{47}+\gamma_{48}+\gamma_{51}+\gamma_{52}=0, \gamma_{45}+\gamma_{49}+\gamma_{50}+\gamma_{51}+\gamma_{52}=0$.

Combining the above equalities, one gets $\gamma_{i}=0$ for $i \neq 5,8,13,14,20,23,25$, $26,30,31,37,38,40,41,44,45,47,48,49,50,51, \gamma_{i}=\gamma_{5}$ for $i=8,13,14,37,38$, $\gamma_{i}=\gamma_{20}$ for $i=23,44,45, \gamma_{i}=\gamma_{25}$ for $i=40,47,51, \gamma_{i}=\gamma_{31}$ for $i=41,50,52$, $\gamma_{20}+\gamma_{25}+\gamma_{49}=0, \gamma_{5}+\gamma_{20}+\gamma_{26}+\gamma_{31}=0, \gamma_{20}+\gamma_{31}+\gamma_{48}=0, \gamma_{5}+\gamma_{20}+\gamma_{25}+\gamma_{30}=0$.

Substituting the above equalities into the relation 5.4.6.1, we have

$$
\begin{equation*}
\gamma_{25}\left[\theta_{1}\right]+\gamma_{31}\left[\theta_{2}\right]+\gamma_{5}\left[\theta_{3}\right]+\gamma_{20}\left[\theta_{4}\right]=0 \tag{5.4.6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \theta_{1}=d_{25}+d_{30}+d_{40}+d_{47}+d_{49}+d_{51} \\
& \theta_{2}=d_{26}+d_{31}+d_{41}+d_{48}+d_{50}+d_{52} \\
& \theta_{3}=d_{5}+d_{8}+d_{13}+d_{14}+d_{26}+d_{30}+d_{37}+d_{38} \\
& \theta_{4}=d_{20}+d_{23}+d_{26}+d_{30}+d_{44}+d_{45}+d_{48}+d_{49}
\end{aligned}
$$

We need to show that $\gamma_{5}=\gamma_{20}=\gamma_{25}=\gamma_{31}=0$. The proof is divided into 4 steps.

Step 1. The homomorphism φ_{1} sends 5 .4.6.2 to

$$
\begin{equation*}
\gamma_{25}\left[\theta_{1}\right]+\gamma_{31}\left[\theta_{2}\right]+\left(\gamma_{5}+\gamma_{20}\right)\left[\theta_{3}\right]+\gamma_{20}\left[\theta_{4}\right]=0 \tag{5.4.6.3}
\end{equation*}
$$

Combining 5.4.6.2 and 5.4.6.3 gives

$$
\gamma_{20}\left[\theta_{3}\right]=0
$$

We prove $\left[\theta_{3}\right] \neq 0$. We have $\varphi_{2} \varphi_{3}\left(\left[\theta_{1}\right]\right)=\left[\theta_{3}\right]$. So we need only to prove that $\left[\theta_{1}\right] \neq 0$. Suppose $\left[\theta_{1}\right]=0$. Then the polynomial θ_{1} is hit and we have

$$
\theta_{1}=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)+S q^{8}(D)
$$

for some polynomials $A \in\left(P_{4}^{+}\right)_{20}, B \in\left(P_{4}^{+}\right)_{19}, C \in\left(P_{4}^{+}\right)_{17}, D \in\left(P_{4}^{+}\right)_{13}$.
Let $\left(S q^{2}\right)^{3}$ act on the both sides of this equality. Since $\left(S q^{2}\right)^{3} S q^{1}=0$ and $\left(S q^{2}\right)^{3} S q^{2}=0$, we get

$$
\left(S q^{2}\right)^{3}\left(\theta_{3}\right)=\left(S q^{2}\right)^{3} S q^{4}(C)+\left(S q^{2}\right)^{3} S q^{8}(D)
$$

By a direct computation, we see that the monomial $x=x_{1}^{7} x_{2}^{12} x_{3}^{2} x_{4}^{6}$ is a term of $\left(S q^{2}\right)^{3}\left(\theta_{1}\right)$. If this monomial is a term of $\left(S q^{2}\right)^{3} S q^{8}(y)$, then $y=x_{1}^{7} f_{1}(z)$ with z a monomial of degree 6 in P_{3} and x is a term of $x_{1}^{7}\left(S q^{2}\right)^{3} S q^{8}\left(f_{1}(z)\right)=0$. So the monomial x is not a term of $\left(S q^{2}\right)^{3} S q^{8}(D)$ for all $D \in\left(P_{4}^{+}\right)_{13}$.

If this monomial is a term of $\left(S q^{2}\right)^{3} S q^{4}(y)$, where the monomial y is a term of C, then $y=x_{1}^{7} f_{1}(z)$ with z a monomial of degree 10 in P_{3} and x is a term of $x_{1}^{7}\left(S q^{2}\right)^{3} S q^{4}\left(f_{1}(z)\right)=0$. By a direct computation, we see that either $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$ is a term of C.

If $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ is a term of C then

$$
\left(S q^{2}\right)^{3}\left(\theta_{1}+S q^{4}\left(x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}\right)\right)=\left(S q^{2}\right)^{3}\left(S q^{4}\left(C^{\prime}\right)+S q^{8}(D)\right)
$$

where $C^{\prime}=C+x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$. The monomial $x^{\prime}=x_{1}^{16} x_{2}^{6} x_{3}^{2} x_{4}^{3}$ is a term of the polynomial $\left(S q^{2}\right)^{3}\left(\theta_{1}+S q^{4}\left(x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}\right)\right)$. If x^{\prime} is a term of the polynomial $\left(S q^{2}\right)^{3} S q^{8}\left(y^{\prime}\right)$, with y^{\prime} a monomial in $\left(P_{4}^{+}\right)_{13}$. Then $y^{\prime}=x_{1}^{a} x_{2}^{b} x_{3}^{c} x_{4}^{3}$ with $a \geqslant 7, b \geqslant 3, c>0$. This contradicts with the fact that $\operatorname{deg} y^{\prime}=13$. So x^{\prime} is not a term of $\left(S q^{2}\right)^{3} S q^{8}(D)$ for all $D \in\left(P_{4}^{+}\right)_{13}$. Hence x^{\prime} is a term of $\left(S q^{2}\right)^{3}\left(S q^{4}\left(C^{\prime}\right)\right.$. By a direct computation,
we see that either $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$ is a term of C^{\prime}. Since $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ is not a term of C^{\prime}, the monomial $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$ is a term of C^{\prime}. Then we have

$$
\left(S q^{2}\right)^{3}\left(\theta_{1}+S q^{4}\left(x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}\right)\right)=\left(S q^{2}\right)^{3}\left(S q^{4}\left(C^{\prime \prime}\right)+S q^{8}(D)\right)
$$

where $C^{\prime \prime}=C^{\prime}+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}=C+x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$. Now the monomial $x=x_{1}^{7} x_{2}^{12} x_{3}^{2} x_{4}^{6}$ is a term of

$$
\left(S q^{2}\right)^{3}\left(\theta_{1}+S q^{4}\left(x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}\right)\right)
$$

Hence either $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$ is a term of C is a term of $C^{\prime \prime}$. On the other hand, the two monomials $x_{1}^{7} x_{2}^{6} x_{3} x_{4}^{3}$ and $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}^{3}$ are not the terms of $C^{\prime \prime}$. We have a contradiction. Hence one gets $\gamma_{20}=0$.

Step 2. Since $\gamma_{20}=0$, the homomorphism φ_{2} sends 5.4.6.3) to

$$
\begin{equation*}
\gamma_{25}\left[\theta_{1}\right]+\gamma_{31}\left[\theta_{2}\right]+\gamma_{5}\left[\theta_{3}\right]=0 \tag{5.4.6.4}
\end{equation*}
$$

Using 5.4.6.4 and the result in Step 1, we get $\gamma_{5}=0$.
Step 3. The homomorphism φ_{3} sends 5.4.6.3) to

$$
\begin{equation*}
\gamma_{25}\left[\theta_{4}\right]+\gamma_{31}\left[\theta_{2}\right]=0 \tag{5.4.6.5}
\end{equation*}
$$

Using the relation 5.4.6.5 and the result in Step 2, we obtain $\gamma_{25}=0$.
Step 4. Since $\varphi_{4}\left(\left[\theta_{2}\right]\right)=\left[\theta_{1}\right]$, we have

$$
\gamma_{31}\left[\theta_{1}\right]=0
$$

Using this equality and by a same argument as given in Step 3, we get $\gamma_{31}=0$.
For $t>1$, we have $\left|B_{4}^{+}(n)\right|=m(t)$ with $m(2)=95, m(3)=128$ and $m(t)=139$ for $t \geqslant 4$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{m(t)} \gamma_{i} d_{i} \equiv 0 \tag{5.4.6.6}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. A direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$, for $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i. The proposition is proved.

5.5. The case of degree $2^{s+t}+2^{s}-2$.

For $s \geqslant 1$ and $t \geqslant 2$, the space $\left(Q P_{4}\right)_{n}$ was determined in [32]. Hence, in this subsection we need only to compute $\left(Q P_{4}\right)_{n}$ for $n=2^{s+1}+2^{s}-2$ with $s>1$.

Recall that, the homomorphism

$$
\widetilde{S}_{q_{*}}^{0}:\left(Q P_{4}\right)_{2^{s+1}+2^{s}-2} \rightarrow\left(Q P_{4}\right)_{2^{s}+2^{s-1}-3}
$$

is an epimorphism. Hence we have

$$
\left(Q P_{4}\right)_{2 m+4} \cong\left(Q P_{4}\right)_{m} \oplus\left(Q P_{4}^{0}\right)_{2 m+4} \oplus\left(\operatorname{Ker} \widetilde{S q}_{*}^{0} \cap\left(Q P_{4}^{+}\right)_{2 m+4}\right)
$$

where $m=2^{s}+2^{s-1}-3$. So it suffices to compute $\operatorname{Ker} \widetilde{S q}_{*}^{0} \cap\left(Q P_{4}^{+}\right)_{n}$ for $s>1$.
For $s>1$, denote by $C(s)$ the set of all the following monomials:

$$
\begin{array}{lll}
x_{1} x_{2} x_{3}^{2^{s}-2} x_{4}^{2^{s+1}-2}, & x_{1} x_{2} x_{3}^{2^{s+1}-2} x_{4}^{2^{s}-2}, & x_{1} x_{2}^{2^{s}-2} x_{3} x_{4}^{2^{s+1}-2} \\
x_{1} x_{2}^{2^{s+1}-2} x_{3} x_{4}^{2^{s}-2}, & x_{1} x_{2}^{2} x_{3}^{2^{s}-4} x_{4}^{2^{s+1}-1}, & x_{1} x_{2}^{2} x_{3}^{2^{s+1}-1} x_{4}^{2^{s}-4} \\
x_{1} x_{2}^{2^{s+1}-1} x_{3}^{2} x_{4}^{2^{s}-4}, & x_{1}^{2^{s+1}-1} x_{2} x_{3}^{2} x_{4}^{2^{s}-4}, & x_{1} x_{2}^{2} x_{3}^{2^{s+1}-3} x_{4}^{2^{s}-2} \\
x_{1} x_{2}^{3} x_{3}^{2^{s+1}-4} x_{4}^{2^{s}-2}, & x_{1}^{3} x_{2} x_{3}^{2^{s+1}-4} x_{4}^{2^{s}-2} &
\end{array}
$$

For $s>2$, denote by $D(s)$ the set of all the following monomials:

$$
\begin{array}{lll}
x_{1} x_{2}^{2} x_{3}^{2^{s}-3} x_{4}^{2^{s+1}-2}, & x_{1} x_{2}^{2} x_{3}^{2^{s}-1} x_{4}^{2^{s+1}-4}, & x_{1} x_{2}^{2} x_{3}^{2^{s+1}-4} x_{4}^{2^{s}-1}, \\
x_{1} x_{2}^{2^{s}-1} x_{3}^{2} x_{4}^{2^{s+1}-4}, & x_{1}^{2^{s}-1} x_{2} x_{3}^{2} x_{4}^{2^{s+1}-4}, & x_{1} x_{2}^{3} x_{3}^{2^{s}-4} x_{4}^{2^{+1}-2}, \\
x_{1} x_{2}^{3} x_{3}^{2^{s+1}-2} x_{4}^{2^{s}-4}, & x_{1}^{3} x_{2} x_{3}^{2^{s}-4} x_{4}^{2^{s+1}-2}, & x_{1}^{3} x_{2} x_{3}^{2^{s+1}-2} x_{4}^{2^{s}-4}, \\
x_{1} x_{2}^{3} x_{3}^{2^{s}-2} x_{4}^{2^{+1}-4}, & x_{1}^{3} x_{2} x_{3}^{2^{s}-2} x_{4}^{2^{s+1}-4}, & x_{1}^{3} x_{2}^{2^{s+1}-3} x_{3}^{2} x_{4}^{2^{s}-4}, \\
x_{1}^{3} x_{2}^{2^{s}-3} x_{3}^{2} x_{4}^{2^{s+1}-4}, & x_{1}^{3} x_{2}^{5} x_{3}^{2^{s+1}-6} x_{4}^{2^{s}-4} . &
\end{array}
$$

Set $E(2)=C(2) \cup\left\{x_{1}^{3} x_{2}^{4} x_{3} x_{4}\right\}, E(3)=C(3) \cup D(3) \cup\left\{x_{1}^{3} x_{2}^{5} x_{3}^{6} x_{4}^{8}\right\}$ and $E(s)=$ $C(s) \cup D(s) \cup\left\{x_{1}^{3} x_{2}^{5} x_{3}^{2^{s}-6} x_{4}^{2^{s+1}-4}\right\}$, for $s>3$.

Proposition 5.5.1. For any integer $s>1, E(s) \cup \Phi^{0}\left(B_{3}(n)\right) \cup \psi\left(B_{4}(m)\right)$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2 m+4$ with $m=2^{s}+2^{s-1}-3$.

Lemma 5.5.2. Let x be an admissible monomial of degree $n=2^{s+t}+2^{s}-2$ in P_{4}. If $[x] \in \operatorname{Ker} \widetilde{S q}_{*}^{0}$, then either $\omega(x)=\left(2^{(s)}, 1\right)$.
Proof. We prove the lemma by induction on s. Since $n=2^{s+1}+2^{s}-2$ is even, we get either $\omega_{1}(x)=0$ or $\omega_{1}(x)=2$ or $\omega_{1}(x)=4$. If $\omega_{1}(x)=0$, then $x=S q^{1}(y)$ for some monomial y. If $\omega_{1}(x)=4$, then $x=X_{\emptyset} y^{2}$ for some monomial y. Since x is admissible, y also is admissible. This implies $\operatorname{Ker} \widetilde{S q}_{*}^{0}([x])=[y] \neq 0$ and we have a contradiction. So $\omega_{1}(x)=2$ and $x=x_{i} x_{j} y^{2}$ with $1 \leqslant i<j \leqslant 4$, and y a monomial of degree $2^{s}+2^{s-1}-2$ in P_{4}. Using Proposition 2.10 we get $\omega_{i}(x)=2$ for $1 \leqslant i \leqslant s$. Then $x=x^{\prime} z^{2^{s}}$ with x^{\prime}, z monomials in P_{4} and $\operatorname{deg} z=2^{t}-1$. By a direct computation we see that if w is a monomial such that either $\omega(w)=(2,1,3)$ or $\omega(w)=(2,2,3)$ or $\omega(w)=(2,3,2,2)$ then w is strictly inadmissible. Now, the lemma follows from this fact, Lemma 5.3.1 and Theorem 2.9

The following is proved by a direct computation.
Lemma 5.5.3. The following monomials are strictly inadmissible:
i) $x_{i}^{2} x_{j} x_{m}, x_{i}^{3} x_{j}^{4} x_{m}^{3}, x_{i}^{7} x_{j}^{7} x_{m}^{8}, 1 \leqslant i<j<m \leqslant 4$.
ii) $x_{1} x_{2}^{7} x_{3}^{10} x_{4}^{4}, x_{1}^{7} x_{2} x_{3}^{10} x_{4}^{4}, x_{1} x_{2}^{6} x_{3}^{7} x_{4}^{8}, x_{1} x_{2}^{7} x_{3}^{6} x_{4}^{8}, x_{1}^{7} x_{2} x_{3}^{6} x_{4}^{8}, x_{1}^{3} x_{2}^{3} x_{3}^{4} x_{4}^{12}, x_{1}^{3} x_{2}^{3} x_{3}^{12} x_{4}^{4}$, $x_{1}^{7} x_{2}^{9} x_{3}^{2} x_{4}^{4}, x_{1}^{7} x_{2}^{8} x_{3}^{3} x_{4}^{4}, x_{1}^{3} x_{2}^{5} x_{3}^{8} x_{4}^{6}$.
Proof of Proposition 5.5.1. Let x be an admissible monomial of degree $n=2^{s+1}+$ $2^{s}-2$ in P_{4} and $[x] \in \operatorname{Ker} \widetilde{S q}_{*}^{0}$. By Lemma 5.5.2 $\omega_{i}(x)=2$, for $1 \leqslant i \leqslant s$, $\omega_{s+1}(x)=1$ and $\omega_{i}(x)=0$ for $i>s+1$. By induction on s, we see that if $x \notin$ $E(s) \cup \Phi^{0}\left(B_{3}(n)\right)$ then there is a monomial w which is given in one of Lemmas 5.2.3. 5.5.3 such that $x=w y^{2^{u}}$ for some monomial y and positive integer u. By Theorem $2.9, x$ is inadmissible. Hence $\operatorname{Ker} \widetilde{S q}_{*}^{0}$ is spanned by the set $\left[E(s) \cup \Phi^{0}\left(B_{3}(n)\right)\right]$ in degree $n=2^{s+1}+2^{s}-2$. Now, we prove that set $\left[E(s) \cup \Phi^{0}\left(B_{3}(n)\right)\right]$ is linearly independent.

It suffices to prove that the set $[E(s)]$ is linearly independent. For $s=2,|E(2)|=$ 12. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{12} \gamma_{i} d_{i} \equiv 0 \tag{5.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{10, i}$. A direct computation from the relations $p_{(1 ; j)}(\mathcal{S}) \equiv 0$, for $j=1,2,3$, we obtain $\gamma_{i}=0$ for all i.

For $s>2,|E(s)|=26$. Suppose there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{26} \gamma_{i} d_{i} \equiv 0 \tag{5.2}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. A direct computation from the relations $p_{(r ; j)}(\mathcal{S}) \equiv 0$, for $1 \leqslant r<j \leqslant 4$, we obtain $\gamma_{i}=0$ for all i. The proposition is proved.
5.6. The case of degree $2^{s+t+u}+2^{s+t}+2^{s}-3$.

First, we determine the ω-vector of an admissible monomial of degree $n=$ $2^{s+t+u}+2^{s+t}+2^{s}-3$.

Lemma 5.6.1. If x is an admissible monomial of degree $2^{s+t+u}+2^{s+t}+2^{s}-3$ in P_{4} then $\omega(x)=\left(3^{(s)}, 2^{(t)}, 1^{(u)}\right)$.

Proof. Observe that $z=x_{1}^{2^{s+t+u}-1} x_{2}^{2^{s+t}-1} x_{3}^{2^{s}-1}$ is the minimal spike of degree $2^{s+t+u}+2^{s+t}+2^{s}-3$ and $\omega(z)=\left(3^{(s)}, 2^{(t)}, 1^{(u)}\right)$. Since $2^{s+t+u}+2^{s+t}+2^{s}-3$ is odd and x is admissible, using Proposition 2.10 and Theorem 2.12, we get $\omega_{i}(x)=3$ for $1 \leqslant i \leqslant s$. Set $x^{\prime}=\prod_{1 \leqslant i \leqslant s} X_{I_{i-1}(x)}^{2^{i-1}}$. Then $x=x^{\prime} y^{2^{s}}$ for some monomial y. We have $\omega_{j}(y)=\omega_{j+s}(x)$ for all $j \geqslant 1$ and

$$
\begin{aligned}
2^{s+t+u}+2^{s+t}+2^{s}-3 & =\operatorname{deg} x=\sum_{i \geqslant 1} 2^{i-1} \omega_{i}(x) \\
& =3\left(2^{s}-1\right)+2^{s} \sum_{j \geqslant 1} 2^{j-1} \omega_{j+s}(x) \\
& =3.2^{s}-3+2^{s} \operatorname{deg} y
\end{aligned}
$$

This equality implies $\operatorname{deg} y=2^{t+u}+2^{u}-2$. Since x is admissible, using Theorem 2.9, we see that y is also admissible. By a direct computation we see that if w is a monomial such that $\omega(w)=(3,2,3)$ then w is strictly inadmissible. Combining this fact, Lemma 5.3.1. Proposition 2.10 and Theorem 2.9, we obtain $\omega(y)=\left(2^{(t)}, 1^{(u)}\right)$. The lemma is proved.

Applying Theorem 1.3 we get the following.
Proposition 5.6.2. Let s, t, u be positive integers. If $s \geqslant 3$, then $\Phi\left(B_{3}(n)\right)$ is a minimal set of generators for \mathcal{A}-module P_{4} in degree $n=2^{s+t+u}+2^{s+t}+2^{s}-3$.

So, we need only to consider the cases $s=1$ and $s=2$.
5.6.1. The subcase $s=t=1$.

For $s=1, t=1$, we have $n=2^{u+2}+3$. According to Theorem 4.3, we have

$$
B_{3}(n)= \begin{cases}\psi\left(\Phi\left(B_{2}\left(2^{u+1}\right)\right)\right), & \text { if } u \neq 2 \\ \psi\left(\Phi\left(B_{2}(8)\right) \cup\left\{x_{1}^{7} x_{2}^{9} x_{3}^{3}\right\},\right. & \text { if } u=2\end{cases}
$$

Proposition 5.6.3.

i) $\Phi\left(B_{3}(11)\right) \cup\left\{x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{3}, x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}\right\}$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree 11 .
ii) $\Phi\left(B_{3}(19)\right) \cup\left\{x_{1}^{7} x_{2}^{9} x_{3}^{2} x_{4}, \quad x_{1}^{3} x_{2}^{12} x_{3} x_{4}^{3}, \quad x_{1}^{3} x_{2}^{12} x_{3}^{3} x_{4}, \quad x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{11}, \quad x_{1}^{3} x_{2}^{4} x_{3}^{11} x_{4}\right.$, $\left.x_{1}^{3} x_{2}^{7} x_{3}^{8} x_{4}, x_{1}^{7} x_{2}^{3} x_{3}^{8} x_{4}, x_{1}^{7} x_{2}^{8} x_{3} x_{4}^{3}, x_{1}^{7} x_{2}^{8} x_{3}^{3} x_{4}, x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{9}, x_{1}^{3} x_{2}^{4} x_{3}^{9} x_{4}^{3}\right\}$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree 19 .
iii) $\Phi\left(B_{3}(n)\right) \cup\left\{x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{2^{u+2}-5}, x_{1}^{3} x_{2}^{4} x_{3}^{2^{u+2}-5} x_{4}, x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{2^{u+2}-7}\right\}$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{u+2}+3$, with any positive integer $u \geqslant 3$.

By a direct computation, we can easy obtain the following lemma.
Lemma 5.6.4. The following monomials are strictly inadmissible:
i) $x_{1}^{3} x_{2}^{4} x_{3}^{4} x_{4}^{4} x_{i} x_{j}^{3}, \quad i, j>1, i \neq j, x_{1}^{7} x_{2}^{3} x_{3}^{4} x_{4}^{4} x_{j}, x_{1}^{3} x_{2}^{5} x_{3}^{5} x_{4}^{5} x_{j}, j=3,4$.
ii) $X_{2} x_{1}^{2} x_{j}^{2} x_{2}^{28}, \quad X_{j} x_{1}^{2} x_{4}^{2} x_{2}^{4} x_{3}^{24}, \quad X_{2} x_{1}^{2} x_{j}^{2} x_{2}^{4} x_{3}^{8} x_{4}^{16}, \quad X_{j} x_{1}^{2} x_{2}^{4} x_{3}^{8} x_{4}^{18}, \quad X_{j} x_{1}^{2} x_{2}^{4} x_{3}^{10} x_{4}^{16}$, $X_{j} x_{1}^{2} x_{2}^{2} x_{i}^{4} x_{3}^{8} x_{4}^{16}, X_{3} x_{1}^{2} x_{2}^{2} x_{i}^{4} x_{3}^{24}, X_{2} x_{1}^{2} x_{4}^{2} x_{2}^{4} x_{3}^{24}, i=1,2, j=3,4$.
Proof of Theorem 5.6.3. Let x be an admissible monomial of degree $n=2^{u+2}+3$ in P_{4}. By Lemma 5.6.1 $\omega_{1}(x)=3$. So $x=X_{i} y^{2}$ with y a monomial of degree 2^{u+1}. Since x is admissible, by Theorem $2.9, y \in B_{4}\left(2^{u+1}\right)$. By a direct computation, we see that if $x=X_{i} y^{2}$ with $y \in \overline{B_{4}}\left(2^{u+1}\right)$ and x not belongs to the set $C_{4}(n)$ as given in the proposition, then there is a monomial w which is given in one of Lemmas 5.3.3 5.6.4 such that $x=w y^{2^{r}}$ for some monomial y and integer $r>1$. By Theorem 2.9] x is inadmissible. Hence $\left(Q P_{4}\right)_{n}$ is spanned by the set $\left[C_{4}(n)\right]$.

Set $\left|C_{4}\left(2^{u+2}+3\right) \cap P_{4}^{+}\right|=m(u)$, where $m(1)=32, m(2)=80, m(u)=64$ for all $u>2$. Suppose that there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{m(u)} \gamma_{i} d_{i}=0 \tag{5.6.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$ with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i if $u \neq 2$.

For $u=2, \gamma_{j}=0$ for $j=1,3,4,6,7,8,9,10,11,12,14,16,17,18,19,21$, $23,26,27,28,29,30,31,32,35,36,38,40,43,45,51,54,55,60,61,62,68,71$, 79,80 , and $\gamma_{2}=\gamma_{i}, i=5,24,25,41,42,52,53, \gamma_{13}=\gamma_{i}, i=13,33,20,56,48,58$, $\gamma_{15}=\gamma_{i}, i=22,34,49,57,59, \gamma_{37}=\gamma_{i}, i=67,70,75, \gamma_{46}=\gamma_{i}, i=69,72,76$, $\gamma_{65}=\gamma_{i}, i=66,73,74,77,78, \gamma_{46}=\gamma_{39}+\gamma_{2}, \gamma_{44}=\gamma_{37}+\gamma_{2}, \gamma_{65}=\gamma_{47}+\gamma_{13}$, $\gamma_{65}=\gamma_{50}+\gamma_{22}, \gamma_{63}=\gamma_{37}+\gamma_{13}, \gamma_{64}=\gamma_{46}+\gamma_{22}$.

Substituting the above equalities into the relation (5.6.1), we have

$$
\begin{equation*}
\gamma_{37}\left[\theta_{1}\right]+\gamma_{46}\left[\theta_{2}\right]+\gamma_{13}\left[\theta_{3}\right]+\gamma_{22}\left[\theta_{4}\right]+\gamma_{65}\left[\theta_{5}\right]+\gamma_{2}\left[\theta_{6}\right]=0 \tag{5.6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{1} & =d_{37}+d_{44}+d_{63}+d_{67}+d_{70}+d_{75} \\
\theta_{2} & =d_{39}+d_{46}+d_{64}+d_{69}+d_{72}+d_{76} \\
\theta_{3} & =d_{13}+d_{20}+d_{33}+d_{47}+d_{48}+d_{56}+d_{58}+d_{63} \\
\theta_{4} & =d_{15}+d_{22}+d_{34}+d_{49}+d_{50}+d_{57}+d_{59}+d_{64} \\
\theta_{5} & =d_{47}+d_{50}+d_{65}+d_{66}+d_{73}+d_{74}+d_{77}+d_{78} \\
\theta_{6} & =d_{2}+d_{5}+d_{24}+d_{25}+d_{39}+d_{41}+d_{42}+d_{44}+d_{52}+d_{53}
\end{aligned}
$$

We need to prove $\gamma_{2}=\gamma_{13}=\gamma_{22}=\gamma_{37}=\gamma_{46}=\gamma_{65}=0$. The proof is divided into 4 steps.

Step 1. First we prove $\gamma_{65}=0$ by showing the polynomial $[\theta]=\left[\beta_{1} \theta_{1}+\beta_{2} \theta_{2}+\right.$ $\left.\beta_{3} \theta_{3}+\beta_{4} \theta_{4}+\theta_{5}+\beta_{6} \theta_{6}\right] \neq 0$ for all $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{6} \in \mathbb{F}_{2}$. Suppose the contrary that this polynomial is hit. Then we have

$$
\theta=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)+S q^{8}(D)
$$

for some polynomials A, B, C, D in P_{4}^{+}. Let $\left(S q^{2}\right)^{3}$ act on the both sides of this equality. Using the relations $\left(S q^{2}\right)^{3} S q^{1}=0,\left(S q^{2}\right)^{3} S q^{2}=0$, we get

$$
\left(S q^{2}\right)^{3}(\theta)=\left(S q^{2}\right)^{3} S q^{4}(C)+\left(S q^{2}\right)^{3} S q^{8}(D)
$$

The monomial $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is a term of $\left(S q^{2}\right)^{3}(\theta)$. If $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is a term of the polynomial $\left(S q^{2}\right)^{3} S q^{8}(y)$ with y a monomial of degree 11 in P_{4}, then $y=x_{1}^{7} f_{1}(z)$ with z a monomial of degree 4 in P_{3}. Then $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is a term of $x_{1}^{7}\left(S q^{2}\right)^{3} S q^{8}\left(f_{1}(z)\right)=0$. This is a contradiction. So $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is not a term of $\left(S q^{2}\right)^{3} S q^{8}(D)$ for all D. Hence $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is a term of $\left(S q^{2}\right)^{3} S q^{4}(C)$, then either $x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ or $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a term of C.

Suppose $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ is a term of C. Then

$$
\left(S q^{2}\right)^{3}\left(\theta+S q^{4}\left(x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}\right)\right)=\left(S q^{2}\right)^{3}\left(S q^{4}\left(C^{\prime}\right)+S q^{8}(D)\right)
$$

where $C^{\prime}=C+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$. We see that the monomial $x_{1}^{16} x_{2}^{6} x_{3}^{2} x_{4}$ is a term of $\left(S q^{2}\right)^{3}\left(\theta+S q^{4}\left(x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}\right)\right)$. This monomial is not a term of $\left(S q^{2}\right)^{3} S q^{8}(D)$ for all D. So it is a term of $\left(S q^{2}\right)^{3} S q^{4}\left(C^{\prime}\right)$. Then either $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ or $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a term of C. Since $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ is a term of $C^{\prime}, x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is s term of C^{\prime}. Hence we obtain

$$
\left(S q^{2}\right)^{3}\left(\theta+S q^{4}\left(x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}+x_{1}^{7} x_{2}^{6} x_{3} x_{4}\right)\right)=\left(S q^{2}\right)^{3}\left(S q^{4}\left(C^{\prime \prime}\right)+S q^{8}(D)\right)
$$

where $C^{\prime \prime}=C+x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}+x_{1}^{7} x_{2}^{6} x_{3} x_{4}$. Now $x_{1}^{7} x_{2}^{12} x_{3}^{4} x_{4}^{2}$ is a term of

$$
\left(S q^{2}\right)^{3}\left(\theta+S q^{4}\left(x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}+x_{1}^{7} x_{2}^{6} x_{3} x_{4}\right)\right)
$$

So either $x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ or $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a term of $C^{\prime \prime}$. Since $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}+$ $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a summand of $C^{\prime \prime}, x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ is s term of $C^{\prime \prime}$. Then $x_{1}^{16} x_{2}^{6} x_{3}^{2} x_{4}$ is a term of $\left(S q^{2}\right)^{3}\left(\theta+S q^{4}\left(x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}+x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}+x_{1}^{7} x_{2}^{6} x_{3} x_{4}\right)\right)$. So either $x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ or $x_{1}^{7} x_{2}^{5} x_{3}^{2} x_{4}$ or $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a term of $C^{\prime \prime}+x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ and we have a contradiction.

By a same argument, if either $x_{1}^{7} x_{2}^{5} x_{3} x_{4}^{2}$ or $x_{1}^{7} x_{2}^{6} x_{3} x_{4}$ is a term of C then we have also a contradiction. Hence $[\theta] \neq 0$ and $\gamma_{65}=0$.

Step 2. By a direct computation, we see that the homomorphism φ_{3} sends 5.6 .2 to

$$
\gamma_{37}\left[\theta_{1}\right]+\gamma_{2}\left[\theta_{3}\right]+\gamma_{22}\left[\theta_{4}\right]+\gamma_{46}\left[\theta_{5}\right]+\gamma_{13}\left[\theta_{6}\right]=0
$$

By Step 1, we obtain $\gamma_{46}=0$.
Step 3. The homomorphism φ_{2} sends (5.6.2 to

$$
\gamma_{13}\left[\theta_{1}\right]+\gamma_{22}\left[\theta_{2}\right]+\gamma_{37}\left[\theta_{3}\right]+\gamma_{2}\left[\theta_{6}\right]=0
$$

By Step 2, we obtain $\gamma_{22}=0$.
Step 4. Now the homomorphism φ_{3} sends 5.6 .2 to $\gamma_{37}\left[\theta_{2}\right]+\gamma_{13}\left[\theta_{4}\right]+\gamma_{2}\left[\theta_{6}\right]=0$. Combining Step 2 and Step 3, we obtain $\gamma_{13}=\gamma_{37}=0$.

Since $\varphi_{2}\left(\left[\theta_{3}\right]\right)=\left[\theta_{6}\right]$, we get $\gamma_{2}=0$. So we obtain $\gamma_{j}=0$ for all j. The proposition follows.
5.6.2. The subcase $s=1, t=2$.

For $s=1, t=2$, we have $n=2^{u+3}+7=2 m+3$ with $m=2^{u+2}+2$. Combining Theorem 1.3 and Theorem 4.3. we have $B_{3}(n)=\psi\left(\Phi\left(B_{2}(m)\right)\right)$. where

$$
B_{2}(m)= \begin{cases}\left\{x_{1}^{3} x_{2}^{7}, x_{1}^{7} x_{2}^{3}\right\}, & \text { if } u=1 \\ \left\{x_{1}^{3} x_{2}^{2^{u+2}-1}, x_{1}^{2^{u+2}-1} x_{2}^{3}, x_{1}^{7} x_{2}^{2^{u+2}-5}\right\}, & \text { if } u>1\end{cases}
$$

Denote by $F(u)$ the set of all the following monomials:

$$
\begin{aligned}
& x_{1}^{3} x_{2}^{4} x_{3} x_{4}^{2^{u+3}-1}, x_{1}^{3} x_{2}^{4} x_{3}^{2^{u+3}-1} x_{4}, x_{1}^{3} x_{2}^{2^{u+3}-1} x_{3}^{4} x_{4}, x_{1}^{2^{u+3}-1} x_{2}^{3} x_{3}^{4} x_{4}, \\
& x_{1}^{3} x_{2}^{7} x_{3}^{2^{u+3}-4} x_{4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{u+3}-4} x_{4}, x_{1}^{7} x_{2}^{2^{u+3}-5} x_{3}^{4} x_{4}, x_{1}^{7} x_{2}^{7} x_{3}^{2^{u+3}-8} x_{4}, \\
& x_{1}^{3} x_{2}^{4} x_{3}^{3} x_{4}^{2^{u+3}-3}, x_{1}^{3} x_{2}^{4} x_{3}^{2^{u+3}-5} x_{4}^{5}, x_{1}^{3} x_{2}^{4} x_{3}^{7} x_{4}^{2^{u+3}-7}, x_{1}^{3} x_{2}^{7} x_{3}^{4} x_{4}^{2^{u+3}-7} \\
& x_{1}^{7} x_{2}^{3} x_{3}^{4} x_{4}^{2^{u+3}-7}, x_{1}^{3} x_{2}^{7} x_{3}^{8} x_{4}^{2^{u+3}-11}, x_{1}^{7} x_{2}^{3} x_{3}^{8} x_{4}^{2^{u+3}-11} .
\end{aligned}
$$

Proposition 5.6.5.

i) $\Phi\left(B_{3}(23)\right) \cup F(1) \cup\left\{x_{1}^{7} x_{2}^{9} x_{3}^{2} x_{4}^{5}, x_{1}^{7} x_{2}^{9} x_{3}^{3} x_{4}^{4}\right\}$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree 23 .
ii) $\Phi\left(B_{3}(n)\right) \cup F(u) \cup\left\{x_{1}^{7} x_{2}^{7} x_{3}^{8} x_{4}^{2^{u+3}-15}, x_{1}^{7} x_{2}^{7} x_{3}^{9} x_{4}^{2^{u+3}-16}, x_{1}^{3} x_{2}^{4} x_{3}^{11} x_{4}^{2^{u+3}-11}\right\}$ is the set of of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{u+3}+7$ with any positive integer $u>1$.

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.6. The following monomials are strictly inadmissible:
i) $X_{2} x_{1}^{2} x_{j}^{6} x_{2}^{12}, X_{j} x_{1}^{2} x_{2}^{4} x_{3}^{8} x_{4}^{6}, X_{2} x_{1}^{2} x_{i}^{4} x_{2}^{8} x_{3}^{2} x_{4}^{4}, X_{2} x_{1}^{2} x_{2}^{4} x_{3}^{8} x_{4}^{6}, i=1,2, j=3,4$.
ii) $X_{3} x_{1}^{2} x_{2}^{2} x_{i}^{12} x_{3}^{20}, X_{3} x_{1}^{2} x_{2}^{2} x_{i}^{4} x_{3}^{20} x_{4}^{4}, X_{j} x_{1}^{2} x_{2}^{2} x_{i}^{12} x_{3}^{4} x_{4}^{16}, X_{j} x_{1}^{2} x_{2}^{4} x_{i}^{14} x_{3}^{16}$,
$X_{j} x_{1}^{6} x_{2}^{10} x_{3}^{4} x_{4}^{16}, X_{j} x_{1}^{6} x_{2}^{10} x_{3}^{16} x_{4}^{4}, X_{3} x_{1}^{6} x_{2}^{10} x_{3}^{20}, X_{2} x_{1}^{2} x_{2}^{4} x_{3}^{14} x_{4}^{16}, i=1,2, j=3,4$.
Proof of Proposition 5.6.5. Let x be an admissible monomial of degree $n=2^{u+3}+7$ in P_{4}.

By Lemma 5.6.1 $\omega_{1}(x)=3$. So $x=X_{i} y^{2}$ with y a monomial of degree $2^{u+2}+2$. Since x is admissible, by Theorem 2.9, $y \in B_{4}\left(2^{u+2}+2\right)$.

By a direct computation, we see that if $x=X_{i} y^{2}$ with $y \in B_{4}\left(2^{u+2}+2\right)$ and x not belongs to the set $C_{4}(n)$ as given in the proposition, then there is a monomial w which is given in one of Lemmas 5.6.6 5.3.3 such that $x=w y^{2^{r}}$ for some monomial y and integer $r>1$.

By Theorem 2.9, x is inadmissible. Hence $\left(Q P_{4}\right)_{n}$ is spanned by the set $\left[C_{4}(n)\right]$. For $u=1$, we have, $\left|C_{4}^{+}(23) \cap P_{4}^{+}\right|=99$. Suppose that there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{99} \gamma_{i} d_{i}=0 \tag{5.6.1}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{23, i}$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv$ 0 with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all $i \in E$, with some $E \subset \mathbb{N}_{99}$ and the relation 5.6 .2 becomes

$$
\begin{equation*}
\sum_{i=1}^{15} c_{i}\left[\theta_{i}\right]=0 \tag{5.6.2}
\end{equation*}
$$

where $c_{1}=\gamma_{1}, c_{2}=\gamma_{4}, c_{3}=\gamma_{33}, c_{4}=\gamma_{94}, c_{5}=\gamma_{2}, c_{6}=\gamma_{22}, c_{7}=\gamma_{74}, c_{8}=\gamma_{29}, c_{9}=$ $\gamma_{81}, c_{10}=\gamma_{68}, c_{11}=\gamma_{10}, c_{12}=\gamma_{43}, c_{13}=\gamma_{54}, c_{14}=\gamma_{70}, c_{15}=\gamma_{11}$ and

$$
\begin{aligned}
\theta_{1}= & d_{1}+d_{17}+d_{37}+d_{49} \\
\theta_{2}= & d_{4}+d_{21}+d_{44}+d_{53} \\
\theta_{3}= & d_{33}+d_{36}+d_{72}+d_{73} \\
\theta_{4}= & d_{94}+d_{97}+d_{98}+d_{99} \\
\theta_{5}= & d_{2}+d_{19}+d_{40}+d_{51} \\
\theta_{6}= & d_{22}+d_{25}+d_{62}+d_{63} \\
\theta_{7}= & d_{74}+d_{77}+d_{82}+d_{83} \\
\theta_{8}= & d_{12}+d_{14}+d_{26}+d_{29}+d_{66}+d_{67} \\
\theta_{9}= & d_{40}+d_{42}+d_{78}+d_{81}+d_{86}+d_{87}, \\
\theta_{10}= & d_{10}+d_{15}+d_{24}+d_{27}+d_{46}+d_{47}+d_{64}+d_{65} \\
\theta_{11}= & d_{38}+d_{43}+d_{46}+d_{47}+d_{76}+d_{79}+d_{84}+d_{85} \\
\theta_{12}= & d_{62}+d_{67}+d_{68}+d_{71}+d_{88}+d_{89}+d_{92}+d_{93} \\
\theta_{13}= & d_{47}+d_{54}+d_{57}+d_{62}+d_{69}+d_{82}+d_{85}+d_{88}+d_{90} \\
\theta_{14}= & d_{12}+d_{15}+d_{19}+d_{20}+d_{46}+d_{47}+d_{51}+d_{52}+d_{58}+d_{61} \\
& +d_{64}+d_{66}+d_{67}+d_{70}+d_{84}+d_{87}+d_{89}+d_{91}, \\
\theta_{15}= & d_{11}+d_{12}+d_{18}+d_{20}+d_{24}+d_{25}+d_{26}+d_{27}+d_{38}+d_{40}+d_{45} \\
& +d_{47}+d_{48}+d_{50}+d_{52}+d_{57}+d_{61}+d_{63}+d_{64}+d_{65}+d_{66} \\
& +d_{67}+d_{69}+d_{77}+d_{78}+d_{83}+d_{85}+d_{86}+d_{87}+d_{89}+d_{90}
\end{aligned}
$$

Now, we show that $c_{i}=0$ for $i=1,2, \ldots, 15$. The proof is divided into 6 steps. Step 1. Set $\theta=\theta_{1}+\sum_{i=2}^{15} \beta_{i} \theta_{i}$ for $\beta_{i} \in \mathbb{F}_{2}, i=2,3, \ldots, 15$. We prove that $[\theta] \neq 0$. Suppose the contrary that θ is hit. Then we have

$$
\theta=S q^{1}(A)+S q^{2}(B)+S q^{4}(C)+S q^{8}(D)
$$

for some polynomials $A, B, C, D \in P_{4}^{+}$. Let $\left(S q^{2}\right)^{3}$ act to the both sides of the above equality, we obtain

$$
\left(S q^{2}\right)^{3}(\theta)=\left(S q^{2}\right)^{3} S q^{4}(C)+\left(S q^{2}\right)^{3} S q^{8}(D)
$$

By a similar computation as in the proof of Proposition 5.4.5 we see that the monomial $x_{1}^{8} x_{2}^{4} x_{3}^{2} x_{4}^{15}$ is a term of $\left(S q^{2}\right)^{3}(\theta)$. This monomial is not a term of $\left(S q^{2}\right)^{3}\left(S q^{4}(C)+S q^{8}(D)\right)$ for all polynomials C, D and we have a contradiction. So $[\theta] \neq 0$ and we get $c_{1}=\gamma_{1}=0$.

By an argument analogous to the previous one, we get $c_{2}=c_{3}=c_{4}=0$. Now, the relation 5.6.2 becomes

$$
\begin{equation*}
\sum_{i=5}^{15} c_{i}\left[\theta_{i}\right]=0 \tag{5.6.3}
\end{equation*}
$$

Step 2. The homomorphisms
send 5.6 .3 respectively to

$$
\begin{aligned}
c_{10}\left[\theta_{3}\right] & =0 \\
c_{9}\left[\theta_{3}\right] & =0 \\
c_{7}\left[\theta_{3}\right] & \left.=0 \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle,\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle \\
c_{8}\left[\theta_{3}\right] & =0 \\
c_{6}\left[\theta_{3}\right] & \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle \\
c_{5}\left[\theta_{3}\right] & \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right], \ldots,\left[\theta_{15}\right]\right\rangle \\
0 & \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle
\end{aligned}
$$

Using the results in Step 1, we get $c_{5}=c_{6}=c_{7}=c_{8}=c_{9}=c_{10}=0$. So the relation 5.6.3 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{13}\left[\theta_{13}\right]+c_{14}\left[\theta_{14}\right]+c_{15}\left[\theta_{15}\right]=0 \tag{5.6.4}
\end{equation*}
$$

Step 3. The homomorphism φ_{1} sends (5.6.4) to

$$
\begin{aligned}
& c_{13}\left[\theta_{6}\right]+\left(c_{14}+c_{15}\right)\left[\theta_{7}\right]+\left(c_{11}+c_{12}\right)\left[\theta_{11}\right] \\
& \quad+c_{12}\left[\theta_{12}\right]+c_{13}\left[\theta_{13}\right]+c_{14}\left[\theta_{14}\right]+c_{15}\left[\theta_{15}\right]=0 .
\end{aligned}
$$

By Step 2, we get $c_{13}=0$ and $c_{14}=c_{15}$. So the relation (5.6.4 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{14}\left[\theta_{14}\right]+c_{14}\left[\theta_{15}\right]=0 \tag{5.6.5}
\end{equation*}
$$

Step 4. The homomorphism φ_{3} sends 5.6.5 to

$$
c_{11}\left[\theta_{11}\right]+c_{14}\left[\theta_{12}\right]+\left(c_{12}+c_{14}\right)\left[\theta_{13}\right]+c_{14}\left[\theta_{14}\right]+c_{14}\left[\theta_{15}\right]=0
$$

By Step 3, we get $c_{12}=c_{14}$. Then the relation 5.6.5 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{12}\left[\theta_{14}\right]+c_{12}\left[\theta_{15}\right]=0 \tag{5.6.6}
\end{equation*}
$$

Step 5. The homomorphism φ_{2} sends (5.6.6) to

$$
\left(c_{11}+c_{12}\right)\left[\theta_{12}\right]+c_{12}\left[\theta_{14}\right]+c_{12}\left[\theta_{15}\right]=0
$$

From the result in Step 4, we get $c_{11}=0$. Then the relation 5.6.6 becomes

$$
\begin{equation*}
c_{12}\left(\left[\theta_{12}\right]+\left[\theta_{14}\right]+\left[\theta_{15}\right]\right)=0 \tag{5.6.7}
\end{equation*}
$$

Step 6. The homomorphism φ_{1} sends 5.6.7 to

$$
c_{12}\left[\theta_{11}\right]+c_{12}\left(\left[\theta_{12}\right]+\left[\theta_{14}\right]+\left[\theta_{15}\right]\right)=0 .
$$

By the result in Step 5, we have $c_{12}=0$. The case $u=1$ of the proposition is completely proved.

For $u>1$, we have $\left|C_{4}(n) \cap P_{4}^{+}\right|=141$. Suppose that there is a linear relation

$$
\begin{equation*}
\mathcal{S}=\sum_{i=1}^{141} \gamma_{i} d_{i}=0 \tag{5.6.8}
\end{equation*}
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i} \in B_{4}^{+}(n)$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$ with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all $i \notin E$, with some $E=\subset \mathbb{N}_{141}$ and the relation (5.6.8) becomes

$$
\begin{equation*}
\sum_{i=1}^{15} c_{i}\left[\theta_{i}\right]=0 \tag{5.6.9}
\end{equation*}
$$

where $c_{1}=\gamma_{1}, c_{2}=\gamma_{6}, c_{3}=\gamma_{51}, c_{4}=\gamma_{136}, c_{5}=\gamma_{2}, c_{6}=\gamma_{31}, c_{7}=\gamma_{107}, c_{8}=$ $\gamma_{40}, c_{9}=\gamma_{116}, c_{10}=\gamma_{101}, c_{11}=\gamma_{14}, c_{12}=\gamma_{56}, c_{13}=\gamma_{79}, c_{14}=\gamma_{23}, c_{15}=\gamma_{15}$ and

$$
\begin{aligned}
\theta_{1}= & d_{1}+d_{25}+d_{55}+d_{73} \\
\theta_{2}= & d_{6}+d_{30}+d_{66}+d_{78} \\
\theta_{3}= & d_{51}+d_{54}+d_{105}+d_{106} \\
\theta_{4}= & d_{7}+d_{8}+d_{47}+d_{48} \\
\theta_{5}= & d_{2}+d_{27}+d_{58}+d_{75} \\
\theta_{6}= & d_{31}+d_{34}+d_{89}+d_{90} \\
\theta_{7}= & +d_{107}+d_{110}+d_{117}+d_{118} \\
\theta_{8}= & d_{16}+d_{22}+d_{35}+d_{40}+d_{94}+d_{95} \\
\theta_{9}= & d_{58}+d_{64}+d_{111}+d_{116}+d_{122}+d_{123} \\
\theta_{10}= & d_{89}+d_{95}+d_{101}+d_{104}+d_{124}+d_{127}+d_{129}+d_{130} \\
\theta_{11}= & d_{14}+d_{19}+d_{33}+d_{36}+d_{68}+d_{69}+d_{91}+d_{92} \\
\theta_{12}= & d_{56}+d_{61}+d_{68}+d_{69}+d_{109}+d_{112}+d_{119}+d_{120} \\
\theta_{13}= & d_{67}+d_{69}+d_{79}+d_{82}+d_{89}+d_{90}+d_{117}+d_{118}+d_{124}+d_{125} \\
\theta_{14}= & d_{16}+d_{23}+d_{27}+d_{29}+d_{70}+d_{71}+d_{72}+d_{75}+d_{77} \\
& +d_{83}+d_{88}+d_{94}+d_{95}+d_{122}+d_{123}+d_{126}+d_{127} \\
\theta_{15}= & d_{15}+d_{19}+d_{26}+d_{27}+d_{33}+d_{34}+d_{35}+d_{36}+d_{58} \\
& +d_{61}+d_{68}+d_{69}+d_{70}+d_{74}+d_{75}+d_{82}+d_{83}+d_{91} \\
& +d_{92}+d_{109}+d_{110}+d_{111}+d_{112}+d_{119}+d_{120}+d_{125}
\end{aligned}
$$

Now, we prove $c_{i}=0$ for $i=1,2, \ldots, 15$. The proof is divided into 6 steps.
Step 1. First, we prove $c_{1}=0$. Set $\theta=\theta_{1}+\sum_{j=2}^{15} c_{j} \theta_{j}$. We show that $[\theta] \neq 0$ for all $c_{j} \in \mathbb{F}_{2}, j=2,3, \ldots, 15$. Suppose the contrary that θ is hit. Then we have

$$
\theta=\sum_{m=0}^{u+2} S q^{2^{m}}\left(A_{m}\right)
$$

for some polynomials $A_{m}, m=0,1, \ldots, u+2$. Let $\left(S q^{2}\right)^{3}$ act on the both sides of this equality. Since $\left(S q^{2}\right)^{3} S q^{1}=0,\left(S q^{2}\right)^{3} S q^{2}=0$, we get

$$
\left(S q^{2}\right)^{3}(\theta)=\sum_{m=2}^{u+2}\left(S q^{2}\right)^{3} S q^{2^{m}}\left(A_{m}\right)
$$

It is easy to see that the monomial $x=x_{1}^{8} x_{2}^{4} x_{3}^{2} x_{4}^{2^{u+3}-1}$ is a term of $\left(S q^{2}\right)^{3}(\theta)$, hence it is a term of $\left(S q^{2}\right)^{3} S 2^{2^{m}}(y)$ for some monomial y of degree $2^{u+3}-2^{m}+7$ with $m \geqslant 2$. Then $y=x_{2}^{2^{u+3}-1} f_{2}(z)$ with z a monomial of degree $8-2^{m} \leqslant 4$ in P_{3} and x is a term of $x_{2}^{2^{u+3}-1}\left(S q^{2}\right)^{3} S q^{2^{m}}(z)$. If $m>2$ then $S q^{2^{m}}(z)=0$. If $m=2$ the $S q^{2^{2}}(z)=z^{2}$, hence $\left(S q^{2}\right)^{3} S q^{2^{m}}(z)=\left(S q^{2}\right)^{3}\left(z^{2}\right)=0$. So x is not a term of

$$
\left(S q^{2}\right)^{3}(\theta)=\sum_{m=2}^{u+2}\left(S q^{2}\right)^{3} S q^{2^{m}}\left(A_{m}\right)
$$

for all polynomial A_{m} with $m>1$. This is a contradiction. So we get $c_{1}=0$.

By an argument analogous to the previous one, we get $c_{2}=c_{3}=c_{4}=0$. Then the relation 5.6.9 becomes

$$
\begin{equation*}
\sum_{i=5}^{15} c_{i}\left[\theta_{i}\right]=0 \tag{5.6.10}
\end{equation*}
$$

Step 2. The homomorphisms

$$
\varphi_{1}, \varphi_{1} \varphi_{3}, \varphi_{1} \varphi_{3} \varphi_{4}, \varphi_{1} \varphi_{3} \varphi_{2}, \varphi_{1} \varphi_{3} \varphi_{2} \varphi_{4}, \varphi_{1} \varphi_{3} \varphi_{4} \varphi_{2} \varphi_{3}
$$

send 5.6 .3 respectively to

$$
\begin{aligned}
& c_{10}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle, \\
& c_{9}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle, \\
& c_{7}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle, \\
& c_{8}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle, \\
& c_{6}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle, \\
& c_{5}\left[\theta_{3}\right]=0 \quad \bmod \left\langle\left[\theta_{5}\right],\left[\theta_{6}\right], \ldots,\left[\theta_{15}\right]\right\rangle .
\end{aligned}
$$

By Step 1, we get $c_{5}=c_{6}=c_{7}=c_{8}=c_{9}=c_{10}=0$. So the relation 5.6.3 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{13}\left[\theta_{13}\right]+c_{14}\left[\theta_{14}\right]+c_{15}\left[\theta_{15}\right]=0 . \tag{5.6.11}
\end{equation*}
$$

Step 3. Applying the homomorphism φ_{1} to 5.6.11, we get
$c_{13}\left[\theta_{6}\right]+c_{14}\left[\theta_{8}\right]+\left(c_{11}+c_{12}+c_{15}\right)\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{13}\left[\theta_{13}\right]+c_{14}\left[\theta_{14}\right]+c_{15}\left[\theta_{15}\right]=0$.
By the results in Step 2, we obtain $c_{13}=c_{14}=0$. Then the relation 5.6.11 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{12}\right]+c_{14}\left[\theta_{15}\right]=0 \tag{5.6.12}
\end{equation*}
$$

Step 4. Applying the homomorphism φ_{3} to the relation 5.6.12 we obtain

$$
c_{11}\left[\theta_{11}\right]+c_{12}\left[\theta_{13}\right]+c_{15}\left[\theta_{15}\right]=0
$$

By the results in Step 3, we get $c_{12}=0$. So the relation 5.6 .12 becomes

$$
\begin{equation*}
c_{11}\left[\theta_{11}\right]+c_{15}\left[\theta_{15}\right]=0 \tag{5.6.13}
\end{equation*}
$$

Step 5. Applying the homomorphism φ_{2} to the relation 5.6.12) one gets

$$
c_{11}\left[\theta_{13}\right]+c_{15}\left[\theta_{15}\right]=0
$$

By Step 4, we get $c_{10}=\gamma_{41}=0$. So the relation 5.6.13 becomes

$$
\begin{equation*}
c_{15}\left[\theta_{15}\right]=0 \tag{5.6.14}
\end{equation*}
$$

Step 6. Applying the homomorphism φ_{1} to the relation 5.6.14 we obtain

$$
c_{15}\left[\theta_{11}\right]+c_{15}\left[\theta_{15}\right]=0
$$

By Step 5, we get c_{15}. The proposition is completely proved.

5.6.3. The subcase $s=1, t>2$.

For $s=1, t>2$, we have $n=2^{t+u+1}+2^{t+1}-1=2 m+3$ with $m=2^{t+u}+2^{t}-2$. From Theorem 4.3, we have $B_{3}(n)=\psi\left(\Phi\left(B_{2}(m)\right)\right)$.

Proposition 5.6.7.

i) $\Phi\left(B_{3}(n)\right) \cup\left\{x_{1}^{3} x_{2}^{4} x_{3}^{2^{t+1}-5} x_{4}^{2^{t+2}-3}, x_{1}^{3} x_{2}^{4} x_{3}^{x^{t+2}-5} x_{4}^{2^{t+1}-3}\right\}$ is the set of of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+2}+2^{t+1}-1$ with any positive integer $t>2$.
ii) $\Phi\left(B_{3}(n)\right) \cup A(t, u)$ is the set of of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+u+1}+2^{t+1}-1$ with any positive integers $t>2, u>1$, where $A(t, u)$ is the set consisting of 3 monomials:

$$
x_{1}^{3} x_{2}^{4} x_{3}^{2^{t+1}-5} x_{4}^{2^{t+u+1}-3}, x_{1}^{3} x_{2}^{4} x_{3}^{2^{t+u+1}-5} x_{4}^{2^{t+1}-3}, x_{1}^{3} x_{2}^{4} x_{3}^{2^{t+2}-5} x_{4}^{2^{t+u+1}-2^{t+1}-3} .
$$

By a direct computation, we can easy obtain the following lemma.
Lemma 5.6.8. The following monomials are strictly inadmissible:

$$
X_{3} x_{1}^{2} x_{2}^{2} x_{3}^{8} x_{4}^{28} x_{i}^{4}, X_{3} x_{1}^{2} x_{2}^{2} x_{3}^{8} x_{4}^{12} x_{i}^{4}, i=1,2, X_{4} x_{1}^{6} x_{2}^{10} x_{3}^{12} x_{4}^{16}
$$

Proof of Proposition 5.6.7. Let $x \in P_{4}$ be an admissible monomial of degree $n=$ $2^{t+u+1}+2^{t+1}-1$.

By Lemma 5.6.1 $\omega_{1}(x)=3$. So $x=X_{i} y^{2}$ with y a monomial of degree $2^{t+u}+$ $2^{t}-2$. Since x is admissible, by Theorem 2.9. $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$.

By a direct computation, we see that if $x=X_{i} y^{2}$ with $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$ and x not belongs to the set $C_{4}(n)$ as given in the proposition, then there is a monomial w which is given in one of Lemmas 5.6.8 and 5.3.3 such that $x=w y^{2^{r}}$ for some monomial y and integer $r>1$.

By Theorem 2.9, x is inadmissible. Hence $\left(Q P_{4}\right)_{n}$ is spanned by the set $\left[C_{4}(n)\right]$.
We set $\left|C_{4}(n) \cap P_{4}^{+}\right|=m(t, u)$ with $m(t, 1)=84$ for $u=1$ and $m(t, u)=126$ for $u>1$. Suppose that there is a linear relation

$$
\mathcal{S}=\sum_{i=1}^{m(t, u)} \gamma_{i} d_{i}=0
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$ with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i.

5.6.4. The subcase $s=2, t=1$.

For $s=2, t=1$, we have $n=2^{u+3}+9$. According to Theorem 4.3, we have

$$
B_{3}(n)= \begin{cases}\psi^{2}\left(\Phi\left(B_{2}\left(2^{u+1}\right)\right)\right), & \text { if } u \neq 2 \\ \psi^{2}\left(\Phi\left(B_{2}(8)\right)\right) \cup\left\{x_{1}^{15} x_{2}^{19} x_{3}^{7}\right\}, & \text { if } u=2\end{cases}
$$

Denote by $G(u)$ the set of 7 monomials:

$$
\begin{aligned}
& x_{1}^{3} x_{2}^{7} x_{3}^{2^{u+3}-5} x_{4}^{4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{u+3}-5} x_{4}^{4}, x_{1}^{7} x_{2}^{2^{u+3}-5} x_{3}^{3} x_{4}^{4}, \\
& x_{1}^{3} x_{2}^{7} x_{3}^{7} x_{4}^{2^{u+3}-8}, x_{1}^{7} x_{2}^{3} x_{3}^{7} x_{4}^{2^{u+3}-8}, x_{1}^{7} x_{2}^{7} x_{3}^{3} x_{4}^{2^{u+3}-8}, x_{1}^{7} x_{2}^{7} x_{3}^{2^{u+3}-8} x_{4}^{3},
\end{aligned}
$$

Proposition 5.6.9.
i) $\Phi\left(B_{3}(25)\right) \cup G(1) \cup\left\{x_{1}^{7} x_{2}^{9} x_{3}^{3} x_{4}^{6}\right\}$ is the set of of all the admissible monomials for \mathcal{A}-module P_{4} in degree 25.
ii) $\Phi\left(B_{3}(n)\right) \cup G(u) \cup H(u)$ is the set of of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{u+3}+9$ with any positive integer $u>1$, where $H(u)$
is the set consisting of 5 monomials:

$$
\begin{aligned}
& x_{1}^{3} x_{2}^{7} x_{3}^{11} x_{4}^{2^{u+3}-12}, x_{1}^{7} x_{2}^{3} x_{3}^{11} x_{4}^{2^{u+3}-12}, x_{1}^{7} x_{2}^{11} x_{3}^{3} x_{4}^{2^{u+3}-12} \\
& x_{1}^{7} x_{2}^{7} x_{3}^{8} x_{4}^{2^{u+3}-13}, x_{1}^{7} x_{2}^{7} x_{3}^{11} x_{4}^{2^{u+3}-16}
\end{aligned}
$$

The following is proved by a direct computation.
Lemma 5.6.10. The following monomials are strictly inadmissible:
i) $X_{3} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{4}^{4}, X_{j} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{4}^{4}, X_{3}^{3} x_{i}^{4} x_{3}^{8} x_{4}^{4}, X_{2}^{3} x_{1}^{4} x_{2}^{8} x_{j}^{4}, i=1,2, j=3,4$.
ii) $X_{4} X_{3}^{2} x_{1}^{12} x_{2}^{16} x_{3}^{4}, X_{4} X_{2}^{2} x_{1}^{4} x_{2}^{24} x_{4}^{4}, X_{4}^{3} x_{i}^{12} x_{3}^{16} x_{4}^{4}, X_{4} X_{2}^{2} x_{1}^{12} x_{2}^{16} x_{4}^{4}, X_{4} X_{3} x_{1}^{4} x_{2}^{4} x_{i}^{8} x_{3}^{16}$, $X_{j} X_{2}^{2} x_{1}^{12} x_{2}^{16} x_{3}^{4}, X_{j} X_{2}^{2} x_{1}^{12} x_{2}^{16} x_{4}^{4}, X_{4} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{4}^{20}, X_{j}^{3} x_{1}^{4} x_{2}^{4} x_{i}^{8} x_{j}^{16}, X_{2}^{3} x_{1}^{12} x_{2}^{16} x_{j}^{4}$, $X_{4}^{3} x_{i}^{4} x_{3}^{12} x_{4}^{16}, X_{4}^{3} x_{i}^{12} x_{3}^{4} x_{4}^{16}, X_{3}^{3} x_{i}^{12} x_{3}^{16} x_{4}^{4}, \quad X_{j}^{3} x_{1}^{4} x_{2}^{8} x_{3}^{16} x_{4}^{4}, \quad X_{4} X_{2}^{2} x_{1}^{4} x_{2}^{8} x_{3}^{16} x_{4}^{4}$
$X_{4}^{3} x_{1}^{4} x_{2}^{8} x_{3}^{4} x_{4}^{16}, i=1,2, j=3,4$.
Proof of Proposition 5.6.9. Let x be an admissible monomial of degree $n=2^{u+3}+9$ in P_{4}.

By Lemma 5.6.1. $\omega_{1}(x)=\omega_{2}(x)=3$. So $x=X_{i} X_{j}^{2} y^{4}$ with y a monomial of degree 2^{u+1}. Since x is admissible, by Theorem 2.9 $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$.

By a direct computation, we see that if $x=X_{i} X_{j}^{2} y^{4}$ with $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$ and x not belongs to the set $C_{4}(n)$ given in the proposition, then there is a monomial w which is given in one of Lemmas 5.6.10, 5.3.3 such that $x=w y^{2^{r}}$ for some monomial y and integer $r>1$.

By Theorem 2.9, x is inadmissible. Hence $\left(Q P_{4}\right)_{n}$ is spanned by the set $\left[C_{4}(n)\right]$.
We denote $\left|C_{4}(n) \cap P_{4}^{+}\right|=m(u)$ with $m(1)=88, m(2)=165$ and $m(u)=154$ for $u \geqslant 3$. Suppose that there is a linear relation

$$
\mathcal{S}=\sum_{i=1}^{m(u)} \gamma_{i} d_{i}=0
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$ with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i.

5.6.5. The subcase $s=2, t \geqslant 2$.

For $s=2, t \geqslant 2$, we have $n=2^{t+u+2}+2^{t+2}+1=4 m+9$ with $m=2^{t+u}+2^{t}-2$. From Theorem 1.3, we have

$$
B_{3}(n)=\psi^{2}\left(\Phi\left(B_{2}(m)\right)\right)
$$

Denote by $B(t, u)$ the set of 8 monomials:

$$
\begin{aligned}
& x_{1}^{3} x_{2}^{7} x_{3}^{2^{t+2}-5} x_{4}^{2^{t+u+2}-4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{t+2}-5} x_{4}^{2^{t+u+2}-4}, x_{1}^{7} x_{2}^{2^{t+2}-5} x_{3}^{3} x_{4}^{2^{t+u+2}-4} \\
& x_{1}^{3} x_{2}^{7} x_{3}^{2^{t+u+2}-5} x_{4}^{2^{t+2}-4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{t+u+2}-5} x_{4}^{2^{t+2}-4}, x_{1}^{7} x_{2}^{2^{t+u+2}-5} x_{3}^{3} x_{4}^{2^{t+2}-4}, \\
& x_{1}^{7} x_{2}^{7} x_{3}^{2^{t+2}-8} x_{4}^{2^{t+u+2}-5}, x_{1}^{7} x_{2}^{7} x_{3}^{2^{t+u+2}-8} x_{4}^{2^{t+2}-5}
\end{aligned}
$$

and by $C(t, u)$ the set of 4 monomials:

$$
\begin{aligned}
& x_{1}^{3} x_{2}^{7} x_{3}^{2^{t+3}-5} x_{4}^{2^{t+u+2}-2^{t+2}-4}, x_{1}^{7} x_{2}^{3} x_{3}^{2^{t+3}-5} x_{4}^{2^{t+u+2}-2^{t+2}-4} \\
& x_{1}^{7} x_{2}^{2^{t+3}-5} x_{3}^{3} x_{4}^{2^{t+u+2}-2^{t+2}-4}, x_{1}^{7} x_{2}^{7} x_{3}^{x^{t+3}-8} x_{4}^{2^{t+u+2}-2^{t+2}-5} .
\end{aligned}
$$

Proposition 5.6.11.

i) $\Phi\left(B_{3}(n)\right) \cup B(t, 1)$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+3}+2^{t+2}+1$.
ii) For any positive integer $t, u>1, \Phi\left(B_{3}(n)\right) \cup B(t, u) \cup C(t, u)$ is the set of all the admissible monomials for \mathcal{A}-module P_{4} in degree $n=2^{t+u+2}+2^{t+2}+1$.

By a direct computation, we get the following.
Lemma 5.6.12. The following monomials are strictly inadmissible:

$$
\begin{aligned}
& X_{j} X_{3}^{2} x_{1}^{12} x_{2}^{12} x_{3}^{16}, X_{4}^{3} x_{i}^{12} x_{3}^{12} x_{4}^{16}, X_{4}^{3} x_{1}^{12} x_{2}^{12} x_{4}^{16}, X_{4}^{3} x_{1}^{4} x_{2}^{4} x_{3}^{8} x_{4}^{8} x_{j}^{16}, X_{4} X_{3}^{2} x_{3}^{4} x_{1}^{12} x_{4}^{8} x_{2}^{16}, \\
& X_{4} X_{3}^{2} x_{1}^{4} x_{2}^{4} x_{4}^{8} x_{i}^{8} x_{3}^{16}, X_{j}^{3} x_{1}^{4} x_{2}^{4} x_{3}^{8} x_{i}^{8} x_{4}^{16}, X_{4}^{3} x_{1}^{4} x_{3}^{4} x_{2}^{8} x_{3}^{8} x_{4}^{16}, i=1,2, j=3,4 .
\end{aligned}
$$

Proof of Proposition 5.6.11. Let $x \in P_{4}$ be an admissible monomial of degree $n=$ $2^{t+u+2}+2^{t+2}+1$. By Lemma 5.6.1. $\omega_{1}(x)=\omega_{2}(x)=3$. So $x=X_{i} X_{j}^{2} y^{4}$ with y a monomial of degree $2^{t+u}+2^{t}-2$.

Since x is admissible, by Theorem 2.9, $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$. By a direct computation, we see that if $x=X_{i} X_{j}^{2} y^{4}$ with $y \in B_{4}\left(2^{t+u}+2^{t}-2\right)$ and x not belongs to the set $C_{4}(n)$ as given in the proposition, then there is a monomial w which is given in one of Lemmas 5.6.12, 5.1.3 such that $x=w y^{2^{r}}$ for some monomial y and integer $r>1$.

By Theorem 2.9, x is inadmissible. Hence $\left(Q P_{4}\right)_{n}$ is spanned by the set $\left[C_{4}(n)\right]$.
We set $\left|C_{4}(n) \cap P_{4}^{+}\right|=m(t, u)$ with $m(t, 1)=154$ and $m(t, u)=231$ for $t \geqslant 2$. Suppose that there is a linear relation

$$
\mathcal{S}=\sum_{i=1}^{m(t, u)} \gamma_{i} d_{i}=0
$$

with $\gamma_{i} \in \mathbb{F}_{2}$ and $d_{i}=d_{n, i}$. By a direct computation from the relations $p_{(j ; J)}(\mathcal{S}) \equiv 0$ with $(j ; J) \in \mathcal{N}_{4}$, we obtain $\gamma_{i}=0$ for all i.

Acknowledgment. I would like to thank Prof. Nguyễn H. V. Hưng for helpful suggestions and constant encouragement. My thanks also go to all colleagues at the Department of Mathematics, Quy Nhơn University for many conversations.

The final version of this work was completed while the author was visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for supporting the visit and hospitality. The work was also supported in part by the Project Grant No. B2013.28.129.

References

[1] J. M. Boardman, Modular representations on the homology of powers of real projective space, in: M.C. Tangora (Ed.), Algebraic Topology, Oaxtepec, 1991, in: Contemp. Math., vol. 146, 1993, pp. 49-70, MR1224907.
[2] R. R. Bruner, L. M. Hà and N. H. V. Hưng, On the behavior of the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005) 473-487, MR2095619.
[3] D. P. Carlisle and R. M. W. Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, in: N. Ray and G. Walker (ed.), Adams Memorial Symposium on Algebraic Topology 2, (Manchester, 1990), in: London Math. Soc. Lecture Notes Ser., Cambridge Univ. Press, Cambridge, vol. 176, 1992, pp. 203-216, MR1232207.
[4] M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra II, in: Algebraic Topology: New Trend in Localization and Periodicity, (Sant Feliu de Guíxols, 1994), in: Progr. Math., Birkhäuser Verlag, Basel, Switzerland, vol. 136, 1996, pp. 143-154, MR1397726.
[5] V. Giambalvo and F. P. Peterson, A-generators for ideals in the Dickson algebra, J. Pure Appl. Algebra 158 (2001), 161-182, MR1822839
[6] L. M. Hà, Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, in: Proceedings of the International School and Conference in Algebraic Topology, Hà Nội 2004, Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, vol. 11, 2007, 81-105, MR2402802.
[7] N. H. V. Hưng, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005) 4065-4089, MR2159700.
[8] N. H. V. Hưng and T. N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001). 5029-5040, MR1852092.
[9] N. H. V. Hưng and T. N. Nam, The hit problem for the modular invariants of linear groups, Journal of Algebra 246 (2001) 367-384, MR2872626
[10] N. H. V. Hưng and F. P. Peterson, \mathcal{A}-generator for the Dickson algebra, Trans. Amer. Math. Soc., 347 (1995) 4687-4728, MR1316852.
[11] N. H. V. Hưng and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998) 253-264, MR1631123
[12] A. S. Janfada and R. M. W. Wood, The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002) 295-303, MR1912402.
[13] A. S. Janfada and R. M. W. Wood, Generating $H^{*}\left(B O(3), \mathbb{F}_{2}\right)$ as a module over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 134 (2003), 239-258, MR1972137.
[14] M. Kameko, Products of projective spaces as Steenrod modules, PhD. Thesis, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990, 29 pp., MR2638633.
[15] M. Kameko, Generators of the cohomology of $B V_{3}$, J. Math. Kyoto Univ. 38 (1998) 587-593, MR1661173.
[16] M. Kameko, Generators of the cohomology of $B V_{4}$, Toyama University, Preprint, 2003.
[17] N. Minami, The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc. 351 (1999) 2325-2351, MR1443884.
[18] M. F. Mothebe, Admissible monomials and generating sets for the polynomial algebra as a module over the Steenrod algebra, Afr. Diaspora J. Math. 16 (2013), 18-27, MR3091712.
[19] T. N. Nam, A-générateurs génériques pour l'algèbre polynomiale, Adv. Math. 186 (2004) 334-362, MR2073910.
[20] T. N. Nam, Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008), (5), 1785-1837, MR2445834.
[21] F. P. Peterson, Generators of $H^{*}\left(\mathbb{R} P^{\infty} \times \mathbb{R} P^{\infty}\right)$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. No. 833 (April 1987).
[22] F. P. Peterson, \mathcal{A}-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), 311-312, MR0974987.
[23] S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math. 112 (1990) 737-748, MR1073007.
[24] J. Repka and P. Selick, On the subalgebra of $H_{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n} ; \mathbb{F}_{2}\right)$ annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998) 273-288, MR1617199.
[25] J. H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995) 627-637, MR1254854.
[26] J. H. Silverman and W. M. Singer, On the action of Steenrod squares on polynomial algebras II, J. Pure Appl. Algebra 98 (1995), 95-103, MR1317001.
[27] W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989), 493-523, MR1022818.
[28] W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991) 577-583, MR1045150.
[29] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud. vol. 50, Princeton Univ. Press, Princeton, N.J 1962, MR0145525.
[30] N. Sum, The hit problem for the polynomial algebra of four variables, Quy Nhơn University, Việt Nam, Preprint, 2007, 240 pp.
[31] N. Sum, The negative answer to Kameko's conjecture on the hit problem, C. R. Acad. Sci. Paris, Ser. I 348 (2010), 669-672, MR2652495.
[32] N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), 2365-2390, MR2680169.
[33] G. Walker and R. M. W. Wood, Young tableaux and the Steenrod algebra, in: Proceedings of the International School and Conference in Algebraic Topology, Hà Nội 2004, Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, vol. 11, 2007, 379-397, MR2402815.
[34] G. Walker and R. M. W. Wood, Weyl modules and the mod 2 Steenrod algebra, J. Algebra 311 (2007), 840-858, MR2314738.
[35] G. Walker and R. M. W. Wood, Flag modules and the hit problem for the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 147 (2009), 143-171, MR2507313.
[36] R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Phil. Soc. 105 (1989) 307-309, MR0974986.
[37] R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998) 449517, MR1643834.
[38] R. M. W. Wood, Hit problems and the Steenrod algebra, in: Proceedings of the summer school "Interactions between algebraic topology and invariant theory", a satellite conference of the third European congress of mathematics, Lecture Course, Ioannina University, Greece, June 2000, Published in Ioannina University reports, 2001, pp. 65-103.

Department of Mathematics, Quy Nhơn University,
170 An Dương Vương, Quy Nhơn, Bình Định, Việt Nam.
E-mail: nguyensum@qnu.edu.vn

[^0]: 1_{2010} Mathematics Subject Classification. Primary 55S10; 55S05, 55T15.
 ${ }^{2}$ Keywords and phrases: Steenrod squares, polynomial algebra, Peterson hit problem.

