
ON THE PETERSON HIT PROBLEM

NGUYỄN SUM

Abstract. Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the
prime field of two elements, F2, in k variables x1, x2, . . . , xk, each of degree
1. We study the hit problem, set up by F. Peterson, of finding a minimal set
of generators for Pk as a module over the mod-2 Steenrod algebra, A. In this
paper, we study a minimal set of generators for A-module Pk in some so-call
generic degrees and apply these results to explicitly determine the hit problem
for k = 4.

Dedicated to Prof. N. H. V. Hưng on the occasion of his sixtieth birthday

1. Introduction and statement of results

Let Vk be an elementary abelian 2-group of rank k. Denote by BVk the classifying
space of Vk. It may be thought of as the product of k copies of the real projective
space RP∞. Then

Pk := H∗(BVk) ∼= F2[x1, x2, . . . , xk],
a polynomial algebra in k variables x1, x2, . . . , xk, each of degree 1. Here the coho-
mology is taken with coefficients in the prime field F2 of two elements.

Being the cohomology of a space, Pk is a module over the mod 2 Steenrod algebra
A. The action of A on Pk can explicitly be given by the formula

Sqi(xj) =


xj , i = 0,
x2

j , i = 1,
0, otherwise,

and subject to the Cartan formula

Sqn(fg) =
n∑

i=0
Sqi(f)Sqn−i(g),

for f, g ∈ Pk (see Steenrod and Epstein [29]).
A polynomial f in Pk is called hit if it can be written as a finite sum f =∑
i>0 Sq

i(fi) for some polynomials fi. That means f belongs to A+Pk, where A+

denotes the augmentation ideal in A. We are interested in the hit problem, set up
by F. Peterson, of finding a minimal set of generators for the polynomial algebra
Pk as a module over the Steenrod algebra. In other words, we want to find a basis
of the F2-vector space QPk := Pk/A+.Pk = F2 ⊗A Pk.

The hit problem was first studied by Peterson [21, 22], Wood [36], Singer [27], and
Priddy [23], who showed its relationship to several classical problems respectively
in cobordism theory, modular representation theory, Adams spectral sequence for
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the stable homotopy of spheres, and stable homotopy type of classifying spaces of
finite groups. The vector space QPk was explicitly calculated by Peterson [21] for
k = 1, 2, by Kameko [14] for k = 3. The case k = 4 has been treated by Kameko [16]
and by us [30].

Several aspects of the hit problem were then investigated by many authors. (See
Boardman [1], Bruner, Hà and Hưng [2], Carlisle and Wood [3], Crabb and Hub-
buck [4], Giambalvo and Peterson [5], Hà [6], Hưng [7], Hưng and Nam [8, 9], Hưng
and Peterson [10, 11], Janfada and Wood [12, 13], Kameko [14, 15], Minami [17],
Mothebe [18], Nam [19, 20], Repka and Selick [24], Singer [28], Silverman [25],
Walker and Wood [33, 34, 35], Wood [37, 38] and others.)

The µ-function is one of the numerical functions that have much been used in
the context of the hit problem. For a positive integer n, by µ(n) one means the
smallest number r for which it is possible to write n =

∑
16i6r(2di − 1), where

di > 0. A routine computation shows that µ(n) = s if and only if there exists
uniquely a sequence of integers d1 > d2 > . . . > ds−1 > ds > 0 such that

n = 2d1 + 2d2 + . . .+ 2ds−1 + 2ds − s. (1.1)

From this it implies n− s is even and µ( n−s
2 ) 6 s.

Denote by (QPk)n the subspace of QPk consisting of all the classes represented
by homogeneous polynomials of degree n in Pk.

Peterson [21] made the following conjecture, which was subsequently proved by
Wood [36].

Theorem 1.1 (Wood [36]). If µ(n) > k, then (QPk)n = 0.

One of the main tools in the study of the hit problem is Kameko’s homomorphism
S̃q

0
∗ : QPk → QPk. This homomorphism is induced by the F2-linear map, also

denoted by S̃q
0
∗ : Pk → Pk, given by

S̃q
0
∗(x) =

{
y, if x = x1x2 . . . xky

2,

0, otherwise,

for any monomial x ∈ Pk. Note that S̃q
0
∗ is not an A-homomorphism. However,

S̃q
0
∗Sq

2t = SqtS̃q
0
∗, and S̃q

0
∗Sq

2t+1 = 0 for any non-negative integer t.

Theorem 1.2 (Kameko [14]). Let m be a positive integer. If µ(2m+ k) = k, then
S̃q

0
∗ : (QPk)2m+k → (QPk)m is an isomorphism of GLk-modules.

Based on Theorems 1.1 and 1.2, the hit problem is reduced to the case of degree
n with µ(n) = s < k.

The hit problem in the case of degree n of the form (1.1) with s = k − 1,
di−1 − di > 1 for 2 6 i < k and dk−1 > 1 was studied by Crabb and Hubbuck [4],
Nam [19] and Repka and Selick [24].

In this paper, we explicitly determine the hit problem for the case k = 4. First,
we study the hit problem for the cases of degree n of the form (1.1) for s = k − 1.
The following theorem gives an inductive formula for the dimension of (QPk)n in
this case.
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Theorem 1.3. Let n =
∑

16i6k−1(2di −1) with di positive integers such that d1 >

d2 > . . . > dk−2 > dk−1, and let m =
∑

16i6k−2(2di−dk−1−1). If dk−1 > k−1 > 1,
then

dim(QPk)n = (2k − 1) dim(QPk−1)m.

For dk−1 > k, the theorem follows from the results in Nam [19] and the present
author [32]. However, for dk−1 = k − 1, the theorem is new.

Based on Theorem 1.3, we explicitly compute QP4.

Theorem 1.4. Let n be an arbitrary positive integer with µ(n) < 4. The dimension
of the F2-vector space (QP4)n is given by the following table:

n s = 1 s = 2 s = 3 s = 4 s > 5
2s+1 − 3 4 15 35 45 45
2s+1 − 2 6 24 50 70 80
2s+1 − 1 14 35 75 89 85
2s+2 + 2s+1 − 3 46 94 105 105 105
2s+3 + 2s+1 − 3 87 135 150 150 150
2s+4 + 2s+1 − 3 136 180 195 195 195
2s+t+1 + 2s+1 − 3, t > 4 150 195 210 210 210
2s+1 + 2s − 2 21 70 116 164 175
2s+2 + 2s − 2 55 126 192 240 255
2s+3 + 2s − 2 73 165 241 285 300
2s+4 + 2s − 2 95 179 255 300 315
2s+5 + 2s − 2 115 175 255 300 315
2s+t + 2s − 2, t > 6 125 175 255 300 315
2s+2 + 2s+1 + 2s − 3 64 120 120 120 120
2s+3 + 2s+2 + 2s − 3 155 210 210 210 210
2s+t+1 + 2s+t + 2s − 3, t > 3 140 210 210 210 210
2s+3 + 2s+1 + 2s − 3 140 225 225 225 225
2s+u+1 + 2s+1 + 2s − 3, u > 3 120 210 210 210 210
2s+u+2 + 2s+2 + 2s − 3, u > 2 225 315 315 315 315
2s+t+u + 2s+t + 2s − 3, u > 2, t > 3 210 315 315 315 315.

The space QP4 was also computed in Kameko [16] by using computer calculation.
However the manuscript is unpublished at the time of the writing.

Carlisle and Wood showed in [3] that the dimension of the vector space (QPk)m

is uniformly bounded by a number depended only on k. In 1990, Kameko made
the following conjecture in his Johns Hopkins University PhD thesis [14].

Conjecture 1.5 (Kameko [14]). For every nonnegative integer m,

dim(QPk)m 6
∏

16i6k

(2i − 1).

The conjecture was shown by Kameko himself for k 6 3 in [14]. From Theorem
1.4, we see that the conjecture is also true for k = 4.

By induction on k, using Theorem 1.3, we obtain the following.
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Corollary 1.6. Let n =
∑

16i6k−1(2di − 1) with di positive integers. If d1 − d2 >
2, di−1 − di > i− 1, 3 6 i 6 k − 1, dk−1 > k − 1, then

dim(QPk)n =
∏

16i6k

(2i − 1).

For the case di−1 − di > i, 2 6 i 6 k − 1, and dk−1 > k, this result is due to
Nam [19]. This corollary also shows that Kameko’s conjecture is true for the degree
n as given in the corollary.

By induction on k, using Theorems 1.3, 1.4 and the fact that the dual of the
Kameko squaring is an epimorphism, one gets the following.

Corollary 1.7. Let n =
∑

16i6k−2(2di−1) with di positive integers and let dk−1 =
1, nr =

∑
16i6r−2(2di−dr−1−1)−1 with r = 5, 6, . . . , k. If d1−d2 > 4, di−2−di−1 >

i, for 4 6 i 6 k and k > 5, then

dim(QPk)n =
∏

16i6k

(2i − 1) +
∑

56r6k

( ∏
r+16i6k

(2i − 1)
)

dimKer(S̃q
0
∗)nr

,

where (S̃q
0
∗)nr

: (QPr)2nr+r → (QPr)nr
denotes the squaring operation S̃q

0
∗ in

degree 2nr + r. Here, by convention,
∏

r+16i6k(2i − 1) = 1 for r = k.

This corollary has been proved in [32] for the case di−2 − di−1 > i + 1 with
3 6 i 6 k.

Obviously 2nr +r =
∑

16i6r−2(2ei−1), where ei = di−dr−1+1 for 1 6 i 6 r−2.
So, in degree 2nr + r of Pr, there is a so-called spike x = x2e1−1

1 x2e2−1
2 . . . x2er−2−1

r−2 ,
i.e. a monomial whose exponents are all of the form 2e − 1 for some e. Since
the class [x] in (QPk)2nr+r represented by the spike x is nonzero and S̃q

0
∗([x]) =

0, we have Ker(S̃q
0
∗)nr

6= 0, for any 5 6 r 6 k. Therefore, by Corollary 1.7,
Kameko’s conjecture is not true in degree n = 2nk + k for any k > 5, where
nk = 2d1−1 + 2d2−1 + . . .+ 2dk−2−1 − k + 1.

This paper is organized as follows. In Section 2, we recall some needed informa-
tion on the admissible monomials in Pk and Singer’s criterion on the hit monomials.
We prove Theorem 1.3 in Section 3 by describing a basis of (QPk)n in terms of a
given basis of (QPk−1)m. In Section 4, we recall the results on the hit problem for
k 6 3. Theorem 1.4 will be proved in Section 5 by explicitly determining all of the
admissible monomials in P4.

The first formulation of this paper was given in a 240-page preprint in 2007 [30],
which was then publicized to a remarkable number of colleagues. One year latter,
we found the negative answer to Kameko’s conjecture on the hit problem [31, 32].
Being led by the insight of this new study, we have remarkably reduced the length
of the paper.

2. Preliminaries

In this section, we recall some results in Kameko [14] and Singer [28] which will
be used in the next sections.
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Notation 2.1. Throughout the paper, we use the following notations.
Nk = {1, 2, . . . , k},
XI = Xi1,i2,...,ir

= x1 . . . x̂i1 . . . x̂ir
. . . xk

=
∏

i∈Nk\I

xi, I = {i1, i2, . . . , xir} ⊂ Nk,

In particular, we have
XNk

= 1,
X∅ = x1x2 . . . xk,

Xi = x1 . . . x̂i . . . xk, 1 6 i 6 k.
Let αi(a) denote the i-th coefficient in dyadic expansion of a nonnegative integer

a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or 1 and i > 0.
Denote by α(a) the number of one in dyadic expansion of a.

Let x = xa1
1 xa2

2 . . . xak

k ∈ Pk. Denote by νj(x) = aj , 1 6 j 6 k. Set
Ii(x) = {j ∈ Nk : αi(νj(x)) = 0},

for i > 0. Then we have
x =

∏
i>0

X2i

Ii(x).

For a polynomial f in Pk, we denote by [f ] the class in QPk represented by f .
For a subset S ⊂ Pk, we denote

[S] = {[f ] : f ∈ S} ⊂ QPk.

Definition 2.2. For a monomial x, define two sequences associated with x by
ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .),
σ(x) = (a1, a2, . . . , ak),

where ωi(x) =
∑

16j6k αi−1(νj(x)) = degXIi−1(x), i > 1.
The sequence ω(x) is called the weight vector of x (see Wood [37]). The weight

vectors and the sigma vectors can be ordered by the left lexicographical order.
Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of nonnegative integers such that

ωi = 0 for i � 0. Define degω =
∑

i>0 2i−1ωi. Denote by Pk(ω) the subspace of
Pk spanned by all monomials y such that deg y = degω, ω(y) 6 ω and P−k (ω) the
subspace of Pk spanned by all monomials y ∈ Pk(ω) such that ω(y) < ω. Denote
by A+

s the subspace of A spanned by all Sqj with 1 6 j < 2s.
Definition 2.3. Let ω be a sequence of nonnegative integers and f, g two homo-
geneous polynomials of the same degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk.
ii) f '(s,ω) g if and only if f − g ∈ A+

s Pk + P−k (ω).

Since A+
0 Pk = 0, f '(0,ω) g if and only if f − g ∈ P−k (ω). If x is a monomial in

Pk and ω = ω(x), then we denote x 's g if and only if x '(s,ω(x)) g.
Obviously, the relations ≡ and '(s,ω) are equivalence relations.
We recall some relations on the action of the Steenrod squares on Pk.

Proposition 2.4. Let f be a homogeneous polynomial in Pk.
i) If i > deg f , then Sqi(f) = 0. If i = deg f , then Sqi(f) = f2.
ii) If i is not divisible by 2s, then Sqi(f2s) = 0 while Sqr2s(f2s) = (Sqr(f))2s .
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Proposition 2.5. Let x, y be monomials and f, g homogeneous polynomials in Pk

such that deg x = deg f , deg y = deg g.
i) If ωi(x) 6 1 for i > s and x 's f , then xy2s 's fy

2s .
ii) If ωi(x) = 0 for i > s, x 's f and y 'r g, then xy2s 's+r fg

2s .

Proof. Suppose that

x+ f +
∑

16i<2s

Sqi(zi) = h ∈ P−k (ω(x))

where zi ∈ Pk. From this and Proposition 2.4, we have Sqi(zi)y2s = Sqi(ziy
2s).

Observe that ωi(xy2s) = ωi(x) for i = 1, 2, . . . , s. If z is a monomial and z ∈
P−k (ω(x)), then there exists an index i > 1 such that ωj(z) = ωj(x), j = 1, 2, . . . , i−
1 and ωi(z) < ωi(x). If i > s, then ωi(x) = 1, ωi(z) = 0. Then we have

αi−1

deg x−
i−1∑
j=1

2j−1ωj(x)

 = αi−1

2i−1 +
∑
j>i

2j−1ωj(x))

 = 1.

On the other hand, since deg x = deg z, ωi(z) = 0 and ωj(z) = ωj(x), j =
1, 2, . . . , i− 1, one gets

αi−1

deg x−
i−1∑
j=1

2j−1ωj(x)

 = αi−1

deg z −
i−1∑
j=1

2j−1ωj(z)


= αi−1

∑
j>i

2j−1ωj(z)

 = 0.

This is a contradiction. Hence 1 6 i 6 s.
From these about equalities and the fact that h ∈ P−k (ω(x)), one gets

xy2s

+ fy2s

+
∑

16i<2s

Sqi(ziy
2s

) = hy2s

∈ P−k (ω(xy2s

)).

The first part of the proposition is proved.
Suppose that y + g +

∑
16j<2r Sqj(uj) = h1 ∈ P−k (ω(y)), where uj ∈ Pk. Then

xy2s

= xg2s

+ xh2s

1 +
∑

16j<2r

xSqj2s

(u2s

j ).

Since ωi(x) = 0 for i > s and h1 ∈ P−k (ω(y)), we get xh2s

1 ∈ P−k (ω(xy2s)). Using
the Cartan formula and Proposition 2.4, we obtain

xSqj2s

(u2s

j ) = Sqj2s

(xu2s

j ) +
∑

0<b6j

Sqb2s

(x)(Sqj−b(uj))2s

.

Since ωi(x) = 0 for i > s, we have x =
∏

06i<s X
2i

Ii(x). Using the Cartan formula
and Proposition 2.4, we see that Sqb2s(x) is a sum of polynomials of the form∏

06i<s

(Sqbi(XIi(x)))2i

,

where
∑

06i<s bi2i = b2s and 0 6 bi 6 degXIi(x). Let ` be the smallest index such
that b` > 0 with 0 6 ` < s. Suppose that a monomial z appears as a term of the
polynomial

(∏
06i<s(Sqbi(XIi(x)))2i

)
(Sqj−b(uj))2s . Then ωt(z) = degXIt−1(x) =
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ωt(x) = ωt(xy2s) for t 6 `, and ω`+1(z) = degXI`(x)− b` < degXI`(x) = ω`+1(x) =
ω`+1(xy2s). Hence( ∏

06i<s

(Sqbi(XIi(x)))2i
)

(Sqj−b(uj))2s

∈ P−k (ω(xy2s

)).

This implies Sqb2s(x)(Sqj−b(uj))2s ∈ P−k (ω(xy2s)) for 0 < b 6 j. So one gets

xy2s

+ xg2s

+
∑

16j<2r

Sqj2s

(xu2s

j ) ∈ P−k (ω(xy2s

)).

Since h ∈ P−k (ω(x)), we have hg2s ∈ P−k (ω(xy2s)). Using Proposition 2.4 and
the Cartan formula, we get

xg2s

+ fg2s

+
∑

16i<2s

Sqi(zig
2s

) = hg2s

∈ P−k (ω(xy2s

)).

Note that 1 6 j2s < 2r+s for 1 6 j < 2r. Combining the above equalities gives
xy2s − fg2s ∈ Ar+sPk + P−k (ω(xy2s)). This implies xy2s 'r+s xg

2s 'r+s fg
2s .

The proposition is proved. �

Definition 2.6. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.7. A monomial x is said to be inadmissible if there exist monomials
y1, y2, . . . , yt such that yj < x for j = 1, 2, . . . , t and x−

∑t
j=1 yj ∈ A+Pk.

A monomial x is said to be admissible if it is not inadmissible.

Obviously, the set of all the admissible monomials of degree n in Pk is a minimal
set of A-generators for Pk in degree n.

Definition 2.8. A monomial x is said to be strictly inadmissible if and only if there
exist monomials y1, y2, . . . , yt such that yj < x, for j = 1, 2, . . . , t and x−

∑t
j=1 yj ∈

A+
s Pk with s = max{i ;ωi(x) > 0}.

It is easy to see that if x is strictly inadmissible, then it is inadmissible. The
following theorem is a modification of a result in [14].

Theorem 2.9 (Kameko [14], Sum [32]). Let x, y, w be monomials in Pk such that
ωi(x) = 0 for i > r > 0, ωs(w) 6= 0 and ωi(w) = 0 for i > s > 0.

i) If w is inadmissible, then xw2r is also inadmissible.
ii) If w is strictly inadmissible, then xw2r

y2r+s is inadmissible.

Proposition 2.10 ([32]). Let x be an admissible monomial in Pk. Then we have
i) If there is an index i0 such that ωi0(x) = 0, then ωi(x) = 0 for all i > i0.
ii) If there is an index i0 such that ωi0(x) < k, then ωi(x) < k for all i > i0.

Now, we recall a result of Singer [28] on the hit monomials in Pk.

Definition 2.11. A monomial z in Pk is called a spike if νj(z) = 2sj − 1 for sj a
nonnegative integer and j = 1, 2, . . . , k. If z is a spike with s1 > s2 > . . . > sr−1 >
sr > 0 and sj = 0 for j > r, then it is called a minimal spike.

The following is a criterion for the hit monomials in Pk.
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Theorem 2.12 (Singer [28]). Suppose x ∈ Pk is a monomial of degree n, where
µ(n) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then x is hit.

From this theorem, we see that if z is a minimal spike, then Pk(ω(z)) ⊂ A+Pk.
The following lemmas were proved in [32].

Lemma 2.13 ([32]). Let n =
∑

16i6k−1(2di−1) with di positive integers such that
d1 > d2 > . . . > dk−2 > dk−1 > 0, and x a monomial of degree n in Pk. If [x] 6= 0,
then ωi(x) = k − 1 for 1 6 i 6 dk−1.

Lemma 2.14 ([32]). Let n =
∑

16i6k−1(2di − 1) with di positive integers such
that d1 > d2 > . . . > dk−2 > dk−1 > 0, and x a monomial in Pk such that
ωi(x) = k− 1, for i = 1, 2, . . . , s 6 dk−1 and ωi(x) = 0 for i > s. Suppose y, f and
g are polynomials in Pk with deg f = deg x and deg y = deg g = (n − deg x)/2s =
2d1−s + . . .+ 2dk−2−s + 2dk−1−s − k + 1.

i) If x 's f , then xg2s ≡ fg2s .
ii) If y ≡ g, then xy2s ≡ xg2s .

For latter use, we set

P 0
k = 〈{x = xa1

1 xa2
2 . . . xak

k ; a1a2 . . . ak = 0}〉,
P+

k = 〈{x = xa1
1 xa2

2 . . . xak

k ; a1a2 . . . ak > 0}〉.

It is easy to see that P 0
k and P+

k are the A-submodules of Pk. Furthermore, we
have the following.

Proposition 2.15. We have a direct summand decomposition of the F2-vector
spaces

QPk = QP 0
k ⊕QP+

k .

Here QP 0
k = P 0

k /A+.P 0
k and QP+

k = P+
k /A+.P+

k .

3. Proof of Theorem 1.3

We denote

Nk = {(i; I); I = (i1, i2, . . . , ir), 1 6 i < i1 < . . . < ir 6 k, 0 6 r < k}.

Let (i; I) ∈ Nk and j ∈ Nk. Denote by r = `(I) the length of I, and

I ∪ j =
{
I, if j ∈ I,
(i1, . . . , it−1, j, it, . . . , ir), if it−1 < j < it, 1 6 t 6 r + 1.

Here i0 = 0 and ir+1 = k + 1.
For 2 6 h < k, we set Nh−1 ∪ h = {(i; I ∪ h); (i; I) ∈ Nh−1}. Then we have

Nk = (N1 ∪ 2) ∪ . . . ∪ (Nk−1 ∪ k) ∪ {(1; ∅), . . . , (k; ∅)}. (3.1)

For 1 6 i 6 k, define the homomorphism fi = fk;i : Pk−1 → Pk of algebras by
substituting

fi(xj) =
{
xj , if 1 6 j < i,

xj+1, if i 6 j < k.
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Definition 3.1. Let (i; I) ∈ Nk, let r = `(I), and let u be an integer with 1 6 u 6 r.
A monomial x ∈ Pk−1 is said to be u-compatible with (i; I) if all of the following
hold:

i) νi1−1(x) = νi2−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
ii) νiu−1(x) > 2r − 1,
iii) αr−t(νiu−1(x)) = 1, ∀t, 1 6 t 6 u,
iv) αr−t(νit−1(x)) = 1, ∀t, u < t 6 r.

Clearly, a monomial x can be u-compatible with a given (i; I) ∈ Nk, r = `(I) > 0,
for at most one value of u. By convention, x is 1-compatible with (i; ∅).

Definition 3.2. Let (i; I) ∈ Nk, x(I,u) = x2r−1+...+2r−u

iu

∏
u<t6r x

2r−t

it
for 1 6 u 6

r = `(I), x(∅,1) = 1. For a monomial x in Pk−1, we define the monomial φ(i;I)(x)
in Pk by setting

φ(i;I)(x) =


(x2r−1

i fi(x))/x(I,u), if there exists u such that
x is u-compatible with (i, I),

0, otherwise.
Then we have an F2-linear map φ(i;I) : Pk−1 → Pk. In particular, φ(i;∅) = fi.
Let x = X2d−1y2d , with y a monomial in Pk−1 and X = x1x2 . . . , xk−1 ∈ Pk−1.
If r < d, then x is 1-compatible with (i; I) and

φ(i;I)(x) = φ(i;I)(X2d−1)fi(y)2d

= x2r−1
i

∏
16t6r

x2d−2r−t−1
it

X2d−1
i,i1,...,ir

fi(y)2d

. (3.2)

If d = r, νj−1(y) = 0, j = i1, i2, . . . , iu−1 and νiu−1(y) > 0, then x is u-compatible
with (i; I) and

φ(i;I)(x) = φ(iu;Ju)(X2d−1)fi(y)2d

, (3.3)
where Ju = (iu+1, . . . , ir).

Let B be a finite subset of Pk−1 consisting of some homogeneous polynomials in
degree n. We set

Φ0(B) =
⋃

16i6k

φ(i;∅)(B) =
⋃

16i6k

fi(B).

Φ+(B) =
⋃

(i;I)∈Nk,0<`(I)6k−1

φ(i;I)(B) \ P 0
k .

Φ(B) = Φ0(B)
⋃

Φ+(B).

It is easy to see that if Bk−1(n) is a minimal set of generators for Pk−1 in degree
n, then Φ0(Bk−1(n)) is a minimal set of generators for A-module P 0

k in degree n
and Φ+(Bk−1(n)) ⊂ P+

k .

Proposition 3.3. Let n =
∑

16i6k−1(2di − 1) with di positive integers such that
d1 > d2 > . . . > dk−2 > dk−1 > k−1 > 1. If Bk−1(n) is a minimal set of generators
for A-module Pk−1 in degree n, then Bk(n) = Φ(Bk−1(n)) is also a minimal set of
generators for A-module Pk in degree n.

For dk−1 > k, this proposition is a modification of a result in Nam [19]. For
dk−2 = dk−1 > k, it has been proved in [32].

We prepare some lemmas for the proof of this proposition.
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Lemma 3.4. Let j0, j1, . . . , jd−1 ∈ Nk. Then there is (i; I) ∈ Nk such that

x =
∏

06t<d

X2t

jt
'd−1 φ(i;I)(X2d−1),

where i = min{j0, j1, . . . , jd−1}.

Lemma 3.5. Let n =
∑

16i6k−1(2di − 1) with di positive integers such that d1 >

d2 > . . . > dk−2 > dk−1 > 0, and let y0 be a monomial in (Pk)m−1, yi = y0xi for
1 6 i 6 k, and (i; I) ∈ Nk.

i) If 0 < r = `(I) < d = dk−1, then

φ(i;I)(X2d−1)y2d

i ≡
∑

16j<i

φ(j;I)(X2d−1)y2d

j +
∑

i<j6k

φ(ij ;Ij)(X2d−1)y2d

j ,

where ij = min(j, I), Ij = I for j < min I, and Ij = (I ∪ j) \ {ij} for j > min I.
ii) If r + 1 < d, then

φ(i;I)(X2d−1)y2d

i ≡
∑

16j<i

φ(j;I∪i)(X2d−1)y2d

j +
∑

i<j6k

φ(i;I∪j)(X2d−1)y2d

j .

Denote by It = (t+ 1, t+ 2, . . . , k) for 1 6 t 6 k. Set

Yt =
k∑

r=t

φ(t;It)(X2d−1)x2d

r , d > k + 1− t.

Lemma 3.6. For 1 < t 6 k,

Yt '(k,ω)
∑
(j;J)

φ(j;J)(X2d−1)x2d

j ,

where the sum runs over some (j; J) ∈ Nk with 1 6 j < t, J ⊂ It−1, J 6= It−1 and
ω = ω(X2d−1

1 x2d

1 ).

We assume that all elements of Bk−1(n) are monomials. Denote by B = Bk−1(n).
We set

C = {z ∈ B : ν1(z) > 2k−1 − 1},
D = {z ∈ B : ν1(z) = 2k−1 − 1, ν2(z) > 2k−1 − 1},
E = {z ∈ B : ν1(z) = ν2(z) = 2k−1 − 1}.

Since ωk(z) > k−3 for all z ∈ B, we have B = C∪D∪E . If d = dk−1 > k−1, then
D = E = ∅. If dk−2 > dk−1 = k − 1, then E = ∅. We set B̄ = {z̄;X2d−1z̄2d ∈ B}. If
either d > k or I 6= I1, then φ(i;I)(z) = φ(i;I)(X2d−1)fi(z̄)2d . If d = dk−1 = k − 1,
then

φ(1;I1)(z) =


φ(2;I2)(X2d−1)f1(z̄)2d

, if z ∈ C,
φ(3;I3)(X2d−1)f2(z̄)2d

, if z ∈ D,
φ(4;I4)(X2d−1)f3(z̄)2d

, if z ∈ E .
(3.4)

For any (i; I) ∈ Nk, we define the homomorphism p(i;I) : Pk → Pk−1 of algebras
by substituting

p(i;I)(xj) =


xj , if 1 6 j < i,∑

s∈I xs−1, if j = i,

xj−1, if i < j 6 k.
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Then p(i;I) is a homomorphism of A-modules. In particular, for I = ∅, we have
p(i;∅)(xi) = 0.

Lemma 3.7. Let z ∈ B, (i; I), (j; J) ∈ Nk and `(J) 6 `(I).
i) If either d > k or d = k − 1 and I 6= I1, then

p(j;J)(φ(i;I)(z)) ≡
{
z, if (j; J) = (i; I),
0, if (j; J) 6= (i; I).

ii) If z ∈ C and d = k − 1, then

p(i;I)(φ(1;I1)(z)) ≡


z, if (i; I) = (1; I1),
0 mod〈D ∪ E〉, if (i; I) = (2; I2)
0, otherwise .

iii) If z ∈ D, then

p(i;I)(φ(1;I1)(z)) ≡


z, if (i; I) = (1; I1), (1; I2), (2; I2),
0 mod〈E〉, if (i; I) = (3; I3),
0, otherwise .

iv) If z ∈ E, then

p(i;I)(φ(1;I1)(z)) ≡
{
z if I3 ⊂ I,
0, otherwise.

The above lemmas will be proved in the end of the section.
We recall the following.

Lemma 3.8 (Nam [19]). Let x be a monomial in Pk. Then x ≡
∑
x̄, where x̄ are

monomials with ν1(x̄) = 2t − 1 and t = α(ν1(x)).

Proof of Proposition 3.3. Denote by P(n) the subspace of (Pk)n spanned by all
elements of the set Bk(n).

Let x be a monomial of degree n in Pk and [x] 6= 0. By Lemma 2.13, we have
ωi(x) = k − 1 for 1 6 i 6 dk−1 = d. Hence we obtain x =

(∏
06t<d X

2t

jt

)
ȳ2d

, for
suitable monomial ȳ ∈ (Pk)m, with m =

∑
16i6k−2(2di−d − 1).

According to Lemmas 3.4 and 2.14, there is (i; I) ∈ Nk such that

x =
( ∏

06t<d

X2t

jt

)
ȳ2d

≡ φ(i;I)(X2d−1)ȳ2d

, (3.5)

where r = `(I) < d.
Set hu = 2d1−u + . . . + 2dk−2−u + 2dk−1−u − k + 1, for 0 6 u 6 d. We have

h0 = n, hd = m, 2hu + k − 1 = hu−1 and µ(2hu + k − 1) = k − 1 for 1 6 u 6 d.
By Theorem 1.2, the squaring operation (S̃q

0
∗)hu

: (QPk−1)hu−1 → (QPk−1)hu
is

an isomorphism of F2-vector spaces. So the iterated squaring operation

(S̃q
0
∗)d = (S̃q

0
∗)hd

. . . (S̃q
0
∗)h1 : (QPk−1)n → (QPk−1)m

is also an isomorphism of F2-vector spaces. Hence

B̄k−1(m) = (S̃q
0
∗)d(Bk−1(n)) = {z̄ ∈ (Pk−1)m : X2d−1z̄2d

∈ Bk−1(n)}
is a minimal set of A-generators for Pk−1 in degree m.
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Now, we prove [x] ∈ [P(n)]. The proof is divided into many cases.

Case 3.5.1. ȳ = fi(y) with y ∈ (Pk−1)m.

Since y ∈ (Pk−1)m, we have y ≡ z̄1 + z̄2 + . . .+ z̄s with z̄t monomials in B̄k−1(m).
Using Lemma 2.14, we get

x ≡ φ(i;I)(X2d−1)fi(y)2d

≡
∑

16t6s

φ(i;I)(X2d−1)fi(z̄t)2d

.

Since φ(i;I)(X2d−1)fi(z̄t)2d = φ(i;I)(X2d−1z̄2d

t ) and X2d−1z̄2d

t ∈ Bk−1(n), we get
[x] ∈ [P(n)].

Case 3.5.2. d > k, ȳ = xa
i fi(y) with y ∈ (Pk−1)m−a.

If i = 1 and either I 6= I1 or d > k, then d− r − 1 > 1. Applying Lemma 3.5(ii)
with y0 = xa−1

1 f1(y), we get

x ≡
∑

26j6k

φ(1;I∪j)(X2d−1)(xa−1
1 f1(xj−1y))2d

.

From this and the inductive hypothesis, we obtain [x] ∈ [P(n)].
If I = I1 and d = k, then r = d − 1. Using Lemma 3.5(i) with y0 = xa−1

1 f1(y)
and Lemma 3.6, we get

x ≡
k∑

j=2
φ(2;I2)(X2k−1)(xjy0)2k

= Y2y
2k

0

≡
∑

J 6=I1

φ(1;J)(X2k−1)(xa
1f1(y))2k

.

Since J 6= I1, one gets [x] ∈ [P(n)].
Suppose i > 1. Then r+1 < k 6 d. Applying Lemma 3.5(ii) with y0 = xa−1

i fi(y),
we obtain

x ≡
∑

16j<i

φ(j;I∪i)(X2d−1)y2d

j +
∑

i<j6k

φ(i;I∪j)(X2d−1)y2d

j ,

where yj = xjy0 = xa−1
i fi(xj−1y) for j > i. Using the inductive hypothesis, we get

[x] ∈ [P(n)]. So the proposition is proved for d > k.

In the remaining part of the proof, we assume that d = k − 1.

Case 3.5.3. (i; I) = (2; I2) and ȳ = f1(y) with y ∈ (Pk−1)m, ν1(y) > 0.

Since y ∈ (Pk−1)m, we have y ≡ z̄1 + z̄2 + . . .+ z̄s with z̄t monomials in B̄k−1(m).
Using Lemma 2.14, we get

x ≡ φ(2;I2)(X2d−1)f1(y)2d

≡
∑

16t6s

φ(2;I2)(X2d−1)f1(z̄t)2d

.

If ν1(z̄t) > 0, then φ(2;I2)(X2d−1)f1(z̄t)2d = φ(1;I1)(X2d−1z̄2d

t ). If ν1(z̄t) = 0,
then f1(z̄t) = f2(z̄t) and φ(2;I2)(X2d−1)f1(z̄t)2d = φ(2;I2)(X2d−1z̄2d

t ). Hence [x] ∈
[P(n)].

Case 3.5.4. (i; I) = (3; I3) and ȳ = f2(y) with y ∈ (Pk−1)m, ν1(y) = 0, ν2(y) > 0.
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Since y ∈ (Pk−1)m and ν1(y) = 0, we have y ≡ z̄1 + z̄2 + . . . + z̄s with z̄t

polynomials in Bk−1(m) and ν1(z̄t) = 0. Using Lemma 2.14, we get

x ≡ φ(3;I3)(X2d−1)f2(y)2d

≡
∑

16t6s

φ(3;I3)(X2d−1)f2(z̄t)2d

.

If ν2(z̄t) > 0, then φ(3;I3)(X2d−1)f2(z̄t)2d = φ(1;I1)(X2d−1z̄2d

t ). If ν2(z̄t) = 0,
then f2(z̄t) = f3(z̄t) and φ(3;I3)(X2d−1)f2(z̄t)2d = φ(3;I3)(X2d−1z̄2d

t ). Hence [x] ∈
[P(n)].

Case 3.5.5. (i; I) = (4; I4) and ȳ = f3(y) with y ∈ (Pk−1)m, ν1(y) = ν2(y) = 0.

Since y ∈ (Pk−1)m and ν1(y) = ν2(y) = 0, we have y ≡ z̄1 + z̄2 + . . .+ z̄s with z̄t

polynomials in Bk−1(m) and ν1(z̄t) = ν2(z̄t) = 0. Using Lemma 2.14, we get

x ≡ φ(4;I4)(X2d−1)(f3(y))2d

≡
∑

16t6s

φ(4;I4)(X2d−1)f3(z̄t)2d

.

If ν3(z̄t) > 0, then φ(4;I4)(X2d−1)f3(z̄t)2d = φ(1;I1)(X2d−1z̄2d

t ). If ν3(z̄t) = 0,
then f3(z̄t) = f4(z̄t) and φ(4;I4)(X2d−1)f3(z̄t)2d = φ(4;I4)(X2d−1z̄2d

t ). Hence [x] ∈
[P(n)].

Case 3.5.6. ȳ = x2s

1 f1(y) with y ∈ (Pk−1)m−2s , i = 1 and `(I) < k − 2.

According to Lemma 3.8, x2s

1 f1(y)2d ≡ x1f1(g), for some polynomial g. So we
assume s = 0. Using Lemma 3.5(ii) with y0 = f1(y), we have

x ≡
k∑

r=2
φ(1;I∪r)(X2d−1)(f1(xr−1y))2d

.

Hence by Case 3.5.1, [x] ∈ [P(n)].

Case 3.5.7. ȳ = x2s

2 f2(y) with y ∈ (Pk−1)m−2s , ν1(y) = 0, i = 2 and `(I) < k− 3.

Using Lemma 3.8, we need only to prove [x] ∈ [P(n)] for s = 0. Using Lemma
3.5(ii) with y0 = f2(y), one gets

x ≡ φ(1;I∪2)(X2d−1)(x1f2(y))2d

+
k∑

r=3
φ(2;I∪r)(X2d−1)(f2(xr−1y))2d

.

Since ν1(y) = 0, f2(y) = f1(y), from this equalities, Cases 3.5.1 and 3.5.6, we get
[x] ∈ [P(n)].

Case 3.5.8. ȳ = x2s

3 f3(y), with y ∈ (Pk−1)m−2s , ν1(y) = ν2(y) = 0 and i = 3.

We need only to prove [x] ∈ [P(n)] for s = 0. Note that since ν1(y) = ν2(y) = 0,
we have f1(y) = f2(y) = f3(y). If I = I3, then by Case 3.5.4, [x] ∈ [P(n)]. If
`(I) < k − 4, then using Lemma 3.5(ii) with y0 = f3(y), we get

x ≡ φ(1;I∪3)(X2d−1)(x1f1(y))2d

+ φ(2;I∪3)(X2d−1)(f2(x1y))2d

+
k∑

r=4
φ(3;I∪r)(X2d−1)(f3(xr−1y))2d

.

From this equalities and Cases 3.5.1, 3.5.6, 3.5.7, we get [x] ∈ [P(n)].
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If dk−2 > dk−1 and I 6= I3, then ωk(x) = ω1(y)+1 = k−2. Hence α0(νj(y)) = 1
for j = 3, . . . , k− 1. Applying Lemma 3.5(i) with y0 = f3(y) and Theorem 2.12, we
get

x ≡ φ(1;I)(X2d−1)(x1f1(y))2d

+ φ(2;I)(X2d−1)(x2f2(y))2d

.

Hence by Cases 3.5.6 and 3.5.7, we get [x] ∈ [P(n)].
Suppose dk−2 = dk−1 and `(I) = k − 4. Then I = I3,u = (4, . . . , û, . . . , k) with

4 6 u 6 k. Since ωk(x) = ω1(y) + 1 = k − 3, we have ω1(y) = k − 4. Hence there
exists uniquely 3 6 t < k such that α0(νt(y)) = 0.

If t = u− 1, then using Lemma 3.5(i) with y0 = f3(y) and Theorem 2.12, we get

x ≡ φ(1;I)(X2d−1)(x1f1(y))2d

+ φ(2;I)(X2d−1)(x2f2(y))2d

+ φ(4;I4)(X2d−1)(f3(xty))2d

.

By Cases 3.5.5, 3.5.6 and 3.5.7, we get [x] ∈ [P(n)].
If u = 4 < t + 1, then using Lemma 3.5(i) with y0 = f3(y) and Theorem 2.12,

we get

x ≡ φ(1;I)(X2d−1)(x1f1(y))2d

+ φ(2;I)(X2d−1)(x2f2(y))2d

+ φ(5;I5)(X2d−1)(f3(xty))2d

.

Applying Lemma 3.5(i) with y0 = f3(xty/x4) and Theorem 2.12, we have

φ(5;I5)(X2d−1)(f3(xty))2d

≡
∑

16i63
φ(i;I5)(X2d−1)(xifi(xty/x4))2d

.

Since `(I5) = k − 5 < k − 4, using Cases 3.5.6, 3.5.7 and the above equalities, we
get [x] ∈ [P(n)].

Suppose that 4 < u 6= t+ 1. Using Lemma 3.5(i) with y0 = f3(y) and Theorem
2.12, we obtain

x ≡ φ(1;I)(X2d−1)(x1f1(y))2d

+ φ(2;I)(X2d−1)(x2f2(y))2d

+ φ(4;I\4)(X2d−1)(f3(xty))2d

.

Applying Lemma 3.5(i) with y0 = f3(xty/x3) and Theorem 2.12, we have

φ(4;I\4)(X2d−1)(f3(xty))2d

≡
∑

16i63
φ(i;I\4)(X2d−1)(xifi(xty/x3))2d

.

Since `(I \ 4) = k− 5 < k− 4, using Cases 3.5.6, 3.5.7 and the above equalities, we
get [x] ∈ [P(n)].

Case 3.5.9. ȳ = xb
3x

c
4f4(y) for y ∈ (Pk−1)m−b−c with νj(y) = 0, j = 1, 2, 3 and

i = 4.

Using Lemmas 3.8 and 2.14, we assume that b = 2s−1. We prove [x] ∈ [P(n)] by
double induction on (`(I), c). If c = 0, then by Case 3.5.1, [x] ∈ [P(n)]. If I 6= I4,
then applying Lemma 3.5(ii) with y0 = xb

3x
c−1
4 f4(y), we have

x ≡ φ(1;I∪4)(X2d−1)(x1f1(xb
2x

c−1
3 y))2d

+ φ(2;I∪4)(X2d−1)(x2f2(xb
2x

c−1
3 y))2d

+ φ(3;I∪4)(X2d−1)(x2s

3 f3(xc−1
3 y))2d

+
k∑

r=5
φ(4;I∪r)(X2d−1)(xb

3x
c−1
4 f4(xr−1y))2d

.
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From this equalities, Cases 3.5.6, 3.5.7, 3.5.8 and the inductive hypothesis, we
get [x] ∈ [P(n)].

If I = I4, then applying Lemma 3.5(i) with y0 = xb
3x

c−1
4 f4(y), we obtain

x ≡ φ(1;I4)(X2d−1)(x1f1(xb
2x

c−1
3 y))2d

+ φ(2;I4)(X2d−1)(x2f2(xb
2x

c−1
3 y))2d

+ φ(3;I4)(X2d−1)(x2s

3 f3(xc−1
3 y))2d

+ Y5y
2d

0 .

By Lemma 3.6 and Lemma 2.14,

Y5y
2d

0 ≡
∑

φ(j;J)(X2d−1)y2d

j ,

where 1 6 j < 5, J ⊂ I4 and J 6= I4. From the above equalities, Cases 3.5.6, 3.5.7,
3.5.8 and the inductive hypothesis, we get [x] ∈ [P(n)].

Case 3.5.10. ȳ = xb
3f3(y) for y ∈ (Pk−1)m−b with ν1(y) = ν2(y) = 0 and i = 3.

We prove [x] ∈ [P(n)] by double induction on (`(I), b). If b = 0, then by Case
3.5.1, [x] ∈ [P(n)]. If I = I3, then by Case 3.5.4, [x] ∈ [P(n)].

Suppose b > 0. If `(I) < k−4, then applying Lemma 3.5(ii) with y0 = xb−1
3 f3(y),

we obtain

x ≡ φ(1;I∪3)(X2d−1)(x1f1(xb−1
2 y))2d

+ φ(2;I∪3)(X2d−1)(x2f2(xb−1
2 y))2d

+
k∑

r=4
φ(3;I∪r)(X2d−1)(xb−1

3 f3(xr−1y))2d

.

Using Cases 3.5.6, 3.5.7 and the inductive hypothesis, we obtain [x] ∈ [P(n)].
Suppose that `(I) = k−4, and I = I3,u = (4, . . . , û, . . . , k), 3 < u 6 k. If dk−2 >

dk−1, then ωk(x) = ω1(y) + 1 = k − 2. Hence α0(νj(y)) = 1 for j = 3, . . . , k − 1.
Applying Lemma 3.5(i) with y0 = xb−1

3 f3(y) and Theorem 2.12, we get

x ≡ φ(1;I)(X2d−1)(x1f1(xb−1
2 y))2d

+ φ(2;I)(X2d−1)(x2f2(xb−1
2 y))2d

.

Hence by Cases 3.5.6 and 3.5.7, we get [x] ∈ [P(n)].
Suppose dk−2 = dk−1. Since ωk(x) = ω1(y) + 1 = k − 3, we have ω1(y) = k − 4.

Hence there exists uniquely 3 6 t 6 k − 1 such that α0(νt(y)) = 0.
If t = u − 1, then using Lemma 3.5(i) with y0 = xb−1

3 f3(y) and Theorem 2.12,
we get

x ≡ φ(1;I)(X2d−1)(x1f1(xb−1
2 y))2d

+ φ(2;I)(X2d−1)(x2f2(xb−1
2 y))2d

+ φ(4;I4)(X2d−1)(xb−1
3 f3(xty))2d

.

From this equalities, Cases 3.5.6, 3.5.7 and 3.5.9, we get [x] ∈ [P(n)].
If u = 4 < t + 1, then using Lemma 3.5(i) with y0 = f3(y) and Theorem 2.12,

we get

x ≡ φ(1;I)(X2d−1)(x1f1(xb−1
2 y))2d

+ φ(2;I)(X2d−1)(x2f2(xb−1
2 y))2d

+ φ(5;I5)(X2d−1)(xb−1
3 f3(xty))2d

.

Applying Lemma 3.5(i) with y0 = xb−1
3 f3(xty/x4) and Theorem 2.12, we have

φ(5;I5)(X2d−1)(xb−1
3 f3(xty))2d

≡
∑

16i63
φ(i;I5)(X2d−1)(xb−1

3 xif3(xty/x4))2d

.
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Since `(I5) = k − 5 < k − 4, using the above equalities, Cases 3.5.6, 3.5.7 and the
inductive hypothesis, we get [x] ∈ [P(n)].

Suppose that 4 < u 6= t+ 1. Using Lemma 3.5(i) with y0 = f3(y) and Theorem
2.12, we obtain

x ≡ φ(1;I)(X2d−1)(x1f1(xb−1
2 y))2d

+ φ(2;I)(X2d−1)(x2f2(xb−1
2 y))2d

+ φ(4;I\4)(X2d−1)(xb−1
3 f3(xty))2d

.

From the above equalities, Cases 3.5.6, 3.5.7 and 3.5.9, we get [x] ∈ [P(n)].

Case 3.5.11. ȳ = x2s

2 f2(y) for y ∈ (Pk−1)m−2s with ν1(y) = 0 and i = 2.

It suffices to prove [x] ∈ [P(n)] for s = 0. If `(I) < k − 3, then [x] ∈ [P(n)] by
Case 3.5.7. If I = I2, then by Case 3.5.3, [x] ∈ [P(n)].

Suppose `(I) = k − 3. Then I = I2,u = (3, . . . , û, . . . , k). If u = 3, then using
Lemma 3.5(i) with y0 = f2(y), we get

x ≡ φ(1;I3)(X2d−1)(x1f1(y))2d

+ φ(3;I3)(X2d−1)(f2(x2y))2d

+
k∑

i=4
φ(4;I4)(X2d−1)(f2(xr−1y))2d

.

Using Cases 3.5.4, 3.5.6, 3.5.9, and the above equalities, we obtain [x] ∈ [P(n)].
If u > 3, then using Lemma 3.5(i) with y0 = f2(y), we get

x ≡ φ(1;I)(X2d−1)(x1f1(y))2d

+ φ(3;I3)(X2d−1)(f2(xu−1y))2d

+
∑

46r6k,r 6=u

φ(3;I\3)(X2d−1)(f2(xr−1y))2d

.

Using Cases 3.5.4, 3.5.6, 3.5.10, and the above equalities, we obtain [x] ∈ [P(n)].

Case 3.5.12. ȳ = xa
2x

b
3f3(y) for y ∈ (Pk−1)m−a−b with ν1(y) = ν2(y) = 0 and

i = 3.

According to Lemma 3.8, we assume a = 2s−1. We prove [x] ∈ [P(n)] by double
induction on (`(I), b).

If b = 0, then by Case 3.5.1, [x] ∈ P [n]. If I 6= I3, then using Lemma 3.5(ii) with
y0 = xa

2x
b−1
3 f3(y), we get

x ≡ φ(1;I∪3)(X2d−1)(x1f1(xa
1x

b−1
2 y))2d

+ φ(2;I∪3)(X2d−1)(x2s

2 (f2(xb−1
2 y))2d

+
k∑

r=4
φ(3;I∪r)(X2d−1)(xa

2x
b−1
3 f3(xr−1y))2d

.

From this, Cases 3.5.6, 3.5.7 and the inductive hypothesis we obtain [x] ∈ [P(n)].
If I = I3, then using Lemma 3.5(i) with y0 = xa

2x
b−1
3 f3(y), we get

x ≡ φ(1;I3)(X2d−1)(x1f1(xa
1x

b−1
2 y))2d

+ φ(2;I3)(X2d−1)(x2s

2 (f2(xb−1
2 y))2d

+ Y4y
2d

0 .

By Lemma 3.6 and Lemma 2.14, we have

Y4y
2d

0 ≡
∑
(j;J)

φ(j;J)(X2d−1)y2d

j ,
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where 1 6 j < 4 and J ⊂ I3 and J 6= I3. Using Cases 3.5.6, 3.5.11, the above
equalities and the induction hypothesis, we obtain [x] ∈ [P(n)].

Case 3.5.13. ȳ = xa
2f2(y) for y ∈ (Pk−1)m−a with ν1(y) = 0 and i = 2.

We prove [x] ∈ [P(n)] by double induction on (`(I), a). If a = 0, then by Case
3.5.1, [x] ∈ [P(n)]. If I = I2, then by Case 3.5.3, [x] ∈ [P(n)]. Suppose a > 0 and
`(I) < k − 3. Applying Lemma 3.5(ii) with y0 = xa−1

2 f2(y), we get

x ≡ φ(1;I∪2)(X2d−1)(x1f1(xa−1
1 y))2d

+
k∑

r=3
φ(2;I∪r)(X2d−1)(xa−1

2 f2(xr−1y))2d

.

Using Case 3.5.6 and the inductive hypothesis, we get [x] ∈ [P(n)].
Suppose that I = I2,u = (3, . . . , û, . . . , k), 3 6 u 6 k.
If u = 3, then I = I3. Applying Lemma 3.5(i) with y0 = xa−1

2 f2(y), we get

x ≡ φ(1;I3)(X2d−1)(x1f1(xa−1
1 y))2d

+ φ(3;I3)(X2d−1)(xa−1
2 f2(x2y))2d

+
k∑

r=4
φ(4;I4)(X2d−1)(xrx

a−1
2 f2(y))2d

.

Applying Lemma 3.6 and Lemma 2.14, one gets
k∑

r=4
φ(4;I4)(X2d−1)(xrx

a−1
2 f2(y))2d

= Y4y
2d

0

≡
∑
(j;J)

φ(j;J)(X2d−1)(xjx
a−1
2 f2(y))2d

,

where the last sum runs over some (j; J) with 1 6 j < 4, J ⊂ I3 and J 6= I3. Since
`(J) < `(I3) = k − 3, from the above equalities, Cases 3.5.4, 3.5.6, 3.5.12 and the
inductive hypothesis, we get [x] ∈ [P(n)].

If u > 3, applying Lemma 3.5(i) with y0 = xa−1
2 f2(y), we get

x ≡ φ(1;I)(X2d−1)(x1f1(xa−1
1 y))2d

+
k∑

r=3
φ(3;I∪r)(X2d−1)(xa−1

2 f2(xr−1y))2d

.

From the last equalities, Cases 3.5.6 and 3.5.12, we have [x] ∈ [P(n)].

Case 3.5.14. ȳ = x2s

1 f1(y) with y ∈ (Pk−1)m−2s and i = 1.

By Lemma 3.8, we need only to prove [x] ∈ [P(n)] for s = 0. If `(I) < k−2, then
[x] ∈ [P(n)] by Case 3.5.6. Suppose `(I) = k − 2 and I = I1,u = (2, . . . , û, . . . , k).
If u = 2, then I = I2. Applying Lemma 3.5(i) with y0 = f1(y), one gets

x ≡ φ(2;I2)(X2d−1)(f1(x1y))2d

+
k∑

r=3
φ(3;I3)(X2d−1)(f1(xry))2d

.

From the last equalities and Cases 3.5.3, 3.5.12, we have [x] ∈ [P(n)].
If u > 2, then applying Lemma 3.5(i) with y0 = f1(y), one obtain

x ≡ φ(2;I2)(X2d−1)(f1(xu−1y))2d

+
∑

26r6k,r 6=u

φ(2;I∪r)(X2d−1)(f1(xr−1y))2d

.

From the above equalities and Cases 3.5.3, 3.5.13, we have [x] ∈ [P(n)].
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Case 3.5.15. ȳ = xa
1x

b
2f2(y) for y ∈ (Pk−1)m−a−b with ν1(y) = 0 and i = 2.

We prove [x] ∈ [P(n)] by double induction on (`(I), b). By Lemma 3.8, we
assume that a = 2s − 1.

If b = 0, then [x] ∈ [P(n)] by Case 3.5.1. Suppose that b > 0.
If I 6= I2, then applying Lemma 3.5(ii) with y0 = xa

1x
b−1
2 f2(y), we get

x ≡ φ(1;I∪2)(X2d−1)(x2s

1 x
b−1
2 f2(y))2d

+
∑

36r6k

φ(2;I∪r)(X2d−1)(xa
1x

b−1
2 f2(xr−1y))2d

.

From the last equalities, Case 3.5.14, and the inductive hypothesis, we have [x] ∈
[P(n)].

If I = I2, then applying Lemma 3.5(i) with y0 = xa
1x

b−1
2 f2(y), we get

x ≡ φ(1;I2)(X2d−1)(x2s

1 f2(xb−1
1 y))2d

+
∑

36r6k

φ(3;I3)(X2d−1)(xrx
a
1x

b−1
2 f2(y))2d

.

By Lemma 3.6 and Lemma 2.14, we have∑
36r6k

φ(3;I3)(X2d−1)(xrx
a
1x

b−1
2 f2(y))2d

= Y3y
2d

0

≡
∑
(j;J)

φ(j;J)(X2d−1)(xjx
a
1x

b−1
2 f2(y))2d

,

where the last sum runs over some (j; J) with j = 1, 2, J ⊂ I2 and J 6= I2.
From the above equalities, Case 3.5.14, and the inductive hypothesis, we have

[x] ∈ [P(n)].

Case 3.5.16. ȳ = xa
1f1(y) for y ∈ (Pk−1)m−a and i = 1.

If a = 0, then by Case 3.5.1, [x] ∈ [P(n)]. Suppose that a > 0. If `(I) < k − 2,
then applying Lemma 3.5(ii) with y0 = xa

1x
b−1
2 f2(y), we get

x ≡
k∑

r=2
φ(1;I∪r)(X2d−1)(xa−1

1 f1(xr−1y))2d

.

Hence by the inductive hypothesis, we have [x] ∈ [P(n)].
Suppose that `(I) = k − 2. Then I = I1,u = (2, . . . , û, . . . , k). If u = 2, then

applying Lemma 3.5(i) with y0 = xa−1
1 f1(y) and Lemma 2.14, we get

x ≡ φ(2;I2)(X2d−1)(xa−1
1 f1(x1y))2d

+
k∑

r=3
φ(3;I3)(X2d−1)(xrx

a−1
1 f1(y))2d

.

By Lemma 3.6 and Lemma 2.14, we have
k∑

r=3
φ(3;I3)(X2d−1)(xrx

a−1
1 f1(y))2d

= Y3y
2d

0

≡
∑
(j;J)

φ(j;J)(X2d−1)(xjx
a−1
1 f1(y))2d

,

where the last sum runs over some (j; J) with j = 1, 2, J ⊂ I2 and J 6= I2.
From the above equalities, Case 3.5.15, and the inductive hypothesis, we have

[x] ∈ [P(n)].
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If u > 2, then applying Lemma 3.5(i) with y0 = xa−1
1 f1(y), we get

x ≡ φ(2;I2)(X2d−1)(xa−1
u−1f1(x1y))2d

+
∑

36u6k,r 6=u

φ(2;I\2)(X2d−1)(xa−1
1 f1(xr−1y))2d

.

From the above equalities, Case 3.5.15, and the inductive hypothesis, we have
[x] ∈ [P(n)].

Case 3.5.17. ȳ = xa
i fi(y) for y ∈ (Pk−1)m−a.

If a = 0, then by Case 3.5.1, [x] ∈ [P(n)]. If a > 0 and i = 1, 2, then by Cases
3.5.15 and 3.5.16, [x] ∈ [P(n)]. If a > 0 and i > 2, then applying Lemma 3.5(ii)
with y0 = xa−1

i fi(y), we get

x ≡
∑

16j<i

φ(j;I∪i)(X2d−1)y2d

j +
∑

i<j6k

φ(i;I∪j)(X2d−1)y2d

j ,

where yj = xa−1
i fi(xj−1y) for j > i. Hence using the inductive hypothesis, we get

[x] ∈ [P(n)]. So we have proved [x] ∈ [P(n)] for all x ∈ (Pk)n .
Now we prove that [Bk(n)] is linearly independent in QPk. Suppose that there

is a linear relation
S =

∑
((i;I),z)∈Nk×Bk−1(n)

γ(i;I),zφ(i;I)(z) ≡ 0, (3.6)

where γ(i;I),z ∈ F2.
If d > k, then by induction on `(I), we can show that γ(i;I),z = 0, for all

(i; I) ∈ Nk and z ∈ Bk−1(n) (see [32] for the case d > k).
Suppose that d = k − 1. By Lemma 3.7, the homomorphism pj = p(j;∅) sends

the relation (3.6) to
∑

z∈Bk−1(n) γ(j;∅),zz ≡ 0. This relation implies γ(j;∅),z = 0 for
any 1 6 j 6 k and z ∈ Bk−1(n).

Suppose 0 < `(J) < k − 3 and γ(i;I),z = 0 for all (i; I) ∈ Nk with `(I) < `(J),
1 6 i 6 k and z ∈ Bk−1(n). Then using Lemma 3.7 and the relation (3.4), we see
that the homomorphism p(j,J) sends the relation (3.6) to

∑
z∈Bk−1(n) γ(j;J),zz ≡ 0.

Hence we get γ(j;J),z = 0 for all z ∈ Bk−1(n).
Now, let (j; J) ∈ Nk with `(J) = k − 3. If J 6= I3, then using Lemma 3.7, we

have p(j;J)(φ(i;I)(z)) ≡ 0 for all z ∈ Bk−1(n) and (i; I) ∈ Nk with (i; I) 6= (j; J).
So we get

p(j;J)(S) ≡
∑

z∈Bk−1(n)

γ(j;J),zz ≡ 0.

Hence γ(j;J),z = 0, for all z ∈ Bk−1(n).
According to Lemma 3.7, p(j;I3)(φ(1;I1)(z)) ≡ 0 for z ∈ C and p(j;I3)(φ(1;I1)(z)) ∈

〈E〉 for z ∈ D ∪ E . Hence we obtain

p(j;I3)(S) ≡
∑

z∈C∪D
γ(j;I3),zz ≡ 0 mod 〈E〉.

So we get γ(j;I3),z = 0 for all z ∈ C ∪ D.
Now, let (j; J) ∈ Nk with `(J) = k − 2. Suppose that I3 6⊂ J . Then using

Lemma 3.7, we have p(j;J)(φ(1;I1)(z)) ≡ 0 for all z ∈ B. Hence we get

p(j;J)(S) ≡
∑
z∈B

γ(j;J),zz ≡ 0.



20 NGUYỄN SUM

From this, we obtain γ(j;J),z = 0 for all z ∈ B.
Suppose that I3 ⊂ J . Then either J = I2, j = 1, 2 or J = I3∪2, j = 1. According

to Lemma 3.7, p(j;I2)(φ(1;I1)(z)) ∈ 〈D ∪ E〉 for all z ∈ B, p(j;I3∪2)(φ(1;I1)(z)) ≡ 0 for
z ∈ C ∪ D and p(1;I3∪2)(φ(1;I1)(z)) ∈ 〈E〉 for z ∈ E . Hence we obtain

p(j;I2)(S) ≡
∑
z∈C

γ(j;I2),zz ≡ 0 mod 〈D ∪ E〉,

p(1;I3∪2)(S) ≡
∑

z∈C∪D
γ(1;I3∪2),zz ≡ 0 mod 〈E〉.

So γ(j;I2),z = 0 for z ∈ C and γ(1;I3∪2),z = 0 for z ∈ C ∪ D. Since γ(i;I),z = 0, for all
z ∈ C and I 6= I1, applying Lemma 3.7, we have

p(1;I1)(S) ≡
∑
z∈C

γ(1;I1),zz ≡ 0 mod 〈D ∪ E〉.

Hence γ(1;I1),z = 0 for all z ∈ C. So the relation (3.6) becomes

S =
∑

16i63,z∈E

γ(i;I3),zφ(i;I3)(z) +
∑
z∈E

γ(1;I3∪2),zφ(1;I3∪2)(z)

+
∑

16i62,z∈D∪E

γ(i;I2),zφ(i;I2)(z) +
∑

z∈D∪E
γ(1;I1),zφ(1;I1)(z) ≡ 0. (3.7)

Using the relation (3.7) and Lemma 3.7,

p(i;I2)(S) ≡
∑
z∈D

(γ(i;I2),z + γ(1;I1),z)z ≡ 0 mod 〈E〉, i = 1, 2.

This relation implies γ(1;I2),z = γ(2;I2),z = γ(1;I1),z for all z ∈ D. On the other hand,
using the relation (3.7) and Lemma 3.7, one gets

p(1;I1)(S) ≡
∑
z∈D

(γ(1;I2),z + γ(2;I2),z + γ(1;I1),z)z ≡ 0 mod 〈E〉.

So γ(1;I2),z + γ(2;I2),z + γ(1;I1),z = 0. Hence γ(1;I2),z = γ(2;I2),z = γ(1;I1),z = 0, for all
z ∈ D. Now, the relation (3.7) becomes

S =
∑

16i63,z∈E

γ(i;I3),zφ(i;I3)(z) +
∑
z∈E

γ(1;I3∪2),zφ(1;I3∪2)(z)

+
∑

16i62,z∈E

γ(i;I2),zφ(i;I2)(fi(z)) +
∑

z∈∪E
γ(1;I1),zφ(1;I1)(z) ≡ 0. (3.8)

Using the relation (3.8) and Lemma 3.7, one gets

p(i;I3)(S) ≡
∑
z∈E

(γ(i;I3),z + γ(1;I1),z)z ≡ 0, i = 1, 2, 3,

p(1;I3∪2)(S) ≡
∑
z∈E

(γ(1;I3),z + γ(2;I3),z + γ(1;I3∪2),z + γ(1;I1),z)z ≡ 0,

p(1;I2)(S) ≡
∑
z∈E

(γ(1;I3),z + γ(3;I3),z + γ(1;I2),z + γ(1;I1),z)z ≡ 0,

p(2;I2)(S) ≡
∑
z∈E

(γ(2;I3),z + γ(3;I3),z + γ(2;I2),z + γ(1;I1),z)z ≡ 0,
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p(1;I1)(S) ≡
∑
z∈E

(γ(1;I3),z + γ(2;I3),z + γ(3;I3),z

+ γ(1;I2),z + γ(2;I2),z + γ(1;I3∪2),z + γ(1;I1),z)z ≡ 0.

From the above relations, we get

γ(i;I3),z = γ(j;I2),z = γ(1;I3∪2),z = γ(1;I1),z = 0

for all z ∈ E , i = 1, 2, 3, j = 1, 2. The proposition is proved. �

Proof of Theorem 1.3. Denote by |S| the cardinal of a set S. It is easy to check that
|Nk| = 2k − 1. Let (i; I), (j; J) ∈ Nk with `(J) 6 `(I) and y, z ∈ Bk−1(n). Suppose
that φ(j;J)(y) = φ(i;I)(z). Using Lemma 3.7, we have y ≡ p(j;J)(φ(i;I)(z)) 6≡ 0. This
implies (i; I) = (j; J) and y = z. Hence

φ(i;I)(Bk−1(n)) ∩ φ(j;J)(Bk−1(n)) = ∅.

for (i; I) 6= (j; J) and |φ(i;I)(Bk−1(n))| = |Bk−1(n)|. From Proposition 3.3, we have

dim(QPk)n = |Bk(n)| =
∑

(i;I)∈Nk

|Bk−1(n)|

= |Nk|dim(QPk−1)n

= (2k − 1) dim(QPk−1)n.

The iterated squaring operation (S̃q
0
∗)d : (QPk−1)n → (QPk−1)m is an isomorphism

of F2-vector spaces. So we get dim(QPk−1)n = dim(QPk−1)m. The theorem is
proved. �

Remark 3.9. Let n =
∑

16i6k−1(2di − 1) with di positive integers such that
d1 > d2 > . . . > dk−2 > dk−1 > 0, and let m =

∑
16i6k−2(2di−dk−1 − 1). Set

q = min{k, dk−1} and Nk,q = {(i; I) ∈ Nk : `(I) < q}. Then we have |Nk,q| =∑
16j6q

(
k
j

)
. From the proof of Theorem 1.3 we see that the set ⋃

(i;I)∈Nk,q

φ(i;I)(Bk−1(n))


is linearly independent in QPk. So, one gets the following formula in Mothebe [18]:

dim(QPk)n >
∑

16j6q

(
k

j

)
dim(QPk−1)m.

In the remaining part of the section, we prove Lemmas 3.4−3.7. We need the
following for the proof of Lemma 3.4.

Lemma 3.10. Let i, j be positive integers such that 0 < i < j 6 k, and a, b > 0
with a+ b = 2d − 1. Then

Xa
i X

b
j '2 X

2d−2
i Xj = φ(i;j)(X2d−1).

Proof. We prove the lemma by induction on b. If b = 1, then

Xa
i X

b
j = X2d−2

i Xj .
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So the lemma holds. Suppose that b > 1. Note that Xa
i X

b
j = xb

ix
a
jX

2d−1
i,j . If

α0(b) = 0, then

x '0 Sq
1(xb−1

i xa
jX

2d−1
i,j ) + xb−1

i xa+1
j X2d−1

i,j '1 X
a+1
i Xb−1

j '2 X
2d−2
i Xj .

If α0(b) = 1, α1(b) = 0, then

x '0 Sq
1(xb−2

i xa+1
j X2d−1

i,j ) + Sq2(xb−2
i xa

jX
2d−1
i,j ) + xb−1

i xa+1
j X2d−1

i,j

'2 x
b−1
i xa+1

j X2d−1
i,j = Xa+1

i Xb−1
j '2 X

2d−2
i Xj .

If α0(b) = α1(b) = 1, then

x '0 Sq
1(xb

ix
a−1
j X2d−1

i,j ) + Sq2(xb−1
i xa−1

j X2d−1
i,j ) + xb−1

i xa+1
j X2d−1

i,j

'2 x
b−1
i xa+1

j X2d−1
i,j = Xa+1

i Xb−1
j '2 X

2d−2
i Xj .

The lemma is proved. �

Proof of Lemma 3.4. We prove the lemma by induction on d. Suppose d = 2. If
j0 = j1 = i, then x = φ(i,∅)(X3). If j = j0 > j1 = i, then x = X2

i Xj = φ(i,j)(X3).
If i = j0 < j1 = j, then x = XiX

2
j '0 Sq

1(X∅X2
i,j) +X2

i Xj '1 X
2
i Xj = φ(i,j)(X3).

So the lemma holds for d = 2.
Suppose d > 2. By the inductive hypothesis, there is (i1; I ′) ∈ Nk such that∏

06t<d−1 X
2t

jt
'd−2 φ((i1;I′)(X2d−1−1), where i1 = min{j0, j1, . . . , jd−2}. If jd−1 =

i1, then the lemma holds with (i; I) = (i1; I ′). Suppose that jd−1 6= i1.
If I ′ = ∅, then using Lemma 3.10, we have

x 'd−2 X
2d−1−1
i1

X2d−1

jd−1
'2 φ(i;j)(X2d−1),

where i = min{i1, jd−1} = min{j0, j1, . . . , jd−1}. The lemma holds. Suppose I ′ =
(i′1, i′2, . . . , i′r), 0 < r < d− 1 and I∗ = (i′2, . . . , i′r), then

φ(i1;I′)(X2d−1−1) = φ(i′1;I∗)(X2r−1)X2d−1−2r

i1
.

If i1 < jd−1 and r = d−2, then Xi1X
2
jd−1
'1 X

2
i1
Xjd−1 . Hence using Proposition

2.5(ii), one gets

x 'd−2 φ(i′1;I∗)(X2d−2−1)(Xi1X
2
jd−1

)2d−2

'd−1 φ(i′1;I∗)(X2d−2−1)(X2
i1
Xjd−1)2d−2

= φ(i′1;I∗)(X2r−1)X2r

jd−1
X2d−2r+1

i1
.

If i1 < jd−1 and r < d−2, then using Lemma 3.10, we haveX2d−r−1−1
i1

X2d−r−1

jd−1
'2

X2d−r−2
i1

Xjd−1 . Hence by Proposition 2.5(ii),

x 'd−2 φ(i′1;I∗)(X2r−1)(X2d−r−1−1
i1

X2d−r−1

jd−1
)2r

'r+2 φ(i′1;I∗)(X2r−1)(X2d−r−2
i1

Xjd−1)2r

'd−1 φ(i′1;I∗)(X2r−1)X2r

jd−1
X2d−2r+1

i1
(since r + 2 < d).

By the inductive hypothesis, there is (j; I) ∈ Nk such that

φ(i′1;I∗)(X2r−1)X2r

jd−1
'r φ(j;I)(X2r+1−1),
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for 0 < r 6 d − 2. So, from the above equalities and Proposition 2.5(ii), we get
x 'd−2 φ(j;I)(X2r+1−1)X2d−2r+1

i1
= φ(i1;I∪j)(X2d−1). The lemma holds.

If i1 > jd−1 and r = d− 2, then

x 'd−2 φ(i′1;I∗)(X2d−2−1)(Xi1X
2
jd−1

)2d−2
= φ(jd−1;I∪i1)(X2d−1).

If i1 > jd−1 and r < d−2, then using Lemma 3.10, we haveX2d−r−1−1
i1

X2d−r−1

jd−1
'2

X2d−r−2
jd−1

Xi1 . Hence by Proposition 2.5(ii),

x 'd−2 φ(i′1;I∗)(X2r−1)(X2d−r−1−1
i1

X2d−r−1

jd−1
)2r

'r+2 φ(i′1;I∗)(X2r−1)(X2d−r−2
jd−1

Xi1)2r

= φ(jd−1;I∪i1)(X2d−1).

Since r + 2 < d, the lemma is proved. �

From the proof of Lemma 3.4, we easily obtain the following.

Corollary 3.11. Let (i; I) ∈ Nk, j ∈ Nk and a polynomial y in (Pk)m. If j > i
and d > r + 1, then

i) φ(i;I)(X2r+1−1)X2d−2r+1

j 'd−1 φ(i;I∪j)(X2d−1).
ii) X2d−r−1−1

j (φ(i;I)(X2r+1−1))2d−r−1 'd−1 φ(i;I∪j)(X2d−1).

Proof of Lemma 3.5. Applying the Cartan formula, we have

Sq1(X2c−1
∅ y2c

0 ) =
∑

16j6k

X2c−1
j y2c

j ,

where c is a positive integer. From this, we obtain

X2c−1
i y2c

i ≡
∑

16j<i

X2c−1
j y2c

j +
∑

i<j6k

X2c−1
j y2c

j .

If d > r, then φ(i;I)(X2d−1)y2d

i = φ(i1;I+)(X2r−1)(X2c−1
i y2c

i )2r , with c = d− r and
I+ = (i2, i3, . . . , ir). Hence using Lemma 2.14, we get

φ(i;I)(X2d−1)y2d

i ≡
∑

16j<i

φ(i1;I+)(X2r−1)(X2c−1
j y2c

j )2r

+
∑

i<j6k

φ(i1;I+)(X2r−1)(X2c−1
j y2c

j )2r

.

Applying Corollary 3.11 and Lemma 2.14, we have

φ(i1;I+)(X2r−1)(X2c−1
j y2c

j )2r

= φ(j;I)(X2d−1)y2d

j , for j < i,

φ(i1;I+)(X2r−1)(X2c−1
j y2c

j )2r

≡ φ(ij ;Ij)(X2d−1)y2d

j , for j > i.

Hence the first part of the lemma follows.
If d > r + 1, then φ(i;I)(X2d−1)y2d

i = φ(i;I)(X2r+1−1)(X2c−1
i y2c

i )2r+1 , with c =
d− r − 1. Hence using Lemma 2.14, we get

φ(i;I)(X2d−1)y2d

i ≡
∑

16j<i

φ(i;I)(X2r+1−1)(X2c−1
j y2c

j )2r+1

+
∑

i<j6k

φ(i;I)(X2r+1−1)(X2c−1
j y2c

j )2r+1
.
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According to Corollary 3.11 and Lemma 2.14,

φ(i;I)(X2r+1−1)(X2c−1
j y2c

j )2r+1
= φ(j;I∪i)(X2d−1)y2d

j , for j < i,

φ(i;I)(X2r+1−1)(X2c−1
j y2c

j )2r+1
≡ φ(i;I∪j)(X2d−1)y2d

j , for j > i.

So the second part of the lemma is proved. �

We need the following lemmas for the proof of Lemma 3.6.

Lemma 3.12. For any integer 0 < ` 6 k,

X2`−1
` x2`

` '`

k∑
r=`

∑
(i;I)∈N`−1

φ(i;I∪r)(X2`−1)x2`

r +
k∑

r=`+1
X2`−1

r x2`

r .

Proof. We prove the lemma by induction on `. For ` = 1, the lemma is trivial.
Suppose that ` > 1 and the lemma is true for `. Using the Cartan formula we have

X2`+1−1
`+1 x2`+1

`+1 =
∑̀
r=1

X2`+1−1
r x2`+1

r +
k∑

r=`+2
X2`+1−1

r x2`+1

r + Sq1(X2`+1−1
∅ )

'1
∑̀
r=1

X2`+1−r−1
r (X2r−1

r x2r

r )2`+1−r

+
k∑

r=`+2
X2`+1−1

r x2`+1

r .

Using the inductive hypothesis and Proposition 2.5, we have

X2`+1−r−1
r (X2r−1

r x2r

r )2`+1−r

'`+1 X
2`+1−r−1
r

( k∑
m=r+1

X2r−1
m x2r

m

+
k∑

m=r

∑
(i;I)∈Nr−1

φ(i;I∪m)(X2r−1)x2r

m

)2`+1−r

.

According to Corollary 3.11,

X2`+1−r−1
r (X2r−1

m x2r

m )2`+1−r

'`+1 φ(r;m)(X2`+1−1)x2`+1

m ,

X2`+1−r−1
r (φ(i;I∪m)(X2r−1)x2r

m )2`+1−r

'`+1 φ(i;I∪{r,m})(X2`+1−1)x2`+1

m .

From the above equalities, we get

X2`+1−r−1
r (X2r−1

r x2r

r )2`+1−r

'`+1
∑

(i;I)∈Nr−1

φ(i;I∪r)(X2`+1−1)x2`+1

r

+
k∑

m=r+1

( ∑
(i;I)∈Nr−1

φ(i;I∪{r,m})(X2`+1−1)x2`+1

m + φ(r;m)(X2`+1−1)x2`+1

m

)
.
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By a direct computation from the above equalities, using the relation (3.1), we have∑̀
r=1

X2`+1−r−1
r (X2r−1

r x2r

r )2`+1−r

'`+1
∑̀
r=1

∑
(i;I)∈Nr−1

φ(i;I∪r)(X2`+1−1)x2`+1

r

+
∑̀
m=2

m−1∑
r=1

( ∑
(i;I)∈Nr−1∪r

φ(i;I∪m)(X2`+1−1)x2`+1

m + φ(r;m)(X2`+1−1)x2`+1

m

)

+
k∑

m=`+1

∑̀
r=1

( ∑
(i;I)∈Nr−1∪r

φ(i;I∪m)(X2`+1−1)x2`+1

m + φ(r;m)(X2`+1−1)x2`+1

m

)

=
∑̀
r=1

∑
(i;I)∈Nr−1

φ(i;I∪r)(X2`+1−1)x2`+1

r +
∑̀
m=2

∑
(i;I)∈Nm−1

φ(i;I∪m)(X2`+1−1)x2`+1

m

+
k∑

m=`+1

∑
(i;I)∈N`−1

φ(i;I∪m)(X2`+1−1)x2`+1

m

=
k∑

m=`+1

∑
(i;I)∈N`

φ(i;I∪m)(X2`+1−1)x2`+1

m .

Combining the above equalities, we get

X2`+1−1
`+1 x2`+1

`+1 '`+1

k∑
r=`+1

∑
(i;I)∈N`

φ(i;I∪r)(X2`+1−1)x2`+1

r +
k∑

r=`+2
X2`+1−1

r x2`+1

r .

The lemma is proved. �

From the proof of this lemma, we obtain

Corollary 3.13. For 2 6 d 6 k, we have
d−1∑
r=1

X2d−1
r x2d

r 'd

k∑
r=d

( ∑
(i;I)∈Nd−1

φ(i;I∪r)(X2d−1)x2d

r

)
.

Lemma 3.14. For any integer d > k, 0 6 r 6 d− k and 0 < m < h 6 k,

Z := φ(m;Im)(X2d−r−1)X2d−2d−r

h 'k−m+1 φ(m;Im)(X2d−1).

Proof. We prove the lemma by double induction on (m, r). If m = k − 1, then
h = k. By Lemma 3.10, we have

φ(k−1;k)(X2d−r−1)X2d−2d−r

k = X2d−r−2
k−1 X2d−2d−r+1

k '2 φ(k−1;k)(X2d−1).
So, the lemma holds. Suppose that 0 < m < k − 1. If h = m+ 1, we have

Z = φ(m+2;Im+2)(X2k−m−1−1)(X2d−k+m−r+1−2
m X2d−k+m+1−2d−k+m−r+1+1

m+1 )2k−m−1
.

According to Lemma 3.10,

X2d−k+m−r+1−2
m X2d−k+m+1−2d−k+m−r+1+1

m+1 '2 X
2d−k+m+1−2
m Xm+1.

Hence using Proposition 2.5, we obtain

Z 'k−m+1 φ(m+2;Im+2)(X2k−m−1−1)(X2d−k+m+1−2
m Xm+1)2k−m−1

= φ(m;Im)(X2d−1).
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The lemma holds. Suppose that h > m+ 1 and r = 1. We have

Z = φ(m+1;Im+1)(X2k−m−1)(X2d−k+m−1−1
m X2d−k+m−1

h )2k−m

.

Since X2d−k+m−1−1
m X2d−k+m−1

h '1 X2d−k+m−1

m X2d−k+m−1−1
h , applying Proposition

2.5 and the inductive hypothesis, we have

Z 'k−m+1 φ(m+1;Im+1)(X2k−m−1)(X2d−k+m−1

m X2d−k+m−1−1
h )2k−m

= φ(m+1;Im+1)(X2k−m−1)X2d−1−2k−m

h X2d−1

m

'k−m φ(m+1;Im+1)(X2d−1−1)X2d−1

m

= φ(m+2;Im+2)(X2k−m−1−1)(X2d−k+m−1
m+1 X2d−k+m

m )2k−m−1
.

According to Lemma 3.10,

X2d−k+m−1
m+1 X2d−k+m

m '2 X
2d−k+m+1−2
m Xm+1.

Hence using Proposition 2.5, one gets

Z 'k−m+1 φ(m+2;Im+2)(X2k−m−1−1)(X2d−k+m+1−2
m Xm+1)2k−m−1

= φ(m;Im)(X2d−1).

Now, suppose that h > m + 1 and r > 1. Applying Proposition 2.5 and the
inductive hypothesis, one gets

Z = φ(m;Im)(X2d−r−1)X2d−r

h X2d−2d−r+1

h

'k−m+1 φ(m;Im)(X2d−r+1−1)X2d−2d−r+1

h

'k−m+1 φ(m;Im)(X2d−1).

The lemma is proved. �

Lemma 3.15. For any integer d > k,

X2d−1
k x2d

k 'k

∑
(i;I)∈Nk−1

φ(i;I∪k)(X2d−1)x2d

k .

Proof. By Lemma 3.12, we have

X2k−1
k x2k

k 'k

∑
(i;I)∈Nk−1

φ(i;I∪k)(X2k−1)x2k

k .

Hence using Proposition 2.5, we get

X2d−1
k x2d

k = X2k−1
k x2k

k X2d−2k

∅ 'k

∑
(i;I)∈Nk−1

φ(i;I∪k)(X2k−1)X2d−2k

k x2d

k .

Let (i; I) ∈ Nk−1. If I = ∅, then using Lemma 3.10, we have

φ(i;I∪k)(X2k−1)X2d−2k

k x2d

k = φ(i;k)(X2k−1)X2d−2k

k x2d

k

= X2k−2
i X2d−2k+1

k x2d

k

'2 X
2d−2
i Xkx

2d

k

= φ(i;k)(X2d−1)x2d

k .
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If I = (i1, . . . , ir), r > 0, then s = k − `(I ∪ k) > 0. Hence

Y : = φ(i;I∪k)(X2k−1)X2d−2k

k x2d

k

= φ(i1;I+∪k)(X2k−s−1)(X2s−1
i X2d−k+s−2s

k )2k−s

x2d

k .

where I+ = (i2, . . . , ir). By Lemma 3.10,

X2s−1
i X2d−k+s−2s

k '2 X
2d−k+s−2
i Xk.

If (i; I ∪ k) 6= (1; I1), then s > 2. Using Proposition 2.5 and Lemma 3.4, one gets

Y 'k−s+2 φ(i1;I+∪k)(X2k−s−1)(XkX
2d−k+s−2
i )2k−s

x2d

k

= φ(i1;I+∪k)(X2k−s−1)(XkX
2
i )2k−s

X2d−2k−s+2

i x2d

k

'k φ(i;I∪k)(X2k−s+2−1)X2d−2k−s+2

i x2d

k

= φ(i;I∪k)(X2d−1)x2d

k .

Suppose that (i; I ∪ k) = (1; I1). Then using Lemma 3.14 and Proposition 2.5, we
have

φ(1;I1)(X2k−1)X2d−2k

k x2d

k 'k φ(1;I1)(X2d−1)x2d

k .

The lemma is proved. �

Lemma 3.16. Y1 '(k,ω) 0 with ω = ω(X2d−1
1 x2d

1 ). More precisely,

Y1 =
∑

06i<k

Sq2i

(yi) + h,

with yi polynomials in Pk, and h ∈ P−k (ω).

Proof. First we prove the following by induction on m

Y1 '(k,ω) Ym +
k∑

r=m

∑
(i;I)∈Nm−1

φ(i;I∪Im−1)(X2d−1)x2d

r . (3.9)

Note that
φ(m;Im)(X2d−1)x2d

m = φ(m+1;Im+1)(X2k−m−1)(X2m−1
m x2m

m X2d−k+m−2m

∅ )2k−m

.

Applying Lemma 3.12 and Proposition 2.5, we have

X2m−1
m x2m

m X2d−k+m−2m

∅ 'm

k∑
r=m+1

X2d−k+m−1
r x2d−k+m

r

+
k∑

r=m

∑
(i;I)∈Nm−1

φ(i;I∪r)(X2m−1)X2d−k+m−2m

r x2d−k+m

r .

Using Lemma 3.14 and Proposition 2.5, we have

φ(m+1;Im+1)(X2k−m−1)X2d−2k−m

r x2d

r 'k−m φ(m+1;Im+1)(X2d−1)x2d

r .

From the above equalities, Proposition 2.5 and Lemma 3.4, one gets

φ(m;Im)(X2d−1)x2d

m 'k Ym+1 +
k∑

r=m

∑
(i;I)∈Nm−1

φ(i;I∪Im∪r)(X2k−1)X2d−2k

r x2d

r .
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If either r > m or I 6= (2, . . . ,m − 1), then (i; I ∪ Im ∪ r) 6= (1; I1). From the
proof of Lemma 3.14, we have

φ(i;I∪Im∪r)(X2k−1)X2d−2k

r x2d

r 'k φ(i;I∪Im∪r)(X2d−1)x2d

r .

If r = m and I = (2, . . . ,m− 1), then (i; I ∪ Im ∪m) = (1; I1). By Lemma 3.14, we
have

φ(1;I1)(X2k−1)X2d−2k

m x2d

m 'k φ(1;I1)(X2d−1)x2d

m .

Combining the above equalities, we get

φ(m;Im)(X2d−1
m )x2d

m 'k Ym+1 +
k∑

r=m

∑
(i;I)∈Nm−1

φ(i;I∪Im∪r)(X2d−1)x2d

r .

Using the above equalities and the inductive hypothesis, we get

Y1 '(k,ω) Ym+1 +
k∑

r=m

( ∑
(i;I)∈Nm−1

φ(i;I∪Im−1)(X2d−1)x2d

r

)

+
k∑

r=m+1
φ(m;Im)(X2d−1)x2d

r +
k∑

r=m

( ∑
(i;I)∈Nm−1

φ(i;I∪Im∪r)(X2d−1)x2d

r

)

= Ym+1 +
k∑

r=m+1

( ∑
(i;I)∈Nm−1∪m

φ(i;I∪Im)(X2d−1)x2d

r

)

+
k∑

r=m+1

( ∑
(i;I)∈Nm−1

φ(i;I∪Im)(X2d−1)x2d

r

)
+

k∑
r=m+1

φ(m;Im)(X2d−1)x2d

r

(since m ∪ Im = Im−1 and Im ∪ r = Im for r > m)

= Ym+1 +
k∑

r=m+1

( ∑
(i;I)∈Nm

φ(i;I∪Im)(X2d−1)x2d

r

)
(since Nm = Nm−1 ∪ (Nm−1 ∪m) ∪ {(m; ∅)}).

The relation (3.9) is proved.
Since Yk = X2d−1

k x2d

k , using the relation (3.9) with m = k and Lemma 3.12, one
gets

Y1 '(k,ω) X
2d−1
k x2d

k +
∑

(i;I)∈Nk−1

φ(i;I∪k)(X2d−1)x2d

k '(k,ω) 0.

The lemma is proved. �

Proof of Lemma 3.6. We have Ym = Z2d−1Y1(xm, . . . , xk) with Z = x1x2 . . . xm−1.
By Lemma 3.16, Ym is a sum of polynomials of the form f = Z2d−1(Sq2i(y) +
h) with 0 6 i 6 k − m, y a monomial in Pk−m+1 = Pk−m+1(xm, . . . , xk) and
h ∈ P−k−m+1(ω∗), ω∗ = ω((xm+1 . . . xk)2d−1x2d

m ). Then Z2d−1h ∈ P−k (ω) with ω =
ω(X2d−1

1 x2d

1 ). Using the Cartan formula, we have

f '(0,ω) Sq
2i

(Z2d−1y) +
∑

16t62i

Sqt(Z2d−1)Sq2i−t(y).
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By a direct computation using the Cartan formula, we can show that if 0 < t < 2i,
then ωu(Sqt(Z2d−1)Sq2i−t(y)) < k − 1 for some u 6 d. Hence one gets

f '(k,ω) Sq
2i

(Z2d−1)y '(k,ω)
∑

0<j<m

Z2d−1x2i

j y.

Since ωu(Z2d−1x2i

j ) = m− 2 for i < u 6 k, if Z2d−1x2i

j y /∈ P
−
k (ω), then ωu(y) =

k − m for i < u 6 k. According to Lemma 3.4, there is (j; J) ∈ Nk such that
Z2d−1x2i

j y 'i φ(j;J)(X2d−1)x2d

j . Here J ⊂ Im−1. Since 0 6 `(J) = i 6 k −m <
`(Im−1) = k −m+ 1, we have J 6= Im−1. The lemma is proved. �

The following will be used in the proof of Lemma 3.7.

Lemma 3.17. Let (j; J), (i; I) ∈ Nk with `(I) < d. Then

p(j;J)φ(i;I)(X2d−1) '0

{
X2d−1, (i; I) ⊂ (j; J),
0, (i; I) 6⊂ (j; J).

Proof. Suppose that (i; I) 6⊂ (j; J). If i /∈ (j; J), then from (3.2), we see that
p(j;J)(φ(i;I)(X2d−1)) is a sum of monomials of the form

w = x2r−1
i′ fk−1;i′(z),

for suitable monomial z in Pk−2. Here i′ = i if j > i and i′ = i− 1 if j < i. In this
case, we have αr(2r − 1) = 0 and ωr+1(w) < k − 1. Hence w ∈ P−k−1(ω(d)), where
ω(d) = ω(X2d−1). Suppose that i ∈ (j; J). Since (i; I) 6⊂ (j; J), there is 1 6 t 6 r,
such that it /∈ (j; J), then from (3.2), we see that p(j;J)(φ(i;I)(X2d−1)) is a sum of
monomials of the form

w = x2r−2r−t−1
it−1 fk−1;it−1(z),

for some monomial z in Pk−2. It is easy to see that αr−t(2r − 2r−t − 1) = 0 and
ωr−t+1(w) < k − 1. Hence w ∈ P−k−1(ω(d)).

Suppose that (i; I) ⊂ (j; J). If i = j, then from (3.2), we see that the polynomial
p(j;J)(φ(i;I)(X2d−1)) is a sum of monomials of the form

w =
( ∏

16t6r

x2r−2r−t−1+bt
it−1

)( ∏
j+1∈J\I

x
2d−1+cj

j

)( ∏
j+1/∈J

x2d−1
j

)
,

where b1 + b2 + . . .+ br +
∑

j+1∈J\I cj = 2r− 1. If cj > 0, then αuj (2d− 1 + cj) = 0
with uj the smallest index such that αuj

(cj) = 1. Hence w ∈ P−k−1(ω(d)). If bt = 0
for suitable 1 6 t 6 r, then αr−t(2r − 2r−t − 1) = 0 and ωr−t+1(w) < k − 1.
Hence w ∈ P−k−1(ω(d)). Suppose that bt > 0 for any t. Let vt be the smallest
index such that αvt

(bt) = 1. If vt 6= r − t, then αvt
(2r − 2r−t − 1 + bt) = 0 and

w ∈ P−k−1(ω(d)). So ut = r − t and bt = 2r−t + b′t with b′t > 0. If b′t > 0, then
αv′t

(2r − 2r−t − 1 + bt) = αv′t
(2r − 1 + b′t) = 0 with v′t the smallest index such that

αv′t
(b′t) = 1. Hence w ∈ P−k−1(ω(d)). This implies b′t = 0 for 1 6 t 6 r and w = g.
If i ∈ J , then from (3.2), we see that the polynomial p(j;J)(φ(i;I)(X2d−1)) is a

sum of monomials of the form

w = x2r−1+b0
i−1

( ∏
16t6r

x2r−2r−t−1+bt
it−1

)( ∏
j+1∈J\(i;I)

x
2d−1+cj

j

)( ∏
j+1/∈J

x2d−1
j

)
,
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where b0 + b1 + b2 + . . . + br +
∑

j+1∈J\(i;I) cj = 2d − 1. By a same argument
as above, we see that w ∈ P−k−1(ω(d)) if either cj > 0 or bt 6= 2r−t for some
j, t with t > 0. Suppose cj = 0 and bt = 2r−t with all j and t > 0. Then
2d− 1 = b0 + b1 + b2 + . . .+ br +

∑
j+1∈J\(i;I) cj = b0 + 2r − 1 and w = X2d−1. The

lemma is proved. �

The following is easily be proved by a direct computation.

Lemma 3.18. The following diagram is commutative:

Pk−1
-fi

Pk

? ?

p(i;Ii) p(i+1;Ii+1)

Pk−2
-fi

Pk−1.

Proof of Lemma 3.7. i) Suppose that either d > k or d = k − 1 and I 6= I1, then
φ(i;I)(z) = φ(i;I)(X2d−1)fi(z̄)2d . Hence the first part of the lemma follows from
Lemma 3.17.

ii) According to (3.4), φ(1;I1)(z) = φ(2;I2)(X2d−1)f1(z̄)2d . Hence from Lemmas
3.17 and 3.18, we have

p(i;I)(φ(1;I1)(z)) ≡ p(i;I)(φ(2;I2)(X2d−1))p(i;I)(f1(z̄)2d

)

≡


z if (i; I) = (1; I1),
X2d−1f1p(1;I1)(z̄2d) ∈ 〈D ∪ E〉, if (i; I) = (2; I2),
0, otherwise.

iii) Let z ∈ D. Using the relation (3.4), Lemma 3.17 and Lemma 3.18, one has

p(i;I)(φ(1;I1)(z)) ≡ p(i;I)(φ(3;I3)(X2d−1))p(i;I)(f2(z̄)2d

)

≡


z if I2 ⊂ I,
X2d−1f2p(2;I2)(z̄)2d ∈ 〈E〉, if (i; I) = (3; I3),
0, otherwise.

iv) Let z ∈ E . Using the relation (3.4), Lemma 3.17 and Lemma 3.18, one gets

p(4;I4)(φ(4;I4)(z)) = p(4;I4)(φ(4;I4)(X2d−1))p(4;I4)(f3(z̄)2d

)

≡ X2d−1f3p(3;I3)((z̄)2d

).

If a monomial y is a term of f3p(3;I3)((z̄)2d), then ω1(y) < k − 3. According to
Theorem 2.12, y ≡ 0. Hence X2d−1f3p(3;I3)(z̄)2d ≡ 0. So using Lemma 3.18 one
gets

p(i;I)(φ(1;I1)(z)) ≡ p(i;I)(φ(4;I4)(X2d−1))p(i;I)(f3(z̄)2d

) ≡
{
z if I3 ⊂ I,
0, otherwise .

The lemma is completely proved. �
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4. The cases k 6 3

In this section and the next sections, we denote by Bk(n) the set of all admissible
monomials of degree n in Pk, B0

k(n) = Bk(n) ∩ P 0
k , B

+
k (n) = Bk(n) ∩ P+

k . For
an ω-vector ω = (ω1, ω2, . . . , ωm) of degree n, we set Bk(ω) = Bk(n) ∩ Pk(ω),
B+

k (ω) = B+
k (n)∩Pk(ω). Then [Bk(ω)] and [B+

k (ω)], respectively are the basses of
the F2-vector spaces QPk(ω) and QP+

k (ω).
If there is i0 = 0, i1, i2, . . . , ir > 0 such that i1 + i2 + . . . + ir = m and

ωi1+...+is−1+t = as, 1 6 t 6 is, 1 6 s 6 r, then we denote ω = (a(i1)
1 , a

(i2)
2 , . . . , a

(ir)
r ).

If iu = 1, then we denote a(1)
u = au.

Using Lemma 5.3.3(i) in Subsection 5.3 and Theorem 2.9, we easily obtain the
following.

Proposition 4.1. For any s > 1,

Bk(1(s)) =
{
xi1x

2
i2
. . . x2m−2

im−1
x2s−2m−1

im
; 1 6 i1 < . . . < im 6 k, 1 6 m 6 min{s, k}

}
.

It is well known that if n 6= 2u − 1 then B1(n) = ∅. If n = 2u − 1 for u > 0,
then B1(n) = B1(1(u)) = {x2u−1}. It is easy to see that Φ(B1(0)) = {1} = B2(0),
Φ(B1(1)) = {x1, x2} = B2(1). According to Proposition 3.3, for u > 1, we have

B2(2u − 1) = Φ(B1(2u − 1)) = {x2u−1
1 , x2u−1

2 , x1x
2u−2
2 },

By Theorem 1.1, B2(n) = ∅ if n 6= 2t+u + 2t − 2 for all nonnegative integers
t, u. We define the F2-linear map ψ : (Pk)m → (Pk)2m+k by ψ(y) = X∅y

2 for any
monomial y ∈ (Pk)m. From Theorem 1.2 and Theorem 1.3, we have

Theorem 4.2 (Peterson [21]). If n = 2t+u +2t−2, with t, u positive integers, then
B2(n) = ψt(Φ(B1(2u − 1)))

=


{(x1x2)2t−1}, u = 0,
{x2t+1−1

1 x2t−1
2 , x2t−1

1 x2t+1−1
2 }, u = 1,

{x2t+u−1
1 x2t−1

2 , x2t−1
1 x2t+u−1

2 , x2t+1−1
1 x2t+u−2t−1

2 }, u > 1.

By Theorems 1.1 and 1.2, for k = 3, we need only to consider the cases of degree
n = 2s − 2, n = 2s − 1 and n = 2s+t + 2s − 2 with s, t positive integers. A direct
computation using Theorem 1.3 we have

Theorem 4.3 (Kameko [14]).
i) If n = 2s − 2, then B3(2s − 2) = Φ(B2(2s − 2)).
ii) If n = 2s − 1, then B3(2s − 1) = B3(1(s)) ∪ ψ(Φ(B2(2s−1 − 2))).
iii) If n = 2s+t + 2s − 2, then

B3(n) =
{

Φ(B2(8)) ∪ {x3
1x

4
2x3}, if s = 1, t = 2,

Φ(B2(2s+t + 2s − 2)), otherwise.

5. Proof of Theorem 1.4

For 1 6 i 6 k, define ϕi : QPk → QPk, the homomorphism induced by the A-
homomorphism ϕi : Pk → Pk, which is determined by ϕ1(x1) = x1+x2, ϕ1(xj) = xj

for j > 1, and ϕi(xi) = xi−1, ϕi(xi−1) = xi, ϕi(xj) = xj for j 6= i, i− 1, 1 < i 6 k.
Note that the general linear group GLk is generated by ϕi, 0 < i 6 k and the
symmetric group Σk is generated by ϕi, 1 < i 6 k.
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Let B be a finite subset of Pk consisting of some monomials of degree n. To
prove the set [B] is linearly independent in QPk, we order the set B by the order
as in Definition 2.6 and denote the elements of B by di = dn,i, 0 < i 6 b = |B| in
such away that dn,i < dn,j if and only if i < j. Suppose there is a linear relation

S =
∑

16j6b

γjdn,j ≡ 0,

with γj ∈ F2. For (i; I) ∈ Nk, we explicitly compute p(i;I)(S) in terms of a minimal
set of A-generators in Pk−1. Computing from some relations p(i;I)(S) ≡ 0 with
(i; I) ∈ Nk and ϕi(S) ≡ 0, we will obtain γj = 0 for all j.

5.1. The case of degree n = 2s+1 − 3.
In this subsection we prove the following.

Proposition 5.1.1. For any s > 1, Φ(B3(n)) is a minimal set of generators for
A-module P4 in degree n = 2s+1 − 3.

We need the following lemma for the proof of the proposition.

Lemma 5.1.2. If x is an admissible monomial of degree 2s+1 − 3 in P4, then
ω(x) = (3(s−1), 1).

Proof. It is easy to see that the lemma holds for s = 1. Suppose s > 2. Obviously,
z = x2s−1

1 x2s−1−1
2 x2s−1−1

3 is the minimal spike of degree 2s+1 − 3 in P4 and ω(z) =
(3(s−1), 1). Since 2s+1−3 is odd, we get either ω1(x) = 1 or ω1(x) = 3. If ω1(x) = 1,
then ω(x) < ω(z). By Theorem 2.12, x is hit. This contradicts the fact that x is
admissible. Hence we have ω1(x) = 3. Using Proposition 2.10 and Theorem 2.12,
we obtain ωi(x) = 3, i = 1, 2, . . . , s− 1. From this, it implies

2s+1 − 3 = deg x =
∑
i>1

2i−1ωi(x) = 3(2s−1 − 1) +
∑
i>s

2i−1ωi(x).

The last equality implies ωs(x) = 1 and ωi(x) = 0 for i > s. The lemma is
proved. �

From Lemma 3.10, we have the following.

Lemma 5.1.3. The following monomials are strictly inadmissible:
X1x

2
1, XiX

2
j , 1 6 i < j 6 4.

Proof of Proposition 5.1.1. We have n = 2s+1 − 3 = 2s + 2s−1 + 2s−1 − 3. Hence
the proposition follows from Theorem 1.3 for s > 4. According to Kameko [14],

B3(n) = {v1 = X2s−1−1x2s−1

3 , v2 = X2s−1−1x2s−1

2 , v3 = X2s−1−1x2s−1

1 },
where X = x1x2x3.

It is easy to see that Φ(B3(1)) = {x1, x2, x3, x4}. Hence the proposition holds
for s = 1. For s = 2, using Lemma 5.1.3, we see that

Φ+(B3(5)) = {x1x2x3x
2
4, x1x2x

2
3x4, x1x

2
2x3x4}

is a minimal set of generators for (P+
4 )5. A direct computation using Lemmas 5.1.2

and 5.1.3 shows that for s = 3, Φ+(B3(13)) is the set of 23 following monomials:
X2

i Xjx
4
m, 1 6 i < j 6 4, m 6= i,X2

i Xjx
4
i , 2 6 i < j 6 4, X3

3x
4
3, X

3
4x

4
4.
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Using Lemmas 5.1.2, 5.1.3 and Theorem 2.12, we see that if x is an admissible
monomial of degree 13 in P+

4 , then x ∈ Φ+(B3(13)). Hence (QP+
4 )13 is generated

by [Φ+(B3(13))]. Now we prove that the set [Φ+(B3(13))] is linearly independent.
Suppose there is a linear relation

23∑
j=1

γjdj ≡ 0, (5.1.3.1)

where γj ∈ F2, 1 6 j 6 23.
Consider the homomorphisms p(1;i) : P4 → P3, i = 2, 3, 4. By a direct computa-

tion from (5.1.3.1), we have

p(1;2)(S) ≡ γ1v1 + γ2v2 + γ7v3 ≡ 0,
p(1;3)(S) ≡ γ3v1 + (γ5 + γ16)v2 + γ8v3 ≡ 0,
p(1;4)(S) ≡ (γ4 + γ15)v1 + γ6v2 + γ9v3 ≡ 0.

From the above equalities it implies{
γj = 0, j = 1, 2, 3, 6, 7, 8, 9,
γ5 = γ16, γ4 = γ16.

(5.1.3.2)

Substituting (5.1.3.2) into the relation (5.1.3.1), we have

S = γ4d4 + γ5d5 +
∑

106j623
γjdj ≡ 0. (5.1.3.3)

Applying the homomorphisms p(2;3), p(2;4), p(3;4) : P4 → P3 to (5.1.3.3), we get

p(2;3)(S) ≡ γ10v1 + (γ12 + γ16 + γ18)v2 + γ21v3 ≡ 0,
p(2;4)(S) ≡ (γ11 + γ15 + γ19)v1 + γ13v2 + γ22v3 ≡ 0,
p(3;4)(S) ≡ (γ14 + γ15 + γ16 + γ17)v1 + γ20v2 + γ23v3 ≡ 0.

Hence we get 
γj = 0, j = 10, 13, 20, 21, 22, 23,
γ12 + γ16 + γ18 = γ11 + γ15 + γ19 = 0,
γ14 + γ15 + γ16 + γ17 = 0.

(5.1.3.4)

Substituting (5.1.3.4) into the relation (5.1.3.3) we get

S = γ4d4 + γ5d5 + γ11d11 + γ12d12 +
∑

146j619
γjdj ≡ 0. (5.1.3.5)

The homomorphisms p(1;(2,3)), p(1;(2,4)), p(1;(3,4)) : P4 → P3, send (5.1.3.5) re-
spectively to

p(1;(2,3))(S) ≡ (γ5 + γ12 + γ16)v2 + γ18v3 ≡ 0,
p(1;(2,4))(S) ≡ (γ4 + γ11 + γ15)v1 + γ19v3 ≡ 0
p(1;(3,4))(S) ≡ (γ4 + γ14 + γ15)v1 + (γ5 + γ16 + γ17)v2 ≡ 0.

From this we obtain{
γ18 = γ19 = γ5 + γ12 + γ16 = 0,
γ4 + γ11 + γ15 = γ4 + γ14 + γ15 = γ5 + γ16 + γ17 = 0.

(5.1.3.6)
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Combining (5.1.3.2), (5.1.3.4) and (5.1.3.6), we obtain γj = 0, j = 1, 2, . . . , 23.
The proposition is proved. �

5.2. The case of degree n = 2s+1 − 2.
It is well-known that, Kameko’s homomorphism

S̃q
0
∗ : (QPk)2m+k → (QPk)m

is an epimorphism. Hence we have

(QPk)2m+k
∼= (QPk)m ⊕ (QP 0

k )2m+k ⊕ (KerS̃q
0
∗ ∩ (QP+

k )2m+k),
and (QPk)m

∼= 〈[ψ(Bk(m))]〉 ⊂ (QPk)2m+k.
For k = 4, from Theorem 4.3, it is easy to see that

Φ(B3(2)) = Φ0(B3(2)) = {xixj | 1 6 i < j 6 4}.
For m = 2s − 3, s > 2, we have

|Φ0(B3(6))| = 18, |Φ0(B3(2s+1 − 2))| = 22, for s > 3,

|ψ(B4(1))| = 4, KerS̃q
0
∗ ∩ [B+

4 (6)] = {[x1x
2
2x3x

2
4], [x1x2x

2
3x

2
4]}.

Hence dim(QP4)2 = 6, dim(QP4)6 = 24.
The main result of this subsection is:

Proposition 5.2.1. For any s > 3, (QP+
4 )2s+1−2 ∩KerS̃q

0
∗ is an F2-vector space

of dimension 13 with a basis consisting of all the classes represented by the following
admissible monomials:
d1 = x1x2x

2s−2
3 x2s−2

4 , d2 = x1x
2
2x

2s−4
3 x2s−1

4 , d3 = x1x
2
2x

2s−3
3 x2s−2

4 ,
d4 = x1x

2
2x

2s−1
3 x2s−4

4 , d5 = x1x
3
2x

2s−4
3 x2s−2

4 , d6 = x1x
3
2x

2s−2
3 x2s−4

4 ,
d7 = x1x

2s−2
2 x3x

2s−2
4 , d8 = x1x

2s−1
2 x2

3x
2s−4
4 , d9 = x3

1x2x
2s−4
3 x2s−2

4 ,
d10 = x3

1x2x
2s−2
3 x2s−4

4 , d11 = x3
1x

3
2x

4
3x

4
4, s = 3, d11 = x3

1x
5
2x

2s−6
3 x2s−4

4 , s > 3,
d12 = x3

1x
2s−3
2 x2

3x
2s−4
4 , d13 = x2s−1

1 x2x
2
3x

2s−4
4 ,

The proof of this theorem is based on some lemmas.

Lemma 5.2.2. If x is an admissible monomial of degree 2s+1 − 2 in P4 and [x] ∈
KerS̃q

0
∗, then ω(x) = (2(s)).

Proof. We prove the lemma by induction on s. Obviously, the lemma holds for
s = 1. Observe that z = (x1x2)2s−1 is the minimal spike of degree 2s+1 − 2 in P4
and ω(z) = (2(s)). Since 2s+1 − 2 is even, using Theorem 2.12 and the fact that
[x] ∈ KerS̃q

0
∗, we obtain ω1(x) = 2. Hence x = xixjy

2, where y is a monomial of
degree 2s − 2 and 1 6 i < j 6 4. Since x is admissible, by Theorem 2.9, y is also
admissible. Now, the lemma follows from the inductive hypothesis. �

The following lemma is proved by a direct computation.

Lemma 5.2.3. The following monomials are strictly inadmissible:
i) x2

ixjx
3
k, x

3
ix

4
jx

7
k, i < j, k 6= i, j, x2

1x
2
2x3x4, x

2
1x2x

2
3x4, x

2
1x2x3x

2
4, x1x

2
2x

2
3x4.

ii) x1x
6
2x

3
3x

4
4, x

3
1x

4
2x3x

6
4, x

3
1x

4
2x

3
3x

4
4.

iii) x1x
7
2x

10
3 x

12
4 , x

7
1x2x

10
3 x

12
4 , x

3
1x

3
2x

12
3 x

12
4 , x

3
1x

5
2x

8
3x

14
4 , x

3
1x

5
2x

14
3 x

8
4, x

7
1x

7
2x

8
3x

8
4.
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Proof of Proposition 5.2.1. Let x be an admissible monomial in P4 and [x] ∈ KerS̃q
0
∗.

By Lemma 5.2.2, ωi(x) = 2, for 1 6 i 6 s. By induction on s, we see that if x 6= di,
for i = 1, 2, . . . , 13, then there is a monomial w, which is given in Lemma 5.2.3
such that x = wy2u for some monomial y and positive integer u. By Theorem
2.9, x is inadmissible. Hence KerS̃q

0
∗ ∩ (QP+

4 ) is spanned by the classes [di] with
i = 1, 2, . . . , 13. Now, we prove that the classes [di] with i = 1, 2, . . . , 13, are linearly
independent.

Suppose there is a linear relation∑
16i613

γidi ≡ 0, (5.2.3.1)

with γi ∈ F2.
According to Kameko [14], for s > 3, B3(n) ∩ (P+

3 )n is the set consisting of 4
monomials:

w1 = x1x
2s−2
2 x2s−1

3 , w2 = x1x
2s−1
2 x2s−2

3 ,
w3 = x3

1x
2s−3
2 x2s−2

3 , w4 = x2s−1
1 x2x

2s−2
3 .

Apply the homomorphisms p(1;2), p(3;4) : P4 → P3 to the relation (5.2.3.1) and
we obtain

γ2w1 + γ4w2 + γ3w3 + γ7w4 ≡ 0.
γ7w1 + γ8w2 + γ12w3 + γ13w4 ≡ 0.

From these relations, we get γi = 0, i = 2, 3, 4, 7, 8, 12, 13. Then the relation
5.2.3.1 becomes

γ1d1 + γ5d5 + γ6d6 + γ9d9 + γ10d10 + γ11d11 ≡ 0. (5.2.3.2)

Apply the homomorphisms p(1;4), p(2;3) : P4 → P3 to the relation (5.2.3.2) and we
get

(γ1 + γ5 + γ10 + γ11)w1 + γ6w3 ≡ 0,
(γ1 + γ5 + γ10 + γ11)w2 + γ9w3 ≡ 0.

These equalities imply γ6 = γ9 = γ1 + γ5 + γ10 + γ11 = 0. Hence we obtain

γ1d1 + γ5d5 + γ10d10 + γ11d11 ≡ 0. (5.2.3.3)

For s > 3, apply the homomorphisms p(1;3), p(2;4) : P4 → P3 to (5.2.3.3), we get

γ1w2 + γ5w3 ≡ 0,
γ1w1 + γ10w3 ≡ 0.

From the above equalities, we get γi = 0, i = 1, 2, . . . , 13.
For s = 3, apply the homomorphisms p(1;3), p(2;4) : P4 → P3 to (5.2.3.3), we get

(γ1 + γ11)w2 + γ8w3 ≡ 0,
(γ1 + γ11)w1 + γ10w3 ≡ 0.

From the above equalities, we get γi = 0, i = 2, . . . , 10, 12, 13 and γ1 = γ11. So the
relation (5.2.3.3) becomes

γ1(d1 + d11) ≡ 0.
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Now, we prove that [d1 + d11] 6= 0. Suppose the contrary, that the polynomial
d1 +d11 = x1x2x

6
3x

6
4 +x3

1x
3
2x

4
3x

4
4 is hit. Then by the unstable property of the action

of A on the polynomial algebra, we have

x1x2x
6
3x

6
4 + x3

1x
3
2x

4
3x

4
4 = Sq1(A) + Sq2(B) + Sq4(C),

for some polynomials A ∈ (P+
4 )13, B ∈ (P+

4 )12, C ∈ (P+
4 )10. Let (Sq2)3 acts on the

both sides of the above equality. Since (Sq2)3Sq1 = 0 and (Sq2)3Sq2 = 0, we get

(Sq2)3(x1x2x
6
3x

6
4 + x3

1x
3
2x

4
3x

4
4) = (Sq2)3Sq4(C).

On the other hand, by a direct computation, it is not difficult to check that

(Sq2)3(x1x2x
6
3x

6
4 + x3

1x
3
2x

4
3x

4
4) 6= (Sq2)3Sq4(C),

for all C ∈ (P+
4 )10. This is a contradiction. Hence [d1 + d11] 6= 0 and γ1 = γ11 = 0.

The proposition is proved. �

5.3. The case of degree n = 2s+1 − 1.

First, we determine the ω-vector of an admissible monomial of degree 2s+1 − 1
in P4.

Lemma 5.3.1. If x is an admissible monomial of degree 2s+1−1 in P4 then either
ω(x) = (1(s+1)) or ω(x) = (3, 2(s−1)) or ω(x) = (1, 3) for s = 2.

Proof. Obviously, the lemma holds for s = 1. Suppose s > 2. By a direct
computation we see that if w is a monomial in P4 such that ω(w) = (1, 3, 2) or
ω(w) = (1, 1, 3), then w is strictly inadmissible.

Since 2s+1 − 1 is odd, we have either ω1(x) = 1 or ω1(x) = 3. If ω1(x) = 1,
then x = xiy

2, where y is a monomial of degree 2s − 1. Hence either ω1(y) = 1 or
ω1(y) = 3. So the lemma holds for s = 2. Suppose that s > 3. If ω1(y) = 3, then
y = Xiy

2
1 , where y1 is a monomial of degree 2s−1 − 2. Since y1 is admissible, using

Proposition 2.10, one gets ω1(y1) = 2. Hence x is inadmissible. If ω1(y) = 1, then
y = xjy

2
1 , where y1 is an admissible monomial of degree 2s−1− 1. By the inductive

hypothesis ω(y1) = (1(s−1)). So we get ω(x) = (1(s+1)).
Suppose that ω1(x) = 3. Then x = Xiy

2, where y is an admissible monomial of
degree 2s − 2. Since x is admissible, by Lemma 5.2.3, ω(y) = (2(s−1)). The lemma
is proved. �

For s = 1, we have (QP4)3 = (QP 0
4 )3. Hence B4(3) = Φ0(B3(3)). Using

Proposition 4.1 and Theorem 4.3, we have

|Φ0(B3(3))| = 14, |Φ0(B3(7))| = 26, |Φ0(B3(15))| = 38,
|Φ0(B3(2s+1 − 1))| = 42, for s > 4.

For s = 2, B4(7) = B4(1(3)) ∪ B4(1, 3) ∪ B4(3, 2). By a direct computation, we
have B4(1, 3) = {x1X

2
1}, B4(3, 2) = Φ(B3(7)).

Recall that

B3(2s+1 − 1) = B3(1(s+1)) ∪ ψ(Φ(B2(2s − 2))),

where B2(2s − 2) = {x2s−1−1
1 x2s−1−1

2 }. Hence B3(3, 2(s−1)) = ψ(Φ(B2(2s − 2))).
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Proposition 5.3.2. For any s > 3, B4(3, 2(s−1)) = (Φ(B3(3, 2(s−1)))∪A(s), where
A(s) is determined as follows:

A(3) = {x3
1x

4
2x3x

7
4, x

3
1x

4
2x

7
3x4, x

3
1x

7
2x

4
3x4, x

7
1x

3
2x

4
3x4, x

3
1x

4
2x

3
3x

5
4},

A(4) = {x3
1x

4
2x

11
3 x

13
4 , x

3
1x

7
2x

8
3x

13
4 , x

7
1x

3
2x

8
3x

13
4 , x

7
1x

7
2x

8
3x

9
4, x

7
1x

7
2x

9
3x

8
4, },

A(s) = {x3
1x

4
2x

2s−5
3 x2s−3

4 }, s > 5.

Combining Lemma 5.3.1 and Propositions 4.1, 5.3.2, we have

B4(2s+1 − 1) = B4(1(s+1)) ∪ Φ(B3(3, 2(s−1))) ∪A(s).

The following can easily be proved by a direct computation.

Lemma 5.3.3. The following monomials are strictly inadmissible:

i) x2
ixj , x

3
ix

4
j , 1 6 i < j 6 4.

ii) X2x
2
1x

2
2, X1x

2
1x

2
i , i = 2, 3, 4.

iii) x3
ix

12
j xkx

15
` , x

3
ix

4
jx

9
kx

15
` , x

3
ix

5
jx

8
kx

15
` , i < j < k, ` 6= i, j, k.

iv) x7
1x

11
2 x

12
3 x4, x3

1x
12
2 x

3
3x

13
4 , Xjx

2
1x

4
2x

8
3x

8
4x

6
j , x

7
1x

11
2 x

4
3x

8
4xj ,

x3
1x

3
2x

12
3 x

8
4x

4
ixj , x

3
1x

3
2x

24
3 x

29
4 x

4
i , i = 1, 2, j = 3, 4.

Proof of Proposition 5.3.2. By a direct computation using Lemma 5.3.1, Lemma
5.3.3 and Theorem 2.9 we see that if x is a monomial of degree 2s+1 − 1 in P4 and
x /∈ Φ(B3(3, 2(s−1))) ∪ A(s), then there is a monomial w which is given in Lemma
5.3.3 such that x = wy2u for some monomial y and integer u > 1. Hence x is
inadmissible.

Now we prove that the set [B4(3, 2(s−1))] is linearly independent in QP+
4 . For

s = 3, we have |B4(3, 2, 2)| = 36. Suppose there is a linear relation

S =
∑

16i636
γidi ≡ 0, (5.3.3.1)

with γi ∈ F2 and di = d15,i.
A simple computation, we see that B3(3; 2, 2) = ψ(Φ(B2(6))) is the set consisting

of 6 monomials:

v1 = x1x
7
2x

7
3, v2 = x3

1x
5
2x

7
3, v3 = x3

1x
7
2x

5
3, v4 = x7

1x2x
7
3, v5 = x7

1x
3
2x

5
3, v6 = x7

1x
7
2x3.

By a direct computation, we have

p(1;2)(S) ≡ γ3v2 + γ4v3 + (γ9 + γ22)v4 + (γ10 + γ23)v5 + (γ11 + γ24)v6 ≡ 0,
p(1;3)(S) ≡ (γ1 + γ16)v1 + γ5v2 + (γ7 + γ20)v3 + γ13v5 + (γ15 + γ30)v6 ≡ 0,
p(1;4)(S) ≡ (γ2 + γ19)v1 + (γ6 + γ21 + γ27)v2 + γ8v3 + (γ12 + γ29)v4 + γ14v5 ≡ 0,
p(2;3)(S) ≡ (γ1 + γ3 + γ5 + γ9)v1 + (γ16 + γ22)v2

+ (γ18 + γ20 + γ23 + γ26)v3 + γ32v5 + (γ34 + γ36)v6 ≡ 0,
p(2;4)(S) ≡ (γ2 + γ4 + γ8 + γ11)v1

+ (γ17 + γ21)v2 + (γ19 + γ24v3 + γ31 + γ35)v4 + γ33v5 ≡ 0,
p(3;4)(S) ≡ (γ12 + γ13 + γ14 + γ15)v1 + (γ25 + γ26 + γ27 + γ28)v2

+ (γ29 + γ30)v3 + (γ31 + γ32 + γ33 + γ34)v4 + (γ35 + γ36)v5 ≡ 0.
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From these equalities, we obtain

γj = 0, j = 3, 4, 5, 8, 13, 14, 32, 33,
γ1 = γ9 = γ16 = γ22, γ2 = γ11 = γ19 = γ24, γ7 = γ20,

γ1 = γ9 = γ16 = γ22, γ10 = γ23, γ17 = γ21,

γ12 = γ15 = γ29 = γ30, γ31 = γ34 = γ35 = γ36,

γ6 + γ21 + γ27 = γ7 + γ10 + γ18 + γ26 = γ25 + γ26 + γ27 + γ28 = 0.

(5.3.3.2)

A direct computation using 5.3.3.2 and Theorem 2.12, we get
p(1;(2,3))(S) ≡ γ18w3 + γ26w5 + γ28w6 ≡ 0,
p(1;(2,4))(S) ≡ (γ6 + γ10 + γ27)w2 + γ25w4 + γ27w5 ≡ 0,
p(1;(3,4))(S) ≡ (γ17 + γ18)w1

+ (γ6 + γ7 + γ17 + γ25 + γ26 + γ27)w2 + (γ17 + γ28)w3 ≡ 0.

Combining the above equalities and (5.3.3.2), one gets γj = 0 for j 6= 1, 2 , 9, 11,
12, 15, 16, 19, 22, 24 , 29, 30, 31 and γ1 = γ9 = γ16 = γ22, γ2 = γ11 = γ19 = γ24,
γ12 = γ15 = γ29 = γ30, γ31 = γ34 = γ35 = γ36. Hence the relation (5.3.3.1) becomes

γ1θ1 + γ2θ2 + γ12θ3 + γ31θ4 ≡ 0, (5.3.3.3)
where

θ1 = d1 + d9 + d16 + d22, θ2 = d2 + d11 + d19 + d24,

θ3 = d12 + d15 + d29 + d30, θ4 = d31 + d34 + d35 + d36.

Now, we prove that γ1 = γ2 = γ12 = γ31 = 0.
The proof is divided into 4 steps.
Step 1. Under the homomorphism ϕ1, the image of (5.3.3.3) is

γ1θ1 + γ2θ2 + γ12θ3 + γ31(θ4 + θ3) ≡ 0. (5.3.3.4)
Combining (5.3.3.3) and (5.3.3.4), we get

γ31θ3 ≡ 0. (5.3.3.5)
If the polynomial θ3 is hit, then we have

θ3 = Sq1(A) + Sq2(B) + Sq4(C),
for some polynomials A ∈ (P+

4 )14, B ∈ (P+
4 )13, C ∈ (P+

4 )11. Let (Sq2)3 act on the
both sides of this equality. We get

(Sq2)3(θ3) = (Sq2)3Sq4(C),
By a direct calculation, we see that the monomial x = x8

1x
7
2x

4
3x

2
4 is a term of

(Sq2)3(θ3). If this monomial is a term of (Sq2)3Sq4(y) for a monomial y ∈ (P+
4 )11,

then y = x7
2f2(z) with z ∈ P3 and deg z = 4. Using the Cartan formula, we see

that x is a term of x7
2(Sq2)3Sq4(z) = x7

2(Sq2)3(z2) = 0. Hence
(Sq2)3(θ3) 6= (Sq2)3Sq4(C),

for all C ∈ (P+
4 )11 and we have a contradiction. So [θ3] 6= 0 and γ31 = 0.

Step 2. Since γ31 = 0, the homomorphism ϕ2 sends (5.3.3.3) to
γ1θ1 + γ2θ2 + γ12θ4 ≡ 0. (5.3.3.6)

Using the relation (5.3.3.6) and by the same argument as given in Step 1, we get
γ12 = 0.
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Step 3. Since γ31 = γ12 = 0, the homomorphism ϕ3 sends (5.3.3.3) to

γ1[θ1] + γ2[θ3] = 0. (5.3.3.7)

Using the relation (5.3.3.7) and by the same argument as given in Step 2, we obtain
γ3 = 0.

Step 4. Since γ31 = γ12 = γ2 = 0, the homomorphism ϕ4 sends (5.3.3.3) to

γ1θ2 = 0.

Using this relation and by the same argument as given in Step 3, we obtain γ1 = 0.
For s > 4, B3(3, 2(s−1))) = ψ(Φ(B2(2s−1 − 2))) is the set consisting of 7 mono-

mials:

v1 = x1x
2s−1
2 x2s−1

3 , v2 = x3
1x

2s−3
2 x2s−1

3 , v3 = x3
1x

2s−1
2 x2s−3

3 , v4 = x7
1x

2s−5
2 x2s−3

3 ,

v5 = x2s−1
1 x2x

2s−1
3 , v6 = x2s−1

1 x3
2x

2s−3
3 , v7 = x2s−1

1 x2s−1
2 x3.

Suppose that s = 4. Then we have |B4((3, 2(3)))| = 46. Suppose there is a linear
relation

S =
∑

16j646
γjdj = 0, (5.3.3.8)

with γj ∈ F2 and di = d31,i.
By a direct computation using Theorem 2.12, we have

p(1;2)(S) ≡ γ3w2 + γ4w3 + (γ9 + γ25)w4 + γ12w5 + γ13w6 + γ14w7 ≡ 0,
p(1;3)(S) ≡ (γ1 + γ19)w1 + γ5w2 + (γ7 + γ23 + γ37 + γ39)w3

+ (γ10 + γ28)w4 + γ16w6 + γ18w7 ≡ 0,
p(1;4)(S) ≡ (γ2 + γ22)w1 + (γ6 + γ24 + γ27 + γ29 + γ32 + γ40)w2

+ γ8w3 + γ11w4 + (γ15 + γ34)w5 + γ17w6 ≡ 0.

From these equalities, we get
γj = 0, j = 3, 4, 5, 8, 11, 12, 13, 14, 16, 17, 18,
γ9 = γ25, γ1 = γ19, γ7 + γ23 + γ37 + γ39 = 0, γ10 = γ28,

γ2 = γ22, γ6 + γ24 + γ27 + γ29 + γ32 + γ40 = 0, γ15 + γ34 = 0.
(5.3.3.9)

Using the relations (5.3.3.9), and Theorem 2.12, we obtain

p(2;3)(S) ≡ γ1w1 + γ1w2 + (γ9 + γ10 + γ21 + γ23 + γ26 + γ31 + γ39)w3

+ (γ35 + γ37)w4 + γ43w6 ≡ 0,
p(2;4)(S) ≡ γ2w1 + γ45w7 + (γ20 + γ24 + γ38 + γ40)w2 + γ2w3 + γ36w4

+ (γ42 + γ46)w5 + γ44w6 ≡ 0,
p(3;4)(S) ≡ γ15w1 + (γ30 + γ31 + γ32 + γ33)w2

+ γ15w3 + γ41w4 + (γ42 + γ43 + γ44 + γ45)w5 + γ42w6 ≡ 0.

From these equalities, we get
γj = 0, j = 1, 2, 15, 36, 41, 42, 43, 44, 45, 46,
γ10 + γ21 + γ23 + γ26 + γ31 + γ39 = 0,
γ35 = γ37, γ20 + γ24 + γ38 + γ40 = 0,
γ30 + γ31 + γ32 + γ33 = 0.

(5.3.3.10)
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By a direct computation using (5.3.3.9), (5.3.3.10) and Theorem 2.12, we have

p(1;(2,3))(S) ≡ (γ7 + γ21 + γ23 + γ39)w3 + γ26w4 + γ31w6 + γ33w7 ≡ 0,
p(1;(2,4))(S) ≡ (γ6 + γ9 + γ20 + γ24 + γ27 + γ29 + γ32 + γ38 + γ40)w2

+ γ27w4 + γ30w5 + γ32w6 ≡ 0,
p(1;(3,4))(S) ≡ (γ6 + γ10 + γ23 + γ24 + γ26 + γ27 + γ29 + γ30 + γ31 + γ32)w2

+ (γ7 + γ23 + γ24 + γ33 + γ35 + γ38 + γ39 + γ40)w3

+ (γ20 + γ21 + γ35)w1 + γ29w4 ≡ 0,
p(2;(3,4))(S) ≡ (γ10 + γ20 + γ23 + γ24 + γ29 + γ30 + γ35 + γ38 + γ39 + γ40)w2

+ (γ9 + γ10 + γ21 + γ23 + γ24 + γ26 + γ27 + γ29 + γ31 + γ32)w3

+ (γ6 + γ7 + γ9 + γ10)w1 + γ38w4 ≡ 0.

Combining the above equalities, 5.3.3.9 and 5.3.3.10, we get
γj = 0, j 6= 7, 10, 21, 23, 24, 28, 35, 37, 39, 40,
γ7 = γ10 = γ28, γ21 = γ35 = γ37,

γ7 + γ21 + γ23 + γ39 = 0.
(5.3.3.11)

Hence we obtain
γ7θ1 + γ21θ2 + γ39θ3 + γ24θ4 ≡ 0, (5.3.3.12)

where

θ1 = d7 + d10 + d23 + d28,

θ2 = d21 + d23 + d35 + d37,

θ3 = d23 + d39, θ4 = d24 + d40.

Now, we prove γ7 = γ21 = γ24 = γ39 = 0. The proof is divided into 4 steps.
Step 1. The homomorphism ϕ1 sends (5.3.3.12) to

γ7θ1 + γ21(θ2 + θ1) + γ24θ3 + γ39θ4 ≡ 0. (5.3.3.13)

Combining (5.3.3.12) and (5.3.3.13) gives

γ25θ1 ≡ 0. (5.3.3.14)

By an analogous argument as given in the proof of the proposition for the case
s = 3, [θ1] 6= 0. So we get γ21 = 0.

Step 2. Applying the homomorphism ϕ2 to (5.3.3.8), we obtain

γ7θ2 + γ24θ3 + γ39θ4 = 0. (5.3.3.15)

Using (5.3.3.15) and by a same argument as given in Step 1, we get γ7 = 0.
Step 3. Under the homomorphism ϕ3, the image of (5.3.3.8) is

γ24[θ2] + γ39[θ4] = 0. (5.3.3.16)

Using (5.3.3.16) and by a same argument as given in Step 3, we obtain γ24 = 0.
Step 4. Since γ7 = γ22 = γ24 = 0, the homomorphism ϕ3 sends (5.3.3.8) to

γ39[θ3] = 0.

From this equality and by a same argument as given in Step 3, we get γ39 = 0.
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For s > 5, |B4(3, 2(s−1))| = 43. Suppose that there is a linear relation

S =
∑

16j643
γjdj ≡ 0, (5.3.3.17)

with γj ∈ F2.
Using the relations p(j;J)(S) ≡ 0, for (j; J) ∈ N4 and the admissible monomials

vi, i = 1, 2, . . . , 7, we obtain γj = 0 for any j. The proposition is proved. �

5.4. The case of degree 2s+t+1 + 2s+1 − 3.
First of all, we determine the ω-vector of an admissible monomial of degree

n = 2s+t+1 + 2s+1 − 3 for any positive integers s, t.

Lemma 5.4.1. Let x be a monomial of degree 2s+t+1 + 2s+1 − 3 in P4 with s, t
are the positive integers. If x is admissible, then either ω(x) = (3(s), 1(t+1)) or
ω(x) = (3(s+1), 2(t−1)).

Proof. Observe that the monomial z = x2s+t+1−1
1 x2s−1

2 x2s−1
3 is the minimal spike

of degree 2s+t+1 + 2s+1 − 3 in P4 and ω(z) = (3(s), 1(t+1)). Since x is admissible
and 2s+t+1 + 2s+1 − 3 is odd, using Theorem 2.12, we obtain ω1(x) = 3. Using
Theorem 2.12 and Proposition 2.10, we get ωi(x) = 3 for i = 1, 2, . . . , s.

Let x′ =
∏

i>1 X
2i−1

Ii+s−1(x). Then ωi(x′) = ωi+s(x), i > 1 and deg(x′) = 2t+1 − 1.
Since x is admissible, using Theorem 2.9, we see that x′ is also admissible. By
Lemmas 5.3.1, either ω(x′) = (1(t+1)) or ω(x′) = (3, 2(t−1)) or ω(x′) = (1, 3) for
t = 2. By a direct computation we see that if ω(x′) = (1, 3), then x is inadmissible.
So, the lemma is proved. �

Using Theorem 1.3, we easily obtain the following.

Proposition 5.4.2. For any positive integers s, t with s > 3, Φ(B3(n)) is a mini-
mal set of generators for A-module P4 in degree n = 2s+t+1 + 2s+1 − 3.

Hence it suffices to consider the cases s = 1 and s = 2.
5.4.1. The subcase s = 1.

For s = 1, n = 2t+2 + 1 = (2t+2 − 1) + (2− 1) + (2− 1). Hence µ(2t+2 + 1) = 3
and Kameko’s homomorphism

S̃q
0
∗ : (QP3)2t+2+1 → (QP3)2t+1−1

is an isomorphism. So, we get
B3(n) = ψ(B3(2t+1 − 1)) = ψ(B3(1(t+1))) ∪ ψ(B3(3, 2(t−1))).

Proposition 5.4.3. For any positive integer t, Φ(B3(n)) ∪ B(t) is the set of all
the admissible monomials for A-module P4 in degree n = 2t+2 + 1, where the set
B(t) is determined as follows:

B(1) = {x3
1x

4
2x3x4}, B(2) = {x3

1x
5
2x

8
3x4},

B(3) = {x3
1x

7
2x

11
3 x

12
4 , x

7
1x

3
2x

11
3 x

12
4 , x

7
1x

11
2 x

3
3x

12
4 , x

7
1x

7
2x

8
3x

11
4 , x

7
1x

7
2x

11
3 x

8
4},

B(t) = {x3
1x

7
2x

2t+1−5
3 x2t+1−4

4 , x7
1x

3
2x

2t+1−5
3 x2t+1−4

4 ,

x7
1x

2t+1−5
2 x3

3x
2t+1−4
4 , x7

1x
7
2x

2t+1−8
3 x2t+1−5

4 }, for t > 3.
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The following lemma is proved by a direct computation.

Lemma 5.4.4. The following monomials are strictly inadmissible:
i) X2x

2
1x

12
2 , X

3
3x

4
3x

4
i , i = 1, 2, Xjx

2
1x

4
2x

8
j , X

3
2x

4
2x

4
j , j = 3, 4.

ii) X3x
2
1x

4
2x

24
3 , X3x

2
1x

4
2x

8
jx

16
4 , j = 3, 4.

iii) X3X
2
2x

4
1x

8
2x

12
4 , X4X

2
2x

4
1x

8
2x

12
3 , X4X

2
3x

4
1x

12
2 x

8
3, X4X

2
3x

12
1 x

4
2x

8
3

iv) X3
j x

4
ix

8
jx

12
m , 1 6 i < j 6 4, m 6= i, j.

v) XjX
2
2x

4
1x

4
3x

8
2x

8
4, j = 3, 4, X3

j 2x4
1x

4
3x

8
2x

8
4, j = 2, 4.

vi) X3
3x

4
1x

4
2x

24
3 x

24
4 , X

3
3x

4
1x

4
2x

8
ix

8
4x

16
3 x

16
4 , X4X

2
2x

4
1x

4
2x

8
ix

8
4x

16
3 x

16
4 , i = 1, 2,

X3
j x

12
1 x

12
2 x

16
3 x

16
4 , j = 3, 4, X4X

2
3x

12
1 x

12
2 x

16
3 x

16
4 .

Proof of Proposition 5.4.2. Let x be an admissible monomial of degree n = 2t+2+1.
According to Lemma 5.4.1, x = Xiy

2 with y a monomial of degree 2t+1 − 1. Since
x is admissible, by Theorem 2.12, y is admissible. By a direct computation, we see
that if y ∈ B4(2t+1 − 1) and Xiy

2 /∈ Φ(B3(n)) ∪ B(t), then there is a monomial
w which is given in one of Lemma 5.1.3, 5.3.3, 5.4.4 such that Xiy

2 = wz2u with
some positive integer u and monomial z. By Theorem 2.9, x is inadmissible.

For t = 1, we have |C+
4 (9)| = 18. Suppose there is a linear relation

S =
18∑

i=1
γidi ≡ 0, (5.4.4.1)

with γi ∈ F2. A direct computation from the relations p(r;j)(S) ≡ 0, for 1 6 r < j 6
4, we obtain γi = 0 for i 6= 1, 4, 9, 10, 11, 12 and γ1 = γ2 = γ3 = γ10 = γ11 = γ12.
Hence the relation (5.4.4.1) becomes γ1θ ≡ 0 where θ = d1 +d4 +d9 +d10 +d11 +d12.

We prove γ1 = 0. Suppose θ is hit. Then we get
θ = Sq1(A) + Sq2(B) + Sq4(C),

for some polynomials A ∈ (P+
4 )8, B ∈ (P+

4 )7, C ∈ (P+
4 )5. Let (Sq2)3 act on the

both sides of this equality. It is easy to check that (Sq2)3Sq4(C) = 0 for all
C ∈ (P+

4 )5. Since (Sq2)3 annihilates Sq1 and Sq2, the right hand side is sent to
zero. On the other hand, a direct computation shows

(Sq2)3(θ) = (1, 2, 4, 8) + symmetries 6= 0.
Hence we have a contradiction. So we obtain γ1 = 0.

For t = 2, |B+
4 (17)| = 47. Suppose there is a linear relation

S =
47∑

i=1
γidi ≡ 0, (5.4.4.2)

with γi ∈ F2 and di = d17,i. A direct computation from the relations p(j;J)(S) ≡ 0,
for (j; J) ∈ N4, we obtain γi = 0 for i 6= 1, 4, 8, 9, 10, 11, 17, 18 and γ1 = γ2 = γ8 =
γ9 = γ10 = γ11 = γ17 = γ18. Hence the relation (5.4.4.2) becomes γ1θ ≡ 0 where
θ = d1 + d4 + d8 + d11 + d13 + d16 + d17 + d18.

By a same argument as given in the proof of the proposition for t = 1, we see
that [θ] 6= 0. Hence γ1 = 0.

For t = 3, we have |B+
4 (33)| = 84, and |B+

4 (2t+2 + 1)| = 94 for t > 4. Suppose
there is a linear relation

S =
84∑

i=1
γidi ≡ 0, (5.4.4.3)
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with γi ∈ F2 and di = d33,i. A direct computation from the relations p(j;J)(S) ≡ 0,
for (j; J) ∈ N4, we obtain γi = 0 for all i /∈ E with E = {1, 3, 8, 9, 13, 14, 17, 24,
25, 42, 43, 59, 60, 65, 66, 67} and γi = γ1 for all i ∈ E. Hence the relation 5.4.4.3
become γ1θ ≡ 0 with θ =

∑
i∈E di.

By a same argument as given in the proof of the proposition for t = 1, we see
that [θ] 6= 0. Therefore γ1 = 0.

Now, we prove the set B+
4 (n) is linearly independent for t > 3. Suppose there is

a linear relation

S =
94∑

i=1
γidi ≡ 0, (5.4.4.4)

with γi ∈ F2 and di = dn,i. A direct computation from the relations p(j;J)(S) ≡ 0,
for (j; J) ∈ N4, we obtain γi = 0 for all i. �

5.4.2. The subcase s = 2.
For s = 2, we have n = 2t+3 +5. According to Theorem 1.2, the iterated Kameko

homomorphism
(S̃q

0
∗)2 : (QP3)2t+3+5 → (QP3)2t+1−1

is an isomorphism. So we get
B3(n) = ψ2(B3(2t+1 − 1)) = ψ2(B3(1(t+1))) ∪ ψ2(Φ(B3(3, 2(t−1))).

Proposition 5.4.5.
i) B4(n) = Φ(B3(21)) ∪ {x7

1x
9
2x

2
3x

3
4, x

7
1x

9
2x

3
3x

2
4, x

3
1x

7
2x

8
3x

3
4, x

7
1x

3
2x

8
3x

3
4} is the set

of all the admissible monomials for A-module P4 in degree 21.
ii) For any integer t > 1, Φ(B3(n)) is the set of all the admissible monomials

for A-module P4 in degree n = 2t+3 + 5.

The following lemma is proved by a direct computation.

Lemma 5.4.6. The following monomials are strictly inadmissible:
i) X3

2x
4
3, X

4
i X

3
j , 1 6 i < j 6 4, X3

2x
4
1x

8
2.

ii) X3
3x

4
ix

24
3 , X

3
3x

4
ix

8
3x

16
4 , X

3
4x

4
ix

8
3x

16
4 , X

7
4x

8
ix

8
4, i = 1, 2.

iii) x7
1x

11
2 x

17
3 x

2
4, X

3
j x

8
2x

16
j , X

7
j x

8
3x

8
4, j = 3, 4

iv) x15
1 x

15
2 x

16
3 x

23
4 , x

15
1 x

15
2 x

23
3 x

16
4 , x

15
1 x

15
2 x

17
3 x

22
4 .

Proof of Proposition 5.4.5. Let x be an admissible monomial of degree n = 2t+3+5.
According to Lemma 5.4.1, x = Xiy

2 with y a monomial of degree 2t+2 + 1. Since
x is admissible, by Theorem 2.12, y is admissible.

By a direct computation, we see that if y ∈ B4(2t+2 + 1) and Xiy
2 is not in the

set given in Proposition 5.4.5, then there is a monomial w which is given in one of
Lemmas 5.1.3, 5.3.3, 5.4.6 such that Xiy

2 = wz2u with some positive integer u and
monomial z.

By Theorem 2.9, x is inadmissible. Hence QP4(n) is generated by the set given
in the proposition.

For t = 1, we have |B+
4 (21)| = 66. Suppose there is a linear relation

S =
66∑

i=1
γidi ≡ 0, (5.4.6.1)

with γi ∈ F2 and di = d21,i.
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By a simple computation, we see that B3(21) is the set consisting of 7 monomials:
v1 = x3

1x
3
2x

15
3 , v2 = x3

1x
7
2x

11
3 , v3 = x3

1x
15
2 x

3
3, v4 = x7

1x
3
2x

11
3 ,

v5 = x7
1x

11
2 x

3
3, v6 = x15

1 x
3
2x

3
3, v7 = x7

1x
7
2x

7
3.

A direct computation, we have
p(1;2)(S) ≡ γ1v1 + γ2v2 + γ3v3 + γ10v4 + γ11v5 + γ16v6 + γ57v7 ≡ 0,
p(1;3)(S) ≡ γ4v1 + γ6 + γ27v2 + (γ8 + γ30 + γ49)v3 + γ12v4

+ (γ14 + γ38v5 + γ17)v6 + γ58v7 ≡ 0,
p(1;4)(S) ≡ (γ5 + γ26 + γ48)v1 + (γ7 + γ29v2 + γ9)v3 + (γ13 + γ37)v4

+ γ15v5 + γ18v6 + γ59v7 ≡ 0,
p(2;3)(S) ≡ γ19v1 + (γ21 + γ27 + γ32 + γ60)v2 + (γ23 + γ30 + γ34 + γ38 + γ40)v3

+ γ43v4 + (γ45 + γ49 + γ51)v5 + γ54v6 + γ63v7 ≡ 0,
p(2;4)(S) ≡ (γ20 + γ26 + γ33 + γ37 + γ41)v1 + γ22 + γ29 + γ35 + γ61)v2

+ γ24v3 + (γ44 + γ48 + γ52)v4 + γ46v5 + γ55v6 + γ64v7 ≡ 0,
p(3;4)(S) ≡ (γ25 + γ26 + γ27 + γ28 + γ29 + γ30 + γ31)v1

+ (γ36 + γ37 + γ38 + γ39 + γ62)v2 + γ42v3

+ (γ47 + γ48 + γ49 + γ50 + γ65)v4 + γ53v5 + γ56v6 + γ66v7 ≡ 0.
From the above equalities, we get γi = 0, for i = 1, 2, 3, 4, 9, 10, 11, 12, 15, 16,

17, 18, 19, 24, 42, 43, 46, 53, 54, 55, 56, 57, 58, 59, 63, 64, 66 and γ6 = γ27. γ8+γ30+
γ49 = 0, γ14 = γ38, γ5 + γ26 + γ48 = 0, γ7 = γ29, γ13 = γ37, γ6 + γ21 + γ32 + γ60 =
0, γ14 + γ23 + γ30 + γ34 + γ40γ45 + γ49 + γ51 = 0, γ20 + γ26 + γ33 + γ37 + γ41 =
0, γ7 +γ22 +γ35 +γ61 = 0, γ44 +γ48 +γ52 = 0, γ6 +γ7 +γ25 +γ26 +γ28 +γ30 +γ31 =
0, γ14 + γ36 + γ37 + γ39 + γ62 = 0, γ47 + γ48 + γ49 + γ50 + γ65 = 0.

With the aid of the above equalities have
p(1;(2,3))(S) ≡ γ21v2 + (γ8 + γ23 + γ30 + γ45 + γ49)v3 + γ32v4

+ (γ34 + γ45 + γ49 + γ51)v5 + (γ40 + γ51)v6 + γ60v7 ≡ 0,
p(1;(2,4))(S) ≡ (γ5 + γ20 + γ26 + γ44 + γ48)v1 + γ22v2

+ (γ33 + γ44 + γ48 + γ52)v4 + γ35v5 + (γ41 + γ52)v6 + γ61v7 ≡ 0.
From this, we obtain γi = 0, for i = 21, 22, 32, 35, 60, 61 and γ8 + γ23 + γ30 +
γ45 + γ49 = 0, γ34 + γ45 + γ49 + γ51 = 0, γ40 = γ51, γ5 + γ20 + γ26 + γ44 + γ48 =
0, γ33 + γ44 + γ48 + γ52 = 0, γ41 = γ52. By a direct computation using the above
equalities, one gets
p(1;(3,4))(S) ≡ (γ5 + γ25 + γ26 + γ47 + γ48)v1 + (γ28 + γ47 + γ48 + γ49 + γ50)v2

+ (γ8 + γ30 + γ31 + γ49 + γ50)v3 + γ36v4 + γ39v5 + γ62v7 ≡ 0,
p(2;(3,4))(S) ≡ (γ13 + γ20 + γ25 + γ26 + γ33 + γ36 + γ40 + γ41)v1 + (γ6 + γ7

+ γ13 + γ14 + γ28 + γ33 + γ34 + γ36 + γ39)v2 + (γ14 + γ23 + γ30 + γ31

+ γ34 + γ39 + γ40 + γ41)v3 + (γ44 + γ47 + γ48 + γ51 + γ52)v4

+ (γ45 + γ49 + γ50 + γ51 + γ52)v5 + γ65v7 ≡ 0.
So we obtain γ36 = γ39 = γ62 = γ65 = 0, γ5 + γ25 + γ26 + γ47 + γ48 = 0, γ28 + γ47 +
γ48+γ49+γ50 = 0, γ8+γ30+γ31+γ49+γ50 = 0, γ13+γ20+γ25+γ26+γ33+γ40+γ41 =
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0, γ6 +γ7 +γ13 +γ14 +γ28 +γ33 +γ34 = 0, γ14 +γ23 +γ30 +γ31 +γ34 +γ40 +γ41 =
0, γ44 + γ47 + γ48 + γ51 + γ52 = 0, γ45 + γ49 + γ50 + γ51 + γ52 = 0.

Combining the above equalities, one gets γi = 0 for i 6= 5, 8, 13, 14, 20, 23, 25,
26, 30, 31, 37, 38, 40, 41, 44, 45, 47, 48, 49, 50, 51, γi = γ5 for i = 8, 13, 14, 37, 38,
γi = γ20 for i = 23, 44, 45, γi = γ25 for i = 40, 47, 51, γi = γ31 for i = 41, 50, 52,
γ20+γ25+γ49 = 0, γ5+γ20+γ26+γ31 = 0, γ20+γ31+γ48 = 0, γ5+γ20+γ25+γ30 = 0.

Substituting the above equalities into the relation (5.4.6.1), we have

γ25[θ1] + γ31[θ2] + γ5[θ3] + γ20[θ4] = 0, (5.4.6.2)

where

θ1 = d25 + d30 + d40 + d47 + d49 + d51,

θ2 = d26 + d31 + d41 + d48 + d50 + d52,

θ3 = d5 + d8 + d13 + d14 + d26 + d30 + d37 + d38,

θ4 = d20 + d23 + d26 + d30 + d44 + d45 + d48 + d49.

We need to show that γ5 = γ20 = γ25 = γ31 = 0. The proof is divided into 4
steps.

Step 1. The homomorphism ϕ1 sends (5.4.6.2) to

γ25[θ1] + γ31[θ2] + (γ5 + γ20)[θ3] + γ20[θ4] = 0. (5.4.6.3)

Combining (5.4.6.2) and (5.4.6.3) gives

γ20[θ3] = 0.

We prove [θ3] 6= 0. We have ϕ2ϕ3([θ1]) = [θ3]. So we need only to prove that
[θ1] 6= 0. Suppose [θ1] = 0. Then the polynomial θ1 is hit and we have

θ1 = Sq1(A) + Sq2(B) + Sq4(C) + Sq8(D),

for some polynomials A ∈ (P+
4 )20, B ∈ (P+

4 )19, C ∈ (P+
4 )17, D ∈ (P+

4 )13.
Let (Sq2)3 act on the both sides of this equality. Since (Sq2)3Sq1 = 0 and

(Sq2)3Sq2 = 0, we get

(Sq2)3(θ3) = (Sq2)3Sq4(C) + (Sq2)3Sq8(D).

By a direct computation, we see that the monomial x = x7
1x

12
2 x

2
3x

6
4 is a term of

(Sq2)3(θ1). If this monomial is a term of (Sq2)3Sq8(y), then y = x7
1f1(z) with z

a monomial of degree 6 in P3 and x is a term of x7
1(Sq2)3Sq8(f1(z)) = 0. So the

monomial x is not a term of (Sq2)3Sq8(D) for all D ∈ (P+
4 )13.

If this monomial is a term of (Sq2)3Sq4(y), where the monomial y is a term
of C, then y = x7

1f1(z) with z a monomial of degree 10 in P3 and x is a term of
x7

1(Sq2)3Sq4(f1(z)) = 0. By a direct computation, we see that either x7
1x

6
2x3x

3
4 or

x7
1x

5
2x

2
3x

3
4 is a term of C.

If x7
1x

6
2x3x

3
4 is a term of C then

(Sq2)3(θ1 + Sq4(x7
1x

6
2x3x

3
4)) = (Sq2)3(Sq4(C ′) + Sq8(D)),

where C ′ = C + x7
1x

6
2x3x

3
4. The monomial x′ = x16

1 x
6
2x

2
3x

3
4 is a term of the polyno-

mial (Sq2)3(θ1 + Sq4(x7
1x

6
2x3x

3
4)). If x′ is a term of the polynomial (Sq2)3Sq8(y′),

with y′ a monomial in (P+
4 )13. Then y′ = xa

1x
b
2x

c
3x

3
4 with a > 7, b > 3, c > 0. This

contradicts with the fact that deg y′ = 13. So x′ is not a term of (Sq2)3Sq8(D) for
all D ∈ (P+

4 )13. Hence x′ is a term of (Sq2)3(Sq4(C ′). By a direct computation,
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we see that either x7
1x

6
2x3x

3
4 or x7

1x
5
2x

2
3x

3
4 is a term of C ′. Since x7

1x
6
2x3x

3
4 is not a

term of C ′, the monomial x7
1x

5
2x

2
3x

3
4 is a term of C ′. Then we have

(Sq2)3(θ1 + Sq4(x7
1x

6
2x3x

3
4 + x7

1x
5
2x

2
3x

3
4)) = (Sq2)3(Sq4(C ′′) + Sq8(D)),

where C ′′ = C ′ + x7
1x

5
2x

2
3x

3
4 = C + x7

1x
6
2x3x

3
4 + x7

1x
5
2x

2
3x

3
4. Now the monomial

x = x7
1x

12
2 x

2
3x

6
4 is a term of

(Sq2)3(θ1 + Sq4(x7
1x

6
2x3x

3
4 + x7

1x
5
2x

2
3x

3
4)).

Hence either x7
1x

6
2x3x

3
4 or x7

1x
5
2x

2
3x

3
4 is a term of C is a term of C ′′. On the other

hand, the two monomials x7
1x

6
2x3x

3
4 and x7

1x
5
2x

2
3x

3
4 are not the terms of C ′′. We

have a contradiction. Hence one gets γ20 = 0.
Step 2. Since γ20 = 0, the homomorphism ϕ2 sends (5.4.6.3) to

γ25[θ1] + γ31[θ2] + γ5[θ3] = 0. (5.4.6.4)
Using (5.4.6.4) and the result in Step 1, we get γ5 = 0.

Step 3. The homomorphism ϕ3 sends (5.4.6.3) to
γ25[θ4] + γ31[θ2] = 0. (5.4.6.5)

Using the relation (5.4.6.5) and the result in Step 2, we obtain γ25 = 0.
Step 4. Since ϕ4([θ2]) = [θ1], we have

γ31[θ1] = 0.
Using this equality and by a same argument as given in Step 3, we get γ31 = 0.

For t > 1, we have |B+
4 (n)| = m(t) with m(2) = 95,m(3) = 128 and m(t) = 139

for t > 4. Suppose there is a linear relation

S =
m(t)∑
i=1

γidi ≡ 0, (5.4.6.6)

with γi ∈ F2 and di = dn,i. A direct computation from the relations p(j;J)(S) ≡ 0,
for (j; J) ∈ N4, we obtain γi = 0 for all i. The proposition is proved. �

5.5. The case of degree 2s+t + 2s − 2.
For s > 1 and t > 2, the space (QP4)n was determined in [32]. Hence, in this

subsection we need only to compute (QP4)n for n = 2s+1 + 2s − 2 with s > 1.
Recall that, the homomorphism

S̃q
0
∗ : (QP4)2s+1+2s−2 → (QP4)2s+2s−1−3

is an epimorphism. Hence we have

(QP4)2m+4 ∼= (QP4)m ⊕ (QP 0
4 )2m+4 ⊕ (KerS̃q

0
∗ ∩ (QP+

4 )2m+4),

where m = 2s + 2s−1 − 3. So it suffices to compute KerS̃q
0
∗ ∩ (QP+

4 )n for s > 1.
For s > 1, denote by C(s) the set of all the following monomials:

x1x2x
2s−2
3 x2s+1−2

4 , x1x2x
2s+1−2
3 x2s−2

4 , x1x
2s−2
2 x3x

2s+1−2
4 ,

x1x
2s+1−2
2 x3x

2s−2
4 , x1x

2
2x

2s−4
3 x2s+1−1

4 , x1x
2
2x

2s+1−1
3 x2s−4

4 ,
x1x

2s+1−1
2 x2

3x
2s−4
4 , x2s+1−1

1 x2x
2
3x

2s−4
4 , x1x

2
2x

2s+1−3
3 x2s−2

4 ,
x1x

3
2x

2s+1−4
3 x2s−2

4 , x3
1x2x

2s+1−4
3 x2s−2

4 .
For s > 2, denote by D(s) the set of all the following monomials:



ON THE PETERSON HIT PROBLEM 47

x1x
2
2x

2s−3
3 x2s+1−2

4 , x1x
2
2x

2s−1
3 x2s+1−4

4 , x1x
2
2x

2s+1−4
3 x2s−1

4 ,
x1x

2s−1
2 x2

3x
2s+1−4
4 , x2s−1

1 x2x
2
3x

2s+1−4
4 , x1x

3
2x

2s−4
3 x2s+1−2

4 ,
x1x

3
2x

2s+1−2
3 x2s−4

4 , x3
1x2x

2s−4
3 x2s+1−2

4 , x3
1x2x

2s+1−2
3 x2s−4

4 ,
x1x

3
2x

2s−2
3 x2s+1−4

4 , x3
1x2x

2s−2
3 x2s+1−4

4 , x3
1x

2s+1−3
2 x2

3x
2s−4
4 ,

x3
1x

2s−3
2 x2

3x
2s+1−4
4 , x3

1x
5
2x

2s+1−6
3 x2s−4

4 .

Set E(2) = C(2) ∪ {x3
1x

4
2x3x4}, E(3) = C(3) ∪D(3) ∪ {x3

1x
5
2x

6
3x

8
4} and E(s) =

C(s) ∪D(s) ∪ {x3
1x

5
2x

2s−6
3 x2s+1−4

4 }, for s > 3.

Proposition 5.5.1. For any integer s > 1, E(s) ∪ Φ0(B3(n)) ∪ ψ(B4(m)) is the
set of all the admissible monomials for A-module P4 in degree n = 2m + 4 with
m = 2s + 2s−1 − 3.

Lemma 5.5.2. Let x be an admissible monomial of degree n = 2s+t + 2s − 2 in
P4. If [x] ∈ KerS̃q

0
∗, then either ω(x) = (2(s), 1).

Proof. We prove the lemma by induction on s. Since n = 2s+1 + 2s − 2 is even,
we get either ω1(x) = 0 or ω1(x) = 2 or ω1(x) = 4. If ω1(x) = 0, then x = Sq1(y)
for some monomial y. If ω1(x) = 4, then x = X∅y

2 for some monomial y. Since
x is admissible, y also is admissible. This implies KerS̃q

0
∗([x]) = [y] 6= 0 and we

have a contradiction. So ω1(x) = 2 and x = xixjy
2 with 1 6 i < j 6 4, and y a

monomial of degree 2s + 2s−1 − 2 in P4. Using Proposition 2.10 we get ωi(x) = 2
for 1 6 i 6 s. Then x = x′z2s with x′, z monomials in P4 and deg z = 2t − 1. By a
direct computation we see that if w is a monomial such that either ω(w) = (2, 1, 3)
or ω(w) = (2, 2, 3) or ω(w) = (2, 3, 2, 2) then w is strictly inadmissible. Now, the
lemma follows from this fact, Lemma 5.3.1 and Theorem 2.9. �

The following is proved by a direct computation.

Lemma 5.5.3. The following monomials are strictly inadmissible:
i) x2

ixjxm, x
3
ix

4
jx

3
m, x

7
ix

7
jx

8
m, 1 6 i < j < m 6 4.

ii) x1x
7
2x

10
3 x

4
4, x7

1x2x
10
3 x

4
4, x1x

6
2x

7
3x

8
4, x1x

7
2x

6
3x

8
4, x7

1x2x
6
3x

8
4, x3

1x
3
2x

4
3x

12
4 , x3

1x
3
2x

12
3 x

4
4,

x7
1x

9
2x

2
3x

4
4, x7

1x
8
2x

3
3x

4
4, x3

1x
5
2x

8
3x

6
4.

Proof of Proposition 5.5.1. Let x be an admissible monomial of degree n = 2s+1 +
2s − 2 in P4 and [x] ∈ KerS̃q

0
∗. By Lemma 5.5.2, ωi(x) = 2, for 1 6 i 6 s,

ωs+1(x) = 1 and ωi(x) = 0 for i > s + 1. By induction on s, we see that if x /∈
E(s)∪Φ0(B3(n)) then there is a monomial w which is given in one of Lemmas 5.2.3,
5.5.3 such that x = wy2u for some monomial y and positive integer u. By Theorem
2.9, x is inadmissible. Hence KerS̃q

0
∗ is spanned by the set [E(s) ∪ Φ0(B3(n))] in

degree n = 2s+1 + 2s − 2. Now, we prove that set [E(s) ∪ Φ0(B3(n))] is linearly
independent.

It suffices to prove that the set [E(s)] is linearly independent. For s = 2, |E(2)| =
12. Suppose there is a linear relation

S =
12∑

i=1
γidi ≡ 0, (5.1)

with γi ∈ F2 and di = d10,i. A direct computation from the relations p(1;j)(S) ≡ 0,
for j = 1, 2, 3, we obtain γi = 0 for all i.
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For s > 2, |E(s)| = 26. Suppose there is a linear relation

S =
26∑

i=1
γidi ≡ 0, (5.2)

with γi ∈ F2 and di = dn,i. A direct computation from the relations p(r;j)(S) ≡ 0,
for 1 6 r < j 6 4, we obtain γi = 0 for all i. The proposition is proved. �

5.6. The case of degree 2s+t+u + 2s+t + 2s − 3.
First, we determine the ω-vector of an admissible monomial of degree n =

2s+t+u + 2s+t + 2s − 3.

Lemma 5.6.1. If x is an admissible monomial of degree 2s+t+u + 2s+t + 2s− 3 in
P4 then ω(x) = (3(s), 2(t), 1(u)).

Proof. Observe that z = x2s+t+u−1
1 x2s+t−1

2 x2s−1
3 is the minimal spike of degree

2s+t+u + 2s+t + 2s − 3 and ω(z) = (3(s), 2(t), 1(u)). Since 2s+t+u + 2s+t + 2s − 3 is
odd and x is admissible, using Proposition 2.10 and Theorem 2.12, we get ωi(x) = 3
for 1 6 i 6 s. Set x′ =

∏
16i6s X

2i−1

Ii−1(x). Then x = x′y2s for some monomial y. We
have ωj(y) = ωj+s(x) for all j > 1 and

2s+t+u + 2s+t + 2s − 3 = deg x =
∑
i>1

2i−1ωi(x)

= 3(2s − 1) + 2s
∑
j>1

2j−1ωj+s(x)

= 3.2s − 3 + 2s deg y.

This equality implies deg y = 2t+u + 2u − 2. Since x is admissible, using Theorem
2.9, we see that y is also admissible. By a direct computation we see that if w is a
monomial such that ω(w) = (3, 2, 3) then w is strictly inadmissible. Combining this
fact, Lemma 5.3.1, Proposition 2.10 and Theorem 2.9, we obtain ω(y) = (2(t), 1(u)).
The lemma is proved. �

Applying Theorem 1.3, we get the following.

Proposition 5.6.2. Let s, t, u be positive integers. If s > 3, then Φ(B3(n)) is a
minimal set of generators for A-module P4 in degree n = 2s+t+u + 2s+t + 2s − 3.

So, we need only to consider the cases s = 1 and s = 2.
5.6.1. The subcase s = t = 1.

For s = 1, t = 1, we have n = 2u+2 + 3. According to Theorem 4.3, we have

B3(n) =
{
ψ(Φ(B2(2u+1))), if u 6= 2,
ψ(Φ(B2(8)) ∪ {x7

1x
9
2x

3
3}, if u = 2.

Proposition 5.6.3.
i) Φ(B3(11)) ∪ {x3

1x
4
2x3x

3
4, x

3
1x

4
2x

3
3x4} is the set of all the admissible monomials

for A-module P4 in degree 11.
ii) Φ(B3(19)) ∪ {x7

1x
9
2x

2
3x4, x3

1x
12
2 x3x

3
4, x3

1x
12
2 x

3
3x4, x3

1x
4
2x3x

11
4 , x3

1x
4
2x

11
3 x4,

x3
1x

7
2x

8
3x4, x

7
1x

3
2x

8
3x4, x

7
1x

8
2x3x

3
4, x

7
1x

8
2x

3
3x4, x

3
1x

4
2x

3
3x

9
4, x

3
1x

4
2x

9
3x

3
4} is the set of all the

admissible monomials for A-module P4 in degree 19.
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iii) Φ(B3(n)) ∪ {x3
1x

4
2x3x

2u+2−5
4 , x3

1x
4
2x

2u+2−5
3 x4, x

3
1x

4
2x

3
3x

2u+2−7
4 } is the set of all

the admissible monomials for A-module P4 in degree n = 2u+2 +3, with any positive
integer u > 3.

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.4. The following monomials are strictly inadmissible:
i) x3

1x
4
2x

4
3x

4
4xix

3
j , i, j > 1, i 6= j, x7

1x
3
2x

4
3x

4
4xj , x

3
1x

5
2x

5
3x

5
4xj , j = 3, 4.

ii) X2x
2
1x

2
jx

28
2 , Xjx

2
1x

2
4x

4
2x

24
3 , X2x

2
1x

2
jx

4
2x

8
3x

16
4 , Xjx

2
1x

4
2x

8
3x

18
4 , Xjx

2
1x

4
2x

10
3 x

16
4 ,

Xjx
2
1x

2
2x

4
ix

8
3x

16
4 , X3x

2
1x

2
2x

4
ix

24
3 , X2x

2
1x

2
4x

4
2x

24
3 , i = 1, 2, j = 3, 4.

Proof of Theorem 5.6.3. Let x be an admissible monomial of degree n = 2u+2 + 3
in P4. By Lemma 5.6.1, ω1(x) = 3. So x = Xiy

2 with y a monomial of degree 2u+1.
Since x is admissible, by Theorem 2.9, y ∈ B4(2u+1). By a direct computation,
we see that if x = Xiy

2 with y ∈ B4(2u+1) and x not belongs to the set C4(n)
as given in the proposition, then there is a monomial w which is given in one of
Lemmas 5.3.3, 5.6.4 such that x = wy2r for some monomial y and integer r > 1.
By Theorem 2.9, x is inadmissible. Hence (QP4)n is spanned by the set [C4(n)].

Set |C4(2u+2 + 3) ∩ P+
4 | = m(u), where m(1) = 32, m(2) = 80, m(u) = 64 for

all u > 2. Suppose that there is a linear relation

S =
m(u)∑
i=1

γidi = 0, (5.6.1)

with γi ∈ F2 and di = dn,i. By a direct computation from the relations p(j;J)(S) ≡ 0
with (j; J) ∈ N4, we obtain γi = 0 for all i if u 6= 2.

For u = 2, γj = 0 for j =1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 21,
23, 26, 27, 28, 29, 30, 31, 32, 35, 36, 38, 40, 43, 45, 51, 54, 55, 60, 61, 62, 68, 71,
79, 80, and γ2 = γi, i = 5, 24, 25, 41, 42, 52, 53, γ13 = γi, i = 13, 33, 20, 56, 48, 58,
γ15 = γi, i = 22, 34, 49, 57, 59, γ37 = γi, i = 67, 70, 75, γ46 = γi, i = 69, 72, 76,
γ65 = γi, i = 66, 73, 74, 77, 78, γ46 = γ39 + γ2, γ44 = γ37 + γ2, γ65 = γ47 + γ13,
γ65 = γ50 + γ22, γ63 = γ37 + γ13, γ64 = γ46 + γ22.

Substituting the above equalities into the relation (5.6.1), we have
γ37[θ1] + γ46[θ2] + γ13[θ3] + γ22[θ4] + γ65[θ5] + γ2[θ6] = 0, (5.6.2)

where
θ1 = d37 + d44 + d63 + d67 + d70 + d75,

θ2 = d39 + d46 + d64 + d69 + d72 + d76,

θ3 = d13 + d20 + d33 + d47 + d48 + d56 + d58 + d63,

θ4 = d15 + d22 + d34 + d49 + d50 + d57 + d59 + d64,

θ5 = d47 + d50 + d65 + d66 + d73 + d74 + d77 + d78,

θ6 = d2 + d5 + d24 + d25 + d39 + d41 + d42 + d44 + d52 + d53.

We need to prove γ2 = γ13 = γ22 = γ37 = γ46 = γ65 = 0. The proof is divided
into 4 steps.

Step 1. First we prove γ65 = 0 by showing the polynomial [θ] = [β1θ1 + β2θ2 +
β3θ3 + β4θ4 + θ5 + β6θ6] 6= 0 for all β1, β2, β3, β4, β6 ∈ F2. Suppose the contrary
that this polynomial is hit. Then we have

θ = Sq1(A) + Sq2(B) + Sq4(C) + Sq8(D),
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for some polynomials A,B,C,D in P+
4 . Let (Sq2)3 act on the both sides of this

equality. Using the relations (Sq2)3Sq1 = 0, (Sq2)3Sq2 = 0, we get

(Sq2)3(θ) = (Sq2)3Sq4(C) + (Sq2)3Sq8(D).

The monomial x7
1x

12
2 x

4
3x

2
4 is a term of (Sq2)3(θ). If x7

1x
12
2 x

4
3x

2
4 is a term of the poly-

nomial (Sq2)3Sq8(y) with y a monomial of degree 11 in P4, then y = x7
1f1(z) with z

a monomial of degree 4 in P3. Then x7
1x

12
2 x

4
3x

2
4 is a term of x7

1(Sq2)3Sq8(f1(z)) = 0.
This is a contradiction. So x7

1x
12
2 x

4
3x

2
4 is not a term of (Sq2)3Sq8(D) for all D.

Hence x7
1x

12
2 x

4
3x

2
4 is a term of (Sq2)3Sq4(C), then either x7

1x
5
2x3x

2
4 or x7

1x
5
2x

2
3x4 or

x7
1x

6
2x3x4 is a term of C.
Suppose x7

1x
5
2x

2
3x4 is a term of C. Then

(Sq2)3(θ + Sq4(x7
1x

5
2x

2
3x4)) = (Sq2)3(Sq4(C ′) + Sq8(D)),

where C ′ = C + x7
1x

5
2x

2
3x4. We see that the monomial x16

1 x
6
2x

2
3x4 is a term of

(Sq2)3(θ + Sq4(x7
1x

5
2x

2
3x4)). This monomial is not a term of (Sq2)3Sq8(D) for all

D. So it is a term of (Sq2)3Sq4(C ′). Then either x7
1x

5
2x

2
3x4 or x7

1x
6
2x3x4 is a term

of C. Since x7
1x

5
2x

2
3x4 is a term of C ′, x7

1x
6
2x3x4 is s term of C ′. Hence we obtain

(Sq2)3(θ + Sq4(x7
1x

5
2x

2
3x4 + x7

1x
6
2x3x4)) = (Sq2)3(Sq4(C ′′) + Sq8(D)),

where C ′′ = C + x7
1x

5
2x

2
3x4 + x7

1x
6
2x3x4. Now x7

1x
12
2 x

4
3x

2
4 is a term of

(Sq2)3(θ + Sq4(x7
1x

5
2x

2
3x4 + x7

1x
6
2x3x4))

So either x7
1x

5
2x3x

2
4 or x7

1x
5
2x

2
3x4 or x7

1x
6
2x3x4 is a term of C ′′. Since x7

1x
5
2x

2
3x4 +

x7
1x

6
2x3x4 is a summand of C ′′, x7

1x
5
2x3x

2
4 is s term of C ′′. Then x16

1 x
6
2x

2
3x4 is a

term of (Sq2)3(θ+ Sq4(x7
1x

5
2x

2
3x4 + x7

1x
5
2x3x

2
4 + x7

1x
6
2x3x4)). So either x7

1x
5
2x3x

2
4 or

x7
1x

5
2x

2
3x4 or x7

1x
6
2x3x4 is a term of C ′′ + x7

1x
5
2x3x

2
4 and we have a contradiction.

By a same argument, if either x7
1x

5
2x3x

2
4 or x7

1x
6
2x3x4 is a term of C then we have

also a contradiction. Hence [θ] 6= 0 and γ65 = 0.
Step 2. By a direct computation, we see that the homomorphism ϕ3 sends (5.6.2)

to
γ37[θ1] + γ2[θ3] + γ22[θ4] + γ46[θ5] + γ13[θ6] = 0.

By Step 1, we obtain γ46 = 0.
Step 3. The homomorphism ϕ2 sends (5.6.2) to

γ13[θ1] + γ22[θ2] + γ37[θ3] + γ2[θ6] = 0.

By Step 2, we obtain γ22 = 0.
Step 4. Now the homomorphism ϕ3 sends (5.6.2) to γ37[θ2]+γ13[θ4]+γ2[θ6] = 0.

Combining Step 2 and Step 3, we obtain γ13 = γ37 = 0.
Since ϕ2([θ3]) = [θ6], we get γ2 = 0. So we obtain γj = 0 for all j. The proposition

follows. �

5.6.2. The subcase s = 1, t = 2.

For s = 1, t = 2, we have n = 2u+3 + 7 = 2m+ 3 with m = 2u+2 + 2. Combining
Theorem 1.3 and Theorem 4.3, we have B3(n) = ψ(Φ(B2(m))). where

B2(m) =
{
{x3

1x
7
2, x

7
1x

3
2}, if u = 1,

{x3
1x

2u+2−1
2 , x2u+2−1

1 x3
2, x

7
1x

2u+2−5
2 }, if u > 1.
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Denote by F (u) the set of all the following monomials:

x3
1x

4
2x3x

2u+3−1
4 , x3

1x
4
2x

2u+3−1
3 x4, x

3
1x

2u+3−1
2 x4

3x4, x
2u+3−1
1 x3

2x
4
3x4,

x3
1x

7
2x

2u+3−4
3 x4, x

7
1x

3
2x

2u+3−4
3 x4, x

7
1x

2u+3−5
2 x4

3x4, x
7
1x

7
2x

2u+3−8
3 x4,

x3
1x

4
2x

3
3x

2u+3−3
4 , x3

1x
4
2x

2u+3−5
3 x5

4, x
3
1x

4
2x

7
3x

2u+3−7
4 , x3

1x
7
2x

4
3x

2u+3−7
4 ,

x7
1x

3
2x

4
3x

2u+3−7
4 , x3

1x
7
2x

8
3x

2u+3−11
4 , x7

1x
3
2x

8
3x

2u+3−11
4 .

Proposition 5.6.5.
i) Φ(B3(23)) ∪ F (1) ∪ {x7

1x
9
2x

2
3x

5
4, x

7
1x

9
2x

3
3x

4
4} is the set of all the admissible

monomials for A-module P4 in degree 23.
ii) Φ(B3(n))∪F (u)∪{x7

1x
7
2x

8
3x

2u+3−15
4 , x7

1x
7
2x

9
3x

2u+3−16
4 , x3

1x
4
2x

11
3 x

2u+3−11
4 } is the

set of of all the admissible monomials for A-module P4 in degree n = 2u+3 + 7 with
any positive integer u > 1.

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.6. The following monomials are strictly inadmissible:

i) X2x
2
1x

6
jx

12
2 , Xjx

2
1x

4
2x

8
3x

6
4, X2x

2
1x

4
ix

8
2x

2
3x

4
4, X2x

2
1x

4
2x

8
3x

6
4, i = 1, 2, j = 3, 4.

ii) X3x
2
1x

2
2x

12
i x

20
3 , X3x

2
1x

2
2x

4
ix

20
3 x

4
4, Xjx

2
1x

2
2x

12
i x

4
3x

16
4 , Xjx

2
1x

4
2x

14
i x

16
3 ,

Xjx
6
1x

10
2 x

4
3x

16
4 , Xjx

6
1x

10
2 x

16
3 x

4
4, X3x

6
1x

10
2 x

20
3 , X2x

2
1x

4
2x

14
3 x

16
4 , i = 1, 2, j = 3, 4.

Proof of Proposition 5.6.5. Let x be an admissible monomial of degree n = 2u+3+7
in P4.

By Lemma 5.6.1, ω1(x) = 3. So x = Xiy
2 with y a monomial of degree 2u+2 + 2.

Since x is admissible, by Theorem 2.9, y ∈ B4(2u+2 + 2).
By a direct computation, we see that if x = Xiy

2 with y ∈ B4(2u+2 + 2) and x
not belongs to the set C4(n) as given in the proposition, then there is a monomial w
which is given in one of Lemmas 5.6.6, 5.3.3 such that x = wy2r for some monomial
y and integer r > 1.

By Theorem 2.9, x is inadmissible. Hence (QP4)n is spanned by the set [C4(n)].
For u = 1, we have, |C+

4 (23) ∩ P+
4 | = 99. Suppose that there is a linear relation

S =
99∑

i=1
γidi = 0, (5.6.1)

with γi ∈ F2 and di = d23,i. By a direct computation from the relations p(j;J)(S) ≡
0 with (j; J) ∈ N4, we obtain γi = 0 for all i ∈ E, with some E ⊂ N99 and the
relation (5.6.2) becomes

15∑
i=1

ci[θi] = 0, (5.6.2)
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where c1 = γ1, c2 = γ4, c3 = γ33, c4 = γ94, c5 = γ2, c6 = γ22, c7 = γ74, c8 = γ29, c9 =
γ81, c10 = γ68, c11 = γ10, c12 = γ43, c13 = γ54, c14 = γ70, c15 = γ11 and

θ1 = d1 + d17 + d37 + d49,

θ2 = d4 + d21 + d44 + d53,

θ3 = d33 + d36 + d72 + d73,

θ4 = d94 + d97 + d98 + d99,

θ5 = d2 + d19 + d40 + d51,

θ6 = d22 + d25 + d62 + d63,

θ7 = d74 + d77 + d82 + d83,

θ8 = d12 + d14 + d26 + d29 + d66 + d67,

θ9 = d40 + d42 + d78 + d81 + d86 + d87,

θ10 = d10 + d15 + d24 + d27 + d46 + d47 + d64 + d65,

θ11 = d38 + d43 + d46 + d47 + d76 + d79 + d84 + d85,

θ12 = d62 + d67 + d68 + d71 + d88 + d89 + d92 + d93,

θ13 = d47 + d54 + d57 + d62 + d69 + d82 + d85 + d88 + d90,

θ14 = d12 + d15 + d19 + d20 + d46 + d47 + d51 + d52 + d58 + d61

+ d64 + d66 + d67 + d70 + d84 + d87 + d89 + d91,

θ15 = d11 + d12 + d18 + d20 + d24 + d25 + d26 + d27 + d38 + d40 + d45

+ d47 + d48 + d50 + d52 + d57 + d61 + d63 + d64 + d65 + d66

+ d67 + d69 + d77 + d78 + d83 + d85 + d86 + d87 + d89 + d90.

Now, we show that ci = 0 for i = 1, 2, . . . , 15. The proof is divided into 6 steps.
Step 1. Set θ = θ1 +

∑15
i=2 βiθi for βi ∈ F2, i = 2, 3, . . . , 15. We prove that

[θ] 6= 0. Suppose the contrary that θ is hit. Then we have

θ = Sq1(A) + Sq2(B) + Sq4(C) + Sq8(D)

for some polynomials A,B,C,D ∈ P+
4 . Let (Sq2)3 act to the both sides of the

above equality, we obtain

(Sq2)3(θ) = (Sq2)3Sq4(C) + (Sq2)3Sq8(D).

By a similar computation as in the proof of Proposition 5.4.5, we see that the
monomial x8

1x
4
2x

2
3x

15
4 is a term of (Sq2)3(θ). This monomial is not a term of

(Sq2)3(Sq4(C) + Sq8(D)) for all polynomials C,D and we have a contradiction.
So [θ] 6= 0 and we get c1 = γ1 = 0.

By an argument analogous to the previous one, we get c2 = c3 = c4 = 0. Now,
the relation (5.6.2) becomes

15∑
i=5

ci[θi] = 0. (5.6.3)

Step 2. The homomorphisms

ϕ1, ϕ1ϕ3, ϕ1ϕ3ϕ4, ϕ1ϕ3ϕ2, ϕ1ϕ3ϕ2ϕ4, ϕ1ϕ3ϕ4ϕ2ϕ3
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send (5.6.3) respectively to

c10[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c9[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c7[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c8[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c6[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c5[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉.

Using the results in Step 1, we get c5 = c6 = c7 = c8 = c9 = c10 = 0. So the
relation (5.6.3) becomes

c11[θ11] + c12[θ12] + c13[θ13] + c14[θ14] + c15[θ15] = 0. (5.6.4)

Step 3. The homomorphism ϕ1 sends (5.6.4) to

c13[θ6] + (c14 + c15)[θ7] + (c11 + c12)[θ11]
+ c12[θ12] + c13[θ13] + c14[θ14] + c15[θ15] = 0.

By Step 2, we get c13 = 0 and c14 = c15. So the relation (5.6.4) becomes

c11[θ11] + c12[θ12] + c14[θ14] + c14[θ15] = 0. (5.6.5)

Step 4. The homomorphism ϕ3 sends (5.6.5) to

c11[θ11] + c14[θ12] + (c12 + c14)[θ13] + c14[θ14] + c14[θ15] = 0.

By Step 3, we get c12 = c14. Then the relation (5.6.5) becomes

c11[θ11] + c12[θ12] + c12[θ14] + c12[θ15] = 0. (5.6.6)

Step 5. The homomorphism ϕ2 sends (5.6.6) to

(c11 + c12)[θ12] + c12[θ14] + c12[θ15] = 0.

From the result in Step 4, we get c11 = 0. Then the relation (5.6.6) becomes

c12([θ12] + [θ14] + [θ15]) = 0. (5.6.7)

Step 6. The homomorphism ϕ1 sends (5.6.7) to

c12[θ11] + c12([θ12] + [θ14] + [θ15]) = 0.

By the result in Step 5, we have c12 = 0. The case u = 1 of the proposition is
completely proved.

For u > 1, we have |C4(n) ∩ P+
4 | = 141. Suppose that there is a linear relation

S =
141∑
i=1

γidi = 0, (5.6.8)

with γi ∈ F2 and di = dn,i ∈ B+
4 (n). By a direct computation from the relations

p(j;J)(S) ≡ 0 with (j; J) ∈ N4, we obtain γi = 0 for all i /∈ E, with some E =⊂ N141
and the relation (5.6.8) becomes

15∑
i=1

ci[θi] = 0, (5.6.9)
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where c1 = γ1, c2 = γ6, c3 = γ51, c4 = γ136, c5 = γ2, c6 = γ31, c7 = γ107, c8 =
γ40, c9 = γ116, c10 = γ101, c11 = γ14, c12 = γ56, c13 = γ79, c14 = γ23, c15 = γ15 and

θ1 = d1 + d25 + d55 + d73,

θ2 = d6 + d30 + d66 + d78,

θ3 = d51 + d54 + d105 + d106,

θ4 = d7 + d8 + d47 + d48,

θ5 = d2 + d27 + d58 + d75,

θ6 = d31 + d34 + d89 + d90,

θ7 = +d107 + d110 + d117 + d118,

θ8 = d16 + d22 + d35 + d40 + d94 + d95,

θ9 = d58 + d64 + d111 + d116 + d122 + d123,

θ10 = d89 + d95 + d101 + d104 + d124 + d127 + d129 + d130,

θ11 = d14 + d19 + d33 + d36 + d68 + d69 + d91 + d92,

θ12 = d56 + d61 + d68 + d69 + d109 + d112 + d119 + d120,

θ13 = d67 + d69 + d79 + d82 + d89 + d90 + d117 + d118 + d124 + d125,

θ14 = d16 + d23 + d27 + d29 + d70 + d71 + d72 + d75 + d77

+ d83 + d88 + d94 + d95 + d122 + d123 + d126 + d127,

θ15 = d15 + d19 + d26 + d27 + d33 + d34 + d35 + d36 + d58

+ d61 + d68 + d69 + d70 + d74 + d75 + d82 + d83 + d91

+ d92 + d109 + d110 + d111 + d112 + d119 + d120 + d125.

Now, we prove ci = 0 for i = 1, 2, . . . , 15. The proof is divided into 6 steps.
Step 1. First, we prove c1 = 0. Set θ = θ1 +

∑15
j=2 cjθj . We show that [θ] 6= 0

for all cj ∈ F2, j = 2, 3, . . . , 15. Suppose the contrary that θ is hit. Then we have

θ =
u+2∑
m=0

Sq2m

(Am),

for some polynomials Am,m = 0, 1, . . . , u+ 2. Let (Sq2)3 act on the both sides of
this equality. Since (Sq2)3Sq1 = 0, (Sq2)3Sq2 = 0, we get

(Sq2)3(θ) =
u+2∑
m=2

(Sq2)3Sq2m

(Am).

It is easy to see that the monomial x = x8
1x

4
2x

2
3x

2u+3−1
4 is a term of (Sq2)3(θ), hence

it is a term of (Sq2)3Sq2m(y) for some monomial y of degree 2u+3 − 2m + 7 with
m > 2. Then y = x2u+3−1

2 f2(z) with z a monomial of degree 8− 2m 6 4 in P3 and
x is a term of x2u+3−1

2 (Sq2)3Sq2m(z). If m > 2 then Sq2m(z) = 0. If m = 2 the
Sq22(z) = z2, hence (Sq2)3Sq2m(z) = (Sq2)3(z2) = 0. So x is not a term of

(Sq2)3(θ) =
u+2∑
m=2

(Sq2)3Sq2m

(Am),

for all polynomial Am with m > 1. This is a contradiction. So we get c1 = 0.
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By an argument analogous to the previous one, we get c2 = c3 = c4 = 0. Then
the relation (5.6.9) becomes

15∑
i=5

ci[θi] = 0. (5.6.10)

Step 2. The homomorphisms

ϕ1, ϕ1ϕ3, ϕ1ϕ3ϕ4, ϕ1ϕ3ϕ2, ϕ1ϕ3ϕ2ϕ4, ϕ1ϕ3ϕ4ϕ2ϕ3

send (5.6.3) respectively to

c10[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c9[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c7[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c8[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c6[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉,
c5[θ3] = 0 mod〈[θ5], [θ6], . . . , [θ15]〉.

By Step 1, we get c5 = c6 = c7 = c8 = c9 = c10 = 0. So the relation (5.6.3) becomes

c11[θ11] + c12[θ12] + c13[θ13] + c14[θ14] + c15[θ15] = 0. (5.6.11)

Step 3. Applying the homomorphism ϕ1 to (5.6.11), we get

c13[θ6] + c14[θ8] + (c11 + c12 + c15)[θ11] + c12[θ12] + c13[θ13] + c14[θ14] + c15[θ15] = 0.

By the results in Step 2, we obtain c13 = c14 = 0. Then the relation (5.6.11)
becomes

c11[θ11] + c12[θ12] + c14[θ15] = 0. (5.6.12)
Step 4. Applying the homomorphism ϕ3 to the relation (5.6.12) we obtain

c11[θ11] + c12[θ13] + c15[θ15] = 0.

By the results in Step 3, we get c12 = 0. So the relation (5.6.12) becomes

c11[θ11] + c15[θ15] = 0. (5.6.13)

Step 5. Applying the homomorphism ϕ2 to the relation (5.6.12) one gets

c11[θ13] + c15[θ15] = 0.

By Step 4, we get c10 = γ41 = 0. So the relation 5.6.13 becomes

c15[θ15] = 0. (5.6.14)

Step 6. Applying the homomorphism ϕ1 to the relation 5.6.14 we obtain

c15[θ11] + c15[θ15] = 0.

By Step 5, we get c15. The proposition is completely proved. �

5.6.3. The subcase s = 1, t > 2.

For s = 1, t > 2, we have n = 2t+u+1 +2t+1−1 = 2m+3 with m = 2t+u +2t−2.
From Theorem 4.3, we have B3(n) = ψ(Φ(B2(m))).
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Proposition 5.6.7.
i) Φ(B3(n)) ∪ {x3

1x
4
2x

2t+1−5
3 x2t+2−3

4 , x3
1x

4
2x

2t+2−5
3 x2t+1−3

4 } is the set of of all the
admissible monomials for A-module P4 in degree n = 2t+2 + 2t+1 − 1 with any
positive integer t > 2.

ii) Φ(B3(n))∪A(t, u) is the set of of all the admissible monomials for A-module
P4 in degree n = 2t+u+1 + 2t+1 − 1 with any positive integers t > 2, u > 1, where
A(t, u) is the set consisting of 3 monomials:

x3
1x

4
2x

2t+1−5
3 x2t+u+1−3

4 , x3
1x

4
2x

2t+u+1−5
3 x2t+1−3

4 , x3
1x

4
2x

2t+2−5
3 x2t+u+1−2t+1−3

4 .

By a direct computation, we can easy obtain the following lemma.

Lemma 5.6.8. The following monomials are strictly inadmissible:

X3x
2
1x

2
2x

8
3x

28
4 x

4
i , X3x

2
1x

2
2x

8
3x

12
4 x

4
i , i = 1, 2, X4x

6
1x

10
2 x

12
3 x

16
4 .

Proof of Proposition 5.6.7. Let x ∈ P4 be an admissible monomial of degree n =
2t+u+1 + 2t+1 − 1.

By Lemma 5.6.1, ω1(x) = 3. So x = Xiy
2 with y a monomial of degree 2t+u +

2t − 2. Since x is admissible, by Theorem 2.9, y ∈ B4(2t+u + 2t − 2).
By a direct computation, we see that if x = Xiy

2 with y ∈ B4(2t+u +2t−2) and
x not belongs to the set C4(n) as given in the proposition, then there is a monomial
w which is given in one of Lemmas 5.6.8 and 5.3.3 such that x = wy2r for some
monomial y and integer r > 1.

By Theorem 2.9, x is inadmissible. Hence (QP4)n is spanned by the set [C4(n)].
We set |C4(n)∩P+

4 | = m(t, u) with m(t, 1) = 84 for u = 1 and m(t, u) = 126 for
u > 1. Suppose that there is a linear relation

S =
m(t,u)∑

i=1
γidi = 0,

with γi ∈ F2 and di = dn,i. By a direct computation from the relations p(j;J)(S) ≡ 0
with (j; J) ∈ N4, we obtain γi = 0 for all i. �

5.6.4. The subcase s = 2, t = 1.

For s = 2, t = 1, we have n = 2u+3 + 9. According to Theorem 4.3, we have

B3(n) =
{
ψ2(Φ(B2(2u+1))), if u 6= 2,
ψ2(Φ(B2(8))) ∪ {x15

1 x
19
2 x

7
3}, if u = 2.

Denote by G(u) the set of 7 monomials:

x3
1x

7
2x

2u+3−5
3 x4

4, x
7
1x

3
2x

2u+3−5
3 x4

4, x
7
1x

2u+3−5
2 x3

3x
4
4,

x3
1x

7
2x

7
3x

2u+3−8
4 , x7

1x
3
2x

7
3x

2u+3−8
4 , x7

1x
7
2x

3
3x

2u+3−8
4 , x7

1x
7
2x

2u+3−8
3 x3

4,

Proposition 5.6.9.
i) Φ(B3(25)) ∪ G(1) ∪ {x7

1x
9
2x

3
3x

6
4} is the set of of all the admissible monomials

for A-module P4 in degree 25.
ii) Φ(B3(n)) ∪ G(u) ∪ H(u) is the set of of all the admissible monomials for

A-module P4 in degree n = 2u+3 + 9 with any positive integer u > 1, where H(u)
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is the set consisting of 5 monomials:

x3
1x

7
2x

11
3 x

2u+3−12
4 , x7

1x
3
2x

11
3 x

2u+3−12
4 , x7

1x
11
2 x

3
3x

2u+3−12
4 ,

x7
1x

7
2x

8
3x

2u+3−13
4 , x7

1x
7
2x

11
3 x

2u+3−16
4 .

The following is proved by a direct computation.

Lemma 5.6.10. The following monomials are strictly inadmissible:

i) X3X
2
2x

4
1x

8
2x

4
4, XjX

2
2x

4
1x

8
2x

4
4, X

3
3x

4
ix

8
3x

4
4, X

3
2x

4
1x

8
2x

4
j , i = 1, 2, j = 3, 4.

ii) X4X
2
3x

12
1 x

16
2 x

4
3, X4X

2
2x

4
1x

24
2 x

4
4, X

3
4x

12
i x

16
3 x

4
4, X4X

2
2x

12
1 x

16
2 x

4
4, X4X3x

4
1x

4
2x

8
ix

16
3 ,

XjX
2
2x

12
1 x

16
2 x

4
3, XjX

2
2x

12
1 x

16
2 x

4
4, X4X

2
2x

4
1x

8
2x

20
4 , X

3
j x

4
1x

4
2x

8
ix

16
j , X

3
2x

12
1 x

16
2 x

4
j ,

X3
4x

4
ix

12
3 x

16
4 , X

3
4x

12
i x

4
3x

16
4 , X

3
3x

12
i x

16
3 x

4
4, X

3
j x

4
1x

8
2x

16
3 x

4
4, X4X

2
2x

4
1x

8
2x

16
3 x

4
4

X3
4x

4
1x

8
2x

4
3x

16
4 , i = 1, 2, j = 3, 4.

Proof of Proposition 5.6.9. Let x be an admissible monomial of degree n = 2u+3+9
in P4.

By Lemma 5.6.1, ω1(x) = ω2(x) = 3. So x = XiX
2
j y

4 with y a monomial of
degree 2u+1. Since x is admissible, by Theorem 2.9, y ∈ B4(2t+u + 2t − 2).

By a direct computation, we see that if x = XiX
2
j y

4 with y ∈ B4(2t+u + 2t − 2)
and x not belongs to the set C4(n) given in the proposition, then there is a monomial
w which is given in one of Lemmas 5.6.10, 5.3.3 such that x = wy2r for some
monomial y and integer r > 1.

By Theorem 2.9, x is inadmissible. Hence (QP4)n is spanned by the set [C4(n)].
We denote |C4(n) ∩ P+

4 | = m(u) with m(1) = 88, m(2) = 165 and m(u) = 154
for u > 3. Suppose that there is a linear relation

S =
m(u)∑
i=1

γidi = 0,

with γi ∈ F2 and di = dn,i. By a direct computation from the relations p(j;J)(S) ≡ 0
with (j; J) ∈ N4, we obtain γi = 0 for all i. �

5.6.5. The subcase s = 2, t > 2.

For s = 2, t > 2, we have n = 2t+u+2 +2t+2 +1 = 4m+9 with m = 2t+u +2t−2.
From Theorem 1.3, we have

B3(n) = ψ2(Φ(B2(m))).

Denote by B(t, u) the set of 8 monomials:

x3
1x

7
2x

2t+2−5
3 x2t+u+2−4

4 , x7
1x

3
2x

2t+2−5
3 x2t+u+2−4

4 , x7
1x

2t+2−5
2 x3

3x
2t+u+2−4
4 ,

x3
1x

7
2x

2t+u+2−5
3 x2t+2−4

4 , x7
1x

3
2x

2t+u+2−5
3 x2t+2−4

4 , x7
1x

2t+u+2−5
2 x3

3x
2t+2−4
4 ,

x7
1x

7
2x

2t+2−8
3 x2t+u+2−5

4 , x7
1x

7
2x

2t+u+2−8
3 x2t+2−5

4 ,

and by C(t, u) the set of 4 monomials:

x3
1x

7
2x

2t+3−5
3 x2t+u+2−2t+2−4

4 , x7
1x

3
2x

2t+3−5
3 x2t+u+2−2t+2−4

4 ,

x7
1x

2t+3−5
2 x3

3x
2t+u+2−2t+2−4
4 , x7

1x
7
2x

2t+3−8
3 x2t+u+2−2t+2−5

4 .
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Proposition 5.6.11.
i) Φ(B3(n))∪B(t, 1) is the set of all the admissible monomials for A-module P4

in degree n = 2t+3 + 2t+2 + 1.
ii) For any positive integer t, u > 1, Φ(B3(n))∪B(t, u)∪C(t, u) is the set of all

the admissible monomials for A-module P4 in degree n = 2t+u+2 + 2t+2 + 1.
By a direct computation, we get the following.

Lemma 5.6.12. The following monomials are strictly inadmissible:
XjX

2
3x

12
1 x

12
2 x

16
3 , X

3
4x

12
i x

12
3 x

16
4 , X

3
4x

12
1 x

12
2 x

16
4 , X

3
4x

4
1x

4
2x

8
3x

8
4x

16
j , X4X

2
3x

4
3x

12
1 x

8
4x

16
2 ,

X4X
2
3x

4
1x

4
2x

8
4x

8
ix

16
3 , X

3
j x

4
1x

4
2x

8
3x

8
ix

16
4 , X

3
4x

4
1x

4
3x

8
2x

8
3x

16
4 , i = 1, 2, j = 3, 4.

Proof of Proposition 5.6.11. Let x ∈ P4 be an admissible monomial of degree n =
2t+u+2 + 2t+2 + 1. By Lemma 5.6.1, ω1(x) = ω2(x) = 3. So x = XiX

2
j y

4 with y a
monomial of degree 2t+u + 2t − 2.

Since x is admissible, by Theorem 2.9, y ∈ B4(2t+u + 2t − 2). By a direct
computation, we see that if x = XiX

2
j y

4 with y ∈ B4(2t+u + 2t − 2) and x not
belongs to the set C4(n) as given in the proposition, then there is a monomial w
which is given in one of Lemmas 5.6.12, 5.1.3 such that x = wy2r for some monomial
y and integer r > 1.

By Theorem 2.9, x is inadmissible. Hence (QP4)n is spanned by the set [C4(n)].
We set |C4(n) ∩ P+

4 | = m(t, u) with m(t, 1) = 154 and m(t, u) = 231 for t > 2.
Suppose that there is a linear relation

S =
m(t,u)∑

i=1
γidi = 0,

with γi ∈ F2 and di = dn,i. By a direct computation from the relations p(j;J)(S) ≡ 0
with (j; J) ∈ N4, we obtain γi = 0 for all i. �
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