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Abstract

Several industrial experiments are set up using second-order split-

plot designs (SPDs). These experiments have two types of factors:

whole-plot (WP) factors and sub-plot (SP) factors. WP factors, also

called hard-to-change factors are factors whose levels are hard or ex-

pensive to change. SP factors, also called easy-to-change factors are

factors whose levels are easy or less expensive to change. In a split-

plot experiment, the WP factors are confounded with blocks. Certain

SPDs possess the equivalent-estimation property. For SPDs with this

property, ordinary least-squares estimates of the model parameters are

equivalent to the generalized least-squares estimates.

This paper describes a fast and simple algorithm which produce

D-efficient equivalent-estimation SPDs by interchanging the levels of

the SP factors within each WP. The performance of this algorithm is

evaluated against the 111 SPD scenarios reported in Macharia & Goos

(2010) and Jones & Goos (2012).
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1 Introduction

Split-plot designs were originally developed in the early 1920’s by R.

A. Fisher and first applied to agricultural experiments where factors are

mostly qualitative. In recent years, split-plot designs have been applied to

industrial experiments where factors are mostly quantitative and the second-

order response surface model is used. In this paper, we simply call these

second-order split-plot designs SPDs.

The following is an example of an experiment set up using an SPD. The

aim of this experiment is to optimize the productivity and quality of lima

beans as affected by plant density and NPK applications. In this experiment,

plant density (8, 12 and 16 plants/m2) is the WP factor and N (110, 150 and

190 kg/ha), P (50, 70 and 90 kg/ha) and K (160, 180 and 200 kg/ha) are SP

factors. Each WP is sub-divided into six SPs and each SP receives one out of

33 NPK combinations. Additional examples of the use and analysis of SPDs

in the industrial settings can be found in Vining et al. (2005), Kowalski et

al. (2007) and Jones & Nachtsheim (2009).

In the recent SPD literature, one type of SPD which received considerable

attention is the equivalent-estimation second-order SPD (hereafter abbrevi-

ated as EE-SPD) pioneered by the work of Vining et al. (2005). This type of

design derived its name from the fact that the ordinary least-squares (OLS)

estimates of the model parameters are equivalent to the generalized least-

squares (GLS) ones. Therefore, the computation of these estimates does not

require estimation of the variance components and the estimates of this type

of design can be done by any multiple regression program. Macharia & Goos

(2010) associated EE-SPDs to orthogonally blocked designs, for which the

OLS estimates are equivalent to the GLS and intra-block ones.

The first EE-SPDs were introduced by Vining et al. (2005). These EE-

SPDs are based on Box-Behnken designs or BBDs (Box & Behnken, 1960)

and central-composite designs or CCDs (Box & Wilson, 1951). This work

is extended further by Parker et al. (2006, 2007). Table 1 displays a BBD-

based SPD and a CCD-based SPD for one WP factor and two SP factors in

three WPs of size five.
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Table 1: Two EE-SPDs for one WP factor
and two SP factors in WPs of size five†

BBD-based
w s1 s2
-1 -1 0
-1 1 0
-1 0 -1
-1 0 1
-1 0 0

1 -1 0
1 1 0
1 0 -1
1 0 1
1 0 0

0 -1 -1
0 -1 1
0 1 -1
0 1 1
0 0 0

CCD-based
w s1 s2
-1 -1 -1
-1 -1 1
-1 1 -1
-1 1 1
-1 0 0

1 -1 -1
1 -1 1
1 1 -1
1 1 1
1 0 0

0 -1 0
0 1 0
0 0 -1
0 0 1
0 0 0

†WPs are separated by a blank line.

Although all BBD- and CCD-based SPDs are EE-SPD, they might not be

attractive to experimenters as they are highly inefficient (see Goos (2006)).

Macharia & Goos (2010) explored the relationship between D-optimal SPDs

and EE-SPDs for the second-order response surface model and proposed the

first algorithm for generating D-efficient EE-SPDs for a flexible choice of

the number of WP and SP factors, the number of WPs and the run size of

each WP. For 86 out of 111 scenarios they studied, their algorithm was able

to produce EE-SPDs. Jones & Goos (2012) (hereafter abbreviated as JG)

recently reported on a more successful algorithm. They list 60 scenarios out

of the mentioned 111 scenarios for which no EE-SPDs had been found by

Macharia & Goos (2010) or where they found more D-efficient EE-SPDs.

During the revision of this paper, we came across the work of Mylona et

al. (2013) which introduced two families of EE-SPDs, one based on subset

designs and the other based on supplementary set designs.

The aim of this paper is to introduce a fast and simple algorithm for

searching EE-SPDs which are not only D-efficient but also more appealing

to the experimenters. Section 2 reviews the general SPD model. Section 3

proposes a desired structure for the information matrices of SPDs. Section

4 outlines the new algorithm and Section 5 evaluates the performance of the
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algorithm against the 111 mentioned scenarios.

2 The General Split-Plot Design model

The general model for data from a split-plot experiment with mW WP

factors, mS SP factors in b WPs of run size k (bk = n) is given by

Y = Xβ + Zγ + ε, (1)

where Yn×1 is the vector of responses, Xn×p is the expanded design matrix

of the second-order model for m (= mW +mS) factors, p = (m+1)(m+2)/2

is the number of parameters in (1), βp×1 is the coefficient vector containing

p fixed effects. Zn×b is the (0,1)-matrix containing b dummy variables which

are associated with the b WPs, γb×1 is the vector containing the b random

effects of the b WPs, and finally, εn×1 is the vector of the random errors.

It is assumed that γ and ε are uncorrelated, have zero mean and variance-

covariance matrices σ2
γIb and σ2

ε In, respectively. Here, Ib and In are identity

matrices of sizes b and n respectively. The assumed variance-covariance ma-

trix of the model is thus of the form

V = σ2
ε In + σ2

γZZ
′ = σ2

ε In + σ2
γJb, (2)

where

Jb =


Jk×k 0k×k · · · 0k×k

0k×k Jk×k · · · 0k×k
...

...
. . .

...

0k×k 0k×k · Jk×k

 .

Here, Jk×k is a k × k matrix of ones and 0k×k is an k × k zero matrix.

An EE-SPD is an SPD whose GLS and OLS estimates are the same, i.e.

β̂GLS = β̂OLS where β̂GLS = (X′V−1X)−1X′V−1Y and β̂OLS = (X′X)−1X′Y.

Parker et al. (2007) showed that the following condition must hold for the

equivalence of GLS and OLS estimates in the SPD setting:
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X(X′X)−1X′JbX = JbX. (3)

JG remarked that the condition in (3) is the same as trace(C′C) = 0

where

C = (In −X(X′X)−1X′)JbX. (4)

Let B = X′JbX and note that A = In − X(X′X)−1X′ is an idempotent

matrix, i.e. A2 = A, it is not difficult to show that

C′C = kB−B(X′X)−1B (5)

and (5) can be used to speed up the calculation of trace(C′C).

3 A Desired Structure for the Information

Matrices of SPDs

Let x′i be the i-th row of X in (1) and written as (1, x2
i1, x

2
i2, . . . , xi1, xi2, . . . ,

xi1xi2, xi1xi3, . . .) and partition the information matrix M = X′V−1X as(
M11 M12

M21 M22

)
. (6)

where M11 is a (1 + m + mW ) × (1 + m + mW ) sub-matrix of M. Assume

that (6) can be written as (
M11 0

0 D

)
. (7)

where D is a diagonal matrix. We denote any SPD whose information matrix

is of the form (7) SPD*. It can be seen from (7) that for SPD*’s, mS SP

main effects and (m2 ) interactions can be estimated orthogonally. Note that in

(7) we do not require that all elements corresponding to correlations between

the intercept estimate and the estimates of the quadratic effects in be equal.

Also, we do not require that every pair of quadratic effect estimates has the

same correlation. This is different from CCDs or BBDs, or the designs of
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Großmann & Gilmour (2013).

In this paper, we aim to develop an algorithm which searches for D-

efficient EE-SPDs among the class of SPDs whose information matrices have

the structure in (7) or are close to this structure.

4 The SPLIT algorithm

Before introducing SPLIT, our algorithm for searching D-efficient EE-

SPDs with mW WP factors, mS SP factors in b WPs of run size k, we show

how the information matrix M = X′V−1X can be computed sequentially

and updated when a WP is removed from or added to an SPD.

Following Macharia & Goos (2010) and JG, assume that σ2
γ = σ2

ε = 1.

Thus, V in (2) becomes In +Jb and V−1 becomes In− 1
k+1

Jb. Let A = X′X.

Matrix A can be computed sequentially as
∑b

rAr where Ar =
∑k

i xix
′
i and

x′i is the i-th row of Xr, the k × p sub-matrix of X associated with WP r.

Similarly, matrix B = X′JbX first used in (5) can be computed sequentially

as
∑b

rBr where Br = wrw
′
r and w′r is the 1 × p vector containing the sum

of each column of Xr. Thus M can be computed sequentially as

M =
b∑

r=1

(Ar −
1

k + 1
Br) (8)

If the WP r is removed from or added to an SPD, M can simply be

updated as

Mupdated = M∓ (Ar −
1

k + 1
Br). (9)

The update formulas such as the one for M in (9) is crucial in any design

construction program. Without the update formulas, matrices have to be

recomputed from scratch each time a change is made in the design matrix.

See Arnouts & Goos (2010) for additional examples of update formulas in

the context of split-plot and block designs.

Our SPLIT algorithm based on the previous matrix results involves the

following steps:

1. Construct D0, the n × m input design matrix with mW WP factors
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and mS SP factors in n runs. Details of the method for constructing D0 is

in Remark 1.

2. Construct D, the n × m the starting design matrix by randomizing

the levels of each SP factor in each WP of D0. Calculate M using (8) and

the objective function f which is the sum of squares of the elements in M12

and the upper-diagonal elements of M22 (See eq. (6)).

3. Remove WP r, r = 1, . . . , b, from D and update M using (9). Among

SP factors j, j = 1 . . . ,mS in the removed WP, search for a pair of levels for

which the swap or interchange of these two levels in this WP will result in

the biggest reduction in f when this WP is returned to D. If the search is

successful, update f , D, and M using (9). If f cannot be further reduced,

repeat this step with the next WP.

Step 3 is repeated until f = 0 (i.e. D becomes an SPD*) or f cannot be

reduced further by any further level-swaps.

Remarks:

1. The main difference between the JG’s EE-SPDs and SPLIT’s is that

in the latter, the setting of the WP factor levels and the distribution of the

levels of each SP factor in each WP are made by the experimenter and not

the computer and these tasks are accomplished via the input design. The

construction of input designs sometimes involves trial and error and this

appears to be a drawback of SPLIT. At the same time, the experimenter

does have more control over his/her experiment.

When there is a single WP factor, the setting of the levels of this WP

factor in each WP is straight forward. When there are two WP factors,

depending on the number of WPs, we form each WP by replicating each of

the following points k times: (i) b = 7: a 22 factorial plus three points (1, 0),

(0, 1) and (-1, -1) or (0, 0); (ii) b = 8: a 2-factor CCD without a center point,

i.e. a 22 factorial plus four axial points (0, -1), (0, 1), (-1, 0), (1, 0); (iii)

b = 9: a 2-factor CCD with one center point, i.e. the points for b = 8 plus

(0, 0); (iv) b = 10: the points for b = 8 plus two points (-1, 1) and (1, -1) or

two center points; (v) b = 11: the points for b = 8 plus three points (-1, 1),

(1, -1) and (0, 0); and (vi) b = 12: the points for b = 8 plus an additional 22
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factorial. For three WP factors in 12 WPs such as the scenario 111 we use

a 23 factorial plus (1, 0, 0), (0, 1, 0), (0, 0, 1) and (-1, -1, -1) or (0, 0, 0).

This recommended method of setting the levels of the WP factors in each

WP ensures that the main effects of each WP factor and their interactions

are orthogonal or near-orthogonal to one another and to the quadratic effect

of each WP factor.

Depending on the size of each WP, the distribution of the levels of each

SP factor in each WP are made as follows: (i) k = 2: either -1 and 1 or 0

and 0; (ii) k = 3: -1, 0, 1; (iii) k = 4: either -1, -1, 1, 1 or -1, 1, 0, 0; (iv)

k = 5: -1, -1, 0, 1, 1; and (v) k = 6: -1, -1, 0, 0, 1, 1. This distribution of

SP levels in each WP ensures that the sum of the levels of each SP factor

in each WP is zero. As a result, the main effects of each SP factor and the

interactions between this SP factor and a WP factor are orthogonal to the

mean and to the main and quadratic effects of each WP factor.

2. Steps 2 and 3 make up a try and at least one thousand tries might be

required to find an EE-SPD. At the end of each try, we compute trace(C′C)

using the following formula:

trace(C′C) = k

p∑
i

Bii −
p∑
l

p∑
i

p∑
j

A−1
ij BilBjl (10)

where A−1
ij and Bij are the (i, j)-th elements of A−1 and B respectively

(see eq. (5)). Among all tries which produce EE-SPDs, i.e. SPDs with

trace(C′C) = 0, the one with the highest value of |M| is selected. The

D-efficiency of this EE-SPD is computed as

Deff = (|M|/|Mopt|)1/p, (11)

where |Mopt| is the determinant of the information matrix of the D-optimal

design using model (1) and can be obtained from JG’s supplementary mate-

rial. Note that this D-optimal design is not restricted to 3-level.

3. The SPLIT algorithm is an example of the interchange algorithm, used

extensively in different design settings, e.g. super-saturated designs (see e.g.

Nguyen, 1996 and Trinca & Gilmour 2000, 2002). The algorithms of Jones &
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Goos (2007) for constructing D-optimal SPDs, Macharia & Goos (2010) and

JG for constructing EE-SPDs (and Jones & Nachtsheim (2011) and Nguyen &

Stylianou (2013)) for constructing definitive screening designs) are examples

of the coordinate-exchange algorithm (see Meyer & Nachtsheim, 1995). This

algorithm allows Dij, the (i, j)-th element of D to take an integer value in

the range [−1, 1] in the case of Macharia & Goos (2010) or a value which

can be an integer or non-integer in the range [−1, 1] in the case of JG.

The algorithms of Goos & Vandebroek (2001, 2003, 2004) for constructing

D-optimal SPDs are examples of the point-exchange algorithm. Unlike the

interchange and coordinate-exchange algorithms, this algorithm requires a

candidate set, whose construction can be problematic when the number of

factors is large.

Table 2: Steps of SPLIT to produce an EE-SPD for scenario 25†
(one WP factor and two SP factors in five WPs of size three)

(1)
w s1 s2
1 1 1
1 0 0
1 -1 -1

1 1 1
1 0 0
1 -1 -1

-1 1 1
-1 0 0
-1 -1 -1

-1 1 1
-1 0 0
-1 -1 -1

0 1 1
0 -1 -1
0 0 0

(2)
w s1 s2
1 0 0
1 -1 -1
1 1 1

1 -1 0
1 1 -1
1 0 1

-1 0 -1
-1 -1 1
-1 1 0

-1 -1 0
-1 1 -1
-1 0 1

0 0 0
0 1 1
0 -1 -1

(3)
w s1 s2
1 0 -1
1 -1 0
1 1 1

1 -1 0
1 1 -1
1 0 1

-1 0 -1
-1 -1 1
-1 1 0

-1 -1 0
-1 1 -1
-1 0 1

0 0 0
0 1 1
0 -1 -1

(3′)
w s1 s2
1 0 -1
1 -1 1
1 1 0

1 -1 0
1 1 -1
1 0 1

-1 0 -1
-1 -1 1
-1 1 0

-1 -1 0
-1 1 -1
-1 0 1

0 0 0
0 1 1
0 -1 -1

†See Table 5 of JG. WPs are separated by a blank line.
‡Swapped levels in columns (3) and (3′) are underlined.

Table 2 shows the steps of a single try of SPLIT in constructing an SPD

with one WP factor and two SP factors in five WPs of size two (scenario

25 of Table 5 of JG). Column (1) of this Table which corresponds to Step 1

shows D0. Column (2) which corresponds to Step 2 shows D, i.e. D0 after
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randomization. At this step, the f value is 29.1875. Columns (3) and (3′)

correspond to two iterations of Step 3 after which f has been reduced to

28.5 and 23.25 respectively. Since f cannot be reduced further, trace(C′C)

is computed. This value turns out to be 0 showing that the constructed

design in column (3′) is in fact an EE-SPD. The D-efficiency of this EE-SPD

is 91.7% which indicates a substantial gain in efficiency over JG’s which had

a D-efficiency of only 80.5%

5 Results and Discussion

This Section presents some proof-of-concept examples documenting the

evidence of the potential usefulness of our method of constructing EE-SPDs.

This is to be followed by detailed computational results.

5.1 Proof-of-Concept Examples

Table 3 shows a CCD-based EE-SPD* of Vining et al. (2005) in 12 WPs

of size four for a split-plot experiment on the strength of ceramic pipe with

the temperatures in zone 1 and zone 2 of the furnace as WP factors and the

amount of binder in the formulation and the grinding speed of the batch as

SP factors. Out of 48 runs, this design involves 24 runs at the zero level

of each WP factor and 30 runs at the zero level of each SP factor. The

D-efficiency of this EE-SPD* relative to the D-optimal SPD in Table 10 of

Jones & Nachtsheim (2009) and reproduced in Table 3 is 58.2%. The second

design in Table 3 is an alternative EE-SPD* constructed by SPLIT. Each

factor of the SPLIT design is set to zero only eight times. The D-efficiency

of the SPLIT design relative to the D-optimal design by Jones & Nachtsheim

(2009) is 88.9%. It is worth mentioning that the settings of the WP factor

levels in each WP of the SPLIT design and the D-optimal one are identical.

Computer-generated EE-SPDs were reported by Macharia & Goos (2010)

and JG to provide experimenters with more flexible and D-efficient EE-SPDs.

The algorithms used by these authors to produce EE-SPDs are well docu-

mented in their papers. The improvement in D-efficiencies of new EE-SPDs

10



Figure 1: Box-plot containing the relative D-efficiencies of the SPLIT designs
and JG’s designs.

over JG’s is most noticeable when the latter take non-integer values for factor

levels. Tables 4-6 show JG’s EE-SPDs and ours for scenarios 48, 94 and 109

in Table 5 of JG. For these three scenarios, the D-efficiencies of JG designs

are 37.8, 44.5 and 44.9% and ours are 90.2, 92.5 and 90.3% respectively.

Note that our designs for scenarios 48 and 109 are also EE-SPD*’s. The new

design for scenario 48 could be a good choice for the lima bean experiment

mentioned in Section 1.

5.2 Detailed Computational Results

JG managed to find the EE-SPD solutions for all 111 scenarios. However,

24 of these solutions involve non-integer values for factor levels (11 are listed

in Table 5 of JG). We were able to find EE-SPD solutions for 105 scenarios.

These scenarios include the 25 scenarios which JG failed to offer integer

solutions. Five of the six scenarios for which we failed to find EE-SPD

solutions involve WPs of size two.

To see how efficient our EE-SPDs are relative to JG’s for each scenario,
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we compute the relative efficiency or RE (%) of each new EE-SPD which

is the ratio of the D-efficiency of the new design to JG’s. The box-plot for

the RE of 105 new EE-SPDs is in Figure 1. There are two new EE-SPDs

with REs less than 80% but usually the REs are above 90%. Table 7 lists

25 scenarios where the new EE-SPDs have a RE larger than 100%. The

scenarios in this table are a subset of the 60 scenarios in Table 5 of JG for

which no EE-SPDs had been found by Macharia & Goos (2010) or where

more D-efficient EE-SPDs are found by JG. Note that 16 JG solutions in

this table involve non-integer values.

A referee is keen to know how good the EE-SPD*’s are with respect to the

D-optimality. All together, 34 solutions of ours are EE-SPD*’s: five are listed

in Table 7, seven have D-efficiencies matching those of the corresponding JG

designs (and it turns out that these JG designs are also EE-SPD*’s) and the

rest have D-efficiencies slightly smaller than the corresponding JG designs.

For certain scenarios, using different input designs, SPLIT produces different

solutions. Starting from an input design with more zero-levels gives a higher

chance to obtain an EE-SPD* and less efficient design.

Since SPLIT only involves a matrix inversion at the end of each try, it is

a fairly fast algorithm. For scenario 25 (Table 2), SPLIT gets an EE-SPD

instantaneously. For scenario 94 (Table 5) SPLIT finds about 10 EE-SPDs

in 1000 tries which take less than a second on a laptop with Intel Core 2 Duo

CPU T9500 @ 2.60GHz × 2 processor. For scenario 48 (Table 4), SPLIT

finds about ten EE-SPDs in 100,000 tries which takes five minutes on the

same laptop and only two out of these ten are EE-SPD*. For scenario 109

(Table 6) SPLIT gets 275 EE-SPDs in 100,000 tries which take about ten

minutes on the same laptop but many more tries are required to obtain an

EE-SPD*.

6 Concluding remarks

EE-SPDs have been discussed by Vining et al. (2005), Parker et al.

(2006, 2007) or more recently by Macharia & Goos (2010) and JG. Readers,

however, should note that D-optimal SPDs (particularly those that do not

12



involve non-integer values) are preferable to EE-SPDs unless the EE-SPDs

are also D-optimal or very close to D-optimal. Experimenters having access

to decent software such as JMP, SAS or R, etc. which can handle GLS

should not resort to EE-SPDs habitually as it is only the computation of

point estimates which does not depend on the variance components. The

computation of other statistics such as standard errors, confidence intervals,

t-test, etc. all still depend on the variance components, for which a good

software package is required.

This paper introduce a fast and simple algorithm called SPLIT for con-

structing 3-level EE-SPDs in most situations. The main difference between

the EE-SPDs of JG and SPLIT’s is that for the latter, the setting of the WP

factor levels and the distribution of the levels of each SP factor in each WP

require the input of the experimenter. SPLIT’s EE-SPDs are often D-efficient

and possess information matrices having a simple structure very close the one

in (7). This leads to a simpler interpretation of the results.

The SPLIT algorithm was implemented in a Java program. This Java

program as well as the input and output design matrices for the scenarios

discussed in this paper are available from the first author.
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Table 3: CCD-based EE-SPD*, SPLIT’s EE-SPD* and D-optimal
SPD for an experiment on the strength of ceramic pipe.†

CCD-based
w1 w1 s1 s2
-1 -1 -1 -1
-1 -1 1 -1
-1 -1 -1 1
-1 -1 1 1

-1 1 -1 -1
-1 1 1 -1
-1 1 -1 1
-1 1 1 1

1 -1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 -1 1 1

1 1 -1 -1
1 1 1 -1
1 1 -1 1
1 1 1 1

-1 0 0 0
-1 0 0 0
-1 0 0 0
-1 0 0 0

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

0 -1 0 0
0 -1 0 0
0 -1 0 0
0 -1 0 0

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

0 0 -1 0
0 0 1 0
0 0 0 -1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

SPLIT
w1 w2 s1 s2
-1 -1 -1 -1
-1 -1 1 1
-1 -1 1 -1
-1 -1 -1 1

-1 1 -1 -1
-1 1 1 1
-1 1 -1 1
-1 1 1 -1

1 -1 1 -1
1 -1 1 1
1 -1 -1 -1
1 -1 -1 1

1 1 1 -1
1 1 -1 -1
1 1 -1 1
1 1 1 1

-1 -1 0 -1
-1 -1 -1 0
-1 -1 1 0
-1 -1 0 1

-1 1 0 -1
-1 1 -1 0
-1 1 0 1
-1 1 1 0

1 -1 1 0
1 -1 0 1
1 -1 -1 0
1 -1 0 -1

1 1 1 0
1 1 -1 0
1 1 0 1
1 1 0 -1

-1 0 -1 -1
-1 0 -1 1
-1 0 1 1
-1 0 1 -1

1 0 -1 -1
1 0 1 1
1 0 1 -1
1 0 -1 1

0 -1 1 -1
0 -1 1 1
0 -1 -1 -1
0 -1 -1 1

0 1 1 -1
0 1 1 1
0 1 -1 -1
0 1 -1 1

D-optimal
w1 w2 s1 s2
-1 -1 -1 -1
-1 -1 -1 1
-1 -1 1 -1
-1 -1 1 1

-1 1 -1 -1
-1 1 -1 1
-1 1 1 -1
-1 1 1 1

1 -1 -1 -1
1 -1 -1 1
1 -1 1 -1
1 -1 1 1

1 1 -1 -1
1 1 -1 1
1 1 1 -1
1 1 1 1

-1 -1 -1 1
-1 -1 0 -1
-1 -1 1 0
-1 -1 1 1

-1 1 -1 -1
-1 1 -1 1
-1 1 0 0
-1 1 1 -1

1 -1 -1 -1
1 -1 -1 1
1 -1 0 1
1 -1 1 0

1 1 -1 -1
1 1 -1 1
1 1 0 -1
1 1 1 0

-1 0 -1 -1
-1 0 -1 1
-1 0 0 0
-1 0 1 1

1 0 -1 0
1 0 0 -1
1 0 1 -1
1 0 1 1

0 -1 -1 -1
0 -1 -1 0
0 -1 0 1
0 -1 1 -1

0 1 -1 0
0 1 0 1
0 1 1 -1
0 1 1 1

†See Vining et al. (2005). WPs are separated by a blank line.
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Table 4: JG’s EE-SPD and SPLIT’s EE-SPD* for scenario 48
(one WP factor and three SP factors in six WPs of size six).†

JG
w1 s1 s2 s3

0 0.5391 -0.7994 -0.9241
0 0.7618 0.8948 0.8876
0 0.8512 0.4249 -0.5734
0 -0.6599 0.6393 0.6646
0 -0.9426 0.887 0.2522
0 0.9664 -0.3771 -0.0301

-1 0.4785 0.8823 -0.2468
-1 0.5373 -0.7627 0.1032
-1 0.3261 0.1672 0.8003
-1 -0.819 -0.7452 -0.7282
-1 -1 -0.5025 1
-1 -0.9274 0.9008 -0.6651

1 0.5022 -0.1115 -0.7528
1 -0.1962 0.4626 0.7031
1 -0.6058 0.8575 -0.6065
1 1 -0.0288 0.8948
1 1 0.0074 0.9046
1 0.0892 0.3581 1

-1 -0.5807 -0.9361 -0.3964
-1 -0.1699 1 0.1213
-1 -0.9472 -0.1092 -0.6196
-1 -0.9603 -0.2004 0.9879
-1 0.9297 -0.6358 0.8395
-1 0.3239 0.8214 -0.6694

0 0.9228 0.3958 0.2069
0 -1 0.6561 0.3573
0 0.8757 -1 -0.5076
0 -0.4536 1 1
0 0.1711 0.0088 -1
0 1 0.6087 0.2202

-1 -0.4073 0.9048 -0.0211
-1 -0.8253 0.282 0.767
-1 -1 -0.5412 -0.7986
-1 -0.5722 -0.7117 -0.0072
-1 0.7043 -0.8063 1
-1 0.6959 0.8122 -0.6769

SPLIT
w1 s1 s2 s3

0 0 0 0
0 1 1 1
0 0 0 0
0 1 -1 -1
0 -1 1 -1
0 -1 -1 1

-1 -1 1 1
-1 1 1 -1
-1 1 0 1
-1 0 -1 0
-1 -1 0 -1
-1 0 -1 0

1 1 1 -1
1 0 -1 -1
1 0 1 1
1 1 -1 1
1 -1 0 0
1 -1 0 0

-1 1 -1 1
-1 0 1 0
-1 1 0 -1
-1 -1 0 1
-1 -1 -1 -1
-1 0 1 0

0 1 1 1
0 0 0 0
0 0 0 0
0 -1 -1 1
0 1 -1 -1
0 -1 1 -1

1 0 -1 1
1 0 1 -1
1 -1 -1 -1
1 1 0 0
1 1 0 0
1 -1 1 1

†See Table 5 of JG. WPs are separated by a blank line.
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Table 5: JG’s EE-SPD and SPLIT’s for scenario 94 (two
WP factors and two SP factors in ten WPs of size three).†

JG
w1 w2 s1 s2

0 0 0 0
0 0 0 0
0 0 0 0

1 -1 0 1
1 -1 0 1
1 -1 0 1

1 1 0 0
1 1 0 0
1 1 0 0

0 0 0 0
0 0 0 0
0 0 0 0

-1 1 1 0
-1 1 1 0
-1 1 1 0

1 1 1 0
1 1 1 0
1 1 1 0

-1 -1 0 -1
-1 -1 0 -1
-1 -1 1 1

0 1 1 1
0 1 1 -1
0 1 -1 0

-1 1 -1 -1
-1 1 -1 1
-1 1 -1 -1

1 -0.2242 -1 -1
1 -0.2242 -1 1
1 -0.2242 1 -1

SPLIT
w1 w2 s1 s2

1 1 1 -1
1 1 -1 0
1 1 0 1

1 0 -1 -1
1 0 0 0
1 0 1 1

1 -1 0 -1
1 -1 1 0
1 -1 -1 1

0 1 0 0
0 1 1 1
0 1 -1 -1

0 -1 0 0
0 -1 1 1
0 -1 -1 -1

-1 1 0 -1
-1 1 1 0
-1 1 -1 1

-1 0 -1 -1
-1 0 0 0
-1 0 1 1

-1 -1 -1 0
-1 -1 0 1
-1 -1 1 -1

1 -1 0 -1
1 -1 1 0
1 -1 -1 1

-1 1 0 -1
-1 1 1 0
-1 1 -1 1

†See Table 5 of JG. WPs are separated by a blank line.
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Table 6: JG’s EE-SPD and SPLIT’s EE-SPD* for scenario 109
(two WP factors and three SP factors in eight WPs of size six).†

JG
w1 w2 s1 s2 s3
-1 -1 0.5608 -0.9285 -0.9249
-1 -1 -0.0636 0.101 0.9757
-1 -1 1 -1 0.08
-1 -1 0.5156 -1 -0.5614
-1 -1 -0.0674 0.1807 0.9794
-1 -1 0.7043 -0.9039 -0.9384

0 1 -0.1102 -0.9291 0.9659
0 1 -0.9597 -0.1577 -0.25
0 1 -0.2042 -0.956 -0.9116
0 1 -0.3594 0.9096 -0.8927
0 1 0.9958 0.637 0.9963
0 1 -0.9995 -0.2368 0.9935

1 -1 1 0.9105 -0.9913
1 -1 -0.8644 -0.5947 -0.7272
1 -1 -0.857 -0.9702 -0.9746
1 -1 -0.0942 -0.5554 -0.3228
1 -1 -0.9222 0.7405 0.9
1 -1 0.8851 -0.8975 0.755

0 0 0.5699 -1 -0.922
0 0 -0.2167 -1 0.58
0 0 -0.0737 -0.9989 0.5278
0 0 0.9151 0.8265 -0.8835
0 0 0.9102 0.8611 -0.8444
0 0 0.8668 1 0.9505

0 -1 1 -1 -0.0059
0 -1 1 -1 0.0603
0 -1 1 -1 0.0274
0 -1 0.0985 0.9988 1
0 -1 0.1579 -1 0.3202
0 -1 0.1761 -1 0.1066

0 1 -0.1269 0.9603 -1
0 1 -0.9037 -0.8422 0.906
0 1 -0.6638 0.6229 0.8773
0 1 0.1012 -0.4593 0.119
0 1 0.9293 -0.0913 0.9991
0 1 -0.9733 -0.9233 -1

1 -1 -0.7834 -0.7823 0.5188
1 -1 -1 0.8476 -1
1 -1 0.1593 -0.9999 -0.8963
1 -1 0.759 0.7333 1
1 -1 -0.9708 -0.9286 -0.0502
1 -1 0.9832 -0.2368 -0.9331

-1 1 -0.4832 -0.4272 1
-1 1 0.6825 0.9896 -0.7524
-1 1 -0.2976 0.5491 0.9729
-1 1 -0.4314 -0.4299 0.9966
-1 1 1 0.8786 -1
-1 1 0.5791 0.9992 -0.7558

SPLIT
w1 w2 s1 s2 s3
-1 -1 0 -1 -1
-1 -1 -1 0 0
-1 -1 1 1 -1
-1 -1 -1 0 0
-1 -1 1 -1 1
-1 -1 0 1 1

1 -1 0 1 -1
1 -1 1 0 0
1 -1 0 -1 1
1 -1 -1 1 1
1 -1 -1 -1 -1
1 -1 1 0 0

-1 1 -1 1 1
-1 1 1 0 0
-1 1 0 -1 1
-1 1 1 0 0
-1 1 0 1 -1
-1 1 -1 -1 -1

1 1 -1 0 0
1 1 0 -1 -1
1 1 -1 0 0
1 1 0 1 1
1 1 1 1 -1
1 1 1 -1 1

0 -1 -1 0 -1
0 -1 1 -1 -1
0 -1 0 1 0
0 -1 1 0 1
0 -1 -1 -1 1
0 -1 0 1 0

1 0 0 -1 0
1 0 -1 0 1
1 0 1 0 -1
1 0 0 -1 0
1 0 1 1 1
1 0 -1 1 -1

-1 0 0 -1 0
-1 0 0 -1 0
-1 0 -1 1 -1
-1 0 1 1 1
-1 0 -1 0 1
-1 0 1 0 -1

0 1 1 0 1
0 1 -1 0 -1
0 1 0 1 0
0 1 -1 -1 1
0 1 1 -1 -1
0 1 0 1 0

†See Table 5 of JG. WPs are separated by a blank line.
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Table 7. The D-efficiencies of JG’s EE-SPDs and SPLIT’s for

25 scenarios where SPLIT produces more efficient EE-SPDs.

Relative

Scenario mW mS b k JG SPLIT efficiency (%)

25 1 2 5 3 80.5§ 91.7 114.0

30 1 2 6 3 70.9 91.5 129.0

36 1 2 7 4 82.6 85.4‡ 103.4

44 1 3 5 6 66.5 92.0 138.3

46 1 3 6 4 66.4 85.3 128.4

47 1 3 6 5 59.3† 96.2 162.2

48 1 3 6 6 37.8†§ 90.2‡ 238.4

66 2 1 10 4 90.8† 92.0 101.3

68 2 1 10 6 83.1† 97.9 117.8

69 2 1 11 2 90.9 91.5 100.6

71 2 1 11 4 91.2† 91.4 100.2

73 2 1 11 6 67.6† 97.4 144.0

74 2 1 12 2 80.3 91.8 114.3

76 2 1 12 4 94.2 94.7‡ 100.5

78 2 1 12 6 47.5† 98.2‡ 206.7

89 2 2 9 3 75.2† 90.6 120.5

94 2 2 10 3 44.5†§ 92.5 207.8

95 2 2 10 4 50.2† 82.7 164.8

97 2 2 10 6 84.2† 95.1 112.9

99 2 2 11 3 38.5† 89.3 231.8

100 2 2 11 4 60.6† 88.4 145.9

101 2 2 11 5 66.3† 88.2 133.1

102 2 2 11 6 55.7† 93.2 167.3

109 2 3 8 6 44.9† 90.3‡ 201.2

111 3 3 12 4 93.7 97.2 103.7

†JG design involves non-integer levels.

‡SPLIT design is also an EE-SPD*.

§The D-efficiency was recomputed using |Mopt| of the new

D-optimal design constructed by the JMP software.
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