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Abstract In this paper we give a version of Krivine-Stengle’s Positivstel-
lensatz, Schweighofer’s Positivstellensatz, Scheiderer’s local-global principle,
Scheiderer’s Hessian criterion and Marshall’s boundary Hessian conditions for
polynomial matrices, i.e. matrices with entries from the ring of polynomials
in the variables x1, · · · , xd with real coefficients. Moreover, we characterize
Archimedean quadratic modules of polynomial matrices, and study the rela-
tionship between the compactness of a subset in Rd with respect to a subset G
of polynomial matrices and the Archimedean property of the preordering and
the quadratic module generated by G.
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1 Introduction

Let R[X] := R[x1, · · · , xd] be the ring of polynomials in the variables x1, · · · , xd
with real coefficients. Denote by

∑
R[X]2 the set of sums of squares in R[X],

i.e. the set of finite sums
∑
f2i , fi ∈ R[X]. For a subset G = {g1, · · · , gm} ⊆

R[X], let us consider the basic closed semi-algebraic set associated to G,

KG := {x ∈ Rd|gi(x) ≥ 0, i = 1, · · · ,m},
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the quadratic module generated by G,

MG = {t0 +
m∑
i=1

tigi|ti ∈
∑

R[X]2, i = 0, 1, · · · ,m}

and the preordering generated by G,

TG = {
∑

σ=(σ1,··· ,σm)∈{0,1}m
tσg

σ1
1 · · · gσm

m |tσ ∈
∑

R[X]2}.

For a polynomial f ∈ R[X], it is obvious that if f ∈ MG or f ∈ TG then
f(x) ≥ 0 for all x ∈ KG (in this case we say f ≥ 0 on KG). The converse is
in general not true. The Positivstellensatz of Krivine-Stengle ([7, 1964], [16,
1974]) characterizes polynomials which are positive (resp. non-negative, van-
ished) on a basic closed semi-algebraic set, but with a "denominator" (for
example, f > 0 on KG if and only if pf = 1 + q for some p, q ∈ TG, that is,

f ∈ 1

p
(1 + TG) with denominator p ∈ TG).

A "denominator-free" version of this result is due to Schmüdgen (1991) which
asserts that any positive polynomial on a compact set KG belongs to TG. To
ensure for f > 0 on KG to be inMG, Putinar (1993) required the Archimedean
property ofMG. Note that the compactness ofKG is equivalent to the Archimedean
property of TG (cf. [8, Theorem 6.1.1]), and if MG is Archimedean then so is
TG, hence KG is compact. However the converse is not true in general (see,
for example, [8, Putinar’s question, chapter 7]).
If KG is not assumed to be compact, Schweighofer ([15]) has given a Posi-
tivstellensatz which asserts that if f ∈ R[X] is a bounded, positive polynomial
on KG and if it has only finitely many asymptotic values on KG such that all
of them are positive then f ∈ TG.
The case where KG is compact (resp. MG is Archimedean), but f is assumed
to have finitely many zeros in KG, Scheiderer ([9], [10]) has given a Hessian
criterion at each zero of f in KG for f to be in TG (resp. MG), using his local-
global criterion. Marshall (cf. [8]) has also given boundary Hessian conditions
at each zero of f in KG to ensure for f to be in MG.

The aim of this paper is to study all of these Positivstellensätze for poly-
nomial matrices, that is for matrices with entries from R[X]. A matrix version
of Krivine-Stengle’s Positivstellensatz was given by Schmüdgen ([14, 2009],
for non-negative polynomial matrices) and Cimprič ([2, 2012]). Hol-Scherer
([11, 2006], or [6, 2010]) has given a matrix version of Putinar’s Positivstel-
lensatz. Cimprič has also given a version of Schmüdgen’s Positivstellensatz for
polynomial matrices in [3, 2013].

In section 2 we recall definition of quadratic modules and preorderings in
the algebraMn(R[X]) of polynomial matrices, which is proposed by Schmüdgen
([12], [13], [14]) and Cimprič ([1], [2]), and some basic facts used in the paper.
In particular, we recall a basic result of Cimprič (see Lemma 2) which tells
us that any subset KG of Rd associated to G ⊆ Sn(R[X]) can be determined
again by a subset G of polynomials in R[X] such that the preordering TG
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(resp. the quadratic module MG) contains the preordering (TG)
n (resp. the

quadratic module (MG)
n). Moreover we recall also a basic result of Schmüdgen

(see Lemma 3) which asserts that any symmetric polynomial matrix, together
with a square of a non-zero polynomial in R[X], can be diagonalized. This
allows us to prove many results of this paper firstly with diagonal matrices,
and then with arbitrary symmetric matrices.

In section 3 we give a matrix version of Krivine-Stengle’s Positivstellensatz
(Proposition 1 and Theorem 1). This version for polynomial matrices is simpler
than the one given in [14] (for positive semidefinite polynomial matrices),
however in general more complicated than the one given in [2]. But in our
version, the existence of diagonal polynomial matrices in the representation of
F in (TG)

n is more convenient.
In section 4 we give a matrix version of Schweighofer’s Positivstellensatz

(Proposition 2 and Theorem 3). We have a nice representation for diagonal
polynomial matrices, however in the representation of an arbitrary symmetric
polynomial matrix we need a "denominator", namely, a square of a non-zero
polynomial in R[X] or a conjugation of a matrix inMn(R[X]).

In section 5 we recall definition of Archimedean quadratic modules in
Mn(R[X]) and characterize Archimedean quadratic modules via the ring of
bounded elements with respect to these quadratic modules. We show that the
Archimedean property of a quadratic moduleM in R[X] is the same as that of
the quadratic module Mn inMn(R[X]), and the compactness of the set KG
is equivalent to the Archimedean property of the preordering TG . Moreover,
we show that if the quadratic moduleMG of univariate polynomial matrices
is Archimedean then the set KG is compact.

The last section deals with a matrix version of Scheiderer’s local-global
principle (Proposition 7 and Theorem 5), Scheiderer’s Hessian criterion (Propo-
sition 8 and Theorem 7) and Marshall’s boundary Hessian conditions (Propo-
sition 9 and Theorem 9). Similar to the matrix version of Schweighofer’s Pos-
itivstellensatz given in section 4, we have a nice representation of diagonal
polynomial matrices, but for an arbitrary symmetric polynomial matrices we
need a denominator.

2 Preliminaries

In this section we shall recall some basis concepts and facts in Real alge-
braic geometry for matrices over commutative rings which are proposed by
Schmüdgen ([12], [13], [14]) and Cimprič ([1], [2]).

For n ∈ N∗, letMn(R) denote the ring of n×nmatrices with entries from a
commutative unital ring R. Denote by Sn(R) the subset ofMn(R) consisting
of all symmetric matrices. A subsetM of Sn(R) is called a quadratic module1

if
In ∈M, M+M⊆M, ATMA ⊆M,∀A ∈Mn(R).

1 In [12] and [13], the term m-admissible wedge was used.
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The smallest quadratic module which contains a given subset G of Sn(R) will
be denoted byMG . It is clear that

MG = {
∑
i,j

ATijGiAij |Gi ∈ G ∪ {In}, Aij ∈Mn(R)}.

In particular, a subset M ⊆ R is a quadratic module if 1 ∈ M,M +M ⊆ M,
and a2M ⊆ M for all a ∈ R. The smallest quadratic module of R which
contains a given subset G ⊆ R will be denoted by MG, and it consists of all
finite sums of the form

∑
i,j a

2
ijgi, gi ∈ G, aij ∈ R.

A subset T of Sn(R) is called a preordering if T is a quadratic module in
Mn(R) and the set T ∩ (R · In) is closed under multiplication. The smallest
preordering which contains a given subset G of Sn(R) will be denoted by TG .
We have

Lemma 1 ([2, Lemma 2]) For every subset G of Sn(R),

TG =MG∪(∏G′·In),

where
∏
G′ is the set of all finite product of elements from the set G′ :=

{vTGv|G ∈ G,v ∈ Rn}.

In particular, a subset T ⊆ R is a preordering if T + T ⊆ T, T · T ⊆ T, a2 ∈ T
for every a ∈ R. The smallest preordering of R which contains a given subset
G ⊆ R will be denoted by TG. It is clear that

TG = {
∑

σ=(σ1,··· ,σm)∈{0,1}m
sσg

σ1
1 · · · gσm

m |m ∈ N, gi ∈ G, sσ ∈
∑

R2},

where
∑
R2 is the set of all sums of squares of finite elements from R.

In the case G = ∅,
∑
nR := M∅ = T∅ is the set of all finite sums of

elements of the form ATA, where A ∈ Mn(R), and which is the smallest
quadratic module inMn(R).

For a quadratic module M in R, denote

Mn := {
∑
i

miA
T
i Ai|mi ∈M,Ai ∈Mn(R)}.

Then Mn is the smallest quadratic module inMn(R) whose intersection with
R · In is equal to M · In ([2, Proposition 3]).

Remark 1 LetM be a quadratic module of R. Denote by D(d1, · · · , dr), r ≤ n,
the n × n diagonal matrix with diagonal entries d1, · · · , dr, 0, · · · , 0, where
di ∈M for every i = 1, · · · , r. Then D(d1, · · · , dr) ∈Mn.
In fact, for every i, j = 1, · · · , n, let Eij be the coordinate matrices inMn(R).
Note that for each i = 1, · · · , n, we have Eii = ETiiEii. Hence

D(d1, · · · , dr) =
r∑
i=1

diEii =

r∑
i=1

diE
T
iiEii ∈Mn.
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For any matrix A ∈ Mn(R), the notation A < 0 means A is positive
semidefinite, i.e. xTAx ≥ 0 for every x ∈ Rn, and A � 0 means A is positive
definite, i.e. xTAx > 0 for every x ∈ Rn \ {0}.

In the following we consider R to be the ring R[X] := R[x1, · · · , xd] of
polynomials in d variables x1, · · · , xd with real coefficients. Then each element
A ∈ Mn(R[X]) is a matrix whose entries are polynomials from R[X], called
a polynomial matrix. Each element A ∈ Mn(R[X]) is also called a matrix
polynomial, because it can be viewed as a polynomial in x1, · · · , xd whose
entries fromMn(R). Namely, we can write A as

A =

N∑
|α|=0

AαX
α,

where α = (α1, · · · , αd) ∈ Nd, |α| := α1 + · · · + αd, Xα := xα1
1 · · ·x

αd

d , Aα ∈
Mn(R), N is the maximum over all degree of entries of A. To unify notation,
throughout the paper each element ofMn(R[X]) is called a polynomial matrix.

To every G ⊆ Sn(R[X]) we associate the set

KG := {x ∈ Rd|G(x)< 0,∀G ∈ G}.

In particular, for a subset G of R[X],

KG = {x ∈ Rd|g(x) ≥ 0,∀g ∈ G}.

The following result of Cimprič ([2]) shows that the set KG can be determined
by scalars, i.e. by polynomials in R[X].

Lemma 2 ([2, Proposition 5]) Let G ⊂ Sn(R[X]). Then there exists a
subset G of R[X] with the following properties:

(1) KG = KG;
(2) (MG)

n ⊆MG;
(3) (TG)

n ⊆ TG.
Moreover, if G is finite then G can be chosen to be finite.

It is well-known that every symmetric scalar matrix A ∈ Sn(R) can be
diagonalized by an orthogonal matrix O ∈ Mn(R). For a polynomial matrix
A in Sn(R[X]), it is in general no longer true, because the matrix O may have
rational entries (quotients of two polynomials in R[X]). However, Schmüdgen
([14]) has showed that every symmetric polynomial matrix can be diagonalized
by an invertible matrix inMn(R[X]) with a quotient by a non-zero polynomial
in R[X]. Moreover, in some special cases (e.g. that symmetric polynomial is in
standard form), that invertible matrix can be chosen to be lower triangular.

Lemma 3 ([14, Corollary 9]) Let A ∈ Sn(R[X]). Then there exist non-
zero polynomials b, dj ∈ R[X], j = 1, · · · , r, r ≤ n, and matrices X+,X− ∈
Mn(R[X]) such that

X+X− = X−X+ = bIn, b2A = X+DXT
+, D = X−AXT

−,

where D is the n× n diagonal matrix D(d1, · · · , dr).
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This lemma deduces a matrix version of the theorem of Artin on Hilbert’s
seventeenth problem.

Corollary 1 ([14, Proposition 10], [4]) Let F ∈ Sn(R[X]). Then the fol-
lowing are equivalent:

(1) F < 0 (i.e. F(x) < 0 for every x ∈ Rd);
(2) b2F ∈

∑
nR[X] for some non-zero polynomial b ∈ R[X].

3 Krivine-Stengle’s Positivstellensatz for polynomial matrices

In this section we shall give a matrix version of Krivine-Stengle’s Positivstel-
lensatz (cf. [7], [16], [8, Positivstellensatz 2.2.1]). Let G = {G1, · · · ,Gm} ⊆
Sn(R[X]). Then by Lemma 2, there exists a subset G = {g1, · · · , gk} of R[X]
such that KG = KG and (TG)

n ⊆ TG . For diagonal polynomial matrices, we
have the following

Proposition 1 Let D = D(d1, · · · , dr), r ≤ n, be an n × n diagonal matrix
in Sn(R[X]). Then

(1) D � 0 on KG if and only if there exist diagonal matrices S and T whose
entries are in TG such that SD = DS = In +T.

(2) D < 0 on KG if and only if there exist an integer m ≥ 0 and diagonal
matrices S and T whose entries are in TG such that SD = DS = D2m+T.

(3) D = 0 on KG if and only if there exist an integer m ≥ 0 such that −D2m ∈
(TG)

n.
(4) KG = ∅ if and only if −In ∈ (TG)

n.

Proof Note that in each of (1), (2), (3), (4), the "if" part is trivial. Therefore
we shall prove the "only if" part in these statements.
(1) Assume D � 0 on KG . Then r = n and di > 0 on KG = KG for all
i = 1, · · · , n. It follows from Krivine-Stengle’s Positivstellensatz that for each
i = 1, · · · , n, there exist si and ti in TG such that sidi = 1 + ti. Then the
matrices S = D(s1, · · · , sr) and T = D(t1, · · · , tr) satisfy (1).
(2) Assume D < 0 on KG . Then di ≥ 0 on KG = KG for all i = 1, · · · , r.
It follows from Krivine-Stengle’s Positivstellensatz that for each i = 1, · · · , r,
there exist an integer mi ≥ 0 and elements si and ti in TG such that sidi =
d2mi
i + ti. Let m = max{mi, i = 1, · · · , r}. Then for every i = 1, · · · , r, we

have
(sid

2(m−mi)
i )di = d2mi + (tid

2(m−mi)
i ).

Denote s′i := sid
2(m−mi)
i , t′i := tid

2(m−mi)
i . Then S = D(s′1, · · · , s′r) and

T = D(t′1, · · · , t′r) satisfy (2).
(3) Assume D = 0 on KG . Then di = 0 on KG = KG for all i = 1, · · · , r. It fol-
lows from Krivine-Stengle’s Positivstellensatz that for each i = 1, · · · , r, there
exists an integer mi ≥ 0 such that −d2mi

i ∈ TG. Then for m = max{mi, i =
1, · · · , r} we have −d2mi ∈ TG for every i = 1, · · · , r. Then −D2m ∈ (TG)

n by
Remark 1.
(4) follows from Krivine-Stengle’ Positivstellensatz and Remark 1.
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For arbitrary symmetric polynomial matrices, we have the following

Theorem 1 Let G ⊆ Sn(R[X]), G ⊆ R[X], KG, KG, TG and TG be deter-
mined as above. Then for F ∈ Sn(R[X]), we have

(1) F � 0 on KG if and only if there exist a matrix X− ∈ Mn(R[X]) and
diagonal matrices S and T whose entries are in TG such that S(X−FXT

−) =
(X−FX

T
−)S = In +T.

(2) D < 0 on KG if and only if there exist an integer m ≥ 0, a matrix X− ∈
Mn(R[X]) and diagonal matrices S and T whose entries are in TG such
that S(X−FXT

−) = (X−FX
T
−)S = D2m +T.

(3) D = 0 on KG if and only if there exist an integer m ≥ 0 and a matrix
X− ∈Mn(R[X]) such that −(X−FXT

−)
2m ∈ (TG)

n.

Proof By Lemma 3, there exist non-zero polynomials b, dj ∈ R[X], j = 1, · · · , r,
r ≤ n, and a matrix X− ∈ Mn(R[X]) such that X−FXT

− = D(d1, · · · , dr) =:
D. Note that F � 0 (resp. < 0, = 0) if and only if D � 0 (and r = n) (resp.
< 0, = 0). Therefore the theorem follows from Proposition 1, applying for
D = X−FX

T
−.

Remark 2 (1) Theorem 1 (1) gives a simpler representation of the positive
definite polynomial matrix F on KG , comparing to the non-commutative
version of Krivine-Stengle’ Positivstellensatz given in [14, sections 4.2 and
4.4].

(2) In [2] the author has given a matrix version of Krivine-Stengle’s Positivstel-
lensatz without the matrix X− in representation of F. He requires also S,
T ∈ (TG)

n, however they are in general not diagonal.

4 Schweighofer’s Positivstellensatz for polynomial matrices

In this section we give a matrix version of Schweighofer’s Positivstellensatz
([15]) which is recalled as follows. For a polynomial f ∈ R[X] and a subset
S ⊆ Rd, a real number y ∈ R is called an asymptotic value of f on S if there
exists a sequence (xk)k∈N ⊆ S such that lim

k→∞
||xk|| =∞ and lim

k→∞
f(xk) = y.

Denote by R∞(f, S) the set of all asymptotic values of f on S. Then we have

Theorem 2 ([15, Theorem 9]) Let G = {g1, · · · , gm} ⊆ R[X], and f ∈
R[X]. Assume

(1) f > 0 on KG;
(2) f is bounded on KG;
(3) R∞(f,KG) is a finite subset of R+.

Then f ∈ TG.

We give firstly a version of this theorem for diagonal polynomial matrices.

Proposition 2 Let G = {G1, · · · ,Gm} ⊆ Sn(R[X]) and D = D(d1, · · · , dn)
be an n × n diagonal matrix in Sn(R[X]) with di 6= 0 for every i = 1, · · · , n.
Assume
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(1) D � 0 on KG;
(2) D is bounded on KG (i.e. there exists a number N ∈ R+ such that N · In±

D < 0 on KG);
(3) For every i = 1, · · · , n, R∞(di,KG) is a finite subset of R+.

Then there exists a finite subset G of R[X] such that D ∈ (TG)
n ⊆ TG.

Proof By Lemma 2, there exists a finite subset G of R[X] such that KG = KG

and (TG)
n ⊆ TG . By hypothesis, for every i = 1, · · · , n we have

– di > 0 on KG;
– di is bounded on KG;
– R∞(di,KG) is a finite subset of R+.

Then it follows from Theorem 2 that di ∈ TG for every i = 1, · · · , n. This
implies that D ∈ (TG)

n by Remark 1.

For arbitrary symmetric polynomial matrices we have the following

Theorem 3 Let G = {G1, · · · ,Gm} ⊆ Sn(R[X]) and F ∈ Sn(R[X]). Assume

(1) F � 0 on KG;
(2) F is bounded on KG (i.e. there exists a number N ∈ R+ such that N · In±

F < 0 on KG);
(3) for every x ∈ Rn \ {0}, R∞(xTFx,KG) is a finite subset of R+.

Then there exist a finite subset G of R[X] and

(i) a matrix X− ∈Mn(R[X]) such that X−FXT
− ∈ (TG)

n ⊆ TG;
(ii) a non-zero polynomial b ∈ R[X] such that b2F ∈ (TG)

n ⊆ TG.

Proof By Lemma 3, there exist non-zero polynomials b, dj ∈ R[X], j = 1, · · · , r,
r ≤ n, and matrices X+,X− ∈Mn(R[X]) such that

X+X− = X−X+ = bIn, b2F = X+DXT
+, D = X−FX

T
−,

where D = D(d1, · · · , dr) is the n×n diagonal polynomial matrix. Since F � 0
on KG , r = n. Note that for every i = 1, · · · , n,

di = eTi Dei = (X−
Tei)

TF(X−
Tei), (1)

where ei, i = 1, · · · , n, are the coordinate vectors in Rn. Since vi := X−
Tei ∈

Rn \{0} and F � 0 on KG , it follows that di > 0 on KG for every i = 1, · · · , n.
By (2) and in view of (1), for each i = 1, · · · , n, we have

N(vTi vi)± di ≥ 0 on KG .

It follows that each di, i = 1, · · · , n, is bounded on KG . Moreover, by (3) and
in view of (1), R∞(di,KG) is a finite subset of R+ for each i = 1, · · · , n. Then
it follows from Proposition 2 that there exists a finite subset G of R[X] such
that D ∈ (TG)

n ⊆ TG , hence X−FX
T
− ∈ (TG)

n, i.e. we have (i). Moreover,
since (TG)

n is a quadratic module ofMn(R[X]), by definition we have b2F =
X+DXT

+ ∈ (TG)
n, i.e. we have (ii). The proof is complete.



Some Positivstellensätze for polynomial matrices 9

5 Archimedean quadratic modules

In this section we deal with Archimedean quadratic modules of polynomial
matrices. We recall the definition of Archimedean quadratic modules, and
show that the Archimedean property of a quadratic module M in R[X] is the
same as that of the quadratic module Mn in Mn(R[X]). Moreover, we also
show that the compactness of KG is equivalent to the Archimedean property
of the preordering TG .

Definition 1 ([13], [14], [1]) LetM be a quadratic module inMn(R[X]).

(1) M is called Archimedean if for each element A ∈ Mn(R[X]) there exists
a number n ∈ N such that n · In −ATA ∈M.

(2) Denote

HM := HM(Mn(R[X])) := {A ∈Mn(R[X])|∃r ∈ R+ : r2·In−ATA ∈M}.

It is clear that the quadratic moduleM inMn(R[X]) is Archimedean if and
only if HM =Mn(R[X]). 2 Moreover, HM is a subring ofMn(R[X]) (cf. [13,
Corollary 2.2], [1, Corollary 5]), and it is called the ring of bounded elements
ofMn(R[X]) with respect to the quadratic moduleM.

The following fact is useful and it is easy to check (cf. [13, Lemma 2.1(ii)], [1,
Lemma 3]).

Lemma 4 Let M be a quadratic module in Mn(R[X]). Then for any A ∈
Sn(R[X]) and for any r ∈ R+, we have r2 · In − A2 ∈ M if and only if
r · In ±A ∈M.

Similar to the case of polynomials (cf. [8, Corollary 5.2.4]), we can check
the Archimedean property of quadratic modules of polynomial matrices simply
as follows.

Proposition 3 Let M⊆Mn(R[X]) be a quadratic module. Then the follow-
ing are equivalent:

(1) M is Archimedean.
(2) r · In −

∑d
i=1 x

2
i · In ∈M for some positive real number r.

(3) r · In ± xi · In ∈M for some positive real number r.

Proof (1) =⇒ (2) is clear. If (2) holds, for each i = 1, · · · , d we have

r · In − x2i · In = (r · In −
d∑
i=1

x2i · In) +
∑
j 6=i

x2j · In ∈M.

It follows from Lemma 4 that
√
r · In ± xi · In ∈M for every i = 1, · · · , d, i.e.

we have (3).

2 In this case, the ring Mn(R[X]) is called algebraically bounded with respect to the
quadratic moduleM, cf. [13].
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To show (3) =⇒ (1), it suffices to prove that HM = Mn(R[X]). Since
Mn(R[X]) is generated as an R-algebra by xi, i = 1, · · · , d, and the coor-
dinate matrices Eij , i, j = 1, · · · , n, of Mn(R), and since HM is closed under
addition and multiplication, it is enough to show that xi · In ∈ HM for every
i = 1, · · · , d and Eij ∈ HM for every i, j = 1, · · · , n.
Since r · In ± xi · In ∈M, it follows from Lemma 4 that r2 · In − x2i · In ∈M,
hence xi · In ∈ HM for every i = 1, · · · , d. On the other hand, for every
i, j = 1, · · · , n, we have ETijEij = Ejj . Therefore,

In −ETijEij =
∑
k 6=j

ETkkEkk ∈M.

It follows that Eij ∈ HM for every i, j = 1, · · · , n. The proof is complete.

Using this criterion we can show now the equivalence of the Archimedean
property of a quadratic module M in R[X] and the quadratic module Mn in
Mn(R[X]).

Proposition 4 Let M be a quadratic module in R[X]. Then M is Archimedean
if and only if Mn is an Archimedean quadratic module in Mn(R[X]).

Proof The "only if" part follows easily from the usual criterion for Archimedean
property of quadratic modules in R[X] (cf. [8, Corollary 5.2.4]) and Proposi-
tion 3. Now we prove the "if" part.
AssumeMn is Archimedean. Then it follows from Proposition 3 that for every
i = 1, · · · , d, we have r · In±xi · In ∈Mn for some r ∈ R+. Then we can write

(r± xi) · In = r · In± xi · In =

m∑
j=1

mjA
T
j Aj ,where mj ∈M,Aj ∈Mn(R[X]).

Note that Tr(AT
j Aj) ∈

∑
R[X]2 for each j = 1, · · · ,m. Then for every i =

1, · · · , d we have

r ± xi =
1

n
Tr
(
(r ± xi) · In

)
=

1

n

m∑
j=1

mjTr(A
T
j Aj) ∈M.

Hence M is Archimedean (cf. [8, Corollary 5.2.4]).

It is well-known that the compactness of the basic semi-algebraic setKG ⊆ Rn,
G ⊆ R[X], is equivalent to the Archimedean property of the preordering TG in
R[X] (cf. [8, Theorem 6.1.1]). For polynomial matrices we have also the same
result.

Proposition 5 Let G ⊆ Sn(R[X]). Then KG is compact if and only if TG is
Archimedean.



Some Positivstellensätze for polynomial matrices 11

Proof Assume TG is Archimedean. It follows from Proposition 3 that there
exists a number r ∈ R+ such that r · In −

∑d
i=1 x

2
i · In ∈ TG . This implies

r · In−
∑d
i=1 x

2
i · In < 0 on KG . Then for any point p = (p1, · · · , pd) ∈ KG , we

have r −
∑d
i=1 p

2
i ≥ 0, i.e., ||p|| ≤

√
r. It follows that KG is bounded, whence

compact.
Conversely, assume that KG is compact. By Lemma 2, there exists a subset

G of R[X] such thatKG = KG and (TG)
n ⊆ TG . ThenKG is compact. It follows

that TG is an Archimedean quadratic module in R[X] (cf. [8, Theorem 6.1.1]).
Then (TG)

n ⊆Mn(R[X]) is Archimedean by Proposition 4. This implies that
TG ⊇ (TG)

n is Archimedean.

Remark 3 For any G ⊆ Sn(R[X]), sinceMG ⊆ TG , ifMG is Archimedean then
TG is Archimedean, hence KG is compact by Proposition 5. The converse is
in general not true, even for polynomials (i.e. for n = 1). A natural question,
like Putinar’s question for polynomials (cf. [8, Chapter 7]), is that in which
cases the compactness of KG implies the Archimedean property of MG? For
univariate polynomial matrices, we have a confirmation.

Proposition 6 Let R[t] be the ring of polynomial in one variable t with real
coefficients. Then, for a finite set G ⊆ Sn(R[t]), if KG is compact then MG is
Archimedean.

Proof By the same argument as given in the proof of the "only if" part of
Proposition 5, using [8, Theorem 7.1.2] instead of [8, Theorem 6.1.1], we obtain
the result.

For multivariate polynomial matrices (i.e. for d ≥ 2), the compactness of KG is
in general not sufficient to deduce the Archimedean property ofMG . It is even
not true for the case of multivariate polynomials (i.e. for d ≥ 2 and n = 1),
see, for example, Jacobi-Prestel’s counterexample (cf. [5, Example 4.6]).

6 Local-global principle and Hessian conditions for polynomial
matrices

For a set G and a polynomial matrix F in Sn(R[X]), it is obvious that if
F ∈ TG (resp. F ∈MG) then F < 0 on KG . The converse is true only in some
special cases. For example, if KG is compact (equivalently, TG is Archimedean
by Proposition 5) (resp. ifMG is Archimedean) and F � 0 on KG then F ∈ TG
(resp. F ∈ MG). This is a matrix version of Schmüdgen’s Positivstellensatz,
see, for example [3] (resp. Putinar’s Positivstellensatz, see, for example [11] or
[6]).
In the case where KG is not compact, we have given in section 4 some special
conditions for F � 0 to ensure thatX−FXT

− or b2F belongs to TG . If F vanishes
at some points in KG , we need some conditions at these zeros to ensure for
F belonging to TG or MG . In the polynomial case (i.e. n = 1), one of the
well-known criterion for f ≥ 0 on KG to be in TG (resp. MG) is the Hessian
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criterion of Scheiderer (cf. [9], [10] or [8, section 9.5]), and to prove it, he used
his local-global principle (cf. [9] or [8, section 9.2]). Moreover, Marshall ([8])
has given boundary Hessian conditions for f to ensure that f ∈MG whenever
it is non-negative on KG. Therefore, in this section we give a matrix version
of the local-global principle of Scheiderer, Scheiderer’s Hessian criterion and
the boundary Hessian conditions of Marshall.

6.1 Local-global principle for polynomial matrices

First we recall Scheiderer’s local-global principle.

Theorem 4 ([9], [8, Theorem 9.2.1]) Let G = {g1, · · · , gm} ⊆ R[X] and
f ∈ R[X]. Assume

(1) KG is compact;
(2) f ≥ 0 on KG, and f has only finitely many zeros in KG;
(3) at each zero p of f in KG, f ∈ (T̂G)p ⊆ R[[X − p]], the preordering of

R[[X − p]] generated by G.

Then f ∈ TG.

For any subset G = {G1, · · · , Gm} of Sn(R[X]), by Lemma 2, there exists a
finite subset G of R[X] such that KG = KG and (TG)

n ⊆ TG . We firstly give
a local-global principle for diagonal polynomial matrices.

Proposition 7 Let G = {G1, · · · , Gm} ⊆ Sn(R[X]) and G ⊆ R[X] as above.
Let D = D(d1, · · · , dr), r ≤ n, be an n × n diagonal polynomial matrix in
Sn(R[X]). Assume

(1) KG is compact;
(2) D ≥ 0 on KG, and each di has only finitely many zeros in KG;
(3) at each zero p of each di in KG, di ∈ (T̂G)p ⊆ R[[X − p]].

Then D ∈ (TG)
n ⊆ TG.

Proof Theorem 4, applying for each di, implies that each di belongs to TG.
Then D ∈ (TG)

n ⊆ TG by Remark 1.

For arbitrary polynomial matrices, we have the following

Theorem 5 Let G = {G1, · · · , Gm} ⊆ Sn(R[X]) and G ⊆ R[X] as above. Let
F ∈ Sn(R[X]). Assume

(1) KG is compact;
(2) F < 0 on KG;
(3) for each x ∈ Rn \ {0}, xTFx has only finitely many zeros in KG;
(4) for each x ∈ Rn \ {0} and for each zero p of xTFx in KG, xTFx belongs

to (T̂G)p ⊆ R[[X − p]].

Then
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(i) there exists a matrix X− ∈Mn(R[X]) such that X−FXT
− ∈ (TG)

n ⊆ TG;
(ii) there exists a non-zero polynomial b ∈ R[X] such that b2F ∈ (TG)

n ⊆ TG.

Proof By Lemma 3, there exist non-zero polynomials b, dj ∈ R[X], j = 1, · · · , r,
r ≤ n, and matrices X+,X− ∈Mn(R[X]) such that

X+X− = X−X+ = bIn, b2F = X+DXT
+, D = X−FX

T
−,

where D = D(d1, · · · , dr) is the n× n diagonal polynomial matrix. Note that
for every i = 1, · · · , r,

di = eTi Dei = (X−
Tei)

TF(X−
Tei). (2)

Since vi := X−
Tei ∈ Rn \ {0} and F < 0 on KG , it follows that di ≥ 0 on KG

for every i = 1, · · · , r.
By (3) and in view of (2), each di has only finitely many zeros in KG.

By (4) and in view of (2), at each zero p of di in KG, di ∈ (T̂G)p. It follows
from Proposition 7 that D ∈ (TG)

n, hence X−FX
T
− ∈ (TG)

n, i.e. we have (i).
Moreover, since (TG)

n is a quadratic module of Mn(R[X]), by definition we
have b2F = X+DXT

+ ∈ (TG)
n, i.e. we have (ii). The proof is complete.

6.2 Hessian criterion for polynomial matrices

We recall firstly Scheiderer’s Hessian criterion for polynomials in R[X].

Theorem 6 ([9, Example 3.18],[10, Corollary 3.6]) Let G = {g1, · · · , gm}
be a subset of R[X] and f ∈ R[X]. Assume

(1) KG is compact (resp. the quadratic module MG is Archimedean);
(2) f ≥ 0 on KG;
(3) f has only finitely many zeros in KG and all of them are in the interior of

KG;
(4) at each zero p of f in KG, the Hessian D2f(p) of f at p is positive definite.

Then f ∈ TG (resp. f ∈MG).

Remark 4 (1) Condition (3) in Theorem 6 requires each zero p of f in KG

must be in the interior of KG, then it follows that p is a local minimum
of f in KG. Therefore, for a Taylor expansion of f in a neighborhood of p,
f = f0 + f1 + f2 + · · · ∈ R[[X − p]], we have f0 = f1 = 0. Moreover, this
condition implies that (T̂G)p =

∑
R[[X − p]]2.

(2) The Hessian condition of f at p in Theorem 6 implies that in the Tay-
lor expansion of f in a neighborhood of p, the quadratic form f2 can be
written as x21 + · · · + x2d (after changing coordinates). Then by some spe-
cial techniques and using Local-global principle (Theorem 4), we have the
conclusion for TG.

Like in previous sections, we fist give a result for diagonal polynomial matrices.
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Proposition 8 Let G = {G1, · · · , Gm} ⊆ Sn(R[X]) and G ⊆ R[X] as in
Lemma 2. Let D = D(d1, · · · , dr), r ≤ n, be an n × n diagonal polynomial
matrix in Sn(R[X]). Assume

(1) KG is compact (resp. MG is Archimedean);
(2) D ≥ 0 on KG;
(3) each di has only finitely many zeros in KG, and all of them lie in the

interior of KG;
(4) at each zero p of each di in KG, the Hessian D2di(p) is positive definite.

Then D ∈ (TG)
n ⊆ TG (resp. D ∈ (MG)

n ⊆MG).

Proof Theorem 6, applying for each di, implies that each di belongs to TG
(resp. MG). Then D ∈ (TG)

n (resp. D ∈ (MG)
n) by Remark 1.

For arbitrary polynomial matrices we have the following

Theorem 7 Let G = {G1, · · · , Gm} ⊆ Sn(R[X]) and G ⊆ R[X] as in Lemma
2. Let F ∈ Sn(R[X]). Assume

(1) KG is compact (resp. MG is Archimedean);
(2) F < 0 on KG;
(3) for each x ∈ Rn \ {0}, xTFx has only finitely many zeros in KG and each

zero lies in the interior of KG;
(4) for each x ∈ Rn \ {0} and for each zero p of xTFx in KG, the Hessian

D2
(
xTFx

)
(p) is positive definite.

Then

(i) there exists a matrix X− ∈ Mn(R[X]) such that X−FX
T
− ∈ (TG)

n ⊆ TG
(resp. X−FXT

− ∈ (MG)
n ⊆MG);

(ii) there exists a non-zero polynomial b ∈ R[X] such that b2F ∈ (TG)
n ⊆ TG

(resp. b2F ∈ (MG)
n ⊆MG).

Proof By a similar argument to the one given in the proof of Theorem 5, using
Proposition 8, we have the proof.

6.3 Boundary Hessian conditions for polynomial matrices

Let us recall the boundary Hessian conditions of a polynomial at a point,
which is defined by Marshall (cf. [8, section 9.5]). Let G ⊆ R[X] and f ∈
R[X]. We say that f satisfies the boundary Hessian conditions (BHC) at a
point p ∈ KG with respect to t1, · · · , tk, 1 ≤ k ≤ d, which are part of a
system of uniformizing parameters t1, · · · , td at p, if p is a non-singular point
of Rd, and in the completion R[[t1, · · · , td]] of R[X] at p, f decomposes as
f = f0 + f1 + f2 + · · · (where fj is homogeneous of degree j in the variables
t1, · · · , td with coefficients in R), f1 = a1t1+ · · ·+aktk, ai > 0 for i = 1, · · · , k,
and the quadratic form f2(0, · · · , 0, tk+1, · · · , td) is positive definite. If k = 0
then these are precisely the Hessian conditions mentioned in Theorem 6 (3),
(4).
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Theorem 8 ([8, Theorem 9.5.3]) Let G ⊆ R[X] and f ∈ R[X]. Assume

(1) MG is Archimedean;
(2) f ≥ 0 on KG;
(3) each zero p of f in KG is a non-singular point of Rd, and there exist

g1, · · · gk ∈ MG, 1 ≤ k ≤ d, which are part of a system of uniformizing
parameters at p such that f satisfies BHC with respect to g1, · · · , gk at p.

Then f ∈MG.

Note that in this theorem G is an arbitrary subset of R[X], not necessarily
finite. Using this theorem, we have the following boundary Hessian criterion
for diagonal polynomial matrices.

Proposition 9 Let G ⊆ Sn(R[X]) and G ⊆ R[X] as in Lemma 2. Let D =
D(d1, · · · , dr), r ≤ n, be an n × n diagonal polynomial matrix in Sn(R[X]).
Assume

(1) MG is Archimedean;
(2) D ≥ 0 on KG;
(3) each zero p of each di in KG is a non-singular point of Rd, and there exist

gi1 , · · · gik ∈ MG, 1 ≤ k ≤ d, which are part of a system of uniformizing
parameters at p such that di satisfies BHC with respect to gi1 , · · · , gik at
p.

Then D ∈ (MG)
n ⊆MG.

Proof The result follows from Theorem 8, applying for each di ∈ R[X], and
Remark 1.

By a similar argument to the one given in the proof of Theorem 5, using
Proposition 9, we obtain the following

Theorem 9 Let G ⊆ Sn(R[X]) and G ⊆ R[X] as in Lemma 2. Let F ∈
Sn(R[X]). Assume

(1) MG is Archimedean;
(2) F < 0 on KG;
(3) for each x ∈ Rn \{0}, each zero p of the polynomial xTFx in KG is a non-

singular point of Rd, and there exist g1, · · · gk ∈MG, 1 ≤ k ≤ d, which are
part of a system of uniformizing parameters at p such that xTFx satisfies
BHC with respect to g1, · · · , gk at p.

Then

(i) there exists a matrix X− ∈Mn(R[X]) such that X−FXT
− ∈ (MG)

n ⊆MG;
(ii) there exists a non-zero polynomial b ∈ R[X] such that b2F ∈ (MG)

n ⊆MG.
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