Parallel and sequential hybrid methods for a finite family of asymptotically quasi \$\$ \phi \$\$ ϕ-nonexpansive mappings

Pham Ky Anh \& Dang Van Hieu

Journal of Applied Mathematics and Computing

ISSN 1598-5865
J. Appl. Math. Comput. DOI 10.1007/s12190-014-0801-6

> Journal of Applied Mathematics and Computing

Korean Society for Computational

[^0]Your article is protected by copyright and all rights are held exclusively by Korean Society for Computational and Applied Mathematics. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Parallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ-nonexpansive mappings

Pham Ky Anh • Dang Van Hieu

Received: 18 March 2014
© Korean Society for Computational and Applied Mathematics 2014

Abstract

In this paper we study some novel parallel and sequential hybrid methods for finding a common fixed point of a finite family of asymptotically quasi ϕ nonexpansive mappings. The results presented here modify and extend some previous results obtained by several authors.

Keywords Asymptotically quasi- ϕ-nonexpansive mapping • Common fixed point • Hybrid method • Parallel and sequential computation

Mathematics Subject Classification $47 \mathrm{H} 09 \cdot 47 \mathrm{H} 10 \cdot 47 \mathrm{~J} 25 \cdot 65 \mathrm{~J} 15 \cdot 65 \mathrm{Y} 05$

1 Introduction

Let C be a nonempty closed convex subset of a Banach space E. A mapping $T: C \rightarrow$ C is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

In 2005, Matsushita and Takahashi [21] proposed the following hybrid method, combining Mann iterations with projections onto closed convex subsets, for finding a fixed point of a relatively nonexpansive mapping T :

Electronic supplementary material The online version of this article
(doi:10.1007/s12190-014-0801-6) contains supplementary material, which is available to authorized users.

[^1]\[

$$
\begin{gathered}
x_{0} \in C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T x_{n}\right), \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in C:\left\langle J x_{0}-J x_{n}, x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}, \quad n \geq 0 .
\end{gathered}
$$
\]

This algorithm has been modified and generalized for finding a common fixed point of a finite or infinite family of relatively nonexpansive mappings by several authors, such as Takahashi et al. [29], Takahashi and Zembayashi [30], Wang and Xuan [32], Reich and Sabach [24,25], Kang et al. [13], Plubtieng and Ungchittrakool [22], etc...

In 2011, Liu [20] introduced the following cyclic method for a finite family of relatively nonexpansive mappings:

$$
\begin{gathered}
x_{0} \in C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J T_{n(\bmod) N} x_{n}\right), \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in C:\left\langle J x_{0}-J x_{n}, x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}, \quad n \geq 0 .
\end{gathered}
$$

Very recently, Anh and Chung [3] considered the following parallel method for a finite family of relatively nonexpansive mappings:

$$
\begin{gathered}
x_{0} \in C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i} x_{n}\right), \quad i=1, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n}=\left\{v \in C: \phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in C:\left\langle J x_{0}-J x_{n}, x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}, \quad n \geq 0 .
\end{gathered}
$$

According to this algorithm, the intermediate approximations y_{n}^{i} can be found in parallel. Then among all $y_{n}^{i}, i=1, \ldots, N$, the farest element from x_{n}, denoted by \bar{y}_{n}, is chosen. After that, two convex closed subsets C_{n} and Q_{n} containing the set of common fixed points are constructed. The next approximation x_{n+1} is defined as the generalized projection of x_{0} onto the intersection $C_{n} \bigcap Q_{n}$.

Further, some generalized hybrid projection methods have been introduced for families of hemi-relatively or weak relatively nonexpansive mappings (see, [13,27,31]).

On the other hand, there has been an increasing interest in the class of asymptotically quasi ϕ-nonexpansive mappings (c.f., $[5,7,9-12,14,18,19,28,33]$), which is a generalization of the class of quasi ϕ - nonexpansive mappings. The last one contains the class of relatively nonexpansive mappings as a proper subclass.

Unfortunately, many hybrid algorithms for (relatively) nonexpansive mappings cannot be directly extended to asymptotically quasi ϕ-nonexpansive mappings.

The aim of this paper is to combine a parallel splitting-up technique proposed in [3] with a monotone hybrid iteration method (see, [26]) for finding a common fixed point of a finite family of asymptotically quasi ϕ-nonexpansive mappings. The organization of the paper is as follows: In Sect. 2 we collect some definitions and results which are used in this paper. Section 3 deals with the convergence analysis of the proposed parallel and sequential hybrid algorithms. Finally, a numerical example shows that even in the sequential mode, our parallel hybrid method is faster than the corresponding sequential one [20].

2 Preliminaries

In this section we recall some definitions and results needed for further investigation. We refer the interested reader to $[2,8]$ for more details.

Definition 1 A Banach space X is called
(1) strictly convex if the unit sphere $S_{1}(0)=\{x \in X:\|x\|=1\}$ is strictly convex, i.e., the inequality $\|x+y\|<2$ holds for all $x, y \in S_{1}(0), x \neq y$;
(2) uniformly convex if for any given $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that for all $x, y \in X$ with $\|x\| \leq 1,\|y\| \leq 1,\|x-y\|=\varepsilon$ the inequality $\|x+y\| \leq 2(1-\delta)$ holds;
(3) smooth if the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{1}
\end{equation*}
$$

exists for all $x, y \in S_{1}(0)$;
(4) uniformly smooth if the limit (1) exists uniformly for all $x, y \in S_{1}(0)$.

Let E be a real Banach space with the dual E^{*} and $J: E \rightarrow 2^{E^{*}}$ is the normalized duality mapping defined by

$$
J(x)=\left\{f \in E^{*}:\langle f, x\rangle=\|x\|^{2}=\|f\|^{2}\right\} .
$$

The following basic properties of the geometry of E and its normalized duality mapping J can be found in [4]:
(i) If E is a reflexive and strictly convex Banach space, then J^{-1} is norm to weak * continuous;
(ii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized duality mapping $J: E \rightarrow 2^{E^{*}}$ is single-valued, one-to-one, and onto;
(iii) If E is a uniformly smooth Banach space, then J is uniformly continuous on each bounded subset of E;
(iv) A Banach space E is uniformly smooth if and only if E^{*} is uniformly convex;
(v) Each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any sequence $\left\{x_{n}\right\} \subset E$, if $x_{n} \rightharpoonup x \in E$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$.
Next we assume that C is a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space E. Consider the Lyapunov functional $\phi: E \times E \rightarrow R_{+}$
defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}, \quad \forall x, y \in E .
$$

From the definition of ϕ, we have

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2} . \tag{2}
\end{equation*}
$$

The generalized projection $\Pi_{C}: E \rightarrow C$ is defined by

$$
\Pi_{C}(x)=\arg \min _{y \in C} \phi(x, y)
$$

Lemma 1 [1] Let E be a smooth, strictly convex, and reflexive Banach space and C be a nonempty closed convex subset of E. Then the following conclusions hold:
(i) $\phi\left(x, \Pi_{C}(y)\right)+\phi\left(\Pi_{C}(y), y\right) \leq \phi(x, y), \forall x \in C, y \in E$;
(ii) if $x \in E, z \in C$, then $z=\Pi_{C}(x)$ iff $\langle z-y, J x-J z\rangle \geq 0, \forall y \in C$;
(iii) $\phi(x, y)=0$ iff $x=y$.

Lemma 2 [1] Let E be a uniformly convex and uniformly smooth real Banach space, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in E. If $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ and either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space $E, T: C \rightarrow C$ be a mapping, and $F(T)$ be the set of fixed points of T. A point $p \in C$ is said to be an asymptotic fixed point of T if there exists a sequence $\left\{x_{n}\right\} \subset C$ such that $x_{n} \rightharpoonup p$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow+\infty$. The set of all asymptotic fixed points of T will be denoted by $\tilde{F}(T)$.

Definition 2 A mapping $T: C \rightarrow C$ is called
(i) relatively nonexpansive mapping if $F(T) \neq \emptyset, F(T)=\tilde{F}(T)$, and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall p \in F(T), \quad \forall x \in C ;
$$

(ii) closed if for any sequence $\left\{x_{n}\right\} \subset C, x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$, then $T x=y$;
(iii) quasi ϕ-nonexpansive mapping (or hemi-relatively nonexpansive mapping) if $F(T) \neq \emptyset$ and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall p \in F(T), \quad \forall x \in C ;
$$

(iv) asymptotically quasi ϕ-nonexpansive if $F(T) \neq \varnothing$ and there exists a sequence $\left\{k_{n}\right\} \subset[1,+\infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow+\infty$ such that

$$
\phi\left(p, T^{n} x\right) \leq k_{n} \phi(p, x), \quad \forall n \geq 1, \quad \forall p \in F(T), \quad \forall x \in C ;
$$

(v) uniformly L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|, \quad \forall n \geq 1, \quad \forall x, y \in C
$$

Lemma 3 [5] Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property, and C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a closed and asymptotically quasi ϕ-nonexpansive mapping with a sequence $\left\{k_{n}\right\} \subset[1,+\infty), k_{n} \rightarrow 1$. Then $F(T)$ is a closed convex subset of C.

Lemma 4 [5,15,21] Let E be a strictly convex reflexive smooth Banach space, A be a maximal monotone operator of E into E^{*}, and $J_{r}=(J+r A)^{-1} J: E \rightarrow D(A)$ be the resolvent of A with $r>0$. Then,
(i) $F\left(J_{r}\right)=A^{-1} 0$;
(ii) $\phi\left(u, J_{r} x\right) \leq \phi(u, x)$ for all $u \in A^{-1} 0$ and $x \in E$.

Lemma 5 [26] Let E be a uniformly convex and uniformly smooth Banach space, A be a maximal monotone operator from E to E^{*}, and J_{r} be a resolvent of A. Then J_{r} is closed hemi-relatively nonexpansive mapping.

3 Main results

3.1 Parallel hybrid methods

Assume that $T_{i}, i=1,2, \ldots, N$, are asymptotically quasi ϕ-nonexpansive mappings with a sequence $\left\{k_{n}^{i}\right\} \subset[1,+\infty), k_{n}^{i} \rightarrow 1$, i.e., $F\left(T_{i}\right) \neq \emptyset$, and

$$
\phi\left(p, T_{i}^{n} x\right) \leq k_{n}^{i} \phi(p, x), \quad \forall n \geq 1, \quad \forall p \in F\left(T_{i}\right), \quad \forall x \in C .
$$

Throughout this paper we suppose that the set $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty.
Then, putting $k_{n}:=\max \left\{k_{n}^{i}: i=1, \ldots, N\right\}$, we have $k_{n} \subset[1,+\infty), k_{n} \rightarrow 1$, and

$$
\phi\left(p, T_{i}^{n} x\right) \leq k_{n} \phi(p, x), \quad \forall i=1, \ldots, N, \quad \forall n \geq 1, \quad \forall p \in F, \quad \forall x \in C
$$

In the following theorems we will assume that the set $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty and bounded in C, i.e., there exists a positive number ω such that $F \subset \Omega:=\{u \in C$: $\|u\| \leq \omega\}$.
Theorem 1 Let E be a real uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of asymptotically quasi ϕ-nonexpansive mappings with a sequence $\left\{k_{n}\right\} \subset$ $[1,+\infty), k_{n} \rightarrow 1$. Moreover, suppose for each $i \geq 1$, the mapping T_{i} is uniformly L_{i} - Lipschitz continuous and the set $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty and bounded in C. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i}^{n} x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}:=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)+\varepsilon_{n}\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\varepsilon_{n}:=\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2}$, and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{0}$.

Proof The proof of Theorem 1 is divided into five steps.
Step 1. Claim that F and C_{n} are closed and convex subsets of C.
Indeed, from the uniform L_{i}-Lipschitz continuity of T_{i}, T_{i} is L_{i}-Lipschitz continuity. Hence T_{i} is continuous. This implies that T_{i} is closed. By Lemma 3, $F\left(T_{i}\right)$ is closed and convex subset of C for all $i=1,2, \ldots, N$. Hence, $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is closed and convex. Further, $C_{0}=C$ is closed and convex by the assumption. Suppose that C_{n} is a closed and convex subset of C for some $n \geq 0$. From the inequality $\phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)+\varepsilon_{n}$, we obtain

$$
\left\langle v, J x_{n}-J \bar{y}_{n}\right\rangle \leq \frac{1}{2}\left(\left\|x_{n}\right\|^{2}-\left\|\bar{y}_{n}\right\|^{2}+\varepsilon_{n}\right) .
$$

Therefore,

$$
C_{n+1}=\left\{v \in C_{n}:\left\langle v, J x_{n}-J \bar{y}_{n}\right\rangle \leq \frac{1}{2}\left(\left\|x_{n}\right\|^{2}-\left\|\bar{y}_{n}\right\|^{2}+\varepsilon_{n}\right)\right\},
$$

which implies that C_{n+1} is closed and convex. Thus, C_{n} is closed and convex subset of C for all $n \geq 0$, and $\Pi_{C} x_{0}$ and $\Pi_{C_{n}} x_{0}$ are well-defined.

Step 2. Claim that $F \subset C_{n}$ for all $n \geq 0$.
Observe first that $F \subset C_{0}=C$. Now suppose $F \subset C_{n}$ for some $n \geq 0$. For each $u \in F$, by the convexity of $\|.\|^{2}$, we have

$$
\begin{aligned}
\phi\left(u, \bar{y}_{n}\right)= & \|u\|^{2}-2\left\langle u, J \bar{y}_{n}\right\rangle+\left\|\bar{y}_{n}\right\|^{2} \\
= & \|u\|^{2}-2 \alpha_{n}\left\langle u, J x_{n}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle u, J T_{i_{n}}^{n} x_{n}\right\rangle \\
& +\left\|\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i_{n}}^{n} x_{n}\right\|^{2} \\
\leq & \|u\|^{2}-2 \alpha_{n}\left\langle u, J x_{n}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle u, J T_{i_{n}}^{n} x_{n}\right\rangle \\
& +\alpha_{n}\left\|x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{i_{n}}^{n} x_{n}\right\|^{2} \\
= & \alpha_{n} \phi\left(u, x_{n}\right)+\left(1-\alpha_{n}\right) \phi\left(u, T_{i_{n}}^{n} x_{n}\right) \\
\leq & \alpha_{n} \phi\left(u, x_{n}\right)+k_{n}\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
\leq & \phi\left(u, x_{n}\right)+\left(k_{n}-1\right)\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
\leq & \phi\left(u, x_{n}\right)+\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2} \\
= & \phi\left(u, x_{n}\right)+\varepsilon_{n} .
\end{aligned}
$$

This implies that $u \in C_{n+1}$. Hence $F \subset C_{n+1}$. By induction, we obtain $F \subset C_{n}$ for all $n \geq 0$. For each $u \in F \subset C_{n}$, by $x_{n}=\Pi_{C_{n}} x_{0}$ and Lemma 1, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(u, x_{0}\right)-\phi\left(u, x_{n}\right) \leq \phi\left(u, x_{0}\right) .
$$

Therefore, the sequence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded. The boundedness of the sequence $\left\{x_{n}\right\}$ is followed from relation (2).

Step 3. Claim that the sequence $\left\{x_{n}\right\}$ converges strongly to some point $p \in C$ as $n \rightarrow \infty$.
By the construction of C_{n}, we have $C_{n+1} \subset C_{n}$ and $x_{n+1}=\Pi_{C_{n+1}} x_{0} \in C_{n+1}$ Now taking into account $x_{n}=\Pi_{C_{n}} x_{0}, x_{n+1} \in C_{n}$ and using Lemma 1, we get

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n+1}, x_{n}\right) \leq \phi\left(x_{n+1}, x_{0}\right) .
$$

This implies that $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing. Therefore, the limit of $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ exists. We also have $x_{m} \in C_{m} \subset C_{n}$ for all $m \geq n$. From Lemma 1 and $x_{n}=\Pi_{C_{n}} x_{0}$, we obtain

$$
\phi\left(x_{m}, x_{n}\right) \leq \phi\left(x_{m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right) \rightarrow 0,
$$

as $m, n \rightarrow \infty$. This together with Lemma 2 implies that $\left\|x_{m}-x_{n}\right\| \rightarrow 0$. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since E is complete and C is closed, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=p \in C . \tag{3}
\end{equation*}
$$

Step 4. Claim that $p \in F$.
Indeed, observing that

$$
\begin{equation*}
\phi\left(x_{n+1}, x_{n}\right) \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right) \rightarrow 0, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{5}
\end{equation*}
$$

In view of $x_{n+1} \in C_{n+1}$ and by the construction of C_{n+1}, we obtain

$$
\begin{equation*}
\phi\left(x_{n+1}, \bar{y}_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right)+\varepsilon_{n} . \tag{6}
\end{equation*}
$$

Recalling that the set F and the sequence $\left\{x_{n}\right\}$ are bounded, and putting $M=$ $\sup \left\{\left\|x_{n}\right\|: n=1,2, \ldots\right\}$, we get

$$
\begin{equation*}
\varepsilon_{n}=\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2} \leq\left(k_{n}-1\right)(\omega+M)^{2} \rightarrow 0 . \tag{7}
\end{equation*}
$$

From (4), (6), (7), we obtain $\phi\left(x_{n+1}, \bar{y}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. This together with Lemma 2 implies that $\left\|x_{n+1}-\bar{y}_{n}\right\| \rightarrow 0$. Therefore, from (5), $\left\|x_{n}-\bar{y}_{n}\right\| \rightarrow 0$. Further, by the definition of i_{n}, we have $\left\|x_{n}-y_{n}^{i}\right\| \leq\left\|x_{n}-\bar{y}_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $i=1,2, \ldots, N$, hence, from (3) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}^{i}=p, \quad i=1,2, \ldots, N \tag{8}
\end{equation*}
$$

From the relation $y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i}^{n} x_{n}\right)$ we obtain

$$
\begin{equation*}
\left\|J y_{n}^{i}-J T_{i}^{n} x_{n}\right\|=\alpha_{n}\left\|J x_{n}-J T_{i}^{n} x_{n}\right\| \tag{9}
\end{equation*}
$$

Observing that $\left\{x_{n}\right\}$ is bounded, T_{i} is uniformly L_{i}-Lipschitz continuous, and the solution set F is not empty, we have $\left\|J x_{n}-J T_{i}^{n} x_{n}\right\| \leq\left\|J x_{n}\right\|+\left\|J T_{i}^{n} x_{n}\right\|=$ $\left\|x_{n}\right\|+\left\|T_{i}^{n} x_{n}\right\| \leq\left\|x_{n}\right\|+\left\|T_{i}^{n} x_{n}-T_{i}^{n} \xi\right\|+\|\xi\| \leq\left\|x_{n}\right\|+L_{i}\left\|x_{n}-\xi\right\|+\mid \xi \|$, where $\xi \in F$ is an arbitrary fixed element. The last inequality proves the boundedness of the sequence $\left\{\left\|J x_{n}-J T_{i}^{n} x_{n}\right\|\right\}$. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$, from (9), we find

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}^{i}-J T_{i}^{n} x_{n}\right\|=0
$$

Since $J^{-1}: E^{*} \rightarrow E$ is uniformly continuous on each bounded subset of E^{*}, the last relation implies $\lim _{n \rightarrow \infty}\left\|y_{n}^{i}-T_{i}^{n} x_{n}\right\|=0$. Hence, from (8) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{i}^{n} x_{n}=p, \quad i=1, \ldots, N \tag{10}
\end{equation*}
$$

By (3), (10) and the uniform L_{i}-Lipschitz continuity of T_{i}, we have

$$
\begin{aligned}
\left\|T_{i}^{n+1} x_{n}-T_{i}^{n} x_{n}\right\| \leq & \left\|T_{i}^{n+1} x_{n}-T_{i}^{n+1} x_{n+1}\right\|+\left\|T_{i}^{n+1} x_{n+1}-x_{n+1}\right\| \\
& +\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n}-T_{i}^{n} x_{n}\right\| \\
\leq & \left(L_{i}+1\right)\left\|x_{n+1}-x_{n}\right\|+\left\|T_{i}^{n+1} x_{n+1}-x_{n+1}\right\| \\
& +\left\|x_{n}-T_{i}^{n} x_{n}\right\| \rightarrow 0 .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} T_{i}^{n+1} x_{n}=p$, i.e., $T_{i}^{n+1} x_{n}=T_{i} T_{i}^{n} x_{n} \rightarrow p$ as $n \rightarrow \infty$. In view of the continuity of T_{i} and (10), it follows that $T_{i} p=p$ for all $i=1,2, \ldots, N$. Therefore $p \in F$.

Step 5. Claim that $p=x^{\dagger}:=\Pi_{F}\left(x_{0}\right)$.
Indeed, since $x^{\dagger}=\Pi_{F}\left(x_{0}\right) \in F \subset C_{n}$ and $x_{n}=\Pi_{C_{n}}\left(x_{0}\right)$, from Lemma 1, we have

$$
\begin{equation*}
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x^{\dagger}, x_{0}\right)-\phi\left(x^{\dagger}, x_{n}\right) \leq \phi\left(x^{\dagger}, x_{0}\right) \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\phi\left(x^{\dagger}, x_{0}\right) & \geq \lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{0}\right)=\lim _{n \rightarrow \infty}\left\{\left\|x_{n}\right\|^{2}-2\left\langle x_{n}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2}\right\} \\
& =\|p\|^{2}-2\left\langle p, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2} \\
& =\phi\left(p, x_{0}\right)
\end{aligned}
$$

From the definition of x^{\dagger}, it follows that $p=x^{\dagger}$. The proof of Theorem 1 is complete.

Remark 1 If in Theorem 1 instead of the uniform Lipschitz continuity of the operators $T_{i}, i=1, \ldots, N$, we require their closedness and asymptotical regularity [6], i.e., for any bounded subset K of C,

$$
\lim _{n \rightarrow \infty} \sup \left\{\left\|T_{i}^{n+1} x-T_{i}^{n} x\right\|: x \in K\right\}, \quad i=1, \ldots, N
$$

then we obtain the strong convergence of a simplier method than the corresponding ones in Cho et al. [6] and Chang et al. [5].

For the case $N=1$, Theorem 1 gives the following monotone hybrid method, which modifies the corresponding algorithms in Kim and Xu [17], as well as Kim and Takahashi (Theorems 3.1, 3.7, 4.1 [16]).

Corollary 1 Let E be a real uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be an asymptotically quasi ϕ-nonexpansive mapping with a sequence $\left\{k_{n}\right\} \subset[1,+\infty), k_{n} \rightarrow 1$. Moreover, suppose that the mapping T is uniformly L-Lipschitz continuous and the set $F(T)$ is nonempty and bounded in C. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T^{n} x_{n}\right), \\
C_{n+1}:=\left\{v \in C_{n}: \phi\left(v, y_{n}\right) \leq \phi\left(v, x_{n}\right)+\varepsilon_{n}\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\varepsilon_{n}=\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2}$ and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F(T)} x_{0}$.

Next, we consider a modified version of the algorithm proposed in Theorem 1.
Theorem 2 Let E be a real uniformly smooth and uniformly convex Banach space and C be a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of asymptotically quasi ϕ-nonexpansive mappings with a sequence $\left\{k_{n}\right\} \subset$ $[1,+\infty), k_{n} \rightarrow 1$. Moreover, suppose for each $i \geq 1$, the mapping T_{i} is uniformly L_{i} - Lipschitz continuous and the set $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty and bounded in C. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J T_{i}^{n} x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}:=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \alpha_{n} \phi\left(v, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)+\varepsilon_{n}\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\varepsilon_{n}=\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2}$ and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{0}$.

Proof Following five steps in the proof of Theorem 1, we can show that:
(i) C_{n} and F are closed and convex subset of C for all $n \geq 0$. Therefore, $\Pi_{C_{n}} x_{0}, n \geq$ 0 and $\Pi_{F} x_{0}$ are well-defined.
(ii) $F \subset C_{n}$ for all $n \geq 0$.

Suppose $F \subset C_{n}$ for some $n \geq 0\left(F \subset C_{0}=C\right)$. For each $u \in F$, using the convexity of $\|.\|^{2}$, we get

$$
\begin{aligned}
\phi\left(u, \bar{y}_{n}\right) & =\|u\|^{2}-2\left\langle u, J \bar{y}_{n}\right\rangle+\left\|\bar{y}_{n}\right\|^{2} \\
& \leq \alpha_{n} \phi\left(u, x_{0}\right)+k_{n}\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
& \leq \alpha_{n} \phi\left(u, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\left(k_{n}-1\right)\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
& \leq \alpha_{n} \phi\left(u, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\left(k_{n}-1\right)\left(\omega+\left\|x_{n}\right\|^{2}\right) \\
& =\alpha_{n} \phi\left(u, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\varepsilon_{n} .
\end{aligned}
$$

This implies that $u \in C_{n+1}$. Hence $F \subset C_{n+1}$. By induction, we obtain $F \subset C_{n}$ for all $n \geq 0$.
(iii) The sequence $\left\{x_{n}\right\}$ converges strongly to some point $p \in C$ as $n \rightarrow \infty$. For each $u \in F \subset C_{n}$, using Lemma 1 and taking into account that $x_{n}=\Pi_{C_{n}} x_{0}$, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(u, x_{0}\right)-\phi\left(u, x_{n}\right) \leq \phi\left(u, x_{0}\right) .
$$

Therefore, the sequence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded. From (2), $\left\{x_{n}\right\}$ is also bounded. Since $C_{n+1} \subset C_{n}$ and $x_{n+1}=\Pi_{C_{n}+1} x_{0} \in C_{n}$ for all $n \geq 0$, by Lemma 1 we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n+1}, x_{n}\right) \leq \phi\left(x_{n+1}, x_{0}\right)
$$

Thus, the sequence $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing, hence it has a finite limit as $n \rightarrow \infty$. Moreover, for all $m \geq n$, we also have $x_{m}=\Pi_{C_{m}} x_{0} \in C_{m} \subset C_{n}$. From $x_{n}=\Pi_{C_{n}} x_{0}$ and Lemma 1, we obtain

$$
\begin{equation*}
\phi\left(x_{m}, x_{n}\right) \leq \phi\left(x_{m}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right) \rightarrow 0 \tag{12}
\end{equation*}
$$

as $m, n \rightarrow \infty$. Lemma 2 yields $\left\|x_{m}-x_{n}\right\| \rightarrow 0$ as $m, n \rightarrow \infty$. Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence in C. Since E is Banach space and C is closed, $x_{n} \rightarrow p \in C$ as $n \rightarrow \infty$.
(iv) $p \in F$.

In view of $x_{n+1} \in C_{n+1}$ and by the construction of C_{n+1}, we get

$$
\begin{equation*}
\phi\left(x_{n+1}, \bar{y}_{n}\right) \leq \alpha_{n} \phi\left(x_{n+1}, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(x_{n+1}, x_{n}\right)+\varepsilon_{n} . \tag{13}
\end{equation*}
$$

Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$, relations (12), (13), and noting that $\varepsilon_{n} \rightarrow 0$, we find $\phi\left(x_{n+1}, \bar{y}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. This together with Lemma 2 implies that $\left\|x_{n+1}-\bar{y}_{n}\right\| \rightarrow 0$. Therefore, $\bar{y}_{n} \rightarrow p$ and $\left\|x_{n}-\bar{y}_{n}\right\| \rightarrow 0$. Further, by the definition of i_{n}, we have $\left\|x_{n}-y_{n}^{i}\right\| \leq\left\|x_{n}-\bar{y}_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $i=1,2, \ldots, N$, hence, from $x_{n} \rightarrow p$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}^{i}=p, \quad i=1,2, \ldots, N \tag{14}
\end{equation*}
$$

Taking into account the relation $y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J T_{i}^{n} x_{n}\right)$, we obtain

$$
\begin{equation*}
\left\|J y_{n}^{i}-J T_{i}^{n} x_{n}\right\|=\alpha_{n}\left\|J x_{0}-J T_{i}^{n} x_{n}\right\| . \tag{15}
\end{equation*}
$$

Observing that $\left\{x_{n}\right\}$ is bounded, T_{i} is uniformly L_{i}-Lipschitz continuous, and the solution set F is not empty, we have $\left\|J x_{0}-J T_{i}^{n} x_{n}\right\| \leq\left\|J x_{0}\right\|+\left\|J T_{i}^{n} x_{n}\right\|=$ $\left\|x_{0}\right\|+\left\|T_{i}^{n} x_{n}\right\| \leq\left\|x_{0}\right\|+\left\|T_{i}^{n} x_{n}-T_{i}^{n} \xi\right\|+\|\xi\| \leq\left\|x_{0}\right\|+L_{i}\left\|x_{n}-\xi\right\|+\mid \xi \|$, where $\xi \in F$ is an arbitrary fixed element. The last inequality proves the boundedness of the sequence $\left\{\left\|J x_{0}-J T_{i}^{n} x_{n}\right\|\right\}$. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$ from (15), we find

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}^{i}-J T_{i}^{n} x_{n}\right\|=0
$$

Since $J^{-1}: E^{*} \rightarrow E$ is uniformly continuous on each bounded subset of E^{*}, the last relation implies $\lim _{n \rightarrow \infty}\left\|y_{n}^{i}-T_{i}^{n} x_{n}\right\|=0$. Hence, from (14) we obtain

$$
\lim _{n \rightarrow \infty} T_{i}^{n} x_{n}=p, \quad i=1, \ldots, N
$$

Finally, a similar argument as in Step 5 of Theorem 1 leads to the conclusion that $p \in F$ and $p=x^{\dagger}=\Pi_{F} x_{0}$. The proof of Theorem 2 is complete.

Remark 2 Theorem 2 is an extended version of Theorem 3.1 in [6] and Corollary 2.5 in [7] for a family of asympotically quasi- ϕ-nonexpansive mappings. It also simplifies some previous results of Chang and Yan (Theorem 2.1 [7]) and Cho, Qin, and Kang (Theorem 3.5 [6]). In the case $N=1$, our method modifies the algorithm of Kim and Takahashi [16].

In the next theorem, we show that for quasi ϕ-nonexpansive mappings $\left\{T_{i}\right\}_{i=1}^{N}$, the assumptions on their uniform Lipschitz continuity, as well as the boundedness of the set of common fixed points $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ are redundant.

Theorem 3 Let E be a real uniformly smooth and uniformly convex Banach space, C be a nonempty closed convex subset of E, and $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of closed and quasi ϕ-nonexpansive mappings. Suppose that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i} x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}:=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{0}$.

Proof Since $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ are quasi ϕ - nonexpansive mappings, for each $i=$ $1, \ldots, N$, we have

$$
\phi\left(p, T_{i} x\right) \leq \phi(p, x), \quad \forall p \in F\left(T_{i}\right), \quad x \in C
$$

This implies that $\left\{T_{i}\right\}_{i=1}^{N}$ are asymptotically quasi ϕ-nonexpansive mappings with $k_{n}=1, n \geq 1$. Putting $\varepsilon_{n}=0$ and arguing similarly as in the proof of Theorem 1, we get $F \subset C_{n}$. Using Lemma 1 and the fact that $x_{n}=\Pi_{C_{n}} x_{0}$, we have $\phi\left(x_{n}, x_{0}\right) \leq$ $\phi\left(p, x_{0}\right)$ for each $p \in F$. Hence, the set $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is bounded. This together with inequality (2) implies that $\left\{x_{n}\right\}$ is bounded. Repeating the proof of the relations (3), (8), we obtain

$$
\begin{align*}
\lim _{n \rightarrow \infty} x_{n} & =p \tag{16}\\
\lim _{n \rightarrow \infty} y_{n}^{i} & =p, \quad i=1,2, \ldots, N \tag{17}
\end{align*}
$$

From the equality $y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i} x_{n}\right)$ we have

$$
\left\|J y_{n}^{i}-J T_{i} x_{n}\right\|=\alpha_{n}\left\|J x_{n}-J T_{i} x_{n}\right\| .
$$

Observing that $\left\{x_{n}\right\} \subset C$ is bounded, from the definition of quasi ϕ-nonexpansive mapping T_{i}, we get $\phi\left(p, T_{i} x_{n}\right) \leq \phi\left(p, x_{n}\right)$ for each $p \in F$. Estimate (2) ensures that $\left\{T_{i} x_{n}\right\}$ is bounded for each $i=1, \ldots, N$. Therefore, $\left\|J x_{n}-J T_{i} x_{n}\right\| \leq\left\|x_{n}\right\|+$ $\left\|T_{i} x_{n}\right\|$. The last inequality implies that the sequence $\left\{\left\|J x_{n}-J T_{i} x_{n}\right\|\right\}$ is bounded. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$ we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J y_{n}^{i}-J T_{i} x_{n}\right\|=0 \tag{18}
\end{equation*}
$$

From (17), (18), by the same way as in the proof of (10), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{i} x_{n}=p, \quad i=1,2, \ldots, N \tag{19}
\end{equation*}
$$

By (16), (19) and the closedness of T_{i}, we obtain $p \in F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$. Finally, arguing as in Step 5 of the proof of Theorem 1, we can show that $p=x^{\dagger}$. Thus, the proof of Theorem 3 is complete.

By the same method we can prove the following result.
Theorem 4 Let E be a real uniformly smooth and uniformly convex Banach space, C be a nonempty closed convex subset of E, and $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of closed and quasi ϕ-nonexpansive mappings. Suppose that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{0}+\left(1-\alpha_{n}\right) J T_{i} x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}:=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \alpha_{n} \phi\left(v, x_{0}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{0}$.

Remark 3 Theorem 3 modifies Theorem 3.1 [27], Theorem 3.1 [34] and the algorithm in Theorem 3.2 [15]. On the other hand, the method in Theorem 4 simplifies the corresponding one in Theorem 3.3 [27]. It generalizes and improves Theorem 3.2 [26], Theorem 3.3 [5], and Theorem 3.1 in [23].

The following result can be obtained from Theorem 3 immediately.
Corollary 2 Let E be a real uniformly smooth and uniformly convex Banach space, and C be a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of closed relatively nonexpansive mappings. Suppose that $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}=C, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J T_{i} x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{0}$.

Corollary 3 Let E be a real uniformly smooth and uniformly convex Banach space. Let $\left\{A_{i}\right\}_{i=1}^{N}: E \rightarrow E^{*}$ be a finite family of maximal monotone mappings with $D\left(A_{i}\right)=E$ for all $i=1, \ldots, N$. Suppose that the solution set S of the system of operator equations $A_{i}(x)=0, i=1, \ldots, N$ is nonempty. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{0} \in E, \quad C_{0}=E, \\
y_{n}^{i}=J^{-1}\left(\alpha_{n} J x_{n}+\left(1-\alpha_{n}\right) J\left(J+r_{i} A_{i}\right)^{-1} J x_{n}\right), \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left\|y_{n}^{i}-x_{n}\right\|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}=\left\{v \in C_{n}: \phi\left(v, \bar{y}_{n}\right) \leq \phi\left(v, x_{n}\right)\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

where $\left\{r_{i}\right\}_{i=1}^{N}$ are given positive numbers and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{S} x_{0}$.

Proof Let $C=D\left(A_{i}\right)=E$ and $T_{i}=\left(J+r_{i} A_{i}\right)^{-1} J: C \rightarrow C$. By Lemmas 5 and 4, the mappings $T_{i}, i=1, \ldots, N$, are closed and quasi ϕ-nonexpansive. Moreover, $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)=\bigcap_{i=1}^{N} A_{i}^{-1}(0)=S \neq \emptyset$. Thus, Theorem 3 ensures the conclusion of Corollary 3.10.

3.2 Sequential hybrid methods

Now, we consider a sequential method for finding a common fixed point of a finite family of asymptotically quasi ϕ-nonexpansive mappings.

Theorem 5 Let C be a nonempty closed convex subset of a real uniformly smooth and uniformly convex Banach space E, and $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of asymptotically quasi ϕ-nonexpansive mappings with $\left\{k_{n}\right\} \subset[1,+\infty), k_{n} \rightarrow 1$. Suppose $\left\{T_{i}\right\}_{i=1}^{N}$ are uniformly L-Lipschitz continuous and the set $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is unempty and bounded in C, i.e., $F \subset \Omega:=\{u \in C:\|u\| \leq \omega\}$ for some positive ω. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{1} \in C_{1}=Q_{1}:=C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J T_{j_{n}}^{p_{n}} x_{n}\right), \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)+\varepsilon_{n}\right\}, \\
Q_{n}=\left\{v \in Q_{n-1}:\left\langle J x_{1}-J x_{n} ; x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1}, \quad n \geq 1,
\end{gathered}
$$

where $n=\left(p_{n}-1\right) N+j_{n}, j_{n} \in\{1,2, \ldots, N\}, p_{n} \in\{1,2, \ldots\}, \varepsilon_{n}=\left(k_{p_{n}}-1\right)(\omega+$ $\left.\left\|x_{n}\right\|\right)^{2}$ and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{1}$.

For the proof of Theorem 5 we need the following result.
Lemma 6 Assume that all conditions of Theorem 5 holds. Moreover,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+l}\right\|=0
$$

for all $l \in\{1,2, \ldots, N\}$. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0, \quad l=1, \ldots, N
$$

Proof For each $n>N$, we have $n=\left(p_{n}-1\right) N+j_{n}$. Hence $n-N=\left(\left(p_{n}-1\right)-\right.$ 1) $N+j_{n}=\left(p_{n-N}-1\right) N+j_{n-N}$. So

$$
p_{n}-1=p_{n-N}, \quad j_{n}=j_{n-N} .
$$

We have

$$
\begin{aligned}
\left\|x_{n}-T_{j_{n}} x_{n}\right\| \leq & \left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|+\left\|T_{j_{n}}^{p_{n}} x_{n}-T_{j_{n}} x_{n}\right\| \\
\leq & \left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|+L\left\|T_{j_{n}}^{p_{n}-1} x_{n}-x_{n}\right\| \\
\leq & \left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|+L\left\|T_{j_{n}}^{p_{n}-1} x_{n}-T_{j_{n-N}}^{p_{n}-1} x_{n-N}\right\| \\
& +L\left\|T_{j_{n-N}}^{p_{n}-1} x_{n-N}-x_{n-N}\right\|+L\left\|x_{n-N}-x_{n}\right\| \\
= & \left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|+L\left\|T_{j_{n-N}}^{p_{n-N}} x_{n-N}-x_{n-N}\right\| \\
& +\left(L^{2}+L\right)\left\|x_{n-N}-x_{n}\right\| .
\end{aligned}
$$

This together with the hypotheses of Lemma 6 implies

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j_{n}} x_{n}\right\|=0 .
$$

For each $l \in\{1,2, \ldots, N\}$ we have

$$
\begin{aligned}
\left\|x_{n}-T_{j_{n+l}} x_{n}\right\| & \leq\left\|x_{n}-x_{n+l}\right\|+\left\|x_{n+l}-T_{j_{n+l}} x_{n+l}\right\|+\left\|T_{j_{n+l}} x_{n+l}-T_{j_{n+l}} x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+l}\right\|+\left\|x_{n+l}-T_{j_{n+l}} x_{n+l}\right\|+L\left\|x_{n+l}-x_{n}\right\| \\
& =(1+L)\left\|x_{n}-x_{n+l}\right\|+\left\|x_{n+l}-T_{j_{n+l}} x_{n+l}\right\| .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j_{n+l}} x_{n}\right\|=0$ for all $l \in\{1,2, \ldots, N\}$; therefore,

$$
\forall \varepsilon>0, \quad \exists n_{0}: \forall n \geq n_{0} \forall l=1, \ldots, N, \quad\left\|x_{n}-T_{j_{n+l}} x_{n}\right\|<\varepsilon .
$$

On the other hand, for any fixed $n \geq 0$ and $i=1, \ldots, N$, we can find $l \in\{1, \ldots, N\}$, such that $i=j_{n+l}$. Thus, $\left\|x_{n}-T_{i} x_{n}\right\| \leq \sup _{l \in\{1, \ldots, N\}}\left\|x_{n}-T_{j_{n+l}} x_{n}\right\|<\varepsilon$ for all $n \geq n_{0}$, which means that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0, i=1, \ldots, N$. The proof of Lemma 6 is complete.

Proof of Theorem 5 The proof will be divided into five steps.
Step 1. The sets F, C_{n}, Q_{n} are closed and convex for all $n \geq 1$.
Indeed, from the uniform L-Lipschitz continuity of T_{i}, we see that T_{i} is closed. By Lemma 3, $F\left(T_{i}\right)$ is closed and convex subset of C for all $i=1, \ldots, N$. Hence, $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is closed and convex. Further, C_{n} and Q_{n} are closed for all $n \geq 1$ by the definition. From the inequality $\phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)+\varepsilon_{n}$, we obtain

$$
2\left\langle v, J x_{n}\right\rangle+2 \alpha_{n}\left\langle v, J x_{1}-J y_{n}-J x_{n}\right\rangle \leq \alpha_{n}\left\|x_{1}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2}+\varepsilon_{n},
$$

which implies the convexity of C_{n} for all $n \geq 1$. Further, $Q_{1}=C$ is convex. If Q_{n} is convex for some $n \geq 1$, then Q_{n+1} is also convex by the definition. So, Q_{n} is convex for all $n \geq 1$.

Step 2. $F \subset C_{n} \bigcap Q_{n}$ for all $n \geq 1$.
For each $u \in F$, we have

$$
\begin{aligned}
\phi\left(u, y_{n}\right)= & \|u\|^{2}-2\left\langle u, J y_{n}\right\rangle+\left\|y_{n}\right\|^{2} \\
= & \|u\|^{2}-2 \alpha_{n}\left\langle u, J x_{1}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle u, J T_{j_{n}}^{p_{n}} x_{n}\right\rangle \\
& +\left\|\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J T_{j_{n}}^{p_{n}} x_{n}\right\|^{2} \\
\leq & \|u\|^{2}-2 \alpha_{n}\left\langle u, J x_{1}\right\rangle-2\left(1-\alpha_{n}\right)\left\langle u, J T_{j_{n}}^{p_{n}} x_{n}\right\rangle \\
& +\alpha_{n}\left\|x_{1}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{j_{n}}^{p_{n}} x_{n}\right\|^{2} \\
= & \alpha_{n} \phi\left(u, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(u, T_{j_{n}}^{p_{n}} x_{n}\right) \\
\leq & \alpha_{n} \phi\left(u, x_{1}\right)+k_{p_{n}}\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
\leq & \alpha_{n} \phi\left(u, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\left(k_{p_{n}}-1\right)\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right) \\
\leq & \alpha_{n} \phi\left(u, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\left(k_{p_{n}}-1\right)\left(\omega+\left\|x_{n}\right\|^{2}\right) \\
= & \alpha_{n} \phi\left(u, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(u, x_{n}\right)+\varepsilon_{n} .
\end{aligned}
$$

This implies that $u \in C_{n}$. Hence $F \subset C_{n}$ for all $n \geq 1$. We also have $F \subset Q_{1}=C$. Suppose that $F \subset Q_{n}$ for some $n \geq 1$. From $x_{n+1}=\Pi_{C_{n}} \cap Q_{n} x_{1}$ and Lemma 1, it follows that $\left\langle J x_{1}-J x_{n+1}, x_{n+1}-z\right\rangle \geq 0$ for all $z \in C_{n} \bigcap Q_{n}$. Since $F \subset C_{n} \bigcap Q_{n}$, we have

$$
\left\langle J x_{1}-J x_{n+1}, x_{n+1}-z\right\rangle \geq 0
$$

for all $z \in F$. Hence, from the definition of Q_{n+1}, we obtain $F \subset Q_{n+1}$. By the induction, $F \subset Q_{n}$ for all $n \geq 1$.
Step 3. $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0$ for all $l=1, \ldots, N$.
Since $x_{n}=\Pi_{Q_{n}} x_{1}, F \subset Q_{n}$, by Lemma 1, we have $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(p, x_{1}\right)-$ $\phi\left(x_{n}, p\right) \leq \phi\left(p, x_{1}\right)$ for each $p \in F$. Hence, the sequence $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ and $\left\{x_{n}\right\}$ are bounded. Moreover, from $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1} \in Q_{n}, x_{n}=\Pi_{Q_{n}} x_{1}$ and Lemma 1 , it follows that $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(x_{n+1}, x_{1}\right)$. Thus, the sequence $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is nondecreasing and the limit of the sequence $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ exists. This together with $\phi\left(x_{n+1}, x_{n}\right) \leq \phi\left(x_{n}, x_{1}\right)+\phi\left(x_{n+1}, x_{1}\right)$, implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0 \tag{20}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded, there exists $M>0$ such that $\left\|x_{n}\right\| \leq M$ for all $n \geq 1$. Using the boundedness of F and estimate (2), we get

$$
\begin{equation*}
\varepsilon_{n}=\left(k_{p_{n}}-1\right)\left(\omega+\left\|x_{n}\right\|\right)^{2} \leq\left(k_{p_{n}}-1\right)(\omega+M)^{2} \rightarrow 0(n \rightarrow \infty) . \tag{21}
\end{equation*}
$$

Taking into account $x_{n+1}=\Pi_{C_{n}} \cap Q_{n} x_{1} \in C_{n}$, and using the relations (20), (21), and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, from the definition of C_{n} we find

$$
\phi\left(x_{n+1}, y_{n}\right) \leq \alpha_{n} \phi\left(x_{n+1}, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(x_{n+1}, x_{n}\right)+\varepsilon_{n} \rightarrow 0(n \rightarrow \infty) .
$$

Lemma 2 gives

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0 .
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+l}-x_{n}\right\|=0 \tag{22}
\end{equation*}
$$

for all $l \in\{1,2, \ldots, N\}$. Note that from $y_{n}=J^{-1}\left(\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J T_{j_{n}}^{p_{n}} x_{n}\right)$, we have

$$
\begin{equation*}
\left\|J y_{n}-J T_{j_{n}}^{p_{n}} x_{n}\right\|=\alpha_{n}\left\|J x_{1}-J T_{j_{n}}^{p_{n}} x_{n}\right\| . \tag{23}
\end{equation*}
$$

Observing that $\left\{x_{n}\right\}$ is bounded, $T_{j_{n}}$ is uniformly L-Lipschitz continuous and the solution set F is not empty, we have $\left\|J x_{1}-J T_{j_{n}}^{p_{n}} x_{n}\right\| \leq\left\|J x_{1}\right\|+\left\|J T_{j_{n}}^{p_{n}} x_{n}\right\|=$ $\left\|x_{1}\right\|+\left\|T_{j_{n}}^{p_{n}} x_{n}\right\| \leq\left\|x_{1}\right\|+\left\|T_{j_{n}}^{p_{n}} x_{n}-T_{j_{n}}^{p_{n}} \xi\right\|+\|\xi\| \leq\left\|x_{1}\right\|+L\left\|x_{n}-\xi\right\|+\mid \xi \|$, where $\xi \in F$ is an arbitrary fixed element. The last inequality proves the boundedness of the sequence $\left\{\left\|J x_{1}-J T_{j_{n}}^{p_{n}} x_{n}\right\|\right\}$. Using $\lim _{n \rightarrow \infty} \alpha_{n}=0$, from (23), we find

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}-J T_{j_{n}}^{p_{n}} x_{n}\right\|=0
$$

Since $J^{-1}: E^{*} \rightarrow E$ is uniformly continuous on each bounded set, we get

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|=0
$$

This together with $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j_{n}}^{p_{n}} x_{n}\right\|=0 \tag{24}
\end{equation*}
$$

From (22), (24) and Lemma 6, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0 \tag{25}
\end{equation*}
$$

for all $l \in\{1,2, \ldots, N\}$.
Step 4. $\lim _{n \rightarrow \infty} x_{n}=p \in F$.
Indeed, note that the limit of the sequence $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ exists. By the construction of Q_{n}, we have $Q_{m} \subset Q_{n}$ for all $m \geq n$. Moreover, $x_{n}=\Pi_{Q_{n}} x_{1}$ and $x_{m} \in Q_{m} \subset Q_{n}$. These together with Lemma 1 imply that $\phi\left(x_{m}, x_{n}\right) \leq \phi\left(x_{m}, x_{1}\right)-\phi\left(x_{n}, x_{1}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. By Lemma 2, we get $\lim _{m, n \rightarrow \infty}\left\|x_{m}-x_{n}\right\|=0$. Hence, $\left\{x_{n}\right\}$ is a Cauchy
sequence. Since C is a closed and convex subset of the Banach space E, the sequence $\left\{x_{n}\right\}$ converges strongly to $p \in C$. Since T_{l} is L-Lipschitz continuous mapping, it is continuous for all $l \in\{1,2, \ldots, N\}$. Hence

$$
\left\|p-T_{l} p\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0, \quad \forall l \in\{1,2, \ldots, N\}
$$

This implies that $p \in F$.
Step 5. $p=\Pi_{F} x_{1}$.
From $x^{\dagger}:=\Pi_{F} x_{1} \in F \subset C_{n} \bigcap Q_{n}$ and $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1}$, we have $\phi\left(x_{n+1}, x_{1}\right) \leq$ $\phi\left(x^{\dagger}, x_{1}\right)$. Hence

$$
\phi\left(p, x_{1}\right)=\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right) \leq \phi\left(x^{\dagger}, x_{1}\right) .
$$

Therefore, $p=x^{\dagger}$. The proof of Theorem 5 is complete.
For a finite family of closed and quasi ϕ-nonexpansive mappings, the assumption on the boundedness of $F=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is redundant.

Theorem 6 Let E be a real uniformly smooth and uniformly convex Banach space, and C a nonempty closed convex subset of E. Let $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of closed and quasi ϕ-nonexpansive mappings. Suppose $\left\{T_{i}\right\}_{i=1}^{N}$ are L-Lipschitz continuous and $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{1} \in C_{1}=Q_{1}:=C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J T_{j_{n}} x_{n}\right), \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in Q_{n-1}:\left\langle J x_{1}-J x_{n} ; x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1}, \quad n \geq 1,
\end{gathered}
$$

where $n=\left(p_{n}-1\right) N+j_{n}, j_{n} \in\{1,2, \ldots, N\}$ and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{1}$.

Proof By our assumption, $\left\{T_{i}\right\}_{i=1}^{N}$ is a finite family of closed and asymptotically quasi ϕ-nonexpansive mappings with $k_{n}=1$ for all $n \geq 0$. Putting $\varepsilon_{n}=0$ and arguing similarly as in the proofs of Theorem 5 and Lemma 6, we obtain $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{j_{n}} x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{l} x_{n}\right\|=0$ for all $l \in\{1,2, \ldots, N\}$. Now repeating Steps 4 and 5 of the proof of Theorem 5, we come to the conclusion of Theorem 6.

Remark 4 One can establish the convergence of a monotone hybrid method as in Theorem 5, which modifies Liu's algorithm [20].

Corollary 4 Let C be a nonempty closed convex subset of a real uniformly smooth and uniformly convex Banach space E. Let $\left\{T_{i}\right\}_{i=1}^{N}: C \rightarrow C$ be a finite family of
closed relatively nonexpansive mappings. Suppose $\left\{T_{i}\right\}_{i=1}^{N}$ are L-Lipschitz continuous and $F=\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{1} \in C_{1}=Q_{1}:=C, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J T_{j_{n}} x_{n}\right), \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in Q_{n-1}:\left\langle J x_{1}-J x_{n} ; x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1}, \quad n \geq 1,
\end{gathered}
$$

where $n=\left(p_{n}-1\right) N+j_{n}, j_{n} \in\{1,2, \ldots, N\}$ and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{F} x_{1}$.

Corollary 5 Let E be a real uniformly smooth and smooth convex Banach space. Let $\left\{A_{i}\right\}_{i=1}^{N}: E \rightarrow E^{*}$ be a finite family of maximal monotone mappings with $D\left(A_{i}\right)=E$ for all $i=1, \ldots, N$. Suppose that the solution set S of the system of operator equations $A_{i}(x)=0, i=1, \ldots, N$ is nonempty. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{gathered}
x_{1} \in E, \quad C_{1}=E, \\
y_{n}=J^{-1}\left(\alpha_{n} J x_{1}+\left(1-\alpha_{n}\right) J\left(J+r_{j_{n}} A_{j_{n}}\right)^{-1} J x_{n}\right), \quad i=1,2, \ldots, N, \\
C_{n}=\left\{v \in C: \phi\left(v, y_{n}\right) \leq \alpha_{n} \phi\left(v, x_{1}\right)+\left(1-\alpha_{n}\right) \phi\left(v, x_{n}\right)\right\}, \\
Q_{n}=\left\{v \in Q_{n-1}:\left\langle J x_{1}-J x_{n} ; x_{n}-v\right\rangle \geq 0\right\}, \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{1}, \quad n \geq 1,
\end{gathered}
$$

where $\left\{r_{i}\right\}_{i=1}^{N}$ are given positive numbers and $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$. Then $\left\{x_{n}\right\}$ converges strongly to $x^{\dagger}:=\Pi_{S} x_{1}$.

We end this paper by considering a numerical example. Suppose we are given two sequences of positive numbers $0<t_{1}<\ldots<t_{N}<1$ and $s_{i} \in\left(1, \frac{1}{1-t_{i}}\right] ; i=$ $1, \ldots, N$. An example of such $\left\{s_{i}\right\}_{i=1}^{N}$ are $s_{i}=\sum_{k=0}^{m_{i}} t_{i}^{k}$, where the integers $m_{i} \geq 1$ for all $i=1, \ldots, N$.

Let $E=R^{1}$ be a Hilbert space with the standart inner product $\langle x, y\rangle:=x y$ and the norm $\|x\|:=|x|$ for all $x, y \in E$. In this case the normalized dual mapping $J=I$ and the Lyapunov functional $\phi(x, y)=|x-y|^{2}$. We define the mappings $T_{i}: C \rightarrow$ $C, i=1, \ldots, N$, where $C:=[0,1]$, as follows:
$T_{i}(x)=0, \quad$ for $x \in\left[0, t_{i}\right], \quad$ and $\quad T_{i}(x)=s_{i}\left(x-t_{i}\right), \quad$ if $x \in\left[t_{i}, 1\right]$.
It is easy to verify that $F\left(T_{i}\right)=\{0\}, \phi\left(T_{i}(x), 0\right)=\left|T_{i}(x)\right|^{2} \leq|x|^{2}=\phi(x, 0)$ for every $x \in C$ and $\left|T_{i}(1)-T_{i}\left(t_{i}\right)\right|=s_{i}\left(1-t_{i}\right)>\left|1-t_{i}\right|$. Hence, the mappings T_{i} are quasi ϕ-nonexpansive but not nonexpansive.

According to Theorem 3, the iteration sequence $\left\{x_{n}\right\}$ generated by

$$
\begin{gathered}
x_{0} \in C, \quad C_{0}:=C, \\
y_{n}^{i}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{i} x_{n}, \quad i=1,2, \ldots, N, \\
i_{n}=\arg \max _{1 \leq i \leq N}\left\{\left|y_{n}^{i}-x_{n}\right|\right\}, \quad \bar{y}_{n}:=y_{n}^{i_{n}}, \\
C_{n+1}:=\left\{v \in C_{n}:\left|v-\bar{y}_{n}\right| \leq\left|v-x_{n}\right|\right\}, \\
x_{n+1}=\Pi_{C_{n+1}} x_{0}, \quad n \geq 0,
\end{gathered}
$$

strongly converges to $x^{\dagger}:=0$, provided the sequence $\left\{\alpha_{n}\right\}$ is chosen such that $\alpha_{n} \in$ $[0,1]$ and $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Starting from $C_{0}=C=[0,1]$ we have

$$
\begin{equation*}
C_{1}=\left\{v \in C_{0}: 2\left(\bar{y}_{0}-x_{0}\right)\left(\frac{x_{0}+\bar{y}_{0}}{2}-v\right) \leq 0\right\} . \tag{26}
\end{equation*}
$$

Due to the proof of Theorem 3, $F=\{0\} \subset C_{1}$, hence $\left(\bar{y}_{0}-x_{0}\right)\left(\frac{x_{0}+\bar{y}_{0}}{2}\right) \leq 0$. Thus, $\bar{y}_{0} \leq x_{0}$. If $\bar{y}_{0}=x_{0}$ then from the definition of i_{0}, we find $y_{0}^{i}=x_{0}$ for all $i=1, \ldots, N$. Moreover, since $y_{0}^{i}=\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{i} x_{0}$, we get $x_{0}=\alpha_{0} x_{0}+\left(1-\alpha_{0}\right) T_{i} x_{0}, i=$ $1, \ldots, N$, hence, x_{0} is a desired common fixed point and the algorithm finishes at step $n=0$. Now suppose that $\bar{y}_{0}<x_{0}$. Then (26) implies that $C_{1}=\left[0, \frac{x_{0}+\bar{y}_{0}}{2}\right]$ and $x_{1}=\Pi_{C_{1}} x_{0}=\frac{x_{0}+\bar{y}_{0}}{2}$.

We assume by induction that at the n-th step $(n \geq 1)$, either x_{n-1} is a common fixed point of $T_{i}, i=1, \ldots, N$, and the algorithm finishes at the ($n-1$)-step, or $C_{n}=\left[0, \frac{x_{n-1}+\bar{y}_{n-1}}{2}\right]$ and $x_{n}=\Pi_{C_{n}} x_{0}=\frac{x_{n-1}+\bar{y}_{n-1}}{2}$. By the definition of C_{n+1} we have $C_{n+1}=\left\{v \in C_{n}: 2\left(\bar{y}_{n}-x_{n}\right)\left(\frac{x_{n}+\bar{y}_{n}}{2}-v\right) \leq 0\right\}$, or equivalently,

$$
\begin{equation*}
C_{n+1}=\left[0, \frac{x_{n-1}+\bar{y}_{n-1}}{2}\right] \bigcap\left\{v \in[0,1]: 2\left(\bar{y}_{n}-x_{n}\right)\left(\frac{x_{n}+\bar{y}_{n}}{2}-v\right) \leq 0\right\} \tag{27}
\end{equation*}
$$

Since $F=\{0\} \subset C_{n+1}$, we find that $\left(\bar{y}_{n}-x_{n}\right)\left(\frac{x_{n}+\bar{y}_{n}}{2}\right) \leq 0$, hence $\bar{y}_{n} \leq x_{n}$. If $\bar{y}_{n}=x_{n}$ then by the definition of i_{n}, we get $y_{n}^{i}=x_{n}$ for all $i=1, \ldots, N$. On the other hand, $y_{n}^{i}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{i} x_{n}$, hence, $x_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T_{i} x_{n}$. Thus, x_{n} is a common fixed point of the family $\left\{T_{i}\right\}_{i-1}^{N}$ and the algorithm finishes at the n-th step. In the remaining case $\bar{y}_{n}<x_{n}$, relation (27) gives

$$
\begin{equation*}
C_{n+1}=\left[0, \frac{x_{n-1}+\bar{y}_{n-1}}{2}\right] \bigcap\left[0, \frac{x_{n}+\bar{y}_{n}}{2}\right] . \tag{28}
\end{equation*}
$$

Noting that $\frac{x_{n}+\bar{y}_{n}}{2}<x_{n}=\frac{x_{n-1}+\bar{y}_{n-1}}{2}$, and using (28) we come to the conclusion that $C_{n+1}=\left[0, \frac{x_{n}+\bar{y}_{n}}{2}\right]$, and $x_{n+1}=\Pi_{C_{n+1}} x_{0}=\frac{x_{n}+\bar{y}_{n}}{2}$.

On the other hand, applying Liu's sequential method [20], at the $n-$ th iteration, we need to compute $y_{n}:=\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) T_{k_{n}} x_{n}$, where $k_{n}=n(\bmod N)+1$. Observing
that $0 \leq T_{k_{n}} x_{n} \leq x_{n} \leq 1$, we have if $x_{n}=T_{k_{n}} x_{n}$ then x_{n} is a fixed point of $T_{k_{n}}$, which is also a common fixed point of the family $\left\{T_{i}\right\}_{i=1}^{N}$. Otherwise, we get $T_{k_{n}} x_{n}<x_{n}$, which leads to the formula

$$
x_{n+1}=\min \left\{x_{n}, \frac{\alpha_{n} x_{0}^{2}+\left(1-\alpha_{n}\right) x_{n}^{2}-y_{n}^{2}}{2\left(\alpha_{n} x_{0}+\left(1-\alpha_{n}\right) x_{n}-y_{n}\right)}\right\} .
$$

The numerical experiment is performed on a LINUX cluster 1350 with 8 computing nodes. Each node contains two Intel Xeon dual core 3.2 GHz , 2GBRam. All the programs are written in C.

For given tolerances we compare execution time of the parallel hybrid method (PHM) and Liu's sequential method (LSM) [20]. From Tables 1, 2 and 3, we see that within a given tolerance, the sequential method is more time consuming than the parallel one, in both parallel and sequential mode. Further, whenever the tolerance is small, the sequential method converges very slowly or practically diverges.

We use the following notations:

PHM	The parallel hybrid method		
LSM	Liu's sequential method [20]		
N	Number of quasi ϕ-nonexpansive mappings		
$T O L$	Tolerance $\left\\|x_{k}-x^{*}\right\\|$		
very slow conv.	Convergence is very slow or divergence		
T_{p}	Time for PHM's execution in parallel mode (2CPUs-in seconds)		
T_{S}	Time for PHM's execution in sequential mode (in seconds)		
T_{L}	Time for LSM's execution (in seconds).		

We perform experiments with $N=5 \times 10^{6}, t_{i}=\frac{i}{N+1}, s_{i}=1+t_{i}, i=1, \ldots, N$.
Within the tolerance $T O L=10^{-4}$, for $\alpha_{n}=1 / n$ and $\alpha_{n}=10^{-n}$, the computing times of Liu's method are 30.89 sec . and 26.57 sec ., respectively. Moreover, for $\alpha_{n}=$ $1 /(\log n+2)$, after 287.25 sec ., Liu's method gives an approximate solution $\tilde{x}=0.327$, which is very far from the exact solution $x^{*}=0$. When $T O L=10^{-k}, \quad k=5,6,8$, Liu's method is practically divergent.

Tables 1, 2 and 3 give the execution times of the parallel hybrid method in parallel mode $\left(T_{p}\right)$ and sequential mode $\left(T_{s}\right)$ within the given tolerances TOL for different choices of α_{n}. The maximal speed up of the parallel hybrid method is

Table 1 Experiment with $\alpha_{n}=1 / n$

TOL	PHM		LSM
	T_{p}	T_{S}	T_{L}
10^{-5}	1.06	1.90	Very slow conv
10^{-6}	1.26	2.10	Very slow conv
10^{-8}	1.47	2.74	Very slow conv

Table 2 Experiment with
$\alpha_{n}=\frac{1}{\log n+2}$

TOL	PHM		LSM
	T_{p}	T_{S}	T_{L}
10^{-5}	1.27	2.52	Very slow conv
10^{-6}	1.48	2.95	Very slow conv
10^{-8}	1.89	3.58	Very slow conv

Table 3 Experiment with $\alpha_{n}=10^{-n}$

TOL	PHM		LSM
	T_{p}	T_{S}	T_{L}
10^{-5}	0.84	1.68	Very slow conv
10^{-6}	1.05	1.90	Very slow conv
10^{-8}	1.26	2.31	Very slow conv

$S_{p}:=T_{S} / T_{p} \approx 2.0$, hence, the efficency of the parallel computation by using two processors is $E_{p}:=S_{p} / 2 \approx 1.0$.

Acknowledgments The authors are greateful to the referees for their useful comments to improve this article. We thank V. T. Dzung for performing computation on the LINUX cluster 1350. The research of the first author was partially supported by Vietnam Institute for Advanced Study in Mathematics (VIASM) and Vietnam National Foundation for Science and Technology Development (NAFOSTED).

References

1. Alber, Ya.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartosator, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15-50. Dekker, New York (1996)
2. Alber, Y.I., Ryazantseva, I.: Nonlinear Ill-Posed Problems of Monotone Type. Spinger, Dordrecht (2006)
3. Anh, P.K., Chung, C.V.: Parallel hybrid methods for a finite family of relatively nonexpansive mappings. Numer. Funct. Anal. Optim. 35(6), 649-664 (2014)
4. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of Mathematics and Its Applications. Kluwer, Dordrecht (1990)
5. Chang, S.S., Kim, J.K., Wang, X.R.: Modified block iterative algorithm for solving convex feasibility problems in Banach spaces. J. Inequal. Appl. 2010, 869684 (2010). doi:10.1155/2010/869684
6. Cho, Y.J., Qin, X., Kang, S.M.: Strong convergence of the modified Halpern-type iterative algorithms in B anach spaces. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 17, 51-68 (2009)
7. Chang, Q.W., Yan, H.: Strong convergence of a modified Halpern-type iteration for asymptotically quasi- ϕ-nonexpansive mappings. An. Univ. Ovidius Constanta Ser. Mat. 21(1), 261-276 (2013). doi:10. 2478/auom-2013-0017
8. Diestel, J.: Geometry of Banach Spaces-Selected Topics. Lecture Notes in Mathematics, p. 485. Springer, Berlin (1975)
9. Deng, W.Q.: Relaxed Halpern-type iteration method for countable families of totally quasi -ϕ-asymptotically nonexpansive mappings. J. Inequal. Appl. 2013, 367 (2013). doi:10.1186/ 1029-242X-2013-367
10. Deng, W.Q.: Strong convergence to common fixed points of a countable family of asymptotically strictly quasi-pseudocontractions. Math. Probl. Eng. 2013, Article ID 752625 (2013). doi:10.1155/ 2013/752625
11. Deng, W.Q., Bai, P.: An implicit iteration process for common fixed points of two infinite families of asymptotically nonexpansive mappings in Banach spaces. J. Appl. Math. 2013 Article ID 602582 (2013)
12. Huang, N.J., Lan, H.Y., Kim, J.K.: A new iterative approximation of fixed points for asymptotically contractive type mappings in Banach spaces. Indian J. Pure Appl. Math. 35(4), 441-453 (2004)
13. Kang, J., Su, Y., Zhang, X.: Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications. Nonlinear Anal. Hybrid Syst. 4, 755-765 (2010)
14. Kim, J.K., Kim, C.H.: Convergence theorems of iterative schemes for a finite family of asymptotically quasi- nonexpansive type mappings in metric spaces. J. Comput. Anal. Appl. 14(6), 1084-1095 (2012)
15. Kimura, Y., Takahashi, W.: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. 357, 356-363 (2009)
16. Kim, T.H., Takahashi, W.: Strong convergence of modified iteration processes for relatively asymptotically nonexpansive mappings. Taiwanese J. Math. 14(6), 2163-2180 (2010)
17. Kim, T.H., Xu, H.K.: Strong convergence of modified Mann iterations for asymptotically mappings and semigroups. Nonlinear Anal. 64, 1140-1152 (2006)
18. Kim, J.K.: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ-nonexpansive mappings. Fixed Point Theory Appl. 2011, 10 (2011)
19. Li, Y., Liu, H.B.: Strong convergence theorems for modifying Halpern-Mann iterations for a quasi-ϕ-asymptotically nonexpansive multi-valued mapping in Banach spaces. Appl. Math. Comput. 218, 6489-6497 (2012)
20. Liu, X.F.: Strong convergence theorems for a finite family of relatively nonexpansive mappings. Vietnam J. Math. 39(1), 63-69 (2011)
21. Matsushita, S., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory. 134, 257-266 (2005)
22. Plubtieng, S., Ungchittrakool, K.: Approximation of common fixed points for a countable family of relatively nonexpansive mappings in a Banach space and applications. Nonlinear Anal. 72, 2896-2908 (2010)
23. Qin, X., Cho, Y.J., Kang, S.M., Zhou, H.: Convergence of a modified Halpern-type iteration algorithm for quasi- ϕ-nonexpansive mappings. Appl. Math. Lett. 22, 1051-1055 (2009)
24. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22-44 (2010)
25. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122-135 (2010)
26. Su, Y., Li, M., Zhang, H.: New monotone hybrid algorithm for hemi-relatively nonexpansive mappings and maximal monotone operators. Appl. Math. Comput. 217(12), 5458-5465 (2011)
27. Su, Y.F., Wang, Z.M., Xu, H.K.: Strong convergence theorems for a common fixed point of two hemirelatively nonexpansive mappings. Nonlinear Anal. 71, 5616-5628 (2009)
28. Tang, J.F., Chang, S.S., Liu, M., Liu, J.A.: Strong convergence theorem of a hybrid projection algorithm for a family of quasi- ϕ-asymptotically nonexpansive mappings. Opuscula Math. 30(3), 341-348 (2010)
29. Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276-286 (2008)
30. Takahashi, W., Zembayashi, K.: Strong convergence theorem by a new hybrid method for equilibrium p roblems and relatively nonexpansive mappings. Fixed Point Theory Appl. 2008, (2008); Article ID 528476. doi:10.1155/2008/528476
31. Wang, Z.M., Kumam, P.: Hybrid projection algorithm for two countable families of hemirelatively nonexpansive mappings and applications. J. Appl. Math. 2013 (2013); Article ID 524795. doi:10. 1155/2013/524795
32. Wang, Y., Xuan, W.: Convergence theorems for common fixed points of a finite family of relatively nonexpansive mappings in banach spaces. Abstr. Appl. Anal. 2013 (2013); Article ID 259470. doi:10. 1155/2013/259470
33. Zhao, L., Chang, S., Kim, J.K.: Mixed type iteration for total asymptotically nonexpansive mappings in hyperbolic spaces. Fixed Point Theory Appl. 2013, 353 (2013). doi:10.1186/1687-1812-2013-353
34. Zhou, H., Gao, X.: A strong convergence theorem for a family of quasi- ϕ-nonexpansive mappings in a banach space. Fixed Point Theory Appl. 2009 (2009); Article ID 351265. doi:10.1155/2009/351265

[^0]: (4) Springer

[^1]: P. K. Anh (\triangle) • D. Van Hieu

 Department of Mathematics, Vietnam National University, Hanoi 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
 e-mail: anhpk@vnu.edu.vn
 D. Van Hieu
 e-mail: dv.hieu83@gmail.com

