On vertex disjoint cycles of different length in 3-regular digraphs

Ngo Dac Tan
Institute of Mathematics
Vietnam Academy of Science and Technology
18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam
E-mail: ndtan@math.ac.vn, Tel: (84 4) 37563 474, Fax: (84 4) 37564303

Abstract

Henning and Yeo [SIAM J. Discrete Math. 26 (2012) 687-694] conjectured that a 3 -regular digraph D contains two vertex disjoint directed cycles of different length if either D is of sufficiently large order or D is bipartite. In this paper, we disprove the first conjecture. Further, we give support for the second conjecture by proving that every bipartite 3 -regular digraph, which either possesses a cycle factor with at least two directed cycles or has a Hamilton cycle $C=v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$ and a spanning 1 -circular subdigraph $D(n, S)$ where $S=\{s\}$ with $s>1$, does indeed have two vertex disjoint directed cycles of different length.

Key words: 3-regular digraph, bipartite digraph, vertex disjoint cycles, cycles of different length, cycle factor

AMS Mathematics Subject Classification (2000): Primary 05C20, Secondary 05C38.

1 Introduction

In this paper, the term digraph always means a finite simple digraph, i.e., a digraph that has a finite number of vertices, no loops and no multiple arcs. Unless otherwise indicated, our graph-theoretic terminology will follow [3].

Let D be a digraph. Then the vertex set and the arc set of D are denoted by $V(D)$ and $A(D)$ (or by V and A for short), respectively. A vertex $v \in V$
is called an outneighbor of a vertex $u \in V$ if $(u, v) \in A$. We denote the set of all outneighbors of u by $N_{D}^{+}(u)$. The outdegree of $u \in V$, denoted by $d_{D}^{+}(u)$, is $\left|N_{D}^{+}(u)\right|$. Similarly, a vertex $w \in V$ is called an inneighbor of a vertex $u \in V$ if $(w, u) \in A$. We denote the set of all inneighbors of u by $N_{D}^{-}(u)$. The indegree of $u \in V$, denoted by $d_{D}^{-}(u)$, is $\left|N_{D}^{-}(u)\right|$. If $W \subseteq V$, then the subdigraph of D induced by W is denoted by $D[W]$.

By a cycle (resp., path) in a digraph $D=(V, A)$ we always mean a directed cycle (resp., directed path). By disjoint cycles in D we always mean vertex disjoint cycles. A cycle factor in D is a spanning subdigraph F of D such that every connected component of F is a cycle. Thus, a subdigraph F of D is called a cycle factor in D with ℓ cycles if $F=C_{1} \cup C_{2} \cup \ldots \cup C_{\ell}$, where $C_{1}, C_{2}, \ldots, C_{\ell}$ are cycles in D such that every vertex of D lies in exactly one of these cycles.

An oriented graph is a digraph with no cycles of length 2 .
A digraph $D=(V, A)$ is called bipartite if the vertex set V has a bipartition $V=U \cup W$ such that for every vertex $v \in U$ (resp., $v \in W$) both $N_{D}^{+}(v)$ and $N_{D}^{-}(v)$ are subsets of W (resp., U). The subsets U and W are called parts of this bipartition for D. For a natural number k, a digraph $D=(V, A)$ is called k-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=k$ for every vertex $v \in V$.

Let $n \geq 2$ be an integer. Then all integers modulo n are $0,1,2, \ldots, n-1$. Further, let $S \subseteq\{1,2, \ldots, n-1\}$. We define $D(n, S)$ to be a digraph with the vertex set $V(D(n, S))=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and the arc set $A(D(n, S))=$ $\left\{\left(v_{i}, v_{j}\right) \mid(j-i)(\bmod n) \in S\right\}$. A digraph $D=(V, A)$ is called d-circular if there exists a subset $S \subseteq\{1,2, \ldots, n-1\}$ with $|S|=d$, where $n=|V|$, such that D is isomorphic to the digraph $D(n, S)$. For simplicity, we will identify a d-circular digraph with its isomorphic digraph $D(n, S)$. By definition, it is clear that $d_{D(n, S)}^{-}\left(v_{i}\right)=d_{D(n, S)}^{+}\left(v_{i}\right)=|S|$ for every vertex $v_{i} \in V$, i.e., $D(n, S)$
is $|S|$-regular. It is not difficult to show that a d-circular digraph $D(n, S)$ is an oriented graph if and only if $S \cap(-S)=\emptyset$, where $-S=\{-x(\bmod n) \mid x \in S\}$.

In [4], Henning and Yeo have posed several conjectures about the existence of two disjoint cycles of different length in digraphs. Among them, there are the following conjectures.

Conjecture 1. A 3-regular digraph of sufficiently large order contains two disjoint cycles of different length.

Conjecture 2. A bipartite 3-regular digraph contains two disjoint cycles of different length.

We would like to mention that Conjecture 2 has a connection with 2colorings of hypergraphs (see [4]).

In Section 2 of this paper, for any natural number $n \geq 2$ we will construct a 3 -regular digraph of order $2 n$, in which any two disjoint cycles have the same length. By this, we will disprove Conjecture 1. In Section 3 we will give support for Conjecture 2 by proving that every bipartite 3-regular digraph, possessing a cycle factor with at least 2 cycles, contains two disjoint cycles of different length. We note that by [5] every 3-regular digraph contains a cycle factor. So, by the result obtained in Section 3, we don't know whether Conjecture 2 is true or not only for those bipartite 3-regular digraphs D which are hamiltonian and only Hamilton cycles in which are their cycle factors. Perhaps, this remaining case is the most challenging one for Conjecture 2. In Section 4, we will investigate this case. We will prove there that a hamiltonian bipartite 3-regular digraph $D=(V, A)$ with a Hamilton cycle $C=v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$, having a spanning 1 -circular subdigraph $D(n, S)$ where $S=\{s\}$ with $s>1$, contains two disjoint cycles of different length. Thus, the result of Section 4 also supports Conjecture 2 for the remaining case.

Figure 1: The digraph D_{8}
Notation. Let $D=(V, A)$ be a digraph. Then for short, we will write $u v$ for an $\operatorname{arc}(u, v) \in A$. If $C=v_{0}, v_{1}, \ldots, v_{m-1}, v_{0}$ is a cycle of length m in D and $v_{i}, v_{j} \in V(C)$, then $v_{i} C v_{j}$ denotes the sequence $v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{j}$, where all indices are taken modulo m. We will consider $v_{i} C v_{j}$ both as a path and as a vertex set. If $w \in V(C)$, then w_{C}^{-}and w_{C}^{+}denote the predecessor and the successor of w on C, respectively.

2 Disproving Conjecture 1

Let $n \geq 2$ be an integer and $D_{2 n}=\left(V_{2 n}, A_{2 n}\right)$ be a digraph with the vertex set $V_{2 n}=\left\{u_{i}, v_{i} \mid i=0,1, \ldots, n-1\right\}$ and the arc set $A_{2 n}=\left\{u_{i} v_{i}, v_{i} u_{i}, u_{i} u_{i+1}\right.$, $\left.u_{i} v_{i+1}, v_{i} u_{i+1}, v_{i} v_{i+1} \mid i=0,1, \ldots, n-1\right\}$, where $i+1$ is always taken modulo n.

The digraph D_{4} is the complete digraph on 4 vertices. The digraph D_{8} is illustrated on Figure 1.

Now we prove the following result.

Theorem 1. For any integer $n \geq 2$, the digraph $D_{2 n}$ is a 3 -regular digraph of order $2 n$, in which any two disjoint cycles have the same length.

Proof. It is clear that $D_{2 n}$ is a 3 -regular digraph of order $2 n$. We prove now
that any two disjoint cycles in $D_{2 n}$ have the same length.
For $i=0,1, \ldots, n-1$, let $S_{i}=\left\{u_{i}, v_{i}\right\}, \bar{u}_{i}=v_{i}$ and $\bar{v}_{i}=u_{i}$. We have the following remarks.
(i) If a cycle C in $D_{2 n}$ contains an arc from S_{i} to S_{i+1}, where $i \in$ $\{0,1, \ldots, n-1\}$ and $i+1$ is always taken modulo n, then for every $j \in$ $\{0,1, \ldots, n-1\}$ the cycle C contains at least one vertex of S_{j}.

In fact, the remark is trivial if $n=2$. So, we assume further that $n>2$. Let $C=x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{m-1}, x_{0}$ be a cycle with $x_{0} x_{1}$ an arc from S_{i} to S_{i+1}. Then by the construction of $D_{2 n}$, the vertex x_{2} which is the successor of x_{1} on C must be either \bar{x}_{1} or a vertex in S_{i+2}. Moreover, if x_{2} is \bar{x}_{1} then again by the construction of $D_{2 n}, x_{3}$ must be a vertex in S_{i+2} because $\bar{x}_{2}=x_{1}$ already is a vertex in C. By continuing this process we can see that Remark (i) is true.
(ii) If a cycle C in $D_{2 n}$ contains an arc from S_{i} to S_{i+1} and both vertices of S_{k}, where $i, k \in\{0,1, \ldots, n-1\}$, then for every cycle C^{\prime} in $D_{2 n}, V(C) \cap$ $V\left(C^{\prime}\right) \neq \emptyset$.

In fact, if C^{\prime} contains an arc from S_{i} to S_{i+1} for some $i \in\{0,1, \ldots, n-1\}$, then for every $j \in\{0,1, \ldots, n-1\}$, by Remark (i), C^{\prime} contains at least one vertex of S_{j}. Therefore, C and C^{\prime} contain a common vertex in S_{k}. If C^{\prime} contains no arcs from S_{i} to S_{i+1} for any $i \in\{0,1, \ldots, n-1\}$, then $C^{\prime}=u_{r}, v_{r}, u_{r}$ for some $r \in\{0,1, \ldots, n-1\}$. Therefore, since C contains at least one vertex of S_{j} for every $j \in\{0,1, \ldots, n-1\}$ by Remark (i), C and C^{\prime} contain a common vertex in S_{r}.

We continue to prove Theorem 1. Let C and C^{\prime} be two disjoint cycles in $D_{2 n}$.

First, assume that C contains an arc from S_{i} to S_{i+1} for some $i \in$ $\{0,1, \ldots, n-1\}$. Then by Remark (ii), C cannot contain both vertices of
S_{k} for any $k \in\{0,1, \ldots, n-1\}$. Together with Remark (i), this implies that for every $j \in\{0,1, \ldots, n-1\}, C$ contains exactly one vertex of S_{j}. So, $C=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{0}$, where $x_{i} \in S_{i}$ for $i=0,1, \ldots, n-1$. Now, if C^{\prime} contains no arcs from S_{i} to S_{i+1} for any $i \in\{0,1, \ldots, n-1\}$, then $C^{\prime}=u_{r}, v_{r}, u_{r}$ for some $r \in\{0,1, \ldots, n-1\}$. Thus, C and C^{\prime} have a common vertex in S_{r}, a contradiction. It follows that C^{\prime} contains an arc from S_{i} to S_{i+1} for some $i \in\{0,1, \ldots, n-1\}$. By Remark (i), C^{\prime} contains at least one vertex of every $S_{j}, j \in\{0,1, \ldots, n-1\}$. Since C and C^{\prime} are disjoint, C^{\prime} must contain exactly one vertex of every $S_{j}, j \in\{0,1, \ldots, n-1\}$ and therefore $C^{\prime}=\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n-1}, \bar{x}_{0}$. Thus, C and C^{\prime} have the same length n.

Next, assume that C contains no arcs from S_{i} to S_{i+1} for any $i \in\{0,1, \ldots$, $n-1\}$. Then $C=u_{r}, v_{r}, u_{r}$ for some $r \in\{0,1, \ldots, n-1\}$. Since C and C^{\prime} are disjoint, by Remark (i), C^{\prime} also contains no arcs from S_{i} to S_{i+1} for any $i \in\{0,1, \ldots, n-1\}$. So, $C^{\prime}=u_{s}, v_{s}, u_{s}$ for some $s \in\{0,1, \ldots, n-1\}$ with $s \neq r$. Thus, C and C^{\prime} have the same length 2.

The proof of Theorem 1 is complete.

Theorem 1 shows that Conjecture 1 is false.

3 Bipartite 3-regular digraphs possessing a cycle factor with at least 2 cycles

In the two remaining sections of this paper, we will consider Conjecture 2. The results obtained in these sections will give support for this conjecture. First, we prove the following result.

Theorem 2. Let $D=(V, A)$ be a bipartite 3-regular digraph which possesses a cycle factor with at least two cycles. Then D contains two disjoint cycles of different length.

We note that by [5] every 3 -regular digraph contains a cycle factor. So, by Theorem 2 we don't know whether Conjecture 2 is true or not only for those bipartite 3-regular digraphs D which are hamiltonian and only Hamilton cycles in which are their cycle factors. This remaining case for Conjecture 2 will be considered in Section 4.

Proof. Suppose, on the contrary, that Theorem 2 is false and let $D=(V, A)$ be a bipartite 3-regular digraph such that D possesses a cycle factor with at least two cycles, but any two disjoint cycles in D have the same length. Then we have the following claim.

Claim 1. D must be an oriented graph.

Proof. Suppose, on the contrary, that D is not an oriented graph. Then D contains a cycle C of length 2 , say $C=u, v, u$, where $u, v \in V$. Let $D^{\prime}=D[V \backslash\{u, v\}]=\left(V^{\prime}, A^{\prime}\right)$. Since D is bipartite, each vertex of V^{\prime} is adjacent in D to at most one of u and v. So, each vertex of D^{\prime} has at least two outneighbors in D^{\prime} because D is 3 -regular. Therefore, it is not difficult to see that D^{\prime} has a cycle C^{\prime} of length at least 3. It is clear that $V(C) \cap V\left(C^{\prime}\right)=\emptyset$. So, C and C^{\prime} are two disjoint cycles of different length in D. This contradicts our assumption about D. Thus, D must be an oriented graph.

By Claim 1, if $u v \in A$ then $v u \notin A$. The reader should remember this because further we will use it without mention.

Let $F=C_{0} \cup C_{1} \cup \ldots \cup C_{\ell-1}$ with $\ell \geq 2$ be a cycle factor of D with at least two cycles. By our assumption about $D,\left|V\left(C_{0}\right)\right|=\left|V\left(C_{1}\right)\right|=\cdots=$ $\left|V\left(C_{\ell-1}\right)\right|=k$. Moreover, since D is bipartite, k must be an even number. Further, since $\ell \geq 2$, each of the cycles $C_{0}, C_{1}, \ldots, C_{\ell-1}$ must be chordless and
therefore each vertex of $C_{i}, i=0,1, \ldots, \ell-1$, has exactly two outneighbors and exactly two inneighbors not in $V\left(C_{i}\right)$. For $i=0,1, \ldots, \ell-1$, let

$$
\begin{aligned}
V\left(C_{i}\right) & =\left\{v_{0}^{i}, v_{1}^{i}, \ldots, v_{k-1}^{i}\right\} \\
C_{i} & =v_{0}^{i}, v_{1}^{i}, \ldots, v_{k-1}^{i}, v_{0}^{i} .
\end{aligned}
$$

Claim 2. For $i=0,1,2, \ldots, \ell-1$, we may assume without loss of generality that in D all arcs out of C_{i} go to C_{i+1}, where indices are always taken modulo ℓ.

Proof. The claim is trivial for $\ell=2$. So, we assume from now on that $\ell \geq 3$. Since D is 3 -regular and $C_{0}, \ldots, C_{\ell-1}$ are chordless, every vertex of $C_{i}, i \in$ $\{0,1, \ldots, \ell-1\}$, has two outneighbors not in $V\left(C_{i}\right)$. By renaming the cycles $C_{1}, \ldots, C_{\ell-1}$ and their vertices, if necessary, without loss of generality, we may assume that $v_{0}^{0} v_{1}^{1} \in A$. If v_{0}^{1}, the predecessor of v_{1}^{1} on C_{1}, has an outneighbor in $V\left(C_{0}\right)$, say v_{j}^{0}, then $C^{\prime}=v_{0}^{0}, v_{1}^{1} C_{1} v_{0}^{1}, v_{j}^{0} C_{0} v_{0}^{0}$ has $\left|V\left(C^{\prime}\right)\right|>\left|V\left(C_{\ell-1}\right)\right|$, and therefore C^{\prime} and $C_{\ell-1}$ are two disjoint cycles of different lengths in D, a contradiction. Thus, v_{0}^{1} has no outneighbors in $V\left(C_{0}\right)$. It follows that it has an outneighbor not in $V\left(C_{0}\right) \cup V\left(C_{1}\right)$. Again, by renaming cycles $C_{2}, \ldots, C_{\ell-1}$ and their vertices, if necessary, without loss of generality, we may assume that $v_{0}^{1} v_{1}^{2} \in A$. If $\ell>3$, then as before we can show that v_{0}^{2}, the predecessor of v_{1}^{2} on C_{2}, has no outneighbors in $V\left(C_{0}\right) \cup V\left(C_{1}\right)$. In fact, if v_{0}^{2} has an outneighbor v_{j}^{0} in $V\left(C_{0}\right)$, then $C^{\prime}=v_{0}^{0}, v_{1}^{1} C_{1} v_{0}^{1}, v_{1}^{2} C_{2} v_{0}^{2}, v_{j}^{0} C_{0} v_{0}^{0}$ and $C_{\ell-1}$ are two disjoint cycles of different length in D; and if v_{0}^{2} has an outneighbor v_{j}^{1} in $V\left(C_{1}\right)$, then $C^{\prime \prime}=v_{0}^{1}, v_{1}^{2} C_{2} v_{0}^{2}, v_{j}^{1} C_{1} v_{0}^{1}$ and $C_{\ell-1}$ are two disjoint cycles of different length in D, a contradiction. Thus, if $\ell>3$, then v_{0}^{2} has no outneighbors in $V\left(C_{0}\right) \cup$ $V\left(C_{1}\right)$ and therefore it has an outneighbor not in $V\left(C_{0}\right) \cup V\left(C_{1}\right) \cup V\left(C_{2}\right)$. Without loss of generality, we may assume that $v_{0}^{2} v_{1}^{3} \in A$. By continuing this process, we get $v_{0}^{3} v_{1}^{4}, \ldots, v_{0}^{\ell-2} v_{1}^{\ell-1}$ are arcs in D. Further, if $v_{0}^{\ell-1}$, the
predecessor of $v_{1}^{\ell-1}$ on $C_{\ell-1}$, has an outneighbor v_{j}^{i} in $V\left(C_{i}\right)$ with $1 \leq i<\ell-1$, then $C^{\prime}=v_{0}^{i}, v_{1}^{i+1} C_{i+1} v_{0}^{i+1}, v_{1}^{i+2} C_{i+2} v_{0}^{i+2}, \ldots, v_{1}^{\ell-1} C_{\ell-1} v_{0}^{\ell-1}, v_{j}^{i} C_{i} v_{0}^{i}$ and C_{0} are two disjoint cycles of different length in D, a contradiction again. So, both two outneighbors of $v_{0}^{\ell-1}$, that are not in $V\left(C_{\ell-1}\right)$, are in $V\left(C_{0}\right)$, say $v_{j_{1}}^{0}$ and $v_{j_{2}}^{0}$.

Now let u be a vertex in $V\left(C_{0}\right)$. If u has an outneighbor v not in $V\left(C_{0}\right) \cup$ $V\left(C_{1}\right)$, say $v \in V\left(C_{i}\right)$ with $i \in\{2, \ldots, \ell-1\}$, then

$$
\begin{aligned}
& C^{\prime}=u, v C_{i} v_{0}^{i}, v_{1}^{i+1} C_{i+1} v_{0}^{i+1}, \ldots, v_{1}^{\ell-1} C_{\ell-1} v_{0}^{\ell-1}, v_{j_{1}}^{0} C_{0} u \text { and } \\
& C^{\prime \prime}=u, v C_{i} v_{0}^{i}, v_{1}^{i+1} C_{i+1} v_{0}^{i+1}, \ldots, v_{1}^{\ell-1} C_{\ell-1} v_{0}^{\ell-1}, v_{j_{2}}^{0} C_{0} u
\end{aligned}
$$

are two cycles of different length because one of $v_{j_{1}}^{0} C_{0} u$ and $v_{j_{2}}^{0} C_{0} u$ is a proper subpath of the other. Since both C^{\prime} and $C^{\prime \prime}$ are disjoint from C_{2}, either C^{\prime} and C_{2} or $C^{\prime \prime}$ and C_{2} are two disjoint cycles of different length in D, a contradiction. Thus, all arcs out of C_{0} go to C_{1}. Now if C_{i} plays the role of C_{i-1} for $i=0, \ldots, \ell-1$, where $i-1$ is taken modulo ℓ, then the above argument shows that all arcs out of C_{1} go to C_{2}. By continuing this process, we can see that Claim 2 is true.

Claim 3. D has no cycle factors with two cycles.
Proof. Suppose, on the contrary, that D has a cycle factor F with two cycles C_{0} and C_{1}. Let $D^{\prime}=\left(V, A^{\prime}\right)$ be the subdigraph of D obtained from D by deleting all arcs of both C_{0} and C_{1}. Then D^{\prime} is a bipartite 2-regular oriented graph. Let $U \cup W$ be a bipartition for D and for $i=0,1$ let $U_{i}=U \cap V\left(C_{i}\right), W_{i}=W \cap V\left(C_{i}\right)$. Then in D^{\prime} every vertex of U_{0} (resp. W_{0}) has its outneighbors and inneighbors in W_{1} (resp., U_{1}) and vice versa every vertex of W_{1} (resp., U_{1}) has its outneighbors and inneighbors in U_{0} (resp., $\left.W_{0}\right)$. Therefore, D^{\prime} has at least two connected components.

Let H be a connected component of D^{\prime}. We show now that H has two cycles of different length. Here these cycles are not required to be disjoint.

Since D^{\prime} is a 2-regular digraph, H is also 2-regular. So, by [5] H has a cycle factor $F_{H}=X_{0} \cup X_{1} \cup \ldots \cup X_{m-1}$. If $m=1$, then $F_{H}=X_{0}$. Therefore, X_{0} is a Hamilton cycle for H. Since H is 2-regular, X_{0} must possess a chord $u v$. Then $X_{0}^{\prime}=u, v X_{0} u$ is a cycle in H with $\left|V\left(X_{0}^{\prime}\right)\right| \neq\left|V\left(X_{0}\right)\right|$, i.e., X_{0} and X_{0}^{\prime} are two cycles of different length in H. So, we assume further that $m \geq 2$. If there are two cycles X_{i} and X_{j} of different length in F_{H} or there is a cycle X_{i} with a chord in F_{H}, then it is clear that H has two cycles of different length. So, we may assume further that all cycles $X_{i}, i=0,1, \ldots, m-1$, in F_{H} have the same length t and are chordless. Let $V\left(X_{i}\right)=\left\{x_{0}^{i}, x_{1}^{i}, \ldots, x_{t-1}^{i}\right\}$ and $X_{i}=x_{0}^{i}, x_{1}^{i}, \ldots, x_{t-1}^{i}, x_{0}^{i}$ for $i=0,1, \ldots, m-1$.

We continue to prove our claim by applying the arguments which are already used in the proof of Claim 2. Since H is 2-regular and X_{0}, \ldots, X_{m-1} are chordless, every vertex $x_{j}^{i}, i \in\{0, \ldots, m-1\}, j \in\{0, \ldots, t-1\}$ of H has an outneighbor not in $V\left(X_{i}\right)$. By renaming the cycles X_{1}, \ldots, X_{m-1} and their vertices, if necessary, we may assume that x_{1}^{1} is an outneighbor of x_{0}^{0}. If x_{0}^{1}, the predecessor of x_{1}^{1} on X_{1}, has an outneighbor in $V\left(X_{0}\right)$, say x_{j}^{0}, then $X^{\prime}=x_{0}^{0}, x_{1}^{1} X_{1} x_{0}^{1}, x_{j}^{0} X_{0} x_{0}^{0}$ has $\left|V\left(X^{\prime}\right)\right|>\left|V\left(X_{0}\right)\right|$. Therefore, X_{0} and X^{\prime} are two cycles of different length in H. So, we may assume further that $m \geq 3$ and x_{0}^{1} has an outneighbor not in $V\left(X_{0}\right) \cup V\left(X_{1}\right)$. By renaming the cycles X_{2}, \ldots, X_{m-1} and their vertices, if necessary, we may assume that $x_{0}^{1} x_{1}^{2} \in A(H)$. Now if x_{0}^{2}, the predecessor of x_{1}^{2} on X_{2}, has an outneighbor in $V\left(X_{0}\right)$, say x_{j}^{0}, then $X^{\prime \prime}=x_{0}^{0}, x_{1}^{1} X_{1} x_{0}^{1}, x_{1}^{2} X_{2} x_{0}^{2}, x_{j}^{0} X_{0} x_{0}^{0}$ and X_{0} are two cycles of different length in H; and if x_{0}^{2} has an outneighbor in $V\left(X_{1}\right)$, say x_{j}^{1}, then $X^{\prime \prime \prime}=x_{0}^{1}, x_{1}^{2} X_{2} x_{0}^{2}, x_{j}^{1} X_{1} x_{0}^{1}$ and X_{0} are two cycles of different length in H. So, we again may assume further that x_{0}^{2} has an outneighbor not in $V\left(X_{0}\right) \cup$ $V\left(X_{1}\right) \cup V\left(X_{2}\right)$. By continuing similar arguments, we can see that either we already find two cycles of different length for H or by renaming cycles of F_{H}
and their vertices, if necessary, we can get $x_{0}^{2} x_{1}^{3}, x_{0}^{3} x_{1}^{4}, \ldots, x_{0}^{m-2} x_{1}^{m-1} \in A(H)$. Now x_{0}^{m-1}, the predecessor of x_{1}^{m-1} on X_{m-1}, must have an outneighbor not in $V\left(X_{m-1}\right)$, say $x_{j}^{i} \in V\left(X_{i}\right)$ with $i \in\{0, \ldots, m-2\}$. Then $X^{*}=$ $x_{0}^{i}, x_{1}^{i+1} X_{i+1} x_{0}^{i+1}, x_{1}^{i+2} X_{i+2} x_{0}^{i+2}, \ldots, x_{1}^{m-1} X_{m-1} x_{0}^{m-1}, x_{j}^{i} X_{i} x_{0}^{i}$ and X_{0} are two cycles of different length in H. Thus, in any situation, we can find two cycles of different length in H, say Y_{1} and Y_{2}.

We have noted before that D^{\prime} has at least two connected components. So, besides H, D^{\prime} possesses another connected component $K \neq H$. It is clear that K has at least one cycle, say Z. Then either Y_{1} and Z or Y_{2} and Z are two disjoint cycles of different length in D^{\prime}. Since D^{\prime} is a subdigraph of D, these two cycles are also two disjoint cycles of different length in D. This final contradiction shows that Claim 3 must be true.

Claim 4. D has no cycle factors with three cycles.
Proof. Suppose, on the contrary, that D has a cycle factor F with three cycles C_{0}, C_{1} and C_{2}. In this proof, we always have $i \in\{0,1,2\}$ and indices $i+1$ and $i+2$ are always taken modulo 3. By Claim 2, all arcs out of C_{i} go to C_{i+1}. We consider cycles in D of the following form:

$$
\begin{equation*}
C=x_{1}, y, z, x_{2} C_{i} x_{1}, \tag{1}
\end{equation*}
$$

where x_{1}, x_{2} are vertices in $V\left(C_{i}\right), y$ is an outneighbor of x_{1} in $V\left(C_{i+1}\right), z$ is an outneighbor of y in $V\left(C_{i+2}\right)$ and x_{2} is an outneighbor of z in $V\left(C_{i}\right)$. We note that since D is bipartite, the length of a cycle C of the form (1) must be even. So, $x_{1} \neq x_{2}$. Further we consider separately the following two cases.

Case 1. There exists a cycle C of the form (1) such that $z_{C_{i+2}}^{-}$, the predecessor of z on C_{i+2}, has an outneighbor, say x_{3}, in $V\left(C_{i}\right) \backslash x_{2} C_{i} x_{1}$.

Consider the predecessor $y_{C_{i+1}}^{-}$of y on C_{i+1}. Since both $y_{C_{i+1}}^{-}$and z are adjacent to y, they are in the same part of the bipartition for D. So,
they are not adjacent in D because D is bipartite. It follows that both two outneighbors of $y_{C_{i+1}}^{-}$in $V\left(C_{i+2}\right)$, say z_{1} and z_{2}, are different from z.

Further, since x_{3} has two outneighbors in $V\left(C_{i+1}\right)$, at least one of these outneighbors, say y_{1}, is different from y. Now we construct two cycles C^{\prime} and $C^{\prime \prime}$ in D as follows:

$$
\begin{aligned}
& C^{\prime}=z_{C_{i+2}}^{-}, x_{3}, y_{1} C_{i+1} y_{C_{i+1}}^{-}, z_{1} C_{i+2} z_{C_{i+2}}^{-}, \\
& C^{\prime \prime}=z_{C_{i+2}}^{-}, x_{3}, y_{1} C_{i+1} y_{C_{i+1}}^{-}, z_{2} C_{i+2} z_{C_{i+2}}^{-} .
\end{aligned}
$$

It is clear that $\left|V\left(C^{\prime}\right)\right| \neq\left|V\left(C^{\prime \prime}\right)\right|$ and both C^{\prime} and $C^{\prime \prime}$ are disjoint from C. So, either C^{\prime} and C or $C^{\prime \prime}$ and C are two vertex disjoint cycles of different lengths in D, a contradiction. Thus, this case cannot occur.

Case 2. For every cycle $C=x_{1}, y, z, x_{2} C_{i} x_{1}$ of the form (1), the predecessor $z_{C_{i+2}}^{-}$of z on C_{i+2} has no outneighbors in $V\left(C_{i}\right) \backslash x_{2} C_{i} x_{1}$.

In this case, both two outneighbors of $z_{C_{i+2}}^{-}$in $V\left(C_{i}\right)$ are in $x_{2} C_{i} x_{1}$. Let $C^{*}=x_{1}^{*}, y^{*}, z^{*}, x_{2}^{*} C_{i} x_{1}^{*}$ be a cycle of the form (1) with the number of vertices in $x_{2}^{*} C_{i} x_{1}^{*}$ minimum. Further, let x_{3}^{*} be the inneighbor in $V\left(C_{i}\right)$ of y^{*} which is different from x_{1}^{*}. If $x_{3}^{*} \in x_{2}^{*} C_{i} x_{1}^{*}$, then the cycle $C^{\prime}=x_{3}^{*}, y^{*}, z^{*}, x_{2}^{*} C_{i} x_{3}^{*}$ has the number of vertices in $x_{2}^{*} C_{i} x_{3}^{*}$ less than the number of vertices in $x_{2}^{*} C_{i} x_{1}^{*}$. This contradicts the choice of C^{*}. Thus, x_{3}^{*} is in $V\left(C_{i}\right) \backslash x_{2}^{*} C_{i} x_{1}^{*}$.

Let z_{1}^{*} be an inneighbor in $V\left(C_{i+2}\right)$ of x_{3}^{*}. Since both x_{3}^{*} and z^{*} are adjacent to y^{*}, they are in the same part of the bipartition for D. It follows that z_{1}^{*} and z^{*} are in different parts of this bipartition. In particular, $z_{1}^{*} \neq z^{*}$. Consider the cycle $C^{\prime \prime}=z_{1}^{*}, x_{3}^{*}, y^{*}, z^{*} C_{i+2} z_{1}^{*}$. Then $C^{\prime \prime}$ is a cycle of the form (1). By the assumption of this case, the predecessor $\left(y^{*}\right)_{C_{i+1}}$ of y^{*} on C_{i+1}, has no outneighbors in $V\left(C_{i+2}\right) \backslash z^{*} C_{i+2} z_{1}^{*}$. Let z_{2}^{*} and z_{3}^{*} be two outneighbors of $\left(y^{*}\right)_{C_{i+1}}^{-}$in $V\left(C_{i+2}\right)$. Then both z_{2}^{*} and z_{3}^{*} are in $z^{*} C_{i+2} z_{1}^{*}$. Further, since both $\left(y^{*}\right)_{C_{i+1}}$ and z^{*} are adjacent to y^{*}, they are in the same part of the
bipartition for D. So, $\left(y^{*}\right)_{C_{i+1}}$ and z^{*} are not adjacent in D. It follows that both z_{2}^{*} and z_{3}^{*} are different from z^{*}.

Let y_{1}^{*} be the outneighbor of x_{3}^{*} in $V\left(C_{i+1}\right)$ different from y^{*}. Consider the following cycles $C^{* *}$ and $C^{* * *}$ in D :

$$
\begin{aligned}
C^{* *} & =z_{1}^{*}, x_{3}^{*}, y_{1}^{*} C_{i+1}\left(y^{*}\right)_{C_{i+1}}^{-}, z_{2}^{*} C_{i+2} z_{1}^{*}, \\
C^{* * *} & =z_{1}^{*}, x_{3}^{*}, y_{1}^{*} C_{i+1}\left(y^{*}\right)_{C_{i+1}}, z_{3}^{*} C_{i+2} z_{1}^{*} .
\end{aligned}
$$

Then it is clear that $\left|V\left(C^{* *}\right)\right| \neq\left|V\left(C^{* * *}\right)\right|$ and both $C^{* *}$ and $C^{* * *}$ are disjoint from C^{*}. So, either C^{*} and $C^{* *}$ or C^{*} and $C^{* * *}$ are two disjoint cycles of different length in D, a contradiction again. This final contradiction shows that Claim 4 must be true.

Claim 5. If D possesses a cycle factor with at least 4 cycles, then for any vertex sets of size two $\left\{v_{t_{1}}^{0}, v_{t_{2}}^{0}\right\} \subseteq V\left(C_{0}\right)$ and $\left\{v_{m_{1}}^{3}, v_{m_{2}}^{3}\right\} \subseteq V\left(C_{3}\right)$, there exist two disjoint paths P_{1} and P_{2} from $\left\{v_{m_{1}}^{3}, v_{m_{2}}^{3}\right\}$ to $\left\{v_{t_{1}}^{0}, v_{t_{2}}^{0}\right\}$ in $D\left[V \backslash\left(V\left(C_{1}\right) \cup\right.\right.$ $\left.\left.V\left(C_{2}\right)\right)\right]$.

Proof. The proofs of this claim and Claim III in [4] are just the same. So, we omit the proof of Claim 5 here. The readers who are interested in its details can see the proof of Claim III in [4].

Now we complete the proof of Theorem 2. By our assumption about D and by Claims 3 and 4, we may assume further that D possesses a cycle factor with at least 4 cycles. Let $v_{w}^{1} \in V\left(C_{1}\right)$ be arbitrary, $v_{t_{1}}^{0}$ and $v_{t_{2}}^{0}$ be two inneighbors of v_{w}^{1} in $V\left(C_{0}\right)$ and $v_{y_{1}}^{2}$ and $v_{y_{2}}^{2}$ be two outneighbors of v_{w}^{1} in $V\left(C_{2}\right)$. Further, let $\left(v_{w}^{1}\right)_{C_{1}}$ be the predecessor of v_{w}^{1} on C_{1} and $v_{y_{3}}^{2}$ be any outneighbor of $\left(v_{w}^{1}\right)_{C_{1}}^{-}$in $V\left(C_{2}\right)$. Since D is bipartite and both v_{w}^{1} and $v_{y_{3}}^{2}$ are adjacent to $\left(v_{w}^{1}\right)_{C_{1}}^{-}$in D, v_{w}^{1} and $v_{y_{3}}^{2}$ belong to the same part of the bipartition for D. Therefore, v_{w}^{1} and $v_{y_{3}}^{2}$ are not adjacent in D. This implies
that $v_{y_{3}}^{2} \neq v_{y_{1}}^{2}$ and $v_{y_{3}}^{2} \neq v_{y_{2}}^{2}$. Without loss of generality, we may assume that by going along C_{2} from $v_{y_{3}}^{2}$ in the direction specified by the direction of arcs on C_{2} we first encounter $v_{y_{2}}^{2}$. Let $v_{m_{1}}^{3}$ be an outneighbor of $v_{y_{1}}^{2}$ and $v_{m_{2}}^{3}$ be an outneighbor of $v_{y_{3}}^{2}$ in $V\left(C_{3}\right)$. Then since $v_{y_{1}}^{2}$ and $v_{y_{3}}^{2}$ belong to different parts of bipartition for D, we have $v_{m_{1}}^{3} \neq v_{m_{2}}^{3}$. By Claim 5 , there exist two disjoint paths P_{1} and P_{2} from $\left\{v_{m_{1}}^{3}, v_{m_{2}}^{3}\right\}$ to $\left\{v_{t_{1}}^{0}, v_{t_{2}}^{0}\right\}$ in $D\left[V \backslash\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)\right]$.

First assume that P_{1} is a path from $v_{m_{1}}^{3}$ to $v_{t_{1}}^{0}$ and P_{2} is a path from $v_{m_{2}}^{3}$ to $v_{t_{2}}^{0}$. Let v_{z}^{1} be the outneighbor of $v_{t_{2}}^{0}$ in $V\left(C_{1}\right)$ different from v_{w}^{1}. Further, let Q_{1}, Q_{2} and Q_{3} be the following paths in D :
$Q_{1}=v_{t_{1}}^{0}, v_{w}^{1}, v_{y_{1}}^{2}, v_{m_{1}}^{3}$,
$Q_{2}=v_{t_{1}}^{0}, v_{w}^{1}, v_{y_{2}}^{2} C_{2} v_{y_{1}}^{2}, v_{m_{1}}^{3}$, and
$Q_{3}=v_{t_{2}}^{0}, v_{z}^{1} C_{1}\left(v_{w}^{1}\right)_{C_{1}}^{-}, v_{y_{3}}^{2}, v_{m_{2}}^{3}$.
We set $C^{\prime}=Q_{1} \cup P_{1}, C^{\prime \prime}=Q_{2} \cup P_{1}$ and $C^{\prime \prime \prime}=Q_{3} \cup P_{2}$. Then by construction, $\left|V\left(C^{\prime}\right)\right| \neq\left|V\left(C^{\prime \prime}\right)\right|$ and both C^{\prime} and $C^{\prime \prime}$ are disjoint from $C^{\prime \prime \prime}$. So, either C^{\prime} and $C^{\prime \prime \prime}$ or $C^{\prime \prime}$ and $C^{\prime \prime \prime}$ are two disjoint cycles of different length in D. This contradicts our assumption about D.

Next assume that P_{1} is a path from $v_{m_{1}}^{3}$ to $v_{t_{2}}^{0}$ and P_{2} is a path from $v_{m_{2}}^{3}$ to $v_{t_{1}}^{0}$. Then by analogous arguments we can get two disjoint cycles of different length in D. This again contradicts our assumption about D.

Thus, Theorem 2 must be true.

4 Hamiltonian bipartite 3-regular digraphs

Following $[1,2]$ a hamiltonian digraph, in which every cycle factor is a Hamilton cycle, is called 2-factor hamiltonian. By [5] every 3-regular digraph contains a cycle factor. Therefore, by Theorem 2, Conjecture 2 is true if we can show that every 2-factor hamiltonian bipartite 3-regular digraph contains two disjoint cycles of different length. On the other hand, we don't know whether

2-factor hamiltonian bipartite 3 -regular digraphs exist or not. In [1], an infinite family of 2-factor hamiltonian 3-regular digraphs has been constructed. The 3 -circular digraph $D(7, S)$ with $S=\{1,2,4\}$ is one of digraphs in the family. But all digraphs in this constructed family are not bipartite because all they have odd orders. Until now we don't know any examples of 2 -factor hamiltonian bipartite 3-regular digraphs. So, one way to prove Conjecture 2 for the remaining case is to prove that the set of 2 -factor hamiltonian bipartite 3-regular digraphs is empty, i.e., every hamiltonian bipartite 3-regular digraph possesses a cycle factor with at least 2 cycles. It seems to us that this is not easier than proving that every hamiltonian bipartite 3-regular digraph contains two disjoint cycles of different length, which is another way to prove Conjecture 2 for the remaining case. In this section, we will follow the last approach to tackle the remaining case for Conjecture 2.

It is clear that a hamiltonian digraph $D=(V, A)$ with a Hamilton cycle $C=v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$ always can be considered to contain the 1-circular digraph $D^{\prime}=D\left(n, S^{\prime}\right)$ with $S^{\prime}=\{1\}$ as its spanning subdigraph. In this section, we will show that if besides D^{\prime} a hamiltonian bipartite 3-regular digraph $D=(V, A)$ with a Hamilton cycle $C=v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}$ contains another 1-circular digraph $D(n, S)$, where $S=\{s\}$ with $s>1$, as its spanning subdigraph, then D contains two disjoint cycles of different length. This again supports Conjecture 2 for the remaining case considered in this section.

Theorem 3. Let $D=(V, A)$ be a hamiltonian bipartite 3-regular digraph with a Hamilton cycle $C=v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$. Further, let D contain a 1-circular subdigraph $D(n, S)$, where $S=\{s\}$ with $s>1$. Then D contains two disjoint cycles of different length.

Proof. Let $D=(V, A)$ be a hamiltonian bipartite 3-regular digraph with a Hamilton cycle $C=v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}$. Further, let $D(n, S)$ where
$S=\{s\}$ with $s>1$ be a subdigraph of D. If $a=\left(v_{i}, v_{j}\right)$ is an arc of D, then the value $(j-i)(\bmod n)$ is called the length of the arc a. Thus, every arc of the Hamilton cycle C has length 1 and every arc of the 1-circular subdigraph $D(n, S)$ with $S=\{s\}$ has length s.

If D has a cycle C^{\prime} of length 2 , then as in Claim 1 of Section 3 we can show that D contains a cycle $C^{\prime \prime}$ of length at least 3 , which is disjoint from C^{\prime}, i.e., D contains two disjoint cycles of different length and Theorem 3 is true for this case.

Thus, from now on we may assume that D is an oriented graph. We continue to consider separately the following two cases.

Case 1. There exists an arc in D with its length greater than s.
Let m be the maximum of lengths of arcs in D. Then $m>s$ in this case. Without loss of generality, we may assume that $v_{0} v_{m}$ is an arc of maximum length m. Now we construct a cycle C_{1} in D as follows. Let i_{0} be the greatest among all non-negative integers i such that $m+i s \leq n$. Then we have $n-\left(m+i_{0} s\right) \leq s-1$. We again divide this case into two subcases.

Subcase 1.1. $n-\left(m+i_{0} s\right) \leq s-2$.
In this subcase, $v_{m+i_{0} s-1+s}$ is a vertex in $\left\{v_{1}, v_{2}, \ldots, v_{m-1}\right\}$. Therefore,

$$
\begin{aligned}
& C_{1}=v_{0}, v_{m}, v_{m+s}, v_{m+2 s}, \ldots, v_{m+\left(i_{0}-1\right) s}, v_{m+i_{0} s} C v_{0}, \text { and } \\
& C_{2}=v_{m-1}, v_{m+s-1}, v_{m+2 s-1}, \ldots, v_{m+i_{0} s-1}, v_{m+i_{0} s-1+s} C v_{m-1}
\end{aligned}
$$

are two disjoint cycles in D. Further, we have $\left|V\left(C_{1}\right)\right|=\left(1+i_{0}\right)+[n-(m+$ $\left.\left.i_{0} s\right)\right]=\left(1+i_{0}\right)+\left(n-i_{0} s-m\right)$ and $\left|V\left(C_{2}\right)\right|=\left(i_{0}+1\right)+\left[(m-1)-\left(m+i_{0} s-1+\right.\right.$ $s)(\bmod n)=\left(1+i_{0}\right)+\left(n-i_{0} s-s\right)$. Since $m>s$, we get $\left|V\left(C_{1}\right)\right|<\left|V\left(C_{2}\right)\right|$ and therefore C_{1} and C_{2} are two disjoint cycles of different length in D in this subcase.

Subcase 1.2. $n-\left(m+i_{0} s\right)=s-1$.

In this subcase, $v_{m+i_{0} s+s}=v_{1}$. Since D is hamiltonian bipartite with a Hamilton cycle $C=v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}, n$ must be even and therefore both m and s must be odd. It follows that i_{0} must be at least 1 in Subcase 1.2. Further, together with $s>1$, we get $s \geq 3$. Therefore,

$$
\begin{aligned}
& C_{3}=v_{0}, v_{m}, v_{m+1}, v_{m+s+1}, v_{m+2 s+1}, \ldots, v_{m+\left(i_{0}-1\right) s+1}, v_{m+i_{0} s+1} C v_{0}, \text { and } \\
& C_{4}=v_{m-1}, v_{m+s-1}, v_{m+s}, v_{m+2 s}, \ldots, v_{m+i_{0} s}, v_{1} C v_{m-1}
\end{aligned}
$$

are two disjoint cycles in D. We have $\left|V\left(C_{3}\right)\right|=\left(2+i_{0}\right)+\left[n-\left(m+i_{0} s+1\right)\right]=$ $\left(2+i_{0}\right)+\left[n-\left(m+i_{0} s\right)\right]-1=\left(2+i_{0}\right)+(s-1)-1=i_{0}+s$. Here we use the equality $n-\left(m+i_{0} s\right)=s-1$ which holds in this subcase. On the other hand, $\left|V\left(C_{4}\right)\right|=i_{0}+2+[(m-1)-1]=i_{0}+m$. It follows that $\left|V\left(C_{3}\right)\right|<\left|V\left(C_{4}\right)\right|$ because $m>s$. So, C_{3} and C_{4} are two disjoint cycles of different length in D in this subcase.

Case 2. There exist no arcs in D with their lengths greater than s.
Then the length of any arc in $A^{\prime}=A \backslash[A(C) \cup A(D(n, S))]$ is greater than 1 and less than s. Since D is 3 -regular, $A^{\prime} \neq \emptyset$. It follows that s must be at least 5 . Let j_{0} be the greatest among all positive integers j such that $j s \leq n$. Then $n-j_{0} s \leq s-1$. We again consider separately several subcases.

Subcase 2.1. $j_{0} \geq 2$ and $n-j_{0} s \leq s-2$.
In this subcase, $v_{j_{0} s-1+s}$ is a vertex in $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\}$. Further, since D is 3 -regular, there is an arc in A^{\prime} with the tail v_{s-1}. As we have noted before, the length t of this arc satisfies $1<t<s$. So, v_{s-1+t} is a vertex in $\left\{v_{s+1}, v_{s+2}, \ldots, v_{2 s-1}\right\}$. Therefore,

$$
\begin{aligned}
& C_{5}=v_{0}, v_{s}, v_{2 s}, \ldots, v_{\left(j_{0}-1\right) s}, v_{j_{0} s} C v_{0}, \text { and } \\
& C_{6}=v_{j_{0} s-1}, v_{j_{0} s-1+s} C v_{s-1}, v_{s-1+t} C v_{2 s-1}, v_{3 s-1}, v_{4 s-1}, \ldots, v_{j_{0} s-1}
\end{aligned}
$$

are disjoint cycles in D. Further, $\left|V\left(C_{5}\right)\right|=j_{0}+\left(n-j_{0} s\right)$ and $\left|V\left(C_{6}\right)\right|=$ $1+\left[(s-1)-\left(j_{0} s-1+s\right)\right]+1+[(2 s-1)-(s-1+t)]+\left(j_{0}-2\right)(\bmod n)=$
$j_{0}+\left(n-j_{0} s\right)+(s-t)$. Since $t<s$, this implies that $\left|V\left(C_{5}\right)\right|<\left|V\left(C_{6}\right)\right|$. Thus, C_{5} and C_{6} are two disjoint cycles of different length in D for this subcase.

Subcase 2.2. $j_{0} \geq 2$ and $n-j_{0} s=s-1$.
In this subcase, $v_{j_{0} s+s}=v_{1}$. As in Subcase 2.1, let $v_{s-1} v_{s-1+t}$ with $1<t<s$ be the arc in A^{\prime} with the tail v_{s-1}. Then v_{s-1+t} is a vertex in $\left\{v_{s+1}, v_{s+2}, \ldots, v_{2 s-1}\right\}$. Further, since t must be odd and $t>1$, we have $t \geq 3$. Therefore,

$$
\begin{aligned}
& C_{7}=v_{0}, v_{s}, v_{s+1}, v_{2 s+1}, \ldots, v_{\left(j_{0}-1\right) s+1}, v_{j_{0} s+1} C v_{0}, \text { and } \\
& C_{8}=v_{1} C v_{s-1}, v_{s-1+t} C v_{2 s}, v_{3 s}, v_{4 s}, \ldots, v_{j_{0} s}, v_{1}
\end{aligned}
$$

are disjoint cycles in D. We have $\left|V\left(C_{7}\right)\right|=1+j_{0}+\left[n-\left(j_{0} s+1\right)\right]=$ $j_{0}+\left(n-j_{0} s\right)=j_{0}+s-1$. Here we use the equality $n-j_{0} s=s-1$, which holds in this subcase. On the other hand, $\left|V\left(C_{8}\right)\right|=[(s-1)-1]+1+$ $[2 s-(s-1+t)]+\left(j_{0}-1\right)=j_{0}+s-1+(s-t)$. Since $t<s$, we again have $\left|V\left(C_{7}\right)\right|<\left|V\left(C_{8}\right)\right|$. Thus, C_{7} and C_{8} are two disjoint cycles of different length in D for this subcase.

Subcase 2.3. $j_{0}=1$.
Since D is hamiltonian bipartite with a Hamilton cycle $C=v_{0}, v_{1}, v_{2}, \ldots$, v_{n-1}, v_{0}, n must be even and lengths of arcs must be odd. In this subcase, we have $2 s>n$. This implies that $2 s(\bmod n) \geq 2$, i.e., the vertex $v_{2 s-1}$ is a vertex in $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\}$. Let t_{0} be the minimum of lengths of arcs in $A^{\prime}=A \backslash[A(C) \cup A(D(n, S))]$. Since D is 3-regular, for every vertex $u \in V$ there exists exactly one arc in A^{\prime} with the tail u. By renaming vertices of V, if necessary, without loss of generality we may assume that the arc in A^{\prime} with the tail v_{s} has length t_{0}.

If $s+t_{0} \leq n$, then in fact $s+t_{0}<n$ because D is an oriented graph.

Consider the cycles

$$
\begin{aligned}
C_{9} & =v_{0}, v_{s}, v_{s+t_{0}} C v_{0}, \text { and } \\
C_{10} & =v_{s-1}, v_{2 s-1} C v_{s-1} .
\end{aligned}
$$

Since $v_{2 s-1}$ is a vertex in $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\}$, these cycles are disjoint from each other. We have $\left|V\left(C_{9}\right)\right|=2+\left[n-\left(s+t_{0}\right)\right]=(n-s+1)-\left(t_{0}-1\right)$ and $\left|V\left(C_{10}\right)\right|=1+[(s-1)-(2 s-1)](\bmod n)=n-s+1$. Since $t_{0}>1$, we have $t_{0}-1>0$. So, $\left|V\left(C_{9}\right)\right|<\left|V\left(C_{10}\right)\right|$ and therefore C_{9} and C_{10} are two disjoint cycles of different length in this situation.

If $s+t_{0}>n$, then $s+t_{0} \geq n+2$ because n is even and both s and t_{0} are odd. If the arc in A^{\prime} with the tail v_{s-1} has length t, then $t \geq t_{0}$ because t_{0} is the minimum of lengths of arcs in A^{\prime}. Therefore, $s+t \geq s+t_{0} \geq n+2$. It follows that $(s-1+t)(\bmod n) \geq 1$, i.e., v_{s-1+t} is a vertex in $\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\}$. Therefore,

$$
\begin{aligned}
C_{11} & =v_{0}, v_{s} C v_{0}, \text { and } \\
C_{12} & =v_{s-1}, v_{s-1+t} C v_{s-1}
\end{aligned}
$$

are disjoint cycles in D. We have $\left|V\left(C_{11}\right)\right|=1+[n-s]$ and $\mid V\left(C_{12} \mid=\right.$ $1+[(s-1)-(s-1+t)](\bmod n)=1+[n-t]$. Since $t<s$, we have $\left|V\left(C_{11}\right)\right|<\left|V\left(C_{12}\right)\right|$ and therefore C_{11} and C_{12} are two disjoint cycles of different length in this situation.

The proof of Theorem 3 is complete.

Acknowledgements

This work was partially carried out during the author's visit to Vietnam Institute for Advanced Study in Mathematics (VIASM) from April 1, 2014 to August 31, 2014. The author would like to thank the Institute for its financial support during this visit.

References

[1] M. Abreu, E. L. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Graphs and digraphs with all 2-factors isomorphic, J. Combin. Theory, Ser. B 92 (2004), $395-404$.
[2] M. Abreu, E. L. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Corrigendum to "Graphs and digraphs with all 2-factors isomorphic" [J. Combin. Theory, Ser. B 92 (2004), 395 - 404], J. Combin. Theory, Ser. B 99 (2009), 271 - 273.
[3] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer, London, 2001.
[4] M. A. Henning and A. Yeo, Vertex disjoint cycles of different length in digraphs, SIAM J. Discrete Math. 26 (2012), 687-694.
[5] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, AMS, Providence, RI, 1962.

