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Abstract. In this paper, we study the local property of bounded hypercon-
vex domains Ω which we can approximative each plurisubharmonic function
u ∈ F(Ω) by an increasing sequence of plurisubharmonic functions defined on
strictly larger domains.

1. Introduction

Hed [10] give in 2012 the following definition of the F-approximation property
of bounded hyperconvex domains.

Definition 1.1. A bounded hyperconvex domain Ω in Cn has the F-approximation
property if there exists a sequence of hyperconvex domains {Ωj} such that Ω b
Ωj+1 b Ωj and we can approximate each function u ∈ F(Ω) by an increasing
sequence of functions uj ∈ F(Ωj) quasi everywhere on Ω.

The first result in this direction is the theorem of Benelkourchi [2] in 2006 about
the approximation of plurisubharmonic functions. Cegrell and Hed [6] proved in
2008 that a sufficient condition for Ω to have the F-approximation property is
that one single function in the class N (Ω) can be approximated with functions in
N (Ωj). Hed [9] proved in 2010 that if Ω has the F-approximation property then
we can approximate each function with given boundary values u ∈ F(Ω, f |Ω) by an
increasing sequence of functions uj ∈ F(Ωj , f |Ωj ) a.e. on Ω. Later, Benelkourchi [3]
studied in 2011 the approximation of plurisubharmonic functions in the weighted
energy class. Amal [1] studied in 2014 the approximation of plurisubharmonic
functions in the weighted energy class with given boundary values. Recently, Hong
[11] proved in 2015 a generalization of Cegrell and Hed’s theorem.

The purpose of this paper is to study the local property of the F-approximation
property. Namely, we prove the following theorem.

Theorem 1.2. Let Ω b Ωj+1 b Ωj be bounded hyperconvex domains in Cn such

that Ω =
⋂∞
j=1 Ωj. Then Ω has the F-approximation property if only if Ω has the

locally F-approximation property, i. e., for every z ∈ ∂Ω there exists a neighbor-
hood Uz of z such that Ω ∩ Uz has the F-approximation property.

This result is proved using the F-plurisubharmonic functions and the technique
of Coltoiu and Mihalache [7].

The organization of the paper is as follows. In Section 2 we recall some notions
of pluripotential theory which is necessary for the next results of the paper. In
Section 3 we prove the main result of the paper.
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2. Preliminaries

Some elements of pluripotential theory that will be used throughout the pa-
per can be found in [1]-[15]. Let Ω be a domain in Cn. We denote by PSH(Ω)
(PSH−(Ω)) the family of plurisubharmonic (negative plurisubharmonic) func-
tions.

2.1. Cegrell’s classes
We recall some Cegrell’s classes of plurisubharmonic functions. Let Ω be a bounded
hyperconvex domain in Cn, i.e. a connected, bounded open subset of Cn such that
there exists a negative plurisubharmonic function ρ such that {z ∈ Ω : ρ(z) <
−c} b Ω, ∀c > 0. Put

E0(Ω) =

{
ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

∫
Ω

(ddcϕ)n <∞
}
,

F(Ω) =

{
ϕ ∈ PSH−(Ω) : ∃E0 3 ϕj ↘ ϕ, sup

j

∫
Ω

(ddcϕj)
n <∞

}
and

E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∀G b Ω,∃uG ∈ F(Ω), u = uG on G

}
.

Let ϕ ∈ E(Ω) and let {Ωj} a fundamental sequence of Ω, i.e, Ωj be strictly

pseudoconvex domains such that Ωj b Ωj+1 b Ω and
∞⋃
j=1

Ωj = Ω. Put

ϕj = sup{u ∈ PSH(Ω) : u 6 ϕ on Ω\Ωj}

and

N (Ω) = {ϕ ∈ E(Ω) : ϕj ↗ 0 a. e. in Ω}.
2.2. The plurifine topology
The plurifine topology F on open subsets of Cn is the weakest topology in which
all plurisubharmonic functions are continuous. Notions pertaining to the plurifine
topology are indicated with the prefix F and notions pertaining to the fine topology
are indicated with Cn. For a set A ⊂ Cn we write A for the closure of A in the
one point compactification of Cn, A

F
for the F-closure of A and ∂FA for the F-

boundary of A. We denote by F-PSH(Ω) the set of F-plurisubharmonic functions
on an F-open set Ω.

Note that if Ω be an open subsets of Cn then F-PSH(Ω) = PSH(Ω).

3. Proof of Theorem 1.2

First, we need the following auxiliary result. The idea of the proof is to use the
F-plurisubharmonic functions.

Lemma 3.1. Let Ω ⊂ Cn be bounded hyperconvex domains. Assume that there
exists a sequence of bounded hyperconvex domains {Ωj} such that Ω b Ωj+1 b Ωj

and Ω =
⋂∞
j=1 Ωj. Then the following statements are equivalent.

(a) if u ∈ E0(Ω) and define uj := sup{ϕ ∈ PSH−(Ωj) : ϕ 6 u in Ω} then
1Ωjuj converges uniformly to 1Ωu in Cn.

(b) there exists uj ∈ PSH−(Ωj) such that (supj uj)
∗ ∈ N (Ω).

(c) there exists u ∈ N (Ω), uj ∈ PSH−(Ωj) such that uj → u a. e. in Ω.
(d) Ω has the F-approximation property.
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Proof. (a) ⇒ (b) ⇒ (c) is obvious. (c) ⇒ (d): see [6]. We prove (d) ⇒ (a). Let
u ∈ E0(Ω). Since Ω has the F-approximation property so there exists a sequence
of hyperconvex domains {Uj} and sequence of functions ψj ∈ F(Uj) such that
Ω b Uj+1 b Uj and ψj ↗ u a. e. in Ω. Without loss of generality we can assume
that Ωj ⊂ Uj . Put

uj := sup{ϕ ∈ PSH−(Ωj) : ϕ 6 u in Ω}.
It is clear that uj ∈ E0(Ωj) and uj 6 uj+1 in Ωj+1. We claim that uj is max-
imal plurisubharmonic function in a open neighborhood of Ωj\Ω. Indeed, put
δ = supΩj+1

uj . Since Ωj+1 b Ωj and uj ∈ E0(Ωj) so δ < 0. Put

Gj := Ωj\(Ω ∩ {u < δ/2}).

Since {u < δ/2} b Ω so Gj be a open neighborhood of Ωj\Ω. Since {u > δ/2}∩Ω ⊂
{uj < u} ∩ Ω so from Theorem 1.1 in [11] we have (ddcuj)

n = 0 in Gj . Hence, uj
is maximal plurisubharmonic function in Gj . This proves the claim.

Since ψj 6 uj 6 u in Ω so uj ↗ u a.e. in Ω. Choose ψ ∈ F(Ω) such that uj ↗ u
in Ω\{ψ = −∞}. Put Ω′ := Ω\{ψ = −∞}. Let k ∈ N∗. Since {u 6 − 1

k} b Ω and

{uj 6 −
1

k
} ∩ Ω′ ↘ {u 6 −1

k
} ∩ Ω′

as j ↗ +∞ so there exists an increasing sequence {jk} such that {ujk 6 − 1
k}∩Ω′ b

Ω for all k. By replacing {uj} with its subsequence if necessary, we can assume
that

{uj 6 −
1

j
} ∩ Ω′ b Ω

for every j > 1. Put

vj =

{
uj in {uj > −1

j } ∩ Ω′

max(uj , u− 1
j ) in {uj < −1

j } ∩ Ω′.

Since u − 1
j < −

1
j = uj in {uj = −1

j } so by Proposition 2.3 in [13] we have vj is

F-plurisubharmonic function in Ω′. Since {ψ = −∞} is pluripolar and F-closed
in Ω so by Theorem 3.7 in [12] the function

v∗j (z) := F- lim sup
Ω′3ζ→z

vj(ζ), z ∈ Ω

is F-plurisubharmonic function in Ω. Since Ω be open subset of Cn so from Propo-
sition 2.14 in [12] we have v∗j ∈ PSH−(Ω).

We claim that uj = v∗j in Ω. Indeed, since {ψ = −∞} is a pluripolar subset of

Ω and uj = vj in Ω\({uj < −1
j } ∩ Ω′) so uj = v∗j in Ω\({uj < −1

j } ∩ Ω′). Put

ϕ =

{
v∗j in Ω

uj in Ωj\Ω.

Then, ϕ ∈ PSH−(Ωj) and ϕ 6 u in Ω. Hence, ϕ 6 uj in Ωj . Moreover, since
ϕ = v∗j > uj in Ω so uj = v∗j in Ω. This proves the claim. Since u − 1

j 6 vj 6 u

in Ω′ so u − 1
j 6 uj 6 u in Ω. Moreover, since uj is maximal plurisubharmonic

function in a open neighborhood of Ωj\Ω and uj > −1
j in ∂(Ωj\Ω) so uj > −1

j in

Ωj\Ω. Therefore,

1Ωu−
1

j
6 1Ωjuj 6 1Ωu

in Cn. Hence, 1Ωjuj converges uniformly to 1Ωu in Cn. The proof is complete. �
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Remark 3.2. Let Ω ⊂ Ωj+1 ⊂ Ωj be bounded open subsets of Cn such that Ω

has the F-approximation property and
⋂∞
j=1 Ωj ⊂ Ω. If u ∈ E0(Ω) and

uj := sup{ϕ ∈ PSH−(Ωj) : ϕ 6 u in Ω}
then 1Ωjuj converges uniformly to 1Ωu in Cn. Indeed, since Ω has the F-approximation
property so there exists a sequence of hyperconvex domains {Uj} such that Ω b
Uj+1 b Uj and

⋂∞
j=1 Uj = Ω. Without loss of generality we can assume that

Ωj ⊂ Uj . Put

vj := sup{ϕ ∈ PSH−(Uj) : ϕ 6 u in Ω}.
Since vj 6 uj in Ωj so 1Ujvj 6 1Ωjuj 6 1Ωu in Cn. By Lemma 3.1 we have 1Ujvj
converges uniformly to 1Ωu in Cn. Hence, 1Ωjuj converges uniformly to 1Ωu in Cn.

We now give the proof of theorem 1.2. The idea of the proof is taken from [7]
(also see [8], [15]).

Proof of theorem 1.2. The necessity is obvious. We prove the sufficiency. Let U ′′j b
U ′j b Uj , j = 1, . . . ,m are open subsets such that Uj ∩Ω has the F-approximation

property and ∂Ω b
⋃m
j=1 U

′′
j . Without loss of generality we can assume that

Ω1\Ω b
⋃m
j=1 U

′′
j . Let uj ∈ E0(Ω ∩ Uj) and define

ujk = sup{ϕ ∈ PSH−(Ωk ∩ Uj) : ϕ 6 uj in Ω ∩ Uj}.

Without loss of generality we can assume that −1 6 ujk 6 0 for all j = 1, . . . ,m
and for any k ∈ N∗. From the proof of Theorem 1 in [7] (also see the proof
of Proposition 3.2 in [8]) there exists a convex continuous increasing function τ :
(−∞, 0)→ (0,+∞) and a positive number ε0 ∈ (0, 1) such that limx→0 τ(x) = +∞
and

|τ(uj − ε)− τ(uk − ε)| 6 1 in Uj ∩ Uk ∩ Ω

for all k, j = 1, . . . ,m and for any ε ∈ (0, ε0). Let {εj} ⊂ (0, ε0) such that εj ↘ 0.
Since τ is continuous function so there exists a decreasing sequence of positive real
numbers {δj} such that δj ↘ 0 and

τ(x− εj)− τ(x− εj − δ) 6 min

(
τ(−εj − δj − 1)

j
, 1

)
for any x ∈ [−1, 0], for any δ ∈ (0, δj ]. By Remark 3.2 we have 1Ωk∩Uju

j
k con-

verges uniformly to 1Ω∩Uju
j in Cn. Hence, by replacing {ujk} with a subsequence

if necessary, we can assume that

1Ω∩Uju
j − δk 6 1Ωk∩Uju

j
k 6 1Ω∩Uju

j

in Cn. Therefore,

|τ(ujh − εh)− τ(ukh − εh)| 6 3

in Uj∩Uk∩Ωh for any k, j = 1, . . . ,m. Choose χj ∈ C∞0 (Cn) satisfying 0 6 χj 6 1,
suppχj b U ′j and χj = 1 on a neighborhood of U ′′j . Let A > 0 so large that

|z|2 − A < 0 on Ω1 and that χj(z) + A|z|2 is plurisubharmonic in Cn for every
j = 1, . . . ,m. Put

vjh(z) = τ(ujh(z)− εh) + 3(χj(z) +A|z|2 −A2 − 1), z ∈ Ωh ∩ Uj
and

vh(z) = max

{
vjh(z)

τ(εh)
− 1 : z ∈ U ′j

}
.
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Since vjh ∈ PSH(Ωh ∩ Uj) and vjh 6 vkh in ∂U ′j ∩ U ′′k ∩ Ωh so vh is a negative

plurisubharmonic function in Ωh ∩ (
⋃m
j=1 U

′′
j ). Put Ω′ = Ω∩ (

⋃m
j=1 U

′′
j ) and define

v =

(
sup
h>1

vh

)∗
in Ω′. Then v ∈ PSH(Ω′). We claim that v < 0 in Ω′. Indeed, let G b Ω′ be an
open set. Choose δ > 0 such that U ′j ∩G ⊂ {uj < −δ} ∩ U ′j for any j = 1, . . . ,m.

Since ujh 6 u
j in Ω ∩ Uj so

vh(z) 6 max

{
τ(uj(z)− εh)

τ(−εh)
− 1 : z ∈ B′j

}
6
τ(−δ − εh)

τ(−εh)
− 1

for all z ∈ G. Hence, v < 0 in G. This proves the claim. Let K b Ω be an open
subset of Ω such that ∂K b Ω′ and Ω\K ⊂ Ω′. Put B = sup∂K v < 0 and define

w =

{
B in K

max(v,B) in Ω\K.

Then w ∈ PSH−(Ω). We claim that w ∈ N (Ω). Indeed, let ε > 0. Choose h ∈
N∗ such that 3(A2+1)

τ(−εh) < ε
2 and

(
1 + 1

h

) (
1− ε

2

)
< 1. Choose ε′h > εh such that(

1 + 1
h

) (
1− ε

2

)
τ(−εh) < τ(−ε′h). Then, we have

{w < −ε} ∩ Ω ⊂ ({v < −ε} ∩ Ω′) ∪K
⊂ ({vh < −ε} ∩ Ω′) ∪K

⊂
m⋃
j=1

({
vjh

τ(−εh)
− 1 < −ε

}
∩ Ω ∩ Uj

)
∪K

⊂
m⋃
j=1

({
τ(ujh − εh)− 3(A2 + 1)

τ(−εh)
< 1− ε

}
∩ Ω ∩ Uj

)
∪K

⊂
m⋃
j=1

({
τ(ujh − εh)

τ(−εh)
< 1− ε

2

}
∩ Ω ∩ Uj

)
∪K.

Since

τ(x− εh) 6 τ(x− εh − δ) +
τ(−εh − δh − 1)

h
6

(
1 +

1

h

)
τ(x− εh − δ)

for all x ∈ [−1, 0], for any δ ∈ (0, δh] so(
1 +

1

h

)
τ(ujh − εh) > τ(uj − εh)

in Ω ∩ Uj . Hence,

{w < −ε} ∩ Ω ⊂
m⋃
j=1

({
τ(uj − εh)

τ(−εh)
<

(
1 +

1

h

)(
1− ε

2

)}
∩ Ω ∩ Uj

)
∪K

⊂
m⋃
j=1

({τ(uj − εh) < τ(−ε′h)} ∩ Ω ∩ Uj) ∪K
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⊂
m⋃
j=1

({uj < εh − ε′h} ∩ Ω ∩ Uj) ∪K.

Since {uj < εh − ε′h} ∩ Ω ∩ Uj b Ω for all j = 1, . . . ,m so {w < −ε} ∩ Ω b Ω. It
follows that w ∈ N (Ω). This proves the claim. Now put

wj =

{
B in K

max(vj , B) in Ωj\K.

Then, wj ∈ PSH−(Ωj) and (supj wj)
∗ = w ∈ N (Ω). Hence, by Lemma 3.1 we get

Ω has the F-approximation property. The proof is complete. �
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