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Abstract

In this short note I discuss the problem, if it is possible to extend
the action of a Lie algebra g of Poisson vector fields on a Poisson man-
ifold M,π (here π is the Poisson bivector) to an action of the same Lie
algebra on the deformation quantization of the algebra C∞(M) by dif-
ferentiations. In the paper I give a list of cohomological obstructions,
(taking values in Hochschild and Lichnerowicz-Poisson cohomology of
M), that vanish iff such deformation of g exists.

Let A be a Poisson algebra, i.e. a commutative algebra A over a charac-
teristic 0 field (usually, over C or R, equipped with an antisymmetric bilinear
bracket {f, g}, f, g ∈ A (called Poisson bracket), which verifies the Jacobi
identity and the Leibniz rule with respect to the multiplication. An important
particular case of such algebras is given by the algebra of smooth functions
on a Poisson manifold M,π, where π is a bivector field on M , such that
its Schouten bracket with itself vanishes [π, π] = 0. In this case the Poisson
bracket is given by the formula

{f, g} = π(df, dg).

The notion of deformation quantization of a Poisson algebra (in case,
when A = C∞(M), one speaks about the quantization of Poisson Manifold
M) has been the subject of an extensive study for the last 30 years, culminat-
ing with Kontsevich’s theorem in 1997, see [1, ?]. The main problem, solved
for the manifolds by Kontsevich, is the existence (and uniqueness up to an
equivalence relation) of the deformed associative product ∗ on the algebra of
formal power series in ~ with coefficients in A, such that

f ∗ g = fg +
~
2
{f, g}+ o(~),

where o(~) denotes the terms of quadratic and higher order in ~.
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On the other hand, there are many important geometric and algebraic
structures, associated with a Poisson manifold and it is natural to ask, if it
is possible (and how) to transfer them form the classical algebra C∞(M) to
the quantized one. In this paper I discuss some important particular cases of
this general situation. Namely, we begin with a simple question whether it is
possible to transfer to A = (C∞(M)[[~]], ∗) a Poisson vector field X, i.e. a
vector field on M , which commutes with the Poisson brackets:

X({f, g}) = {X(f), g}+ {f,X(g)},

which is equivalent tot the equality LXπ = 0. The transferred object is nat-
urally assumed to be a derivative X of the latter (noncommutative) algebra,
such that

X (f) = X(f) +
∞∑
n=1

~nXn(f),

for some differential operators Xn.
As a natural extension of this question, we consider the following problem:

let g be a Lie algebra, acting on M by Poisson vector fields. We ask, if it
is possible to extend this action to an action of g on the noncommutative
algebra A by derivatives. This question is a bit more complicated than the
previous one since now we are obliged to take care not only of the derivative
properties of the operator X , but also of the commutators of the derivatives
[X ,Y ] for any two elements X, Y ∈ g. In both case we give an inductive
construction, giving an exhaustive list of cohomological obstructions, which
vanish iff the problem has a solution.

1 Preliminaries: Hochschild cohomology and

deformations

Let M,π be a Poisson manifold. Then we shall always assume that the defor-
mation quantization of its functions algebra is given by the following formal
series in ~ (c.f. [3]):

f ∗ g = fg +
~
2
{f, g}+

∞∑
k=2

~kBk(f, g), (1)
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for all f, g ∈ C∞(M). Here Bk(f, g) are some linear (over numbers) differen-
tial operators of f and g. The associativity condition

(f ∗ g) ∗ h = f ∗ (g ∗ h), (2)

for all f, g, h ∈ C∞(M) can be extended as a series of partial differential
equations on operators Bk. These equations are rather complicated. In order
to have a more convenient view on this problem it is better to consider the
Hochschild complex version of this equation.

Recall (the book [4] is the main reference for this subject), that for an
algebra A, its Hochschild cohomology is defined as the cohomology of the
complex

C∗(A) =
⊕
n≥0

Hom(A⊗n, A),

with differential

δϕ(f1, . . . , fp+1) = f1ϕ(f2, . . . , fp+1) +

p∑
i=1

(−1)iϕ(f1, . . . , fifi+1, . . . , fp+1)

+ (−1)p+1ϕ(f1, . . . , fp)fp+1.

Here ϕ ∈ Cp(A) = Hom(A⊗p, A) and f1, . . . , fp+1 ∈ A are arbitrary elements.
In the important particular case, when A = C∞(M) for a smooth manifold
M , one often reduces this complex to the so-called local Hochschild cohomol-
ogy complex Cloc(C

∞(M)), in which the spaces of linear maps Hom(A⊗n, A)
are replaces with the spaces of local cochains, Homloc(A

⊗n, A), given by the
polydifferential operators on functions; recall, that a map ϕ : A⊗p → A
is called polydifferential operator, if for any k = 1, . . . , p and any fi ∈
C∞(M), i = 1, . . . , k̂, . . . , p (here and elsewhere the hat̂over an element
means that this element is missing), the map

ϕk(f) = ϕ(f1, . . . , fk−1, f, fk+1, . . . , fp) : C∞(M)→ C∞(M)

is a linear (over the field) differential operator.
Unlike the usual Hochschild cohomology of C∞(M), its local cohomology

can be easily calculated, see for instance [5]: the resulting theorem, usually
called (a cohomological version of) Hochschild-Kostant-Rosenberg theorem,
says that the following map induces an isomorphism in cohomology

χ : Γ(Λ∗TM)→ C∗loc(C
∞(M))

χ(Φ)(f1, . . . , fp) =
1

p!

∑
σ∈Sp

(−1)σΦ(dfσ(1), dfσ(2), . . . , dfσ(p)),
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for any polyvector field Φ ∈ Γ(λpTM) and any functions f1, . . . , fp ∈
C∞(M); here on the left hand side we have zero differential, and the
Hochschild differential δ on the right. In particular local Hochschild coho-
mology of the algebra C∞(M) is equal to the space of polyvector fields:
H∗loc(C

∞(M)) = Γ(Λ∗TM). Below we shall usually omit the adjective local,
when speaking about the Hochschild cohomology of the smooth functions of
a manifold.

Hochschild complex of an algebra A bears many additional algebraic
structures. Two most important of them are the cup-product and Gersten-
haber bracket. The cup-product Cp(A) ⊗ Cq(A) → Cp+q(A) is determined
by the formula:

(ϕ ∪ ψ)(f1, . . . , fp+q) = ϕ(f1, . . . , fp)ψ(fp+1, . . . , fp+q),

where ϕ ∈ Cp(A), ψ ∈ Cq(A). This is an associative product; differential δ
verifies the graded Leibniz rule with respect to this product:

δ(ϕ ∪ ψ) = δ(ϕ) ∪ ψ + (−1)pϕ ∪ δ(ψ).

The Gerstenhaber bracket (c.f. [3]) is a map [, ] : Cp(A) ⊗ Cq(A) →
Cp+q−1(A), determined by the formula

[ϕ, ψ] =

p∑
k=1

(−1)k(q−1)ϕ ◦k ψ − (−1)(p−1)(q−1)
q∑
l=1

(−1)l(p−1)ψ ◦l ϕ,

where the composition maps ◦k are defined by the formulas:

ϕ ◦k ψ(f1, . . . , fp+q−1) = ϕ(f1, . . . , fk−1, ψ(fk, . . . , fk+q−1), fk+q, . . . , fp+q−1),

i.e. the values of ψ is substituted as an argument into ϕ. The map [, ] is
skew-symmetric with respect to shifted dimension:

[ϕ, ψ] = −(−1)(p−1)(q−1)[ψ, ϕ]

and direct computations show that it verifies the graded Jacobi identity

[ϕ, [ψ, ω]] = [[ϕ, ψ], ω] + (−1)(p−1)(q−1)[ψ, [ϕ, ω]],

or, in more symmetric form:

(−1)(p−1)(r−1)[ϕ, [ψ, ω]]+(−1)(q−1)(p−1)[ψ, [ω, ϕ]]+(−1)(r−1)(q−1)[ω, [ϕ, ψ]] = 0
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for any ω ∈ Cr(A). Observe, that if µ : A⊗ A→ A is the product map, i.e.
if we regard the product in A as an element in C2(A), then one can define
the differential δ by the formula

δ(ϕ) = −[µ, ϕ],

thus it follows from the Jacobi identity that a skew-symmetric version of
Leibniz rule holds for δ with respect to the bracket [, ]:

δ[ϕ, ψ] = [δϕ, ψ] + (−1)p−1[ϕ, δψ].

It is clear, that these two operations preserve the space of local cochains. One
can now improve the statement of the Hochschild-Kostant-Rosenberg theo-
rem as follows: the product and the bracket in (local) Hochschild cohomology
of the algebra C∞(M), induced from ∪-product and the bracket [, ] on the
local complex coincide with the wedge-product and the Schouten bracket on
polyvector fields respectively. Recall, that the Schouten bracket is the unique
bracket on vector field, that verifies the Leibniz rule with respect to wedge
product and is given by the commutator on usual vector fields.

It is now easy to write down the conditions, that guarantee the associa-
tivity of the ∗-product in terms of the operations in Hochschild complex: first
of all we interpret the bidifferential operators Bk as elements in C2(C∞(M)).
To make our notation shorter we shall also put B1(f, g) = 1

2
{f, g} = χ(π)

(here χ denotes the Hochschild-Kostant-Rosenberg antisymmetrization map,
see above). One now obtains the equations by comparing the coefficients with
the same power in ~ on both sides of (2) using the definitions of Gerstenhaber
bracket and its properties, listed above. The first few equations are

δB1 = 0;

δB2 = −1

2
([B1, B1])

δB3 = −[B1, B2] = −1

2
([B1, B2] + [B2, B1]),

(3)

and so on. If we consider the formal power series B =
∑∞

k=1 ~kBk as an ele-
ment in C∗(C∞(M))[[~]] and extend all the operations in Hochschild complex
to this module in an evident way, then we can write all these equalities in a
rather concise way:

δB +
1

2
[B,B] = 0. (4)
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This equation is usually called the Maurer-Cartan equation.
We conclude this section, by recalling, the the existence (and uniqueness

up to an equivalence) of the solution of the Maurer-Cartan equation (4) with
any first term B1 given by a Poisson bivector (i.e. B1(f, g) = 1

2
{f, g}), is

guaranteed by the well-known Kontsevich’s formality theorem, see [1, ?]. In
what follows we shall assume, that such a solution B is fixed and denote by
Bk its coefficients.

2 From vector field to derivation

We begin with the problem of extending a Poisson vector field to a derivative
of the deformed algebra. So let X = X0 be a Poisson vector field on M,π;
this is equivalent to the condition that X verifies Leibniz rule with respect
to the Poisson bracket {, }, i.e.

X({f, g}) = {X(f), g}+ {f,X(g)}. (5)

We are looking for a formal power series operator

X =
∞∑
k=0

~kXk,

where Xk : C∞(M) → C∞(M), k ≥ 1 are some differential operators (and
X0 = X); it is our purpose to find the series J such, that

X (f ∗ g) = X (f) ∗ g + f ∗ X (g). (6)

Using the decomposition (1) we can rearrange this graded relation in the
form of a series of equations, beginning with:

X0(fg)− fX0(g)−X0(f)g = 0,

which holds, since X0 is a vector field;

X1(fg)− fX1(g)−X1(f)g =
1

2
({X0(f), g}+ {f,X0(g)} −X0({f, g})),
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which can be easily fulfilled: recall, that X is a differentiation of Poisson
bracket (see (5)) so the right hand side vanishes; now it is enough to take an
arbitrary vector field as X1. Next:

X2(fg)− fX2(g)−X2(f)g =
1

2
({X1(f), g}+ {f,X1(g)} −X1({f, g}))

+B2(X0(f), g) +B2(f,X0(g))−X0(B2(f, g))

(7)

The left hand side of this equality is equal to the opposite of Hochschild
differential of X2. On the other hand, the expression on the right of this
formula can be interpreted as the sum of two Gerstenhaber brackets:

1

2
({X1(f), g}+ {f,X1(g)} −X1({f, g})) = [B1, X1](f, g),

B2(X0(f), g) +B2(f,X0(g))−X0(B2(f, g)) = [B2, X0](f, g).

So, if we apply Hochschild differental to the right hand side of this formula,
we shall obtain:

δ([B1, X1] + [B2, X0]) = [δ(B1), X1]− [B1, δ(X1)]

+ [δ(B2), X0]− [B2, δ(X0)]

= [δ(B2), X0],

since X0, X1 and B1 are Hochschild cocycles (the latter follows from the
Leibniz rule for a Poisson bracket; c.f. also the first equality in (3)). On the
other hand, since ∗ is an associative product, we have from (3)

δ(B2) = −1

2
[B1, B1].

Since X0 is a symmetry of B1 (the latter being given by Poisson bivector),
it follows from Jacobi identity that [[B1, B1], X0] = 0; so the right hand side
of the last equation vanishes, and we conclude, that the right hand side is a
Hochschild cocycle.

Recall, that for a Poisson manifld M,π its Lichnerowicz-Poisson cohomol-
ogy is defined as the cohomology of the complex Γ(Λ∗TM) with differential
dπ. Using the identifications of previous section, we can say, that dπ is equal
to the map in Hochschild cohomology, induced by the Gerstenhaber bracket
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with χ(π). If we apply this map to the Hochschild cocycle [B2, X0], we ob-
tain from Jacobi identity, invariance of π with respect to X = X0 and the
Maurer-Cartan equation:

[B1, [B2, X0]] = [[B1, B2], X0] = [δB3, X0] = δ([B3, X0]).

The last equality follows from the fact, that X0 is closed 1-cochain. Thus the
following is true:

Proposition 2.1. One can find the derivative X up to the second degree in
~ iff the class of [B2, X0] ∈ H2(C∞(M)) belongs to the image of

dπ : H1(C∞(M))→ H2(C∞(M)), where dπ(Y ) = [π, Y ],

for a vector field X ∈ H1(C∞(M)). Here π is the bivector, which defines the
Poisson structure and the brackets on the right denote the Schouten brackets
on polyvector fields. Or, more accurately, it vanishes, iff the class of [B2, X0]
in the Lichnerowicz-Poisson cohomology of M vanishes.

Now we are going to proceed by induction in the powers of ~. To make
the pattern clear we begin with the next degree: we suppose that X0, X1 and
X2 have been chosen so that equation (6) holds up to the second degree in
~. Thus, the first non-zero term, that we should consider is:

X3(fg)− fX3(g)−X3(f)g = [B1, X2](f, g) + [B2, X1](f, g) + [B3, X0](f, g).
(8)

First, we show, that the right hand side of this equation is a Hochschild
cocycle. Recall, that

δX0 = 0, δX1 = 0, δX2 = −[B1, X1]− [B2, X0],

δB1 = 0, δB2 = −1

2
[B1, B1], δB3 = −[B2, B1].

So we have, using this and the graded skew symmetry of Gerstenhaber
bracket

δ([B1, X2] + [B2, X1] + [B3, X0]) = [B1, [B1, X1]] + [B1, [B2, X0]]

+
1

2
[X1, [B1, B1]] + [X0, [B2, B1]]
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Using the Jacobi identity for Gerstenhaber bracket and its skew symmetry
we have:

1

2
[X1, [B1, B1]] + [B1[B1, X1]] =

1

2
([X1, [B1, B1]] + 2[B1, [B1, X1]])

=
1

2
([B1, [B1, X1]]− [B1, [X1, B1] + [X1, [B1, B1]]) = 0

Similarly,with the help of Jacobi identity and the fact, that X0 is a symmetry
of the Poisson bracket, we have

[B1, [B2, X0]]+[X0, [B2, B1]]=[B1, [B2, X0]]−[B2, [X0, B1]]+[X0, [B2, B1]] = 0.

So the claim is true. Further, one can show, that Gerstenhaber bracket of
this element with the Poisson bivector is exact with respect to the Hochschild
boundary:

[B1, [B1, X2] + [B2, X1] + [B3, X0]]

= [B1, [B1, X2]] + [[B1, B2], X1]− [B2, [B1, X1]] + [[B1, B3], X0]

=
1

2
[[B1, B1], X2]−

1

2
[δB3, X1] + [B2, δX2]

+ [B2, [B2, X0]]− [δB4, X0] +
1

2
[[B2, B2], X0]

= − ([δB2, X2]− [B2, δX2]) +
1

2
([δB3, X1] + [δB4, X0])

+
1

2
[[B2, B2], X0] + [B2, [B2, X0]]

= δ([B2, X2] + [B3, X1] + [B4, X0]).

Observe, that we can perturb the last chosen element X2 by any vector field
X ′ without spoiling its cohomological properties: this will not change its
Hochschild coboundary, so the previous equation (7) will not be violated. On
the other hand, the element on the right hand side of the equation (8) will
be perturbed by a Poisson-exact element dπX. Thus, we conclude, that the
statement of the theorem remains intact: the existence of X3 depends on the
triviality of the class of [B1, X2] + [B2, X1] + [B3, X0] in Poisson cohomology.

Now the general construction is clear: we begin by supposing that the
terms X0, X1, . . . , Xn have been chosen so, that the equality (6) holds up
to degree n in ~. Then the following stage is given by an operator Xn+1,
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verifying the equality:

δXn+1 = −
n+1∑
k=1

[Bk, Xn+1−k]. (9)

Then by inductive hypothesis we have the following differentiation properties:

δXk = −
k∑
j=1

[Bj, Xk−j],

and, since the multiplication is associative

δBk = −1

2

k−1∑
i=1

[Bi, Bk−i].

Using these two equations, we see that the right hand side of equation (9) is
a cocycle:

δ

(
n+1∑
k=1

[Bk, Xn+1−k]

)
=

n+1∑
k=1

([δBk, Xn+1−k]− [Bk, δXn+1−k])

= −
n+1∑
k=1

(
1

2
[
k−1∑
i=1

[Bi, Bk−i], Xn+1−k]− [Bk,
n+1−k∑
j=1

[Bj, Xn+1−k−j]]

)

=
1

2

∑
p+q+r=n+1

([Xr, [Bp, Bq]] + 2[Bp, [Bq, Xr]) = 0,

where the last equality follows from Jacobi identity. Further, just like in the
case of X2 we can reduce the question of finding the extensions Xn+1, n ≥ 2
to the same form as forX2 andX3. Namely, observe, that adding a vector field
X ′ to Xn does not change the relation, which determines it (since δX ′ = 0.
On the other hand, this perturbation turns the right hand side of equation
(9) into

[B1, X
′] +

n+1∑
k=1

[Bk, Xn+1−k].

Both terms, as we know, are closed Hochschild cochains, and the first one
(after passing to cohomology) has the form dπ(X ′), where dπ is Lichnerowicz’s
Poisson cohomology differential. Thus, we conclude:
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Proposition 2.2. One can find a continuation Xn+1 of the deformed sym-
metry, if and only if the right hand side of equality (9) gives a trivial element
in Lichnerowicz’s Poisson cohomology.

To prove this, we need just to show, that the element on the right is closed
with respect to dπ, when we pass to cohomology. But this follows easily from
the relations (modulo exact Hochschild cochains):

[B1, Xn] =
n+1∑
k=2

[Bk, Xn+1−k]

and

[B1, Bn] =
1

2

k−2∑
i=2

[Bi, Bk−i].

These are just the relations we gave earlier, where we omit the Hochschild
differential (since it in any case shall vanish on the level of cohomology).

2.1 Deformation of a Lie algebra action

Let g be a Lie algebra, acting on a Poisson manifold M , i.e. represented in
the Lie algebra D1

π(C∞(M)) of Poisson vector fields on M that is vector
fields, commuting with the Poisson bivector π. The question is: is it possible
to extend this representation to a representation of g by derivations of the
quantized algebra? In this section we assume, that the bidifferential operators
B2k, k ≥ 1 are symmetric (in particular, this is the case of the operators,
constructed by Kontsevich’s formula, see [1]).

In order to answer this question, we consider this map in a generic form

Φ = ϕ0 + ~ϕ1 + ~2ϕ2 + · · · : g→ C1
loc(C

∞(M))[[~]].

We need to find Φ such that the conditions above would hold, i.e. that it
is a representation of g in derivations of (C∞(M)[[~]], ∗). Just like in the
previous section, one can start reasoning inductively: we assume, that the 0-
degree part of Φ is given by a representation ϕ0 : g→ V ectπ(M) of g in the
Lie algebra of Poisson vector fields on M,π. It is clear, that this map verifies
both conditions (i.e. that its image consist of derivations of the deformed
algebra and that it is a representation of g) up to degree 1 in parameter ~.
Then we look for a “correction term” ϕ1 : g → C1

loc(C
∞(M)); the map ϕ1
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should be such, that the sum ϕ0+~ϕ1 verifies the above mentioned conditions
up to degree 2 in ~. So when we restrict our attention to the degrees less, or
equal than 2 in ~, we obtain the following two equalities:

δϕ1(ξ) = 0, [ϕ1(ξ), ϕ0(η)] + [ϕ0(ξ), ϕ1(η)]− ϕ1([ξ, η]) = 0

for all elements ξ, η ∈ g. Here, as before, the [, ] denote the Gerstenhaber
brackets. It follows from the first equality, that ϕ1 should take value in
Hochschild cocycles. Similarly, the second equation here is equal to the
Chevalley differential ∂g(ϕ1)(ξ, η) of the map ϕ1 viewed as an element of
Chevalley complex of g with values in in the complex of Hochschild cochains
on which g acts via the representation ϕ0. Thus, the first stage of defor-
mation can be achieved by choosing an arbitrary 1-cocycle in the complex
C∗(g, C∗(C∞(M))) (zero cocycle can also be a choice).

Now, the next stage gives the following equations on the element ϕ2, the
next term in the series ϕ0 + ~ϕ1 + ~2ϕ2 + . . . :

δ(ϕ2(ξ)) = [B1, ϕ1(ξ)] + [B2, ϕ0(ξ)],

∂g(ϕ2)(ξ, η) = [ϕ1(ξ), ϕ1(η)].

Once again, this equalities should hold for any ξ, η ∈ g. The right hand side
of the first equation is closed with respect to the Hochschild differential δ
(this can be proved by the same calculation as above). It is also closed with
respect to the Chevalley differential ∂g: we put

ω1
2 = [B1, ϕ1] + [B2, ϕ0] : g→ C2(C∞(M)),

then we compute

∂g(ω
1
2)(ξ, η) = ϕ0(ξ)([B1, ϕ1(η)] + [B2, ϕ0(η)])− ϕ0(η)([B1, ϕ1(ξ)]

+ [B2, ϕ0(ξ)])− [B1, ϕ1([ξ, η])]− [B2, ϕ0([ξ, η])]

= [ϕ0(ξ), [B1, ϕ1(η)] + [ϕ0(ξ), [B2, ϕ0(η)]]− [ϕ0(η), [B1, ϕ1(ξ)]]

− [ϕ0(η), [B2, ϕ0(ξ)]]− [B1, [ϕ1(ξ), ϕ0(η)]]

− [B1, [ϕ0(ξ), ϕ1(η)]]− [B2, [ϕ0(ξ), ϕ0(η)]] = 0.

The last equality here follows from the skew-antisymmetry and Jacobi iden-
tity. The right hand side of the second equality (which we denote as ω2

2) is
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clearly closed with respect to the Hochschild differential; Chevalley differen-
tial ∂g, applied to it gives:

∂g(ω
1
2)(ξ, η, ζ) = [ϕ0(ξ), [ϕ1(η), ϕ1(ζ)]]− [ϕ0(η), [ϕ1(ξ), ϕ1(ζ)]]

+ [ϕ0, (ζ)[ϕ1(ξ), ϕ1(η)]] + [ϕ1([ξ, η]), ϕ1(ζ)]

− [ϕ1([ξ, ζ]), ϕ1(η)] + [ϕ1([η, ζ]), ϕ1(ξ)],

which is equal to 0, because of the Jacobi identity and the assumption, that
ϕ1 is a Chevalley cocycle. Thus, the sum ω1

2 + ω2
2 is a closed element in the

bicomplex C∗(g, C∗(C∞(M))), the Chevalley complex of g with coefficients
in the Hochschild complex of C∞(M). We need to choose ϕ1 so, that the co-
homology class of this element is equal to 0. This should be done so, that ϕ1

would remain closed with respect to both Hochschild and Chevalley differen-
tials. The first condition means, that we can only add a Chevalley 1-cochain
on g with values in vector fields on M , while the second condition says, that
this correction term should be closed with respect to ∂g. In other words, we
can add to ϕ1 an arbitrary Chevalley 1-cocycle ψ : g→ V ect(M).

This correction term changes the first equation for ϕ2 by adding a
new term of the form [B1, ψ(ξ)]. When we pass to Hochschild homology,
this term will turn into the Lichnerowicz’s Poisson cohomology differen-
tial. Thus, we can interpret the first equation as follows: consider the dou-
ble complex C∗(g, CP ∗(M)), i.e. the Chevalley complex of g with coeffi-
cients in the Lichnerowicz’s complex of M . Then the element [B2, ϕ0] in
C1(g, C2(C∞(M))) is closed with respect to both differentials (to see this,
just observe, that the terms in its differentials above kill each other, and do
not interfere with the differentials of [B1, ϕ1]), in particular, with respect to
the Hochschild differential. Thus, it induces an element in C∗(g, CP ∗(M)),
closed with respect to the Chevalley differential. An easy calculation, simi-
lar to the computations from the previous sections, shows that dπ vanishes
on it too. Thus, it gives an element ω̃2 in the bicomplex cohomology, i.e.
in H3(g, CP ∗(M)). Then ω̃2 is equal to zero, iff one can find an element
c = c0 + c1 + c2 in C0(g, CP 2(M))⊕C1(g, CP 1(M))⊕C2(g, CP 0(M)), such
that ∂gc + dπc = [B2, ϕ0]. Comparing the bidegrees on both sides, we see,
that

dπc
0 = 0, ∂gc

0 + dπc
1 = [B2, ϕ0], ∂gc

1 + dπc
2 = 0 and ∂gc

2 = 0.

This is a bit less than what one should look for: in fact, we need c0 = c2 = 0.
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In this case we would have

dπc
1 = [B2, ϕ0], ∂gc

1 = 0,

where c1 is a Chevalley 1-cochain on g with values in vector fields on M .
Taking ϕ1 = −c1, we conclude, that the Hochschild class of [B1, ϕ1]+[B2, ϕ0]
is equal to zero in this case, hence we can find ϕ2, verifying the equation

δ(ϕ2(ξ)) = [B1, ϕ1(ξ)] + [B2, ϕ0(ξ)]. (10)

Thus, we should consider the sub-bicomplex

C̃∗(g, CP ∗(M)) =
⊕
p,q>1

Cp(g, CP q(M)) ⊆ C∗(g, CP ∗(M)).

We conclude, that there exists an extension ϕ2, verifying the equality (10),
if the class of [B2, ϕ0] in the cohomology of C̃∗(g, CP ∗(M)) is equal to 0.

Let us now suppose, that the equation (10) holds and consider the second
equality on ϕ2 i.e.

∂g(ϕ2)(ξ, η) = [ϕ1(ξ), ϕ1(η)]. (11)

It is easy to see, that the expression on the right hand side is closed with re-
spect to the Hochschild differential. On the other hand, if we apply Hochschild
differential to the left hand side, we shall get 0, because

δ(∂g(ϕ2)) = −∂g(δϕ2) = −∂g([B1, ϕ1(ξ)] + [B2, ϕ0(ξ)]) = 0.

Thus, we can pass to the Hochschild cohomology on both sides. Consider
the corresponding element in C∗(g, CP ∗(M)) (i.e. the difference between the
cohomology classes from the left and the right side of equation (11)). Arguing
just like in the previous section, one can show that it is closed with respect
to both differentials of this complex. On the other hand, we cannot change
ϕ1 otherwise, but by adding a dπ-closed 1-cocycle on g, if we don’t want
to spoil the equality (10). Thus, the only choice for such correction cocycle
is given by the formula dπ(f(ξ)), where f : g → C∞(M) is a C∞(M)-
valued 1-dimensional g-cocycle (i.e. the value of this map will be in the
space of Hamiltonian vector fields on M). This operation will not change
the cohomology class of the element in C∗(g, CP ∗(M)) since modulo closed
(with respect to Hochschild differential) elements we have

[dπf(ξ), ϕ1(η)] = [[B1, f(ξ)], ϕ1(η)] = −[B1, ϕ1(η)(f(ξ))] + [f(ξ), [B2, ϕ0(η)]],
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where the last term is equal to 0, since B2, and hence [B2, ϕ0(η)] is symmetric
bidifferential operator; so

[B2, ϕ0(η)](f(ξ), g)− [B2, ϕ0(η)](g, f(ξ)) = 0

for all g. Similarly, we can change ϕ2 only by a 1-cochain c : g→ CP 1(M), i.e.
by a cochain with values in vector fields (so that the Hochschild differential
of ϕ1 remains unchanged).

Thus, we conclude, that the question, whether it is possible to choose
ϕ2 verifying (10) so that the condition (11) holds, can be reduced to the
following: choose arbitrary ϕ2, verifying (10), then consider the difference
∂gϕ2 − [ϕ1, ϕ1] as an element in H2(g, CP 1(M)). If this element is trivial,
then we can change ϕ2 as needed.

Now, we can pass in a similar way to the case n = 3: then we have the
following two equations

δϕ3(ξ) = [B1, ϕ2(ξ)] + [B2, ϕ1(ξ)] + [B3, ϕ0(ξ)] (12)

∂gϕ3(ξ, η) = [ϕ2(ξ), ϕ1(η)] + [ϕ2(η), ϕ1(ξ)]. (13)

Now we want to make (12) hold without disrupting (10) and (11). This
means, that we can change ϕ2 only by adding to it a closed 1 g-cochain with
values in CP 1(M). On the other hand, reasoning as above, we see, that the
right hand side of equation (12) is closed with respect to the Hochschild dif-
ferential δ and (when we pass to the cohomology) with respect to the Poisson
differential dπ and Chevalley differential ∂g. Thus, as before we conclude: one
can choose ϕ3, so that the equality (12) would hold, if the class of the right
hand side of this equation in the cohomology of bicomplex C̃∗(g, CP ∗(M))
vanishes.

Further, as before, changing ϕ3 by a CP 1(M)-valued 1 g-cochain, we
see, that one can choose ϕ3 so, that (13) would hold, if the class of the
difference ∂gϕ3(ξ, η)− [ϕ2(ξ), ϕ1(η)] + [ϕ2(η), ϕ1(ξ)] in Chevalley cohomology
H2(g, CP 1(M)) is trivial.

Finally, reasoning by induction we obtain the following general statement:

Proposition 2.3. Suppose, that we have found the maps ϕ1, ϕ2, . . . , ϕn so
that the conditions on Φn = ϕ0 + ~ϕ1 + · · · + ~nϕn hold up to ~n. The one
can choose ϕn+1, so that for the map Φn + ~n+1ϕn+1 the first condition (i.e.
that this map is derivation) would hold up to degree n+ 1 in ~, if the class of

ω′n(ξ) = [B1, ϕn(ξ)] + [B2, ϕn−1(ξ)] + · · ·+ [Bn+1, ϕ0(ξ)]
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in the cohomology of bicomplex C̃∗(g, CP ∗(M)) vanishes. Further, one can
choose this same ϕn+1 so, that the second condition (i.e. that that this map is
a representation of g) would also hold up to ~n+1, if the class of the element

ω′′n = ∂gϕn+1(ξ, η)− [ϕn(ξ), ϕ1(η)]− [ϕn−1(ξ), ϕ2(η)]− · · · − [ϕ(ξ), ϕ1(η)]

+ [ϕn(η), ϕ1(ξ)]− [ϕn−1(η), ϕ2(ξ)]− · · · − [ϕ(η), ϕ1(ξ)]

in Chevalley cohomology H2(g, CP 1(M)) is trivial.
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