
Hermitian algebraic K–theory, Wagoner
complex, and the root system D

Th.Yu.Popelensky

Abstract
This manuscript is a based on some recent results of ongoing project

which is devoted to investigation of the role of root systems, Weyl and
Coxeter groups in algebraic K-theory.

For the root system D we construct an analog of the Wagoner
complex used in his proof of the equivalence of KQ

∗ and KBN
∗ (linear)

algebraic K-theories. We prove that the corresponding K-theory KUD
∗

for the even orthogonal group is naturally isomorphic to KUBN
∗ -theory

constructed by Yu.P. Solovyov and A.I. Nemytov. Also some open
problems are raised.

Introduction
Let A be an associative ring. After pioneering works on the algebraic Kn(A)
groups for n = 0, 1, 2 several definitions of higher algebraic K-groups were
proposed. The question of comparing the definitions of the higher K-groups
was very natural. Most attention was paid to the sequence of functors and
natural transformations described for example in [6]:

KQ
∗ → KV

∗ → KS
∗ → KK−V

i ,

The first natural transformation lately was decomposed in [5, 7] into compo-
sition of two natural transformarions

KQ
∗ (A)

i→ KBN
∗ (A)→ KV

∗ (A).

Some transformations were proved to be equivalences with less difficulties
than other (for KK−V

i one should assume that the argument ring A is left
regular).

One of the most interesting case was the equivalence of the Quillen K-
theory and the Volodin K-theory which was proved in [3]. Very remarkable
proof of this equivalence was found later, see [4].

1



The groupsKBN
∗ were introduced by Wagoner in [7] and they are a version

of the Volodin K–theory KV
∗ . The proof in [5] uses the combinatoric of the

root system A and the combinatoric of the corresponding partition of Rn into
facettes.

In 1980 Yu.P.Solovyov and A.I.Nemytov for the rings with involution had
established natural equivalence of KUQ

∗ (Hermitian analog of the Quillen K-
theory) and the Hermitian analog of KBN

∗ -theory. Their construction and
the proof were based on the combinatoric of the root system C. In this paper
we consider an analog KUD

∗ of the KBN
∗ -theory which is constructed on the

root system D and show that for the even orthogonal group this K–theory
is equivalent to KUQ

∗ .

1 Basic definitions
Let A be an associative ring with 1 equipped with an involution a 7→ a∗

satisfying conditions: (1) 1∗ = 1; (2) a∗∗ = a; (3) (a + b)∗ = a∗ + b∗; (4)
(ab)∗ = b∗a∗. Let us also fix a central element ε such that ε∗ε = 1 = εε∗. Fix
an additive subgroup Λ ⊂ A such that

(1) aΛa∗ ⊂ Λ for all a ∈ A;
(2) Λmin = {a− εa∗ : a ∈ A} ⊂ Λ ⊂ Λmax = {a ∈ A : a = −εa∗}.
Denote by Λ2n the additive subgroup of M2n(A) consisting of matrices

(xij) with elements satisfying the relations xij = −εx∗ji и xii ∈ Λ.
The set of matrices

U2n(A) = U2n(A, ε,Λ) =

= {X ∈ GL2n(A) : X∗
(

0 E
0 0

)
X =

(
0 E
0 0

)
mod Λ2n},

with matrix multiplication is call a unitary group. It depends on the choice
of ε and Λ but for simplicity we shall denote it by U2n(A). Also it is often
denoted by εGQ2n(A,Λ). This definition is due to Bak [?]. For particular
choices of the parameters ε and Λ one can obtain classical groups like the
general linear group, the symplectic group and the even orthogonal group
etc.

Passing to the limit with respect to the standard embedding U2n(A) →
U2(n+1)(A) one obtains the group U(A). Define the elementary subgroup to
be the subgroup generated by elementary matricies that is the matrices of
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the form

sij(a) =

(
1 + aEij 0

0 1− a∗Eji

)
,

rij(a) =

(
1 aEij − ε∗a∗Eji
0 1

)
,

tij(a) =

(
1 0

aEij − εa∗Eji 1

)
,

pi(b) =

(
1 bEii
0 1

)
,

qi(c) =

(
1 0
cEii 1

)
,

where a ∈ A, b∗, c ∈ Λ. It is known (see for example [2]) that EU(A) =
[U(A), U(A)] = [EU(A), EU(A)], that is EU(A) is a perfect subgroup and
it coincides with the commutant of U(A).

Applying the plus-construction one obtains the definition of the Quillen
hermitian K–theory: KUQ

j (A) = πj(BU(A)+).
Now let us remind the definition of KUBN

∗ (A) (see. [1]). Consider the
hyperplanes in Rn given by the equations ei ± ej = 0, 1 ≤ i < j ≤ n, and
ej = 0, where ei is the dual basis. Let us call by the facette of codimention j
a component in the complement of the union of all (j+1)–fold intersection of
the hyperplanes in the union of all j-fold intersections. Define the ordering
of the facettes: F < G iff F ⊆ G.

Define PnC to be the simplicial complex with k–simplices of the form
F0 < F1 < . . . < Fk. The inclusion PnC → Pn+1

C is induced by the repetition
of the last coordinate of a point in Rn. Passing to the limit with respect to
the inclusions one obtains the complex PC .

Let F be a facette in Rn. Denote by GF ⊂ U2n(A) the subgroup generated
by the elements sij(a) where ei− ej > 0 on F , rij(a) where ei + ej > 0 on F ,
tij(a) where ei + ej < 0 on F , pk(b) where ek > 0 on F , qk(c) where ek < 0
on F . This is so called unipotent subgroup corresponding to the facette F .

Define the ordering on the set of pairs (α, F ), where α ∈ U2n(A) and F
is a facet: (α′, F ′) < (α′′, F ′′) iff α′GF ′ ⊂ α′′GF ′′ and F ′ ⊂ F ′′.

Denote by UBN
2n (A) the simplicial complex with k-simplexes of form

(α0, F0) < (α1, F1) < . . . < (αk, Fk), where F0, F1, . . . , Fk are facettes
and αj ∈ U2n(A) for all j. The sub complex defined by the condition
αj ∈ EU2n(A) is denoted by EUBN

2n (A). Denote the limit groups by UBN(A)
и EUBN(A) correspondingly. One can check that

UBN(A) = KUQ
1 (A)× EUBN(A).
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Let us define

KUBN
n (A) = πn−1(UBN(A)), где n ≥ 1.

In [1] it was shown that the functors KUBN
n and KUQ

n (n ≥ 2) are equivalent,
and moreover, there is a natural homotopy equivalence UBN(A) ∼= ΩBU(A)+.

2 KD-groups and the even orthogonal group
The ideas presented in the previous section lead us to groups KD

∗ (A) whose
construction is based on the root system D.

Consider facettes in Rn defined by the hyperplanes ei ± ej = 0, 1 ≤ i <
j ≤ n. Denote these facettes by Φj to distinguish them the from the facettes
defined by the root system C.

Let PnD denote the simplicial complex whose k–simplices are (k+1)-tuples
Φ0 < Φ1 < . . . < Φk. For a D-facette Φ ⊂ Rn denote by GΦ ⊂ U2n(A) the
subgroup generates by the elements sij(a) where ei − ej > 0 on Φ, rij(a)
where ei + ej > 0 on Φ, tij(a) where ei + ej < 0 on Φ.

The set of all pairs (α; Φ), where α ∈ U2n(A) and Φ is a D-facet, is
partially ordered by the condition that (α′,Φ′) < (α′′,Φ′′) iff α′GΦ′ ⊆ α′′GΦ′′

and Φ′ ⊆ Φ′′.
Let UD

2n(A) denote the simplicial complex whose k-simplices are (α0,Φ0) <
(α1,Φ1) < . . . < (αk,Φk) where Φ0,Φ1, . . . ,Φk are D-facettes and αj ∈
U2n(A). Also let UD(A) = lim

→
UD

2n(A)

Define
KUD

n (A) = πn−1(UD(A)), где n ≥ 1.

Now let A be a commutative ring with 1. Let a∗ = a, ε = 1, Λ = Λmin = 0.
Then the corresponding unitary group U2n(A, ε,Λ) coincides with the even
orthogonal group O2n(A).

Theorem 1. There exists a natural isomorphism KD
n (A) = KBN

n (A).

Remind (see. [6, 1]) that one has cartesian squares of spaces

WC(αGF ) → E(U(A))
↓ ↓

WC(A) → BU(A)
(1)

and
WD(αGΦ) → E(U(A))
↓ ↓

WD(A) → BU(A)
(2)
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Let us describe the spaces from these diagrams. WC(A) is the realization
of the simplicial space which in dimension k is the disjoint union of the
spaces (F0 < . . . < Fk)×BGF0 . WC(αGF ) is the realization of the simplicial
space which in dimension k is the disjoint union of the spaces ((α0, F0) <
. . . < (αk, Fk)) × E(α0GF0). The definitions of WD(A) and WD(αGΦ) are
analogous. The universal covering E(G) → BG on the simplicial level is
defined by the correspondence (g0, g1, . . . , gk) 7→ (g−1

0 g1, . . . , g
−1
k−1gk). And

finally E(αGF ) is the geometric realization of the simplicial subcomplex of
E(U(A)) whose k-simplices are (g0, . . . , gk) where gk ∈ αGF . The definition
of the space E(αGφ) is analogous.

On the level of bisimplicial sets the cartesian square (1) is defined by the
correspondences

((α0, F0) < . . . < (αk, Fk)); (g0, . . . , gl)) → (g0, . . . , gl)
↓ ↓

(F0 < . . . < Fk; (g−1
0 g1, . . . , g

−1
l−1gl)) → (g−1

0 g1, . . . , g
−1
l−1gl)

and the cartesian square (2) is defined by analogous correspondences with
substitution of Φj instead of Fj.

The spaces E(αGF ) and E(αGΦ) are contractible therefore one has ho-
motopy equivalences WC(αGF ) ' UBN(A) and WD(αGΦ) ' UD(A).

Hence to compare the groups KBN
∗ (A) and KD

∗ (A) one could try to com-
pare the cartesian squares (1) and (2). So to prove theorem 1 it is sufficient
to prove homotopy equivalence of the lower left corners of (1) and (2), that is
to establish natural homotopy equivalence of the spaces WC(A) and WD(A).

Let us remind that a sheaf X of spaces over a simplicial complex K is a
collection of spaces {Xσ : σ ∈ K} and maps iστ : Xτ → Xσ for all σ < τ
such that iγσiστ = iγτ whenever γ < σ < τ . A simplicial subdivision K ′ of K
induces a subdivision X ′ of X as follows: for σ′ ∈ K ′ define X ′σ′ = Xσ where
σ ∈ K is the smallest simplex containing σ. If σ′ < τ ′ belong to K ′ and σ, τ
are the smallest simplices of K containing σ′, τ ′ respectively, then σ < τ and
we let iσ′τ ′ = iστ .

The realization of a sheaf X is the space |X| which is obtained from the
disjoint union

∐
σ∈K

σ × Xσ by identification of points (s, x) and (s, iστ (x))

where s ∈ σ < τ and x ∈ Xτ . The natural map |X ′| → |X| is a homeomor-
phism.

Obviously the spaces WC(A) and WD(A) are the realization of some
sheaves over PC and PD respectively. Denote these sheaves by WC and
WD respectively.

Intersections of the unit sphere with D-facettes (C-facettes) define the
complex QnD (QnC respectively). The complexes PnD and PnC are barycentric
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subdivisions of QnD and QnC respectively. The complex QnC is a subdivision of
QnD. More precisely, a simplex of QnD is either a simplex of QnC or is divided
into two part by one of the hyperplanes ek = 0. Namely, if two hyperplanes
ek = 0 and el = 0 intersect the simplex of QnD transversally then in the
corresponding facette there exist points such that ek + el > 0 and points
such that −ek − el < 0 (or points such that ek − el > 0 and points such that
−ek + el < 0).

One can check that for a C-facette F and the smallest D-facette Φ con-
taining F one has GF = GΦ. Note that in general case for rings with involu-
tion this isomorphism does not hold.

Therefore there exists a common subdivision P̂n of complexes PnD and
PnC such that, induced sheaves W ′

C and W ′
D over it coincide. Taking the

realizations we obtain our claim.

3 Further discussion
Assume Λ = Λmin 6= 0. This case is more difficult for the following reason.
For a C-facette F and the smallest D-facette Φ containing F the inclusion
GΦ ⊂ GF is presumably strict for most facettes. The reason is that for
Λ 6= 0 there are so called long roots unipotent pi(b) and qi(c) which are
not used as generators for elementary group for the root system D. This
presumably shows that one cannot expect the group generated by the short
root unipotents sij, tij, rij to be perfect and coinciding with the commutant
of the corresponding unitary group. There is nontrivial example even in
commutative case. For a commutative ring A, trivial involution, ε = −1
and Λ = Λmax = A one obtains symplectic K-theory. This leads for the
following question: what part of the symplectic K-theory can be recovered
from KUD(A)?

Nevertheless the following statement shows that in the case Λ = Λmin the
difference between the root systems C and D and corresponding generators
of EU(A) is more subtle.

Lemma 2. Assume Λ = Λmin. Then the group EU(A) is generated by
elementary matrices sij, rij, tij.

Proof. In EU2n(A) for n ≥ 2 one has the relations

[sij(a), rji(1)] = pi(a− a∗ε∗)
[sji(a), tij(ε)] = qi(a− a∗ε)

which shows that even in unstable range EU2n(A) is generated by the short
root unipotents.
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Unfortunately there are no such statement for groups like GF . To be
more precise assume that for a facette F one has ei − ej > 0 and ei + ej > 0
on F . Hence ei > 0 on F . Generators sij, rij, pi belong to GF and one can
use the relation from the proof of the previous lemma to see that pi can be
excluded from the list of generators of GF .

On the other hand this facette F has a face F0 defined by the equation
ei + ej = 0 and one no longer can apply the relation [sij(a), rji(1)] = pi(a−
a∗ε∗) because there is no generator rij in GF0 .

Moreover, consider for example the facette F defined by e1 = e2 = . . . =
en > 0. The corresponding group (in unstable range) GF is abelian and is
generated only by the long root unipotents pi, i = 1, . . . , n, while there are
no short root generators.

For a C-facette F define the groupGD
F to be the subgroup ofGF generated

only by short roots which are positive on F . Clearly for F ′ ⊂ F on has the
inclusions

GF ⊃ GF ′

∪ ∪
GD
F ⊃ GD

F ′

(3)

Now consider the space W̃C(A) which is defined in the same way as WC(A)
using the groups GD

F instead of GF . Clearly one has a map h : W̃C(A) →
WC(A) and the map H : P̃C → PC of the corresponding simplicial sheaves.

Hence to investigate whether the map h is a homotopy equivalence it is
natural to investigate the map H. For that purpose it could be useful to
consider a kind of cokernel of H because the quotient GF/G

D
F is not too big

and the generator of GF which are not in GD
F generate an abelian subgroup

in GF .
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