
ON THE GENERATORS OF THE POLYNOMIAL ALGEBRA
AS A MODULE OVER THE STEENROD ALGEBRA

SUR LES GÉNÉRATEURS DE L’ALGÈBRE POLYNOMIALE
COMME MODULE SUR L’ALGÈBRE DE STENNROD

D- Ă. NG VÕ PHÚC† AND NGUYỄN SUM†,1

Abstract. Let Pk := F2[x1, x2, . . . , xk] be the polynomial algebra over the prime
field of two elements, F2, in k variables x1, x2, . . . , xk, each of degree 1.

We are interested in the Peterson hit problem of finding a minimal set of gen-
erators for Pk as a module over the mod-2 Steenrod algebra, A. In this paper, we
study the hit problem in degree (k−1)(2d−1) with d a positive integer. Our result
implies the one of Mothebe [4, 5].

Résumé. SoientA l’algèbre de Steenrod mod-2 et Pk := F2[x1, x2, . . . , xk] l’algèbre
polynomiale graduée à k générateurs sur le corps à deux éléments F2, chaque généra-
teur étant de degré 1.

Nous étudions le problème suivant soulevé par F. Peterson: déterminer un sys-
tème minimal de générateurs comme module sur l’algèbre de Steenrod pour Pk,
problème appelé hit problem en anglais. Dans ce but, nous étudions le hit prob-
lem en degré (k − 1)(2d − 1) avec d > 0. Cette solution implique un résultat de
Mothebe [4, 5].

1. Introduction

Let Pk be the graded polynomial algebra F2[x1, x2, . . . , xk], with the degree of
each xi being 1. This algebra arises as the cohomology with coefficients in F2 of
an elementary abelian 2-group of rank k. Then, Pk is a module over the mod-
2 Steenrod algebra, A. The action of A on Pk is determined by the elementary
properties of the Steenrod squares Sqi and subject to the Cartan formula (see
Steenrod and Epstein [12]).

An element g in Pk is called hit if it belongs to A+Pk, where A+ is the augmen-
tation ideal of A. That means g can be written as a finite sum g =

∑
u>0 Sq

2u(gu)
for suitable polynomials gu ∈ Pk.

We are interested in the hit problem, set up by F. Peterson, of finding a minimal
set of generators for the polynomial algebra Pk as a module over the Steenrod
algebra. In other words, we want to find a basis of the F2-vector space QPk :=
Pk/A+Pk = F2 ⊗A Pk.

The hit problem was first studied by Peterson [7], Wood [16], Singer [10], and
Priddy [8], who showed its relation to several classical problems respectively in
cobordism theory, modular representation theory, the Adams spectral sequence for
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the stable homotopy of spheres, and stable homotopy type of classifying spaces of
finite groups.

The vector space QPk was explicitly calculated by Peterson [7] for k = 1, 2, by
Kameko [3] for k = 3, and recently by the second author [13, 14] for k = 4. From
the results of Wood [16] and Kameko [3], the hit problem is reduced to the case of
degree n of the form

n = s(2d − 1) + 2dm, (1.1)
where s, d,m are non-negative integers and 1 6 s < k, (see [14].) For s = k− 1 and
m > 0, the problem was studied by Crabb and Hubbuck [2], Nam [6], Repka and
Selick [9] and the second author [13, 14].

In the present paper, we study the hit problem in degree n of the form (1.1) with
s = k − 1, m = 0 and d an arbitrary positive integer.

Denote by (QPk)n the subspace of QPk consisting of the classes represented by
the homogeneous polynomials of degree n in Pk. From the result of Carlisle and
Wood [1] on the boundedness conjecture, one can see that for d big enough, the
dimension of (QPk)n does not depend on d; it depends only on k. In this paper,
we prove the following.
Main Theorem. Let n = (k − 1)(2d − 1) with d a positive integer and let p =
min{k, d}, q = min{k, d− 1}. If k > 3, then

dim(QPk)n > c(k, d) :=
p∑
t=1

(
k

t

)
+ (k − 3)

(
k

2

) q∑
u=1

(
k

u

)
,

with equality if and only if either k = 3 or k = 4, d > 5 or k = 5, d > 6.
Note that c(k, 1) =

(
k
1
)

= k. If d > k, then c(k, d) =
(
(k − 3)

(
k
2
)

+ 1
)
(2k − 1).

At the end of Section 3, we show that our result implies Mothebe’s result in [4, 5].
In Section 2, we recall the definition of an admissible monomial in Pk and Singer’s

criterion on the hit monomials. Our results will be presented in Section 3.

2. Preliminaries

In this section, we recall some needed information from Kameko [3] and Singer [11],
which will be used in the next section.

Notation 2.1. We denote Nk = {1, 2, . . . , k} and

XJ = X{j1,j2,...,js} =
∏

j∈Nk\J

xj , J = {j1, j2, . . . , js} ⊂ Nk,

In particular, XNk
= 1, X∅ = x1x2 . . . xk, Xj = x1 . . . x̂j . . . xk, 1 6 j 6 k, and

X := Xk ∈ Pk−1.
Let αi(a) denote the i-th coefficient in dyadic expansion of a non-negative integer

a. That means a = α0(a)20 +α1(a)21 +α2(a)22 + . . . , for αi(a) = 0 or 1 with i > 0.
Set α(a) =

∑
i>0 αi(a).

Let x = xa1
1 xa2

2 . . . xak

k ∈ Pk. Denote νj(x) = aj , 1 6 j 6 k. Set Jt(x) = {j ∈
Nk : αt(νj(x)) = 0}, for t > 0. Then, we have x =

∏
t>0X

2t

Jt(x).

Definition 2.2. For a monomial x in Pk, define two sequences associated with x
by

ω(x) = (ω1(x), ω2(x), . . . , ωi(x), . . .), σ(x) = (ν1(x), ν2(x), . . . , νk(x)),
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where ωi(x) =
∑

16j6k αi−1(νj(x)) = degXJi−1(x), i > 1. The sequence ω(x) is
called the weight vector of x.

Let ω = (ω1, ω2, . . . , ωi, . . .) be a sequence of non-negative integers. The sequence
ω is called the weight vector if ωi = 0 for i� 0.

The sets of the weight vectors and the sigma vectors are given the left lexico-
graphical order.

For a weight vector ω, we define degω =
∑
i>0 2i−1ωi. If there are i0 =

0, i1, i2, . . . , ir > 0 such that i1 + i2 + . . . + ir = m, ωi1+...+is−1+t = bs, 1 6 t 6

is, 1 6 s 6 r, and ωi = 0 for all i > m, then we write ω = (b(i1)
1 , b

(i2)
2 , . . . , b

(ir)
r ).

Denote b(1)
u = bu. For example, ω = (3, 3, 2, 1, 1, 1, 0, . . .) = (3(2), 2, 1(3)).

Denote by Pk(ω) the subspace of Pk spanned by monomials y such that deg y =
degω, ω(y) 6 ω, and by P−k (ω) the subspace of Pk spanned by monomials y ∈ Pk(ω)
such that ω(y) < ω.
Definition 2.3. Let ω be a weight vector and f, g two polynomials of the same
degree in Pk.

i) f ≡ g if and only if f − g ∈ A+Pk. If f ≡ 0 then f is called hit.
ii) f ≡ω g if and only if f − g ∈ A+Pk + P−k (ω).
Obviously, the relations ≡ and ≡ω are equivalence ones. Denote by QPk(ω)

the quotient of Pk(ω) by the equivalence relation ≡ω. Then, we have QPk(ω) =
Pk(ω)/((A+Pk∩Pk(ω))+P−k (ω)) and (QPk)n ∼=

⊕
degω=nQPk(ω) (see Walker and

Wood [15]).
We note that the weight vector of a monomial is invariant under the permutation

of the generators xi, hence QPk(ω) has an action of the symmetric group Σk.
For a polynomial f ∈ Pk(ω), we denote by [f ]ω the class in QPk(ω) represented

by f . Denote by |S| the cardinal of a set S.
Definition 2.4. Let x, y be monomials of the same degree in Pk. We say that
x < y if and only if one of the following holds:

i) ω(x) < ω(y);
ii) ω(x) = ω(y) and σ(x) < σ(y).

Definition 2.5. A monomial x is said to be inadmissible if there exist monomials
y1, y2, . . . , ym such that yt < x for t = 1, 2, . . . ,m and x−

∑m
t=1 yt ∈ A+Pk.

A monomial x is said to be admissible if it is not inadmissible.
Obviously, the set of the admissible monomials of degree n in Pk is a minimal

set of A-generators for Pk in degree n. Now, we recall a result of Singer [11] on the
hit monomials in Pk.
Definition 2.6. A monomial z in Pk is called a spike if νj(z) = 2dj − 1 for dj a
non-negative integer and j = 1, 2, . . . , k. If z is a spike with d1 > d2 > . . . > dr−1 >
dr > 0 and dj = 0 for j > r, then it is called the minimal spike.

In [11], Singer showed that if α(n+k) 6 k, then there exists uniquely a minimal
spike of degree n in Pk.
Lemma 2.7.

i) All the spikes in Pk are admissible and their weight vectors are weakly decreas-
ing.

ii) If a weight vector ω is weakly decreasing and ω1 6 k, then there is a spike z
in Pk such that ω(z) = ω.
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The proof of the this lemma is elementary. The following is a criterion for the
hit monomials in Pk.

Theorem 2.8 (See Singer [11]). Suppose x ∈ Pk is a monomial of degree n, where
α(n+k) 6 k. Let z be the minimal spike of degree n. If ω(x) < ω(z), then x is hit.

The following theorem will be used in the next section.

Theorem 2.9 (See [13, 14]). Let n =
∑k−1
i=1 (2di − 1) with di positive integers

such that d1 > d2 > . . . > dk−2 > dk−1, and let m =
∑k−2
i=1 (2di−dk−1 − 1). If

dk−1 > k − 1 > 3, then
dim(QPk)n = (2k − 1) dim(QPk−1)m.

Note that we correct Theorem 3 in [13] by replacing the condition dk−1 > k−1 >
1 with dk−1 > k − 1 > 3.

3. Proof of Main Theorem

Denote Nk =
{

(i; I); I = (i1, i2, . . . , ir), 1 6 i < i1 < . . . < ir 6 k, 0 6 r < k
}
.

Definition 3.1. Let (i; I) ∈ Nk, let r = `(I) be the length of I, and let u be an
integer with 1 6 u 6 r. A monomial x ∈ Pk−1 is said to be u-compatible with (i; I)
if all of the following hold:

i) νi1−1(x) = νi2−1(x) = . . . = νi(u−1)−1(x) = 2r − 1,
ii) νiu−1(x) > 2r − 1,
iii) αr−t(νiu−1(x)) = 1, ∀t, 1 6 t 6 u,
iv) αr−t(νit−1(x)) = 1, ∀t, u < t 6 r.

Clearly, a monomial x can be u-compatible with a given (i; I) ∈ Nk for at most
one value of u. By convention, x is 1-compatible with (i; ∅).

For 1 6 i 6 k, define the homomorphism fi : Pk−1 → Pk of algebras by substi-
tuting

fi(xj) =
{
xj , if 1 6 j < i,

xj+1, if i 6 j < k.

Definition 3.2. Let (i; I) ∈ Nk, x(I,u) = x2r−1+...+2r−u

iu

∏
u<t6r x

2r−t

it
for r =

`(I) > 0, x(∅,1) = 1. For a monomial x in Pk−1, we define the monomial φ(i;I)(x)
in Pk by setting

φ(i;I)(x) =


(x2r−1
i fi(x))/x(I,u), if there exists u such that

x is u-compatible with (i, I),
0, otherwise.

Then we have an F2-linear map φ(i;I) : Pk−1 → Pk. In particular, φ(i;∅) = fi.

For a positive integer b, denote ω(k,b) = ((k−1)(b)) and ω̄(k,b) = ((k−1)(b−1), k−
3, 1).

Lemma 3.3 (See [14]). Let b be a positive integer and let j0, j1, . . . , jb−1 ∈ Nk. We
set i = min{j0, . . . , jb−1}, I = (i1, . . . , ir) with {i1, . . . , ir} = {j0, . . . , jb−1} \ {i}.
Then, we have ∏

06t<b
X2t

jt
≡ω(k,b) φ(i;I)(X2b−1).
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Definition 3.4. For any (i; I) ∈ Nk, we define the homomorphism p(i;I) : Pk →
Pk−1 of algebras by substituting

p(i;I)(xj) =


xj , if 1 6 j < i,∑
s∈I xs−1, if j = i,

xj−1, if i < j 6 k.

Then, p(i;I) is a homomorphism ofA-modules. In particular, for I = ∅, p(i;∅)(xi) = 0
and p(i;I)(fi(y)) = y for any y ∈ Pk−1.

Lemma 3.5. If x is a monomial in Pk, then p(i;I)(x) ∈ Pk−1(ω(x)).

Proof. Set y = p(i;I)

(
x/x

νi(x)
i

)
. Then, y is a monomial in Pk−1. If νi(x) = 0, then

y = p(i;I)(x) and ω(y) = ω(x). Suppose νi(x) > 0 and νi(x) = 2t1 + . . .+ 2tc , where
0 6 t1 < . . . < tc, c > 1.

If I = ∅, then p(i;I)(x) = 0. If I 6= ∅, then p(i;I)(x) is a sum of monomials of the
form ȳ :=

(∏c
u=1 x

2tu

su−1
)
y, where su ∈ I, 1 6 u 6 c. If αtu(νsu−1(y)) = 0 for all u,

then ω(ȳ) = ω(x). Suppose there is an index u such that αtu(νsu−1(y)) = 1. Let
u0 be the smallest index such that αtu0

(νsu0−1(y)) = 1. Then, we have

ωi(ȳ) =
{
ωi(x), if i 6 tu0 ,

ωi(x)− 2, if i = tu0 + 1.

Hence, ω(ȳ) < ω(x) and ȳ ∈ Pk−1(ω(x)). The lemma is proved. �

Lemma 3.5 implies that if ω is a weight vector and x ∈ Pk(ω), then p(i;I)(x) ∈
Pk−1(ω). Moreover, p(i;I) passes to a homomorphism from QPk(ω) to QPk−1(ω).
In particular, we have

Lemma 3.6 (See [14]). Let b be a positive integer and let (j; J), (i; I) ∈ Nk with
`(I) < b.

i) If (i; I) ⊂ (j; J), then p(j;J)φ(i;I)(X2b−1) = X2b−1 mod(P−k−1(ω(k,b))).
ii) If (i; I) 6⊂ (j; J), then p(j;J)φ(i;I)(X2b−1) ∈ P−k−1(ω(k,b)).

For 0 < h 6 k, set Nk,h = {(i; I) ∈ Nk : `(I) < h}. Then, |Nk,h| =
∑h
t=1
(
k
t

)
.

Proposition 3.7. Let d be a positive integer and let p = min{k, d}. Then, the set

B(d) :=
{[
φ(i;I)(X2d−1)

]
ω(k,d)

: (i; I) ∈ Nk,p
}

is a basis of the F2-vector space QPk(ω(k,d)). Consequently dimQPk(ω(k,d)) =∑p
t=1
(
k
t

)
.

Proof. Let x be a monomial in Pk(ω(k,d)) and [x]ω(k,d) 6= 0. Then, we have ω(x) =
ω(k,d). So, there exist j0, j1, . . . , jd−1 ∈ Nk such that x =

∏
06t<dX

2t

jt
. According

to Lemma 3.3, there is (i; I) ∈ Nk such that x =
∏

06t<dX
2t

jt
≡ω(k,d) φ(i;I)(X2d−1),

where r = `(I) < p = min{k, d}. Hence, QPk(ω(k,d)) is spanned by the set B(d).
Now, we prove that the set B(d) is linearly independent in QPk(ω(k,d)). Suppose

that there is a linear relation∑
(i;I)∈Nk,p

γ(i;I)φ(i;I)(X2d−1) ≡ω(k,d) 0,
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where γ(i;I) ∈ F2. By induction on `(I), using Lemma 3.5 and Lemma 3.6 with
b = d, we can easily show that γ(i;I) = 0 for all (i; I) ∈ Nk,p. The proposition is
proved. �

Set Ck = {xj1xj2 . . . xjk−3x
2
j : 1 6 j1 < j2 < . . . < jk−3 < k, j1 6 j < k} ⊂

Pk−1. It is easy to see that |Ck| = (k − 3)
(
k
2
)
.

Lemma 3.8. Ck is the set of the admissible monomials in Pk−1 such that their
weight vectors are ω̄(k,1) = (k−3, 1). Consequently, dimQPk−1(ω̄(k,1)) = (k−3)

(
k
2
)
.

Proof. Let z be a monomial in Pk−1 such that ω(z) = (k − 3, 1). Then, z =
xj1xj2 . . . xjk−3x

2
j with 1 6 j1 < j2 < . . . < jk−3 < k and 1 6 j < k. If z 6∈ Ck,

then j < j1. Then, we have

z =
k−3∑
s=1

x2
js
xj1xj2 . . . x̂js

. . . xjk−3xj + Sq1(xj1xj2 . . . xjk−3xj).

Since x2
js
xj1xj2 . . . x̂js

. . . xjk−3xj < z for 1 6 s 6 k − 3, z is inadmissible.
Suppose that z ∈ Ck. If there is an index s such that j = js, then z is a

spike. Hence, by Lemma 2.7, it is admissible. Assume that j 6= js for all s. If z is
inadmissible, then there exist monomials y1, . . . , ym in Pk−1 such that yt < z for
all t and z =

∑m
t=1 yt+

∑
u>0 Sq

2u(gu), where gu are suitable polynomials in Pk−1.
Since yt < z for all t, z is a term of

∑
u>0 Sq

2u(gu), (recall that a monomial x in
Pk is called a term of a polynomial f if it appears in the expression of f in terms
of the monomial basis of Pk.) Based on the Cartan formula, we see that z is not a
term of Sq2u(gu) for all u > 0. If z is a term of Sq1(y) with y a monomial in Pk−1,
then y = xj1xj2 . . . xjk−3xj := ỹ. So, ỹ is a term of g0. Then, we have

ȳ := x2
j1
xj2 . . . xjk−3xj =

k−3∑
s=2

x2
js
xj1xj2 . . . x̂js

. . . xjk−3xj

+
m∑
t=1

yt + Sq1(g0 + ỹ) +
∑
u>1

Sq2u

(gu).

Since j1 < j, we have yt < z < ȳ for all t. Hence, ȳ is a term of Sq1(g0 + ỹ) +∑
u>1 Sq

2u(gu). By an argument analogous to the previous one, we see that ỹ is
a term of g0 + ỹ. This contradicts the fact that ỹ is a term of g0. The lemma is
proved. �

Proposition 3.9. Let d be a positive integer and let q = min{k, d− 1}. Then, the
set

B̄(d) :=
⋃
z∈Ck

{[
φ(i;I)(X2d−1−1z2d−1

)
]
ω̄(k,d)

: (i; I) ∈ Nk,q
}

is linearly independent in QPk(ω̄(k,d)). If d > k, then B̄(d) is a basis of QPk(ω̄(k,d)).
Consequently dimQPk(ω̄(k,d)) > (k − 3)

(
k
2
)∑q

u=1
(
k
u

)
with equality if d > k.

Proof. We prove the first part of the proposition. Suppose there is a linear relation

S :=
∑

((i;I),z)∈Nk,q×Ck

γ(i;I),zφ(i;I)(X2d−1−1z2d−1
) ≡ω̄(k,d) 0,

where γ(i;I),z ∈ F2. We prove γ(j;J),z = 0 for all (j; J) ∈ Nk,q and z ∈ Ck. The
proof proceeds by induction on m = `(J). Let (i; I) ∈ Nk,q. Since r = `(I) < q =
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min{k, d − 1}, X2d−1−1z2d−1 is 1-compatible with (i; I) and x2r−1
i fi(X2d−1−1) is

divisible by x(I,1). Hence, using Definition 3.2, we easily obtain

φ(i;I)(X2d−1−1z2d−1
) = φ(i;I)(X2d−1−1)fi(z2d−1

).

A simple computation show that if g ∈ P−k−1(ω(k,d−1)), then gz2d−1 ∈ P−k−1(ω̄(k,d));
if (i; I) ⊂ (j; ∅), then (i; I) = (j; ∅); by Lemma 3.5, p(j;∅)(S) ≡ω̄(k,d) 0. Hence,
applying Lemma 3.6 with b = d− 1, we get

p(j,∅)(S) ≡ω̄(k,d)

∑
z∈Ck

γ(j;∅),zX
2d−1−1z2d−1

≡ω̄(k,d) 0.

Since z is admissible in Pk−1, X2d−1−1z2d−1 is also admissible in Pk−1. Hence,
the last relation implies γ(j;∅),z = 0 for all z ∈ Ck. Suppose 0 < m < q and
γ(i;I),z = 0 for all z ∈ Ck and (i; I) ∈ Nk,q with `(I) < m. Let (j; J) ∈ Nk,q with
`(J) = m. Note that by Lemma 3.5, p(j;J)(S) ≡ω̄(k,d) 0; if (i; I) ∈ Nk,q, `(I) > m

and (i; I) ⊂ (j; J), then (i; I) = (j; J). So, using Lemma 3.6 with b = d− 1 and the
inductive hypothesis, we obtain

p(j,J)(S) ≡ω̄(k,d)

∑
z∈Ck

γ(j;J),zX
2d−1−1z2d−1

≡ω̄(k,d) 0.

From this equality, one gets γ(j;J),z = 0 for all z ∈ Ck. The first part of the
proposition follows.

The proof of the second part is similar to the one of Proposition 3.3 in [14].
However, the relation ≡ω̄(k,d) is used in the proof instead of ≡. �

For k = 5, we have the following result.

Theorem 3.10. Let n = 4(2d− 1) with d a positive integer. The dimension of the
F2-vector space (QP5)n is determined by the following table:

n = 4(2d − 1) d = 1 d = 2 d = 3 d = 4 d > 5
dim(QP5)n 45 190 480 650 651

Since n = 4(2d−1) = 2d+1 + 2d+ 2d−1 + 2d−1−4, for d > 5, the theorem follows
from Theorem 2.9 and a result in [14]. For 1 6 d 6 4, the proof of this theorem is
based on Theorem 2.8 and some results of Kameko [3]. It is long and very technical.
The detailed proof of it will be published elsewhere.

Proof of Main Theorem. For k = 3, the theorem follows from the results of Kameko
[3]. For k = 4, it follows from the results in [13, 14]. Theorem 3.10 implies
immediately this theorem for k = 5.

Suppose k > 6. Lemma 3.8 implies that QPk(ω̄(k,1)) 6= 0. Hence,

dim(QPk)k−1 > dimQPk(ω(k,1)) + dimQPk(ω̄(k,1))
> dimQPk(ω(k,1)) = k = c(k, 1).

So, the theorem holds for d = 1.
Now, let d > 1 and ω̃(k,d) = ((k − 1)(d−2), k − 3, k − 4, 2). Since ω̃(k,d) is weakly

decreasing, by Lemma 2.7, QPk(ω̃(k,d)) 6= 0. We have deg(ω(k,d)) = deg(ω̄(k,d)) =
deg(ω̃(k,d)) = (k − 1)(2d − 1) = n and (QPk)n ∼=

⊕
degω=nQPk(ω). Hence, using
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Propositions 3.7 and 3.9, we get

dim(QPk)n =
∑

degω=n
dimQPk(ω)

> dimQPk(ω(k,d)) + dimQPk(ω̄(k,d)) + dimQPk(ω̃(k,d))
> dimQPk(ω(k,d)) + dimQPk(ω̄(k,d)) > c(k, d).

The theorem is proved. �

Denote by N(k, n) the number of spikes of degree n in Pk. Note that if (i; I) ∈
Nk and I 6= ∅, then φ(i;I)(x) is not a spike for any monomial x. Hence, using
Propositions 3.7 and 3.9, we easily obtain the following.

Corollary 3.11. Under the hypotheses of Main Theorem,

dim(QPk)n > N(k, n) +
p∑
t=2

(
k

t

)
+ (k − 3)

(
k

2

) q∑
u=2

(
k

u

)
.

This corollary implies Mothebe’s result.

Corollary 3.12 (See Mothebe [4, 5]). Under the above hypotheses,

dim(QPk)n > N(k, n) +
p∑
t=2

(
k

t

)
.
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