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The basis
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From a biological point of view

In a simplified way, a biological neuron is a cell with:

I Synapses: connection points with other neurons.

I Dentrites: “inputs” of the neuron.

I Axon: “output” of the neuron.
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Some historical dates

I Original objective: to model/simulate the behavior(s) of
the human brain.

I 1943: formal neuron, proposed by a neurophysiologist,
Mc Culloch, and a logician, Pitts.

I 1957: multilayer perceptron (first version: single layer
and single output).
Obvious limits but theoretical and technological
advances.

I 1986: estimation of the gradient by backpropagation
(Rumelhart, Hinton et Williams, following Werbos in
1975).

I Finaly deep learning. . .
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Neuron
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Neuron

A neuron:

I some inputs X1, . . . ,Xp, with weights wi ,

I one output: Y ∈ R.

Several operations are successively performed by the neuron:

1. Weight step: sum of the inputs with the weights
(wi )i∈{1,...,p}.

2. Threshold step w0.

3. Activation function: ϕ.

The output is:

Y = ϕ

(
w0 +

p∑
i=1

wi Xi

)
.
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Activation function I

In the first version, activation function was Heaviside
function:

f (x) =

{
1 if x ≥ 0

0 otherwise
.

If
∑p

i=1 wi Xi is larger than the threshold −w0, the neuron
output is 1, 0 otherwise.
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Activation function II



Introduction

Neuron

Multilayer
perceptron

12/22

Activation function III

I This choice of the activation function depends on
regularity properties and interpretability in particular.

I Polynomial activation functions limit the range of the
neuron, so they are not considered in practice (the most
caricatural is the linear activation function).

I The ease of obtaining the derivative is interesting from
a computational point of view.

I Among the most commonly used are the sigmoid and
the hyperbolic tangent functions.
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Activation function IV

The sigmoid function is:

ϕs(x) =
1

1 + e−x
.

The function is infinitely derivable and is valued in [0, 1].
Its derivate is:

ϕ′s(x) = ϕs(x) [1− ϕs(x)] .
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Activation function V
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Activation function VI

The hyperbolic tangent function is:

ϕt(x) =
ex − e−x

ex + e−x
.

The function is infinitely derivable and is valued in [−1, 1].
Its derivate is:

ϕ′t(x) = 1− ϕ2
t (x) .
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Activation function VII
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How to determine weights? I

Let consider the sample (yi , xi1, . . . , xip)i∈{1,...,n}.
To determine the weights of the inputs, we minimize the
empirical risk:

Rn (w0,w1, . . . ,wn) =
n∑

i=1

`

yi , ϕ

w0 +

p∑
j=1

wjxij


where ` : R2 → R+ is a loss function.
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How to determine weights? II

I The neuron’s training refers to this phase of minimizing
empirical risk, and therefore determining weights.

I A gradient descent algorithm can be used to solve this
optimization problem (if the activation function allows
it).

I In order to avoid overfitting, we proceed by
cross-validation.
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Perceptron

I A perceptron is a set of neurons with p inputs
(multilayer perceptron with single layers).

I It’s a linear classifier.
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Multilayer perceptron I
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Multilayer perceptron II

I A Multilayer perceptron is made up of layers of neurons,
each neuron in a layer being connected to the neurons
in the adjacent layer.

I The layers of intermediate neurons are called hidden
layers: the more numerous they are, the greater the risk
of overfitting.

I To determine weights we use a backpropagation
algorithm.
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