Machine learning
4. Boosting

V. Lefieux

April 2019

Table of contents

Adaboost
Some properties

Empirical risk minimization

Generalization

«0O0>» «(Fr «Er <

it
v

A 2/39

Table of contents

Adaboost
Some properties

Empirical risk minimization

Generalization

«0O0>» «(Fr «Er <

it
v

2N G

3/39

Principle

Adaboost

> First algorithm of “boosting”: Tukey in 1972!

» Build a set of rules (predictors) that are then
aggregated.

» Process recursive: the rule built in step m depends on
the one built in step m — 1.

Principle |

-='>_aa

(O < <= o«

it
v

DA 5/39

Principle |l

(O B < E»

<

Q>

6/39

Principle Il

Weighted
sample (M-1)

= Gu
t

~

o

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

Principle IV

Adaboost

Weighted > 0
sample (M-1) gM W

!

T M

= (RS QA (z g)
T m=1

Weighted

sample 1 = 2

-

Weaklearner

» The word “Boosting” refers to general methods for
producing precise decisions from weak learner rules.

> A rule g that is slightly better than chance is called
weak learner:

Iy > 0/P(g(X) # V) = % o

» Some examples: 1-nn, trees with 2 terminal nodes
(stumps).

Adaboost

The Adaboost algorithm
With a weak learner g and a number of iterations M:

1. Initialize the weights of each data point: Adaboost

Vie{l,...,n} w1 = 1 .
n
2. For m=1to M:
a) Fit the the predictor g,(x) to the sample D} weighted by

Wims-- - Wnm-
b) Compute the error rate:

> Wl

o — i=1 Wi,mLg,(xi) Ay

m — il .
> im1 Wim

<1 - em)
am=In .
€m

Vie{l,....,n}: Wimt1 = Wi mexp (”mlém(x;);éy,v) .

c) Compute:

d) Update weights:

Finally:
E0) =Y anEn(x) -

Comments
Adaboost

» The step a requires that the weak learner can take into
account the weights. When this is not the case, the
predictor can be fit to a sub-sample of D7 in which the
observations are randomly drawn with weights

W17m, N Wn,m-

» The weights wy m, ..., Wp m are updated: if the j-th
individual is well classified, its weight is unchanged,
otherwise it's increased.

» The weight oy, of the rule g, increases with its
performance measured on Df': ap, increases when e,
decreases (g mustn't be “too weak”: if e, > 0.5 then
am < 0).

Table of contents

Adaboost
Some properties

Empirical risk minimization

Generalization

«0O>» «(F»r « >

«E>»

DAt 12/39

Empirical risk control (empirical error)

> em refers to the error rate calculated on D of gp:

n
o — >t wilg, (x)£y:
m — n .
D Wi

> ~m refers to the gain of the g, rule compared to a pure
chance rule:

em=1/2—vn .

One have:
R, (g) <exp< 22 >

The empirical risk tends to 0 when the number of iterations
increases.

Some properties

Risk control (generalization error)

Some properties

One have:

R(g8) < R.(g8)+ O (w/MnV>

where V is the Vapnik-Chervonenkis dimension.

» The biais/variance (approximation/estimation error)
trade-off is regulated by the number of iterations M:

» M small: the first term (approximation) dominates.
» M large: the second term (estimation) dominates.

» When M is (too) large, Adaboost overfits.

Table of contents

Adaboost
Some properties

Empirical risk minimization

Generalization

«0O>» «(F»r « >

«E>»

DAt 15/39

Idea

Consider (X, Y) a couple of random variables in
RY x {—1,1}.

The aim is to find the best predictor in a set of
predictors S.

Empirical risk
minimization

We could choose the predictor that minimizes, for
example:

R(g) =E (1gx)2v) =P(&(X)#Y) .

The problem is that the risk is not calculable.

The idea is to choose the rule that minimizes the
empirical risk:

Convexified empirical risk

> In general it's difficult to minimize the function:
R" — R
(g0xa),- 8 () = 51 Laa)

» The idea is to find another loss function ¢ : R x R — R
such as the function:

R" — R
(g(x1),...,8(xm) = £ 4Yi.g(x)).

is easier to minimize (if the function v — ¢(u,v) is
convex for example).

Empirical risk
minimization

Loss function

» The loss function ¢ (g(x),y) measures the difference
between g(x) and the expected quantity y € {—1.1}.

» This function must take values:

» large values when yg(x) < 0,
» small values when yg(x) > 0.

» Some Examples:
> E(g(X),y) =]lyg(x)<0 .
» {(g(x),y) = exp(—yg(x)) (has the advantage of being
convex in the second argument).

Empirical risk
minimization

Summary

>

Let's consider (X, Y) with values in RY x {~1,1}, a
loss function £/ : R x R — R.

We seek to be close to:
g* =arg min E [£(g(X), Y)I] -

The strategy is given the n sample i.i.d

(X1, Y1), ..., (Xn, Yn) the same distribution as (X, Y),
we try to minimize the empirical version of de
E[¢(g(X), Y)I:

> g (),)
i=1

Recursive approach: estimate g* by

g(x) = Z/\mﬂ:1 gm(x) where the g, are built recursively.

Method: use a numerical approach (gradient descent,
Newton-Raphson).

Empirical risk
minimization

Newton Raphson

» We note gm = (gm (Xl) yee+r8m (Xn))v and:
Empirical risk

]. ! minimization
J(gm) = > l(yi gm (%)) -
i=1

» Recurrence formula of the Newton-Raphson algorithm:
€m = 8m-1 — AVJ (gmfl) .

Disadvantages

1. This algorithm calculates the estimator only at the
design points xi, ..., Xp.
2. It doesn't take into account a possible regularity of the

function to be estimated (if x; is close to x; then g* (x;)
is close to g* (x;)).

Functional Gradient Descent (FGD)

Inputs:
» DY = {(x1,51),---,(Xn, ¥n)} the sample.
>) a regulation parameter such as 0 < A < 1. Empirical risk

minimization

» M the number of iterations.

v

h a weak learner (simple regression method).

1. Initialization: go = argminc £ 37, ¢(c, y;)
2. Form=1 M:

a) For i€ {l,...,n} calculate the opposite of the gradient

ag?xf)é(y;,g (x;)) and evaluate it at points gm—1 (X;):

Ui = —ae(y,-,g(x,-))‘

dg (xi) () =gm_1(x)

b) Fit the weak learner to the sample (xi, U1),. .., (xn, Us),
we note h,,, the weak learner thus defined.
¢) Update: gm(x) = gm1(x) + Am(x).
3. Output: the rule g(x) = gm(x).

Comments

» The output g(x) is a real. If we're trying to predict the
x label, we can use the y = sign (g(x)) rule.

Empirical risk
minimization

» Aggregation .:

M

g(x) = go(x) + A Y gm(x) -

m=1
» For the choice A =1 and £(g(x),y) = exp (—yg(x)),
this algorithm coincides (almost) with Adaboost.
> X and M are linked. X “controls” the speed at which we
minimize:

IS e ()
i=1

When A~ M\, and vice versa.

Weak learners

Empirical risk
minimization

» As with Adaboost, the rule used in the algorithm must
be weak (slightly better than random).

» Boosting a non-weak learner is generally poorly
performing.

> It is recommended to use a learner with a high biais and
a low variance (boosting reduces bias, not variance).

> We often use trees as a weak learner. To have a high
bias, we will use trees with few terminal nodes.

Boosting with the gbm package: entries

Empirical risk
minimization

1. Loss function (distribution).
2. Number of iterations M (n.trees).

3. Number of tree terminal nodes plus 1K
(interaction.depth).

4. Regulation parameter \ (shrinkage)

Example: spam detection

» OQut of 4,601 emails, we were able to identify 1813 En
spam messages. minimization
» The presence or absence of 57 words was also measured
on each of these emails.

We want to explain the variable spam by the 57 other
variables.
» To build a model adaboost with 500 iterations with
2-terminal node trees, simply run

> model_ada <- gbm(Y~.,data=data,distribution="adaboost",
interaction.depth=2,shrinkage=0.1,n.trees=500)

Selection of M

» The choice of the number of iterations is crucial for
boosting estimators.

» If M is too large we overadjust (estimators with little
bias but a lot of variance) and vice versa if M is too
small.

» A natural way to choose M is to try to minimize the
loss function:

~

M = arg ,Vr,réilg* E[e(Y,g(X)] .

» The above hope being unknown in practice, we can
estimate it and select the number of iterations
according to:

~

I .
M—argwrpelg*n;f(%,g(Xl)) :

Empirical risk
minimization

Selection of M

» Problem: the sample has already been used to build o

- ~ .. . mpirical ris

the adaboost estimators g: the empirical mean is a minimization
biased estimator of expectation.

> Solution: use procedures such as learning/validation,
cross-validation or Out Of Bag.

» On R, the function gbm.perf of the package gbm
allows to select M by these methods. For example:

> model <- gbm(Y\"{}., data=data,distribution="adaboost",interaction.depth=2,
shrinkage=0.05,train.fraction=0.75,n.trees=500)

> gbm.perf (model,method="test")

[1] 275

Table of contents

Adaboost
Some properties

Empirical risk minimization

Generalization

«0O>» «(F»r « >

«E>»

DAt 28/39

Idea

» Adaboost is a gradient descent method that minimizes
]E [f (g(X)’ Y)] Generalization

with £ (g(x),y) = exp (—yg(x)).

» The output g(x) is therefore an estimator of

~ L (PP((YY:_l 1//XX:=XX))) '

> Idea: apply the gradient descent algorithm for well
chosen loss functions.

Towards Logitboost

» It is assumed here that Y is valued in {0.1}.

» The conditional random variable Y /X = x follows a
Bernoulli distribution of parameter
p(x) =P(Y =1/X = x) and the likelihood for Bl
observation (x,y) is:

p(x)” (L= p(x)' ™ .
» The logistic regression model assumes:

_ 1 _exp (x"B)
P = T e (xTB) ~ T+ ep(xF)

where 3 € Rt is estimated by maximizing likelihood.

Idea
Use the functional gradient descent method to remove the

linearity hypothesis in writing p(x).

Logitboost

» Let's consider:

o0 1 ee(f)

T 1tep(-2f(x) e (—f(x)Fexp(F(X)) et

where f : R — R is an unknown function.

» As with logistic regression, we propose to estimate f
based on likelihood.

» Choice of loss function: the opposite of log-likelihood
(which will therefore have to be minimized):

—(Inp(x) + (1 =y)In(1 = p(x))) = In (1 + expexp (=2yf(x)))

with =2y — 1€ {~1,1}.
» It is easy to check that v+ In(1 4 exp(—2yu)) is
convex.

Logitboost

» The FGD algorithm applied to the loss function:

C:Rx{-1,1} - R Generalization
(F(x),7) = In (1 + exp (—27f(x)))

is called logitboost.
» The function E[¢(Y, f(X))] is minimal in:

oy 1 P(Y=1/X=x)
f (X)_|n<IP’(Y:—1/X:x)) .

» Adaboost and logitboost provide almost the same
results.

Classification rule

» After M iterations, Adaboost and Logitboost provide an

~

estimator f(x) of f*(x).

Generalization

» We can deduce an estimator p of
p(x) =P (Y =1/X = x) by considering:

1 exp <?(x))

ph) = 1+ exp (—2f(x)> exp (—f(x)) + exp (f(x)) ‘

» We can deduce a classification rule, for example:

1 ifpx)>05 & f(x)>0
YZYo ifpx) <05 o f(x)<0’

Application on R

Generalization

> In the package gbm, just use the argument
distribution=bernoulli to make logitboost.

> model_logit <- gbm(Y\"{}..,data=data,distribution="bernoulli",
interaction.depth=2,shrinkage=0.1,n.trees=500)

» The number of iterations is selected in the same way as
for Adaboost (function gbm.perf).

L,-boosting

> It applies in a context of regression: Y € R.
» A regressor is a function f : R — R.

Generalization

» The loss function is the mean square error:
1
BE(T00. V] = E |5 (¥ = 1)}

with £(f(x),y) = 1 (v — f(x))*.

» The FGD algorithm applied to the loss function
C(f(x),y)=3%(y - f(x))? is called Lo-boosting. After
M iterations, the algorithm provides an estimator f(x)
of:

*(x)=E[Y/X=x] .

Note

» The U; of the step a of the FGD algorithm are written:

0 .
U’. — _76 f X;), Vi — y’,_fm_ x;) . Generalization
of (xi) (7). %) F(x)=Fim—1(x) 1 ()

> These quantities correspond to the residuals of the
regressor at step m — 1.

Interpretation

» The estimator in step m is constructed by doing a
regression on the residuals of step m — 1.

» We “correct” f,_1 by trying to explain the remaining
information that is contained in the residuals.

L,- simplified boosting

The Lp-boosting (simplified) algorithm can then be written.

1. Initialization: fy.
2. Form=1to M:

a) Compute the residuals U; = y; — f_1 (X;) for Generalization
ie{l,...,n}.
b) Fit the weak learner to (x1, U1), ..., (Xn, Un) = hm.

c) Update: f(x) = fn—1(x) + A hm(x).

Important point

It has been shown (under certain assumptions) that at each
iteration:

» The bias decreases: Bias(fy,) < Bias(fy—1).
> Var (fm—-1)-
» Hence the importance of using learners with high bias

and small variance (trees with few terminal nodes for
example).

» The variance increases Var ()

Application on R

Generalization

In the package gbm, just use the argument
distribution=gaussian to do some Ly-boosting.

References

References

Schapire, R. E. and Freund, Y. (2012). Boosting.
Foundations and algorithms. Adaptive Computation and
Machine Learning. MIT Press.

	Adaboost
	Some properties
	Empirical risk minimization
	Generalization

