
Adaboost

Some properties

Empirical risk
minimization

Generalization

References

1/39

Machine learning
4. Boosting

V. Lefieux

April 2019

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

2/39

Table of contents

Adaboost

Some properties

Empirical risk minimization

Generalization

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

3/39

Table of contents

Adaboost

Some properties

Empirical risk minimization

Generalization

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

4/39

Principle

I First algorithm of “boosting”: Tukey in 1972!

I Build a set of rules (predictors) that are then
aggregated.

I Process recursive: the rule built in step m depends on
the one built in step m − 1.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

5/39

Principle I

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

6/39

Principle II

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

7/39

Principle III

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

8/39

Principle IV

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

9/39

Weaklearner

I The word “Boosting” refers to general methods for
producing precise decisions from weak learner rules.

I A rule g that is slightly better than chance is called
weak learner:

∃γ > 0 /P (g(X) 6= Y) =
1

2
− γ .

I Some examples: 1-nn, trees with 2 terminal nodes
(stumps).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

10/39

The Adaboost algorithm
With a weak learner g and a number of iterations M:

1. Initialize the weights of each data point:

∀i ∈ {1, . . . , n} : wi,1 =
1

n
.

2. For m =1 to M:

a) Fit the the predictor ĝm(x) to the sample Dn
1 weighted by

w1,m, . . . ,wn,m.
b) Compute the error rate:

em =

∑n
i=1 wi,m1ĝm(xi) 6=yi∑n

i=1 wi,m
.

c) Compute:

αm = ln

(
1− em
em

)
.

d) Update weights:

∀i ∈ {1, . . . , n} : wi,m+1 = wi,m exp
(
αm1ĝm(xi) 6=yi

)
.

Finally:

ĝ(x) =
M∑

m=1

αm ĝm(x) .

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

11/39

Comments

I The step a requires that the weak learner can take into
account the weights. When this is not the case, the
predictor can be fit to a sub-sample of Dn

1 in which the
observations are randomly drawn with weights
w1,m, . . . ,wn,m.

I The weights w1,m, . . . ,wn,m are updated: if the i-th
individual is well classified, its weight is unchanged,
otherwise it’s increased.

I The weight αm of the rule ĝm increases with its
performance measured on Dn

1 : αm increases when em
decreases (g mustn’t be “too weak”: if em > 0.5 then
αm < 0).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

12/39

Table of contents

Adaboost

Some properties

Empirical risk minimization

Generalization

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

13/39

Empirical risk control (empirical error)

I em refers to the error rate calculated on Dn
1 of ĝm:

em =

∑n
i=1 wi1ĝm(xi) 6=yi∑n

i=1 wi
.

I γm refers to the gain of the ĝm rule compared to a pure
chance rule:

em = 1/2− γm .

One have:

Rn (ĝ) ≤ exp

(
−2

M∑
m=1

γ2m

)
.

The empirical risk tends to 0 when the number of iterations
increases.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

14/39

Risk control (generalization error)

One have:

R (ĝ) ≤ Rn (ĝ) + O

(√
MV

n

)
where V is the Vapnik-Chervonenkis dimension.

I The biais/variance (approximation/estimation error)
trade-off is regulated by the number of iterations M:

I M small: the first term (approximation) dominates.
I M large: the second term (estimation) dominates.

I When M is (too) large, Adaboost overfits.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

15/39

Table of contents

Adaboost

Some properties

Empirical risk minimization

Generalization

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

16/39

Idea

I Consider (X ,Y) a couple of random variables in
Rd × {−1, 1}.

I The aim is to find the best predictor in a set of
predictors S.

I We could choose the predictor that minimizes, for
example:

R(g) = E
(
1g(X)6=Y

)
= P (g(X) 6= Y) .

The problem is that the risk is not calculable.

I The idea is to choose the rule that minimizes the
empirical risk:

Rn(g) =
1

n

n∑
i=1

1g(Xi)6=Yi
.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

17/39

Convexified empirical risk

I In general it’s difficult to minimize the function:

Rn → R

(g (x1) , . . . , g (xn)) 7→ 1
n

∑n
i=1 1g(xi)6=yi

.

I The idea is to find another loss function ` : R× R→ R
such as the function:

Rn → R

(g (x1) , . . . , g (xn)) 7→ 1
n

∑n
i=1 `(Yi , g (xi)).

is easier to minimize (if the function v 7→ `(u, v) is
convex for example).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

18/39

Loss function

I The loss function ` (g(x), y) measures the difference
between g(x) and the expected quantity y ∈ {−1.1}.

I This function must take values:
I large values when yg(x) < 0,
I small values when yg(x) > 0.

I Some Examples:
I ` (g(x), y) = 1yg(x)<0 .
I ` (g(x), y) = exp (−yg(x)) (has the advantage of being

convex in the second argument).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

19/39

Summary
I Let’s consider (X ,Y) with values in Rd × {−1, 1}, a

loss function ` : R× R→ R.

I We seek to be close to:

g? = arg min
g

E [` (g(X),Y)]] .

I The strategy is given the n sample i.i.d
(X1,Y1) , . . . , (Xn,Yn) the same distribution as (X ,Y),
we try to minimize the empirical version of de
E [` (g(X),Y)]:

1

n

n∑
i=1

` (g (Xi) ,Yi)) .

I Recursive approach: estimate g? by
ĝ(x) =

∑M
m=1 gm(x) where the gm are built recursively.

I Method: use a numerical approach (gradient descent,
Newton-Raphson).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

20/39

Newton Raphson

I We note gm = (gm (x1) , . . . , gm (xn)), and:

J (gm) =
1

n

n∑
i=1

` (yi , gm (xi)) .

I Recurrence formula of the Newton-Raphson algorithm:

gm = gm−1 − λ∇J (gm−1) .

Disadvantages

1. This algorithm calculates the estimator only at the
design points x1, . . . , xn.

2. It doesn’t take into account a possible regularity of the
function to be estimated (if xi is close to xj then g? (xi)
is close to g? (xj)).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

21/39

Functional Gradient Descent (FGD)
Inputs:

I Dn
1 = {(x1, y1) , . . . , (xn, yn)} the sample.

I λ a regulation parameter such as 0 < λ ≤ 1.

I M the number of iterations.

I h a weak learner (simple regression method).

1. Initialization: g0 = arg minc
1
n

∑n
i=1 ` (c, yi)

2. For m = 1 M:
a) For i ∈ {1, . . . , n} calculate the opposite of the gradient
− ∂

∂g(xi)
` (yi , g (xi)) and evaluate it at points gm−1 (xi):

Ui = − ∂

∂g (xi)
` (yi , g (xi))∣∣∣g(xi)=gm−1(xi)

.

b) Fit the weak learner to the sample (x1,U1), . . . , (xn,Un),
we note hm the weak learner thus defined.

c) Update: gm(x) = gm−1(x) + λhm(x).

3. Output: the rule ĝ(x) = gM(x).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

22/39

Comments

I The output ĝ(x) is a real. If we’re trying to predict the
x label, we can use the ŷ = sign (ĝ(x)) rule.

I Aggregation .:

ĝ(x) = g0(x) + λ

M∑
m=1

gm(x) .

I For the choice λ = 1 and ` (g(x), y) = exp (−yg(x)),
this algorithm coincides (almost) with Adaboost.

I λ and M are linked. λ “controls” the speed at which we
minimize:

1

n

n∑
i=1

` (yi , g (xi)) .

When λ↗ M ↘ and vice versa.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

23/39

Weak learners

I As with Adaboost, the rule used in the algorithm must
be weak (slightly better than random).

I Boosting a non-weak learner is generally poorly
performing.

I It is recommended to use a learner with a high biais and
a low variance (boosting reduces bias, not variance).

I We often use trees as a weak learner. To have a high
bias, we will use trees with few terminal nodes.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

24/39

Boosting with the gbm package: entries

1. Loss function (distribution).

2. Number of iterations M (n.trees).

3. Number of tree terminal nodes plus 1K
(interaction.depth).

4. Regulation parameter λ (shrinkage)

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

25/39

Example: spam detection

I Out of 4,601 emails, we were able to identify 1813
spam messages.

I The presence or absence of 57 words was also measured
on each of these emails.

We want to explain the variable spam by the 57 other
variables.

I To build a model adaboost with 500 iterations with
2-terminal node trees, simply run

> model_ada <- gbm(Y~.,data=data,distribution="adaboost",

interaction.depth=2,shrinkage=0.1,n.trees=500)

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

26/39

Selection of M

I The choice of the number of iterations is crucial for
boosting estimators.

I If M is too large we overadjust (estimators with little
bias but a lot of variance) and vice versa if M is too
small.

I A natural way to choose M is to try to minimize the
loss function:

M̂ = arg min
M∈N?

E[`(Y , ĝ(X)] .

I The above hope being unknown in practice, we can
estimate it and select the number of iterations
according to:

M̂ = arg min
M∈N?

1

n

n∑
i=1

` (Yi , ĝ (Xi)) .

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

27/39

Selection of M

I Problem: the sample has already been used to build
the adaboost estimators ĝ : the empirical mean is a
biased estimator of expectation.

I Solution: use procedures such as learning/validation,
cross-validation or Out Of Bag.

I On R, the function gbm.perf of the package gbm
allows to select M by these methods. For example:

> model <- gbm(Y\~{}., data=data,distribution="adaboost",interaction.depth=2,

shrinkage=0.05,train.fraction=0.75,n.trees=500)

> gbm.perf(model,method="test")

[1] 275

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

28/39

Table of contents

Adaboost

Some properties

Empirical risk minimization

Generalization

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

29/39

Idea

I Adaboost is a gradient descent method that minimizes

E [` (g(X),Y)]

with ` (g(x), y) = exp (−yg(x)).

I The output ĝ(x) is therefore an estimator of

g?(x) =
1

2
ln

(
P (Y = 1 /X = x)

P (Y = −1 /X = x)

)
.

I Idea: apply the gradient descent algorithm for well
chosen loss functions.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

30/39

Towards Logitboost

I It is assumed here that Y is valued in {0.1}.
I The conditional random variable Y /X = x follows a

Bernoulli distribution of parameter
p(x) = P (Y = 1 /X = x) and the likelihood for
observation (x , y) is:

p(x)y (1− p(x))1−y .

I The logistic regression model assumes:

p(x) =
1

1 + exp (−x>β)
=

exp
(
x>β

)
1 + exp (x>β)

where β ∈ Rd+1 is estimated by maximizing likelihood.

Idea
Use the functional gradient descent method to remove the
linearity hypothesis in writing p(x).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

31/39

Logitboost

I Let’s consider:

p(x) =
1

1 + exp (−2f (x))
=

exp (f (x))

exp (−f (x)) + exp (f (x))

where f : Rd → R is an unknown function.

I As with logistic regression, we propose to estimate f
based on likelihood.

I Choice of loss function: the opposite of log-likelihood
(which will therefore have to be minimized):

− (y ln p(x) + (1− y) ln (1− p(x))) = ln (1 + exp exp (−2ỹ f (x)))

with ỹ = 2y − 1 ∈ {−1, 1}.
I It is easy to check that u 7→ ln(1 + exp(−2ỹu)) is

convex.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

32/39

Logitboost

I The FGD algorithm applied to the loss function:

` : R× {−1, 1} → R
(f (x), ỹ) 7→ ln (1 + exp (−2ỹ f (x)))

is called logitboost.

I The function E[`(Ỹ , f (X))] is minimal in:

f ?(x) =
1

2
ln

(
P (Y = 1 /X = x)

P(Y = −1 /X = x)

)
.

I Adaboost and logitboost provide almost the same
results.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

33/39

Classification rule

I After M iterations, Adaboost and Logitboost provide an
estimator f̂ (x) of f ?(x).

I We can deduce an estimator p̂ of
p(x) = P (Y = 1 /X = x) by considering:

p̂(x) =
1

1 + exp
(
−2f̂ (x)

) =
exp

(
f̂ (x)

)
exp

(
−f̂ (x)

)
+ exp

(
f̂ (x)

) .
I We can deduce a classification rule, for example:

ŷ =

{
1 if p̂(x) ≥ 0.5 ⇔ f̂ (x) ≥ 0

0 if p̂(x) < 0.5 ⇔ f̂ (x) < 0
.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

34/39

Application on R

I In the package gbm, just use the argument
distribution=bernoulli to make logitboost.

> model_logit <- gbm(Y\~{}..,data=data,distribution="bernoulli",

interaction.depth=2,shrinkage=0.1,n.trees=500)

I The number of iterations is selected in the same way as
for Adaboost (function gbm.perf).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

35/39

L2-boosting

I It applies in a context of regression: Y ∈ R.

I A regressor is a function f : Rd → R.

I The loss function is the mean square error:

E [` (f (X),Y)] = E
[

1

2
(Y − f (X))2

]
with ` (f (x), y) = 1

2 (y − f (x))2.

I The FGD algorithm applied to the loss function
` (f (x), y) = 1

2 (y − f (x))2 is called L2-boosting. After

M iterations, the algorithm provides an estimator f̂ (x)
of:

f ?(x) = E [Y /X = x] .

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

36/39

Note

I The Ui of the step a of the FGD algorithm are written:

Ui = − ∂

∂f (xi)
` (f (xi) , yi)∣∣∣f (xi)=fm−1(xi)

= yi−fm−1 (xi) .

I These quantities correspond to the residuals of the
regressor at step m − 1.

Interpretation

I The estimator in step m is constructed by doing a
regression on the residuals of step m − 1.

I We “correct” fm−1 by trying to explain the remaining
information that is contained in the residuals.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

37/39

L2- simplified boosting

The L2-boosting (simplified) algorithm can then be written.

1. Initialization: f0.

2. For m = 1 to M:

a) Compute the residuals Ui = yi − fm−1 (xi) for
i ∈ {1, . . . , n}.

b) Fit the weak learner to (x1,U1) , . . . , (xn,Un) ⇒ hm.
c) Update: fm(x) = fm−1(x) + λ hm(x).

Important point

It has been shown (under certain assumptions) that at each
iteration:

I The bias decreases: Bias (fm) ≤ Bias (fm−1).

I The variance increases Var (fm) ≥ Var (fm−1).

I Hence the importance of using learners with high bias
and small variance (trees with few terminal nodes for
example).

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

38/39

Application on R

In the package gbm, just use the argument
distribution=gaussian to do some L2-boosting.

Adaboost

Some properties

Empirical risk
minimization

Generalization

References

39/39

References

Schapire, R. E. and Freund, Y. (2012). Boosting.
Foundations and algorithms. Adaptive Computation and
Machine Learning. MIT Press.

	Adaboost
	Some properties
	Empirical risk minimization
	Generalization

