Machine learning 5. SVM

V. Lefieux

April 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Separable case

ton separable cas

kernel trick

Table of contents

Separable case

Non separable case

Non linear SVM: kernel trick

Separable case

Von separable case

Non linear SVM: kernel trick

References

(ロ)、

Table of contents

Separable case

Non separable case

Non linear SVM: kernel trick

Separable case

Non separable case

Non linear SVM: kernel trick

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Support Vector Machine (large machine classifiers) are supervised learning algorithms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Available for classification and regression.
- These algorithms are required to have good generalization properties: compromise between estimation and prediction.

Separable case

Von separable case

Non linear SVM: kernel trick

References

Presentation

- In the case of a binary classification 𝒴 = {−1, 1} with 𝒴 = ℝ^d.
- The SVM (Vapnik) approach can be seen as a generalization of "optimal hyperplane search".

Simple case

Data $(x_1, y_1), \ldots, (x_n, y_n)$ are linearly separable if there exists $(w, b) \in \mathbb{R}^d \times \mathbb{R}$ such that for all *i*:

•
$$y_i = 1$$
 if $\langle w, x_i \rangle + b > 0$,
• $y_i = -1$ if $\langle w, x_i \rangle + b < 0$.

i.e.:

$$\forall i \in \{1,\ldots,n\} : y_i(\langle w, x_i \rangle + b) > 0$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Separable case

lon separable case

Non linear SVM: kernel trick

Separable case

Non separable case

Non linear SVM: kernel trick

References

Separable case

lon separable case

Non linear SVM: kernel trick

References

Problem

There is an infinite of infinite of separating hyperplanes so an infinite of potential classification rules.

Solution

Vapnik proposes to choose the hyperplane with the largest margin.

Separable case

Non separable case

Non linear SVM: kernel trick

References

<ロ> < 母> < 母> < 目> < 目> < 目> < 目 の へ の 8/33

Margin

$$b \quad d(x) = \frac{\|\langle w, x \rangle + b\|}{\|w\|} = \\ x^\top w + b \text{ if } \|w\| = 1$$

 if (w, b) is the optimal separating hyperplan, its margin is:

$$\min_{i\in\{1,\ldots,n\}} y_i\left(w_i^\top x_i + b\right) \ .$$

Separable case

Von separable case

Non linear SVM: kernel trick

References

Optimal separating hyperplan Solution of the constrained optimization problem:

$$\max_{\substack{w,b, \|w\|=1}} M$$

under constraint $\forall i \in \{1, \dots, n\} : y_i \left(w^\top x_i + b\right) \ge M$.

Rewriting

► If we remove the constraint ||w|| = 1, then we seek the largest margin such that:

$$\forall i \in \{1,\ldots,n\} : y_i \left(w^\top x_i + b\right) \geq \|w\| M.$$

• With the new constraint $||w|| = \frac{1}{M}$, optimization problem becomes:

Primal problem

$$\min_{w,b}\frac{1}{2}\|w\|^2$$

under constraint $\forall i \in \{1, \ldots, n\} : y_i (w^\top x_i + b) \ge 1$.

- Problem of convex optimization under linear constraints.
- Existence of a optimum global obtained by resolution of the dual problem.

Separable case

lon separable case

Non linear SVM: kernel trick

Resolution by lagrangian method I

The lagrangien of the primal problem is:

$$L_{p}(w, b; \alpha) = \frac{1}{2} \|w\|^{2} - \sum_{i=1}^{n} \alpha_{i} \left[y_{i}(x_{i}^{\top}w + b) - 1 \right]$$

Considering partial derivatives with respect of w and b:

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$
 et $\sum_{i=1}^{n} \alpha_i y_i = 0$.

Dual problem

By substituting these two equations in L_p , we obtain the dual problem which consists in maximizing:

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k x_i^\top x_k$$

under contraints $\alpha_i \geq 0$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$.

Separable case

Non separable case

Non linear SVM: kernel trick

Resolution by lagrangian method II

- We note α^* the dual problem solution.
- We then deduce:

$$w^{\star} = \sum_{i=1}^{n} \alpha_i^{\star} y_i x_i \; .$$

Karush-Kuhn-Tucker conditions (KKT)

►
$$\forall i \in \{1, \dots, n\} : \alpha_i^* \ge 0$$
,
► $\forall i \in \{1, \dots, n\} : \alpha_i^* [y_i (x_i^\top w + b) - 1] = 0$

We obtain b^{*} by solving:

$$\alpha_i^{\star}\left[y_i\left(x_i^{\top}w+b\right)-1\right]=0$$

for α_i^* non-zero.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ のQC 12/33

Separable case

Von separable case

Non linear SVM: kernel trick

Support vectors

► x_i such that α^{*}_i > 0 check:

$$y_i\left(x_i^{\top}w^{\star}+b^{\star}\right)=1$$
.

 So they are on the border with the maximal margin. These points are called support vectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Separable case

Non separable case

Non linear SVM: kernel trick

Support vectors

 x_i such that α^{*}_i > 0 check:

$$y_i\left(x_i^{ op}w^{\star}+b^{\star}
ight)=1$$
 .

 So they are on the border with the maximal margin. These points are called support vectors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Von separable case

Non linear SVM: kernel trick

Table of contents

Separable case

Non separable case

Non linear SVM: kernel trick

Separable

Non separable case

Non linear SVM: kernel trick

References

Problem

In the majority of cases, data aren't linearly separable...

Separable case

Non separable case

Non linear SVM: kernel trick

References

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 15/33

Problem

In the majority of cases, data aren't linearly separable...

Separable case

Non separable case

Non linear SVM: kernel trick

References

Problem

In the majority of cases, data aren't linearly separable...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Non separable case

Non linear SVM: kernel trick

Reminder: separable case

$$\begin{split} \min_{w,b} \frac{1}{2} \|w\|^2 \\ \text{under constraint} \quad \forall i \in \{1, \dots, n\} : y_i \left(w^\top x_i + b\right) \geq 1 \;. \end{split}$$

► The contraints y_i (w^Tx_i + b) ≥ 1 mean that all points are outside the boundary defined by the margin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Separable case

Non separable case

Non linear SVM: kernel trick

Reminder: separable case

$$\begin{split} \min_{w,b} \frac{1}{2} \|w\|^2 \\ \text{under constraint} \quad \forall i \in \{1, \dots, n\} : y_i \left(w^\top x_i + b\right) \geq 1 \;. \end{split}$$

- The contraints y_i (w[⊤]x_i + b) ≥ 1 mean that all points are outside the boundary defined by the margin.
- Non separable case: the problem below does not admit a solution !

Slack variables creation !

Separable case

Non separable case

Non linear SVM: kernel trick

To allow certain points to be "in the margin" and/or misclassified, we define positive slack variables (ξ_1, \ldots, ξ_n) such as $y_i (w^\top x_i + b) \ge 1 - \xi_i$. 2 cases are to be distinguished:

1. $\xi_i \in [0, 1] \Rightarrow$ well classified but in the region defined by the margin.

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♪ ↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♪ ↓ ■ ↓ 17/33

2. $\xi_i > 1 \Rightarrow$ misclassified.

Separable case

Non separable case

Non linear SVM: kernel trick

- Of course, we would like to have the maximum of slack variables ξ_i zero.
- When $\xi_i > 0$, one expect ξ_i to be the smallest possible.

Non separable case: primal optimization problem

• We want to find the
$$(w, b, \xi)$$
 value that minimize:

$$\frac{1}{2} \|w\|^2$$

under the constraints:

$$\begin{cases} y_i (w^\top x_i + b) \ge 1 \quad , i = 1, \dots, n. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Non separable case

Non linear SVM: kernel trick

- Of course, we would like to have the maximum of slack variables ξ_i zero.
- When $\xi_i > 0$, one expect ξ_i to be the smallest possible.

Non separable case: primal optimization problem

• We want to find the
$$(w, b, \xi)$$
 value that minimize:

$$\frac{1}{2} \|w\|^2$$

under the constraints:

$$\begin{cases} y_i \left(w^\top x_i + b \right) \ge 1 &, i = 1, \dots, n. \\ \xi_i \ge 0, i = 1, \dots, n. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Non separable case

Non linear SVM: kernel trick

- Of course, we would like to have the maximum of slack variables ξ_i zero.
- When $\xi_i > 0$, one expect ξ_i to be the smallest possible.

Non separable case: primal optimization problem

• We want to find the
$$(w, b, \xi)$$
 value that minimize:

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

under the constraints:

$$\begin{cases} y_i (w^{\top} x_i + b) \ge 1 - \xi_i, \ i = 1, \dots, n. \\ \xi_i \ge 0, i = 1, \dots, n. \end{cases}$$

Separable case

Non separable case

Non linear SVM: kernel trick

References

◆□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> ○ < ○ 18/33</p>

- Of course, we would like to have the maximum of slack variables ξ_i zero.
- When $\xi_i > 0$, one expect ξ_i to be the smallest possible.

Non separable case: primal optimization problem

• We want to find the
$$(w, b, \xi)$$
 value that minimize:

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

under the constraints:

$$\begin{cases} y_i \left(w^\top x_i + b \right) \ge 1 - \xi_i, \ i = 1, \dots, n. \\ \xi_i \ge 0, i = 1, \dots, n. \end{cases}$$

- ► The separable case corresponds to $C = +\infty$.

Separable ca

Non separable case

Non linear SVM: kernel trick

Optimization solution

The solutions of this new optimization problem are obtained in the same way: lagrangian, dual problem...

KKT conditions

1. $0 \le \alpha_i^* \le C$. 2. $y_i(\langle w^*, x_i \rangle + b^*) \ge 1 - \xi_i^*$. 3. $\alpha_i^*(y_i(\langle w^*, x_i \rangle + b^*) + \xi_i^* - 1) = 0$. 4. $\xi_i^*(\alpha_i^* - C) = 0$.

Support vectors

- x_i such as $\alpha_i^* > 0$ are support vectors.
- There are two types:
 - 1. those on the border defined by the margin: $\xi_i^{\star} = 0$;
 - 2. those outside: $\xi_i^* > 0$ and $\alpha_i^* = C$.
- Non support vectors check $\alpha_i^{\star} = 0$ et $\xi_i^{\star} = 0$.

Separable case

Non separable case

Non linear SVM: kernel trick

References

<ロト < 母ト < 臣ト < 臣ト 臣 のへで 19/

Classification rule

As in the separable case, the optimal hyperplane is defined by:

$$w^{\star} = \sum_{i=1}^{n} \alpha_i^{\star} y_i x_i$$

and b^* is the solution of $y_i (\langle w^*, x_i \rangle + b^*) = 1$ for any i such as $0 < \alpha_i^* < C$.

We deduce the SVM classification rule:

$$g(x) = \mathbb{1}_{\langle w^{\star}, x \rangle + b^{\star} \geq 0} - \mathbb{1}_{\langle w^{\star}, x \rangle + b^{\star} < 0}$$
.

• The maximum margin is $\frac{1}{\|w^{\star}\|} = \left[\sum_{i=1}^{n} (\alpha_i^{\star})^2\right]^{-1/2}$.

Separable case

Non separable case

Non linear SVM: kernel trick

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ のへで 20/33

Choice of C

- It's crucial to the performance of the SVM.
- Il est le plus souvent choisi de faon "classique":
 - 1. We consider a performance criterion (e. g. misclassification rate).
 - 2. We estimate the value of the criterion for different values of *C*.
 - 3. We choose the value of C whoc minimizes the criterion.

Separable case

Non separable case

Non linear SVM: kernel trick

References

< □ > < @ > < E > < E > E の Q @ 22/33

Table of contents

Separable case

Non separable case

Non linear SVM: kernel trick

Separable ca

Von separable case

Non linear SVM: kernel trick

References

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ * ① Q (? 23/33)

Separable case

Von separable case

Non linear SVM: kernel trick

References

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 24/33

Separable case

Von separable case

Non linear SVM: kernel trick

References

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ● ・ ● ・ ○ へ ○ 24/33

Separable case

Non separable case

Non linear SVM: kernel trick

References

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 24/33

ldea

Find a data transformation such that the transformed data are linearly separable.

<ロト < 団 ト < 巨 ト < 巨 ト 三 < つ へ C 24/33

Kernel

Let $\Phi:\mathcal{X}\to\mathcal{H}$ be an application from \mathcal{X} to a Hilbert space $\mathcal{H}.$

The kernel *K* at values *x* and *x'*, associated to Φ , is the inner product of $\Phi(x)$ and $\Phi(x')$:

$$\begin{split} \mathcal{K} &: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \\ & \left(x, x' \right) \mapsto \langle \Phi(x), \Phi\left(x' \right) \rangle_{\mathcal{H}}. \end{split}$$

Separable case

lon separable case

Non linear SVM: kernel trick

Kernel

Let $\Phi:\mathcal{X}\to\mathcal{H}$ be an application from \mathcal{X} to a Hilbert space $\mathcal{H}.$

The kernel *K* at values *x* and *x'*, associated to Φ , is the inner product of $\Phi(x)$ and $\Phi(x')$:

$$egin{aligned} \mathcal{K} : \mathcal{X} imes \mathcal{X}
ightarrow \mathbb{R} \ ig(x,x') \mapsto \langle \Phi(x), \Phiig(x')
angle_{\mathcal{H}}. \end{aligned}$$

Example

If
$$\mathcal{X} = \mathcal{H} = \mathbb{R}^2$$
 and $\Phi(x_1, x_2) = \left(x_1^2, x_2^2\right)$ then:

$$K(x, x') = (x_1)^2 (x'_1)^2 + (x_2)^2 (x'_2)^2$$
.

Separable case

Non separable case

Non linear SVM: kernel trick

References

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ の Q @ 25/33

► The trick consists in transforming data x_i in a Hilbert space H called feature space...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Von separable case

Non linear SVM: kernel trick

References

- ► The trick consists in transforming data x_i in a Hilbert space H called feature space...
- ... expecting that (Φ(x₁), y₁),..., (Φ(x_n), y_n) are (almost) linearly separables in order to apply SVM on transformed data.

Separable case

Von separable case

Non linear SVM: kernel trick

References

- ► The trick consists in transforming data x_i in a Hilbert space H called feature space...
- ... expecting that (Φ(x₁), y₁),..., (Φ(x_n), y_n) are (almost) linearly separables in order to apply SVM on transformed data.
- 1. A lot of linear algorithms (in particular SVM) can be applied to $\Phi(x)$ without ever computing Φ . All we have to do is to compute K(x, x').

Separable case

Von separable case

Non linear SVM: kernel trick

- ► The trick consists in transforming data x_i in a Hilbert space H called feature space...
- ... expecting that (Φ(x₁), y₁),..., (Φ(x_n), y_n) are (almost) linearly separables in order to apply SVM on transformed data.
- 1. A lot of linear algorithms (in particular SVM) can be applied to $\Phi(x)$ without ever computing Φ . All we have to do is to compute K(x, x').
- 2. We don't need to know the space \mathcal{H} or the function Φ , we just need to consider a kernel K!

Separable case

Von separable case

Non linear SVM: kernel trick

SVM in the inital space

The dual problem maximises:

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k \langle \mathbf{x}_i, \mathbf{x}_k \rangle$$

under the constraints:

$$\begin{cases} \forall i \in \{1, \dots, n\} : 0 \le \alpha_i \le C\\ \sum_{i=1}^n \alpha_i y_i = 0. \end{cases}$$

The decision rule is obtained by calculating the sign of:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + b^* .$$

Separable case

Ion separable case

Non linear SVM: kernel trick

References

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�♡ 27/33

.

SVM in the feature space

The dual problem maximises:

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_k) \rangle$$

under the consraints:

$$\begin{cases} \forall i \in \{1, \dots, n\} : 0 \le \alpha_i \le C\\ \sum_{i=1}^n \alpha_i y_i = 0. \end{cases}$$

.

(ロ)、

The decision rule is obtained by calculating the sign of:

$$f(x) = \sum_{i=1}^{n} \alpha_i^* y_i \langle \Phi(x_i), \Phi(x) \rangle + b^* .$$

Separable case

Ion separable case

Non linear SVM: kernel trick

SVM in the feature space with kernels

The dual problem maximises:

$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k \mathbf{K}(\mathbf{x}_i, \mathbf{x}_k)$$

under the consraints:

$$\begin{cases} \forall i \in \{1, \dots, n\} : 0 \le \alpha_i \le C\\ \sum_{i=1}^n \alpha_i y_i = 0. \end{cases}$$

The decision rule is obtained by calculating the sign of:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i^* y_i \mathbf{K}(\mathbf{x}_i, \mathbf{x}) + b^* .$$

Separable case

Non separable case

Non linear SVM: kernel trick

References

٠

Conclusion

To compute SVM, we don't need to know H or Φ, we just need to know K!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Separable case

Non separable case

Non linear SVM: kernel trick

References

Conclusion

- To compute SVM, we don't need to know H or Φ, we just need to know K!
- Questions: What's a kernel ? How to build a kernel ?

Separable case

Von separable case

Non linear SVM: kernel trick

References

Conclusion

- To compute SVM, we don't need to know H or Φ, we just need to know K!
- Questions: What's a kernel ? How to build a kernel ?

 $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if and only if it's a symetric and positive definite function :

1.
$$\forall (x, x') \in \mathcal{X}^2 : \mathcal{K} (x, x') = \mathcal{K} (x', x)$$
.
2. $\forall (x_1, \dots, x_N) \in \mathcal{X}^N$ et $\forall (a_1, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{i}a_{j}K\left(x_{i},x_{j}\right)\geq0.$$

Separable case

Non separable case

Non linear SVM: kernel trick

References

Example

then $K(x, x') = (x^{\top}x')^2$.

Kernel examples

1. Linear (on
$$\mathbb{R}^d$$
): $K(x, x') = x^\top x'$.

- 2. Polynomial (on \mathbb{R}^d): $K(x, x') = (x^{\top}x' + 1)^d$.
- 3. Gaussian (Gaussian radial basis function ou RBF) (on \mathbb{R}^d):

$$\mathcal{K}\left(x,x'
ight) = \exp\left(-rac{\|x-x'\|}{2\sigma^2}
ight) \; .$$

イロト (周) (ヨ) (ヨ) (ヨ) () ()

- 4. Laplace (sur \mathbb{R}): $\mathcal{K}(x, x') = \exp(-\gamma |x x'|)$.
- 5. Min (sur \mathbb{R}^+): $K(x, x') = \min(x, x')$.

Separable case

Von separable case

Non linear SVM: kernel trick

Kernel examples

1. Linear (on
$$\mathbb{R}^d$$
): $K(x, x') = x^\top x'$.

- 2. Polynomial (on \mathbb{R}^d): $K(x, x') = (x^{\top}x' + 1)^d$.

$$K(x, x') = \exp\left(-\frac{\|x - x'\|}{2\sigma^2}\right)$$

- 4. Laplace (sur \mathbb{R}): $K(x, x') = \exp(-\gamma |x x'|)$.
- 5. Min (sur \mathbb{R}^+): $K(x, x') = \min(x, x')$.

Any positive definite function works... It's possible to build kernels (and so ti apply SVM) on more complex objects (curves, images, texts...).

Separable case

Von separable case

Non linear SVM: kernel trick

References

Separable case Non separable case

Non linear SVM: kernel trick

References

Vapnik, V. N. (1998). *Statistical learning theory*. Adaptive and learning systems for signal processing, communications, and control. Wiley.

うつん ヨー・エッ・エッ・コー うくの