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Aggregating algorithms

Models aggregating proceed as follows:

1. Fit of a large number of predictors f̂b for b ∈ 1, . . . ,B.

2. Aggregate the predictors:
I Regression case:

f̂ =
B∑

b=1

αb f̂b .

I Binary classification case (values in {−1, 1}):

f̂ = sign

(
B∑

b=1

αb f̂b

)
.
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Two different cases

I Bagging: applies to models with high variance (and low
bias).

I Boosting: applies to models with high bias (and low
variance).
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Motivations

For the regression model:

Y = m(X ) + ε ,

let consider an estimator of m obtained by aggregating B
predictors m̂1, . . . , m̂B :

m̂(x) =
1

B

B∑
b=1

m̂b(x) .

I m̂(x), m̂1(x), . . . , m̂B(x) are random variables.

I The value of aggregating can be measured by
comparing the performance of m̂(x) with that of m̂b(x)
(by comparing, for example, the bias and the variance
of these estimators).
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Bias and variance

Under the assumption that (m̂1, . . . , m̂B) are i.i.d.

I Bias:
E [m̂(x)] = E [m̂b(x)] .

Aggregating does not change the bias.

I Variance:

Var [m̂(x)] =
1

B
Var [m̂b(x)] .

Aggregating reduces the variance.
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Remarks

I The above conclusions are true under the assumption
that the random variables m̂1, . . . , m̂B are i.i.d.

I The estimators (m̂1, . . . , m̂B) being fit on the same
sample, the independence assumption isn’t reasonable.

I The idea is to reduce the dependency between
estimators m̂b by introducing a new source of
randomness: bootstrap resampling.

I The m̂b will not be fit on Dn
1 , but on bootstrap samples

θb (Dn
1) obtained by sample n observations with

replacement in Dn
1 .
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Bagging

Inputs:

I Aim: predict Y for a X = x ∈ Rd .

I Predictor: CART, k-nn. . .

I Sample: Dn
1 .

I Number of predictors to aggregate: B.

For b = 1, . . . ,B :

1. Consider a bootstrap sample θb (Dn
1) from Dn

1 .

2. Fit the predictor on the sample θb (Dn
1): m̂b.

Output:

m̂(x) =
1

B

B∑
b=1

m̂b(x) .
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Some choices

I Predictor: with small bias et high variance.

I Number of iterations B:
I For high values of B, the estimator m̂B does not change

much anymore.

I It is recommended to take B as large as possible
according to the computational cost.
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Properties

Under the assumption that (m̂1, . . . , m̂B) are identically
distributed (but not independant), with correlation:

∀
(
b, b′

)
∈ {1, . . . ,B}2 , b 6= b′ : ρ(x) = Corr

(
m̂b(x), m̂b′(x)

)
.

I Bias:
E [m̂(x)] = E [m̂b(x)] .

Aggregating does not change the bias.

I Variance:

Var (m̂(x)) =

(
ρ(x) +

1− ρ(x)

B

)
Var [m̂b(x)] .

The variance decreases as the correlation between
predictors decreases.
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Proof

Var (m̂(x)) =
1

B2

B∑
b=1

B∑
b′=1

Cov (m̂b(x), m̂b′(x))

=
1

B2

B∑
b=1

 B∑
b′=1,b′ 6=b

Cov (m̂b(x), m̂b′(x)) + Var (m̂b(x))


=

1

B
[(B − 1)ρ(x) Var (m̂b(x)) + Var (m̂b(x))]

= ρ(x) Var (m̂b(x)) +
1− ρ(x)

B
Var (m̂b(x)) .
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Main ideas

I A random forest is a aggregation of trees.

I The most widely used random forests are (by far) those
proposed by Breiman .

I They consist of aggregating trees fit on bootstrap
samples, with a reduced number of variables. (Breiman,

2001) proposed to consider for each tree d variables
randomly selected from the initial p variables in order to
reduce the correlation between the trees.
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Random forest algorithm
Inputs:

I Aim: predict Y for a X = x ∈ Rd .

I Predictor: CART.

I Sample: Dn
1 .

I Number of predictors to aggregate: B.

I Number of variables to divide a node: m ∈ N?.

For b = 1, . . . ,B :

1. Consider a bootstrap sample θb (Dn
1) from Dn

1 .

2. Fit the tree on the sample θb (Dn
1) with d variables

randomly selected from the p initial variables: m̂b.

Output:

m̂(x) =
1

B

B∑
b=1

m̂b(x) .
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Settings

By default:

I Minimal number of observations in the terminal nodes:
5 for regression and 1 for classification.

I Number of variables d : p
3 for regression and

√
p for

classification.
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Advantages and disadvantages

I Advantages:
I Method simple to implement and already present on

most statistical softwares.

I Provides accurate estimates on complex data (many
variables, missing data. . . ).

I Estimator not very sensitive to B.

I Disadvantages:
I “Black box” for the final estimator.

I Computational cost.
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