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Principle

I First algorithm of “boosting”: Tukey in 1972!

I Build a set of rules (predictors) that are then
aggregated.

I Process recursive: the rule built in step m depends on
the one built in step m − 1.
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Principle I
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Principle II
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Principle III
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Principle IV
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Weaklearner

I The word “Boosting” refers to general methods for
producing precise decisions from weak learner rules.

I A rule g that is slightly better than chance is called
weak learner:

∃γ > 0 /P (g(X ) 6= Y ) =
1

2
− γ .

I Some examples: 1-nn, trees with 2 terminal nodes
(stumps).
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The Adaboost algorithm
With a weak learner g and a number of iterations M:

1. Initialize the weights of each data point:

∀i ∈ {1, . . . , n} : wi,1 =
1

n
.

2. For m =1 to M:

a) Fit the the predictor ĝm(x) to the sample Dn
1 weighted by

w1,m, . . . ,wn,m.
b) Compute the error rate:

em =

∑n
i=1 wi,m1ĝm(xi ) 6=yi∑n

i=1 wi,m
.

c) Compute:

αm = ln

(
1− em
em

)
.

d) Update weights:

∀i ∈ {1, . . . , n} : wi,m+1 = wi,m exp
(
αm1ĝm(xi ) 6=yi

)
.

Finally:

ĝ(x) =
M∑

m=1

αm ĝm(x) .
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Comments

I The step a requires that the weak learner can take into
account the weights. When this is not the case, the
predictor can be fit to a sub-sample of Dn

1 in which the
observations are randomly drawn with weights
w1,m, . . . ,wn,m.

I The weights w1,m, . . . ,wn,m are updated: if the i-th
individual is well classified, its weight is unchanged,
otherwise it’s increased.

I The weight αm of the rule ĝm increases with its
performance measured on Dn

1 : αm increases when em
decreases (g mustn’t be “too weak”: if em > 0.5 then
αm < 0).
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Empirical risk control (empirical error)

I em refers to the error rate calculated on Dn
1 of ĝm:

em =

∑n
i=1 wi1ĝm(xi ) 6=yi∑n

i=1 wi
.

I γm refers to the gain of the ĝm rule compared to a pure
chance rule:

em = 1/2− γm .

One have:

Rn (ĝ) ≤ exp

(
−2

M∑
m=1

γ2m

)
.

The empirical risk tends to 0 when the number of iterations
increases.
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Risk control (generalization error)

One have:

R (ĝ) ≤ Rn (ĝ) + O

(√
MV

n

)
where V is the Vapnik-Chervonenkis dimension.

I The biais/variance (approximation/estimation error)
trade-off is regulated by the number of iterations M:

I M small: the first term (approximation) dominates.
I M large: the second term (estimation) dominates.

I When M is (too) large, Adaboost overfits.
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Idea

I Consider (X ,Y ) a couple of random variables in
Rd × {−1, 1}.

I The aim is to find the best predictor in a set of
predictors S.

I We could choose the predictor that minimizes, for
example:

R(g) = E
(
1g(X )6=Y

)
= P (g(X ) 6= Y ) .

The problem is that the risk is not calculable.

I The idea is to choose the rule that minimizes the
empirical risk:

Rn(g) =
1

n

n∑
i=1

1g(Xi )6=Yi
.
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Convexified empirical risk

I In general it’s difficult to minimize the function:

Rn → R

(g (x1) , . . . , g (xn)) 7→ 1
n

∑n
i=1 1g(xi )6=yi

.

I The idea is to find another loss function ` : R× R→ R
such as the function:

Rn → R

(g (x1) , . . . , g (xn)) 7→ 1
n

∑n
i=1 `(Yi , g (xi )).

is easier to minimize (if the function v 7→ `(u, v) is
convex for example).
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Loss function

I The loss function ` (g(x), y) measures the difference
between g(x) and the expected quantity y ∈ {−1.1}.

I This function must take values:
I large values when yg(x) < 0,
I small values when yg(x) > 0.

I Some Examples:
I ` (g(x), y) = 1yg(x)<0 .
I ` (g(x), y) = exp (−yg(x)) (has the advantage of being

convex in the second argument).
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Summary
I Let’s consider (X ,Y ) with values in Rd × {−1, 1}, a

loss function ` : R× R→ R.

I We seek to be close to:

g? = arg min
g

E [` (g(X ),Y )]] .

I The strategy is given the n sample i.i.d
(X1,Y1) , . . . , (Xn,Yn) the same distribution as (X ,Y ),
we try to minimize the empirical version of de
E [` (g(X ),Y )]:

1

n

n∑
i=1

` (g (Xi ) ,Yi )) .

I Recursive approach: estimate g? by
ĝ(x) =

∑M
m=1 gm(x) where the gm are built recursively.

I Method: use a numerical approach (gradient descent,
Newton-Raphson).
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Newton Raphson

I We note gm = (gm (x1) , . . . , gm (xn)), and:

J (gm) =
1

n

n∑
i=1

` (yi , gm (xi )) .

I Recurrence formula of the Newton-Raphson algorithm:

gm = gm−1 − λ∇J (gm−1) .

Disadvantages

1. This algorithm calculates the estimator only at the
design points x1, . . . , xn.

2. It doesn’t take into account a possible regularity of the
function to be estimated (if xi is close to xj then g? (xi )
is close to g? (xj)).
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Functional Gradient Descent (FGD)
Inputs:

I Dn
1 = {(x1, y1) , . . . , (xn, yn)} the sample.

I λ a regulation parameter such as 0 < λ ≤ 1.

I M the number of iterations.

I h a weak learner (simple regression method).

1. Initialization: g0 = arg minc
1
n

∑n
i=1 ` (c, yi )

2. For m = 1 M:
a) For i ∈ {1, . . . , n} calculate the opposite of the gradient
− ∂

∂g(xi )
` (yi , g (xi )) and evaluate it at points gm−1 (xi ):

Ui = − ∂

∂g (xi )
` (yi , g (xi ))∣∣∣g(xi )=gm−1(xi )

.

b) Fit the weak learner to the sample (x1,U1), . . . , (xn,Un),
we note hm the weak learner thus defined.

c) Update: gm(x) = gm−1(x) + λhm(x).

3. Output: the rule ĝ(x) = gM(x).
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Comments

I The output ĝ(x) is a real. If we’re trying to predict the
x label, we can use the ŷ = sign (ĝ(x)) rule.

I Aggregation .:

ĝ(x) = g0(x) + λ

M∑
m=1

gm(x) .

I For the choice λ = 1 and ` (g(x), y) = exp (−yg(x)),
this algorithm coincides (almost) with Adaboost.

I λ and M are linked. λ “controls” the speed at which we
minimize:

1

n

n∑
i=1

` (yi , g (xi )) .

When λ↗ M ↘ and vice versa.
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Weak learners

I As with Adaboost, the rule used in the algorithm must
be weak (slightly better than random).

I Boosting a non-weak learner is generally poorly
performing.

I It is recommended to use a learner with a high biais and
a low variance (boosting reduces bias, not variance).

I We often use trees as a weak learner. To have a high
bias, we will use trees with few terminal nodes.
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Boosting with the gbm package: entries

1. Loss function (distribution).

2. Number of iterations M (n.trees).

3. Number of tree terminal nodes plus 1K
(interaction.depth).

4. Regulation parameter λ (shrinkage)
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Example: spam detection

I Out of 4,601 emails, we were able to identify 1813
spam messages.

I The presence or absence of 57 words was also measured
on each of these emails.

We want to explain the variable spam by the 57 other
variables.

I To build a model adaboost with 500 iterations with
2-terminal node trees, simply run

> model\_ada <- gbm(Y~.,data=data,distribution="adaboost",

interaction.depth=2,shrinkage=0.1,n.trees=500)
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Selection of M

I The choice of the number of iterations is crucial for
boosting estimators.

I If M is too large we overadjust (estimators with little
bias but a lot of variance) and vice versa if M is too
small.

I A natural way to choose M is to try to minimize the
loss function:

M̂ = arg min
M∈N?

E[`(Y , ĝ(X )] .

I The above hope being unknown in practice, we can
estimate it and select the number of iterations
according to:

M̂ = arg min
M∈N?

1

n

n∑
i=1

` (Yi , ĝ (Xi )) .
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Selection of M

I Problem: the sample has already been used to build
the adaboost estimators ĝ : the empirical mean is a
biased estimator of expectation.

I Solution: use procedures such as learning/validation,
cross-validation or Out Of Bag.

I On R, the function gbm.perf of the package gbm
allows to select M by these methods. For example:

> model <- gbm(Y\~{}., data=data,distribution="adaboost",interaction.depth=2,

shrinkage=0.05,train.fraction=0.75,n.trees=500)

> gbm.perf(model,method="test")

[1] 275
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Idea

I Adaboost is a gradient descent method that minimizes

E [` (g(X ),Y )]

with ` (g(x), y) = exp (−yg(x)).

I The output ĝ(x) is therefore an estimator of

g?(x) =
1

2
ln

(
P (Y = 1 /X = x )

P (Y = −1 /X = x )

)
.

I Idea: apply the gradient descent algorithm for well
chosen loss functions.
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Towards Logitboost

I It is assumed here that Y is valued in {0.1}.
I The conditional random variable Y /X = x follows a

Bernoulli distribution of parameter
p(x) = P (Y = 1 /X = x ) and the likelihood for
observation (x , y) is:

p(x)y (1− p(x))1−y .

I The logistic regression model assumes:

p(x) =
1

1 + exp (−x>β)
=

exp
(
x>β

)
1 + exp (x>β)

where β ∈ Rd+1 is estimated by maximizing likelihood.

Idea
Use the functional gradient descent method to remove the
linearity hypothesis in writing p(x).
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Logitboost

I Let’s consider:

p(x) =
1

1 + exp (−2f (x))
=

exp (f (x))

exp (−f (x)) + exp (f (x))

where f : Rd → R is an unknown function.

I As with logistic regression, we propose to estimate f
based on likelihood.

I Choice of loss function: the opposite of log-likelihood
(which will therefore have to be minimized):

− (y ln p(x) + (1− y) ln (1− p(x))) = ln (1 + exp exp (−2ỹ f (x)))

with ỹ = 2y − 1 ∈ {−1, 1}.
I It is easy to check that u 7→ ln(1 + exp(−2ỹu)) is

convex.
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Logitboost

I The FGD algorithm applied to the loss function:

` : R× {−1, 1} → R
(f (x), ỹ) 7→ ln (1 + exp (−2ỹ f (x)))

is called logitboost.

I The function E[`(Ỹ , f (X ))] is minimal in:

f ?(x) =
1

2
ln

(
P (Y = 1 /X = x )

P(Y = −1 /X = x )

)
.

I Adaboost and logitboost provide almost the same
results.
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Classification rule

I After M iterations, Adaboost and Logitboost provide an
estimator f̂ (x) of f ?(x).

I We can deduce an estimator p̂ of
p(x) = P (Y = 1 /X = x ) by considering:

p̂(x) =
1

1 + exp
(
−2f̂ (x)

) =
exp

(
f̂ (x)

)
exp

(
−f̂ (x)

)
+ exp

(
f̂ (x)

) .
I We can deduce a classification rule, for example:

ŷ =

{
1 if p̂(x) ≥ 0.5 ⇔ f̂ (x) ≥ 0

0 if p̂(x) < 0.5 ⇔ f̂ (x) < 0
.
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Application on R

I In the package gbm, just use the argument
distribution=bernoulli to make logitboost.

> model\_logit <- gbm(Y\~{}..,data=data,distribution="bernoulli",

interaction.depth=2,shrinkage=0.1,n.trees=500)

I The number of iterations is selected in the same way as
for Adaboost (function gbm.perf).
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L2-boosting

I It applies in a context of regression: Y ∈ R.

I A regressor is a function f : Rd → R.

I The loss function is the mean square error:

E [` (f (X ),Y )] = E
[

1

2
(Y − f (X ))2

]
with ` (f (x), y) = 1

2 (y − f (x))2.

I The FGD algorithm applied to the loss function
` (f (x), y) = 1

2 (y − f (x))2 is called L2-boosting. After

M iterations, the algorithm provides an estimator f̂ (x)
of:

f ?(x) = E [Y /X = x ] .
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Note

I The Ui of the step a of the FGD algorithm are written:

Ui = − ∂

∂f (xi )
` (f (xi ) , yi )∣∣∣f (xi )=fm−1(xi )

= yi−fm−1 (xi ) .

I These quantities correspond to the residuals of the
regressor at step m − 1.

Interpretation

I The estimator in step m is constructed by doing a
regression on the residuals of step m − 1.

I We “correct” fm−1 by trying to explain the remaining
information that is contained in the residuals.
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L2- simplified boosting

The L2-boosting (simplified) algorithm can then be written.

1. Initialization: f0.

2. For m = 1 to M:

a) Compute the residuals Ui = yi − fm−1 (xi ) for
i ∈ {1, . . . , n}.

b) Fit the weak learner to (x1,U1) , . . . , (xn,Un) ⇒ hm.
c) Update: fm(x) = fm−1(x) + λ hm(x).

Important point

It has been shown (under certain assumptions) that at each
iteration:

I The bias decreases: Bias (fm) ≤ Bias (fm−1).

I The variance increases Var (fm) ≥ Var (fm−1).

I Hence the importance of using learners with high bias
and small variance (trees with few terminal nodes for
example).
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Application on R

In the package gbm, just use the argument
distribution=gaussian to do some L2-boosting.
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