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SVM 7

» Support Vector Machine (large machine classifiers) are
supervised learning algorithms.

» Available for classification and regression.

» These algorithms are required to have good
generalization properties: compromise between
estimation and prediction.

Separable case



Presentation

Separable case

> In the case of a binary classification J) = {—1,1} with
X =R7.

» The SVM (Vapnik) approach can be seen as a
generalization of “optimal hyperplane search”.

Simple case

Data (x1,¥1), ..., (xn, ¥n) are linearly separable if there
exists (w, b) € R? x R such that for all /:

» yi=1if (w,x;) +b>0,
» yi=—-1if (w,x;) + b<O.

i.e.:
Vie{l,...,n}:y;({w,x;) + b) > 0.
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Separable case

» Equation (w, x) + b = 0 defines a separating hyperplane
with normal vector w.

» The function sign ({(w, x) + b) is a potential
classification rule.



Separable case

Problem
There is an infinite of infinite of separating hyperplanes so
an infinite of potential classification rules.



Solution
Vapnik proposes to choose the hyperplane with the largest
margin.

(w,x) +b=0

margin

Separable case



Margin

_ ||<W7X>+bH _ Separable case
» d(x) = S =

x"w 4+ bif |w] = 1.

» if (w, b) is the optimal
separating hyperplan,
its margin is:

LX) +b=0

min _y; (W,-Tx,-—l— b) .
ie{1,...,n}

Optimal separating hyperplan
Solution of the constrained optimization problem:

max M
w,b,||w||=1

under constraint Vi€ {1,...,n} :y; (WTX,' + b) > M.



Rewriting

Separable case
> If we remove the constraint ||w| = 1, then we seek the
largest margin such that:

Vie{l,....n}:yi(w'xi+b) > ||w|M.

> With the new constraint ||w|| = 1 optimization problem

becomes:

Primal problem
. 2
min 5 ]
under constraint Vi€ {l,...,n}:y; (WTX,' + b) >1.
» Problem of convex optimization under linear constraints.

» Existence of a optimum global obtained by resolution of
the dual problem.



Resolution by lagrangian method |

» The lagrangien of the primal problem is: Separable case

n

1
Ly (w, bia) = 5 [wl” = > ai [vi(xTw + b) — 1
i=1

» Considering partial derivatives with respect of w and b:

n n
W:Zai)/ixi et Za;y,-zO .
=1 i=1

Dual problem

By substituting these two equations in L,, we obtain the
dual problem which consists in maximizing:

n n

n
Lole) = 3" ai= 3 33 asanyivios
i=1

i=1 k=1

under contraints ; > 0 and > ; ajy; = 0.



Resolution by lagrangian method ||

» We note a* the dual problem solution. Separable case
» We then deduce:

n

* *

wr = E o7 YiXi
i=1

Karush-Kuhn-Tucker conditions (KKT)

» Vie{l,...,n}:ar >0,
> Vie{l,...,n}:af[y,-(xi—rw—i—b)—1] =0.

» We obtain b* by solving:
af [y,- (x,-—rw—i—b) —1} =0

for a} non-zero.



Support vectors

Separable case

» x; such that oF >0
check:

yi (X,-TW* + b*) =1

» So they are on the border
with the maximal margin.
These points are called
support vectors.



Support vectors

Separable case

» x; such that oF >0
check:

yi (X,-TW* + b*) =1

» So they are on the border
with the maximal margin.
These points are called
support vectors.
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Problem

In the majority of cases, data aren't linearly separable. ..
(w,x) +b=0

Non separable case
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Problem

In the majority of cases, data aren't linearly separable. .. Non separable case
(w,x) +b=0
o . L.
., Idea

° Allow certain points

*e M= i 1. to be well classified

° o o but within the margin,
* % e .. 2. and/or to be

¢ oo misclassified.

margin



Slack variables
Reminder: separable case

.1 2
min 3 Il

under constraint Vi€ {1,...,n} :y; (WTX,' + b) >1.

» The contraints y; (WTX,' + b) > 1 mean that all points
are outside the boundary defined by the margin.

Non separable case



Slack variables

Non separable case

Reminder: separable case

.1 2
min 3 Il

under constraint Vi€ {1,...,n} :y; (WTX,' + b) >1.

» The contraints y; (WTX,' + b) > 1 mean that all points
are outside the boundary defined by the margin.

» Non separable case: the problem below does not admit
a solution !

Slack variables creation !



Slack variables

Non separable case

To allow certain points to be "in the margin” and/or
misclassified, we define positive slack variables (1, ..., &p)
such as y; (WTX,' + b) >1—¢&;. 2 cases are to be
distinguished:
1. & €[0,1] = well classified but in the region defined by
the margin.

2. & > 1 = misclassified.



Slack variables

» Of course, we would like to have the maximum of slack
variables &; zero.

> When & > 0, one expect &; to be the smallest possible.

Non separable case

Non separable case: primal optimization problem
» We want to find the (w, b, {) value that minimize:
S Iwl?
under the constraints:

yi(wixi+b)>1 ,i=1,...,n



Slack variables

» Of course, we would like to have the maximum of slack
variables &; zero.

> When & > 0, one expect &; to be the smallest possible.

Non separable case

Non separable case: primal optimization problem
» We want to find the (w, b, {) value that minimize:
S Iwl?
under the constraints:
y;(WTX,'—{—b)Zl ,i=1...,n.
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Slack variables

» Of course, we would like to have the maximum of slack
variables &; zero.

> When & > 0, one expect &; to be the smallest possible.

Non separable case

Non separable case: primal optimization problem
> We want to find the (w, b,{) value that minimize:
SIwiE+CY
i=1
under the constraints:
yi(whxi+b) >1-¢, i=1,....n
&>0,i=1,...,n.

» C > 0 must be calibrated (cost parameter): C /' =
adjustment .



Slack variables

» Of course, we would like to have the maximum of slack
variables &; zero.

> When & > 0, one expect &; to be the smallest possible.

Non separable case

Non separable case: primal optimization problem
> We want to find the (w, b,{) value that minimize:
SIwiE+CY
i=1
under the constraints:
yi(whxi+b) >1-¢, i=1,....n
&>0,i=1,...,n.

» C > 0 must be calibrated (cost parameter): C /' =
adjustment .

» The separable case corresponds to C = +o0.



Optimization solution

» The solutions of this new optimization problem are
obtained in the same way: lagrangian, dual problem. .. Non separable case

KKT conditions
1.0<ar <C.
2. yi({w*, x;) + b*) > 1 —¢F.
3. o7 (yi((w*, xi) + b*) + & — 1) = 0.
4 (o - 0)=0.

Support vectors

» x; such as a} > 0 are support vectors.

> There are two types:
1. those on the border defined by the margin: {X =0 ;
2. those outside: £ >0 and of = C.

» Non support vectors check af = 0 et {& = 0.



Classification rule

Non separable case

» As in the separable case, the optimal hyperplane is
defined by:
n
w* = Z a7 yix;
i=1
and b* is the solution of y; ({(w*, x;) + b*) =1 for any i

such as 0 < af < C.
» We deduce the SVM classification rule:

g(x) = ﬂ(w*,x)+b*zo - ]1<w*,x>+b*<o .

. .. 1 n 2 _1/2
> The maximum margin is =, [Zi:l (a7) } .



Non separable case

0<ar<Cér=0

margin




Choice of C

» It's crucial to the performance of the SVM.
> |l est le plus souvent choisi de faon “classique”:

1. We consider a performance criterion (e. g.
misclassification rate).

2. We estimate the value of the criterion for different
values of C.

3. We choose the value of C whoc minimizes the criterion.

Non separable case
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» Linear solutions are not always the best. ..
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» Linear solutions are not always the best. ..
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Idea
Find a data transformation such that the transformed data
are linearly separable.



Kernel

Let ® : X — H be an application from X to a Hilbert

spaceH.
The kernel K at values x and x’, associated to @, is the

inner product of ®(x) and ® (x):

Non linear SVM:
kernel trick

K: XAxX—R
(x,x’) — <<D(x),d>(x’)>H_



Kernel

Let ® : X — H be an application from X to a Hilbert

space?L.
The kernel K at values x and x’, associated to @, is the

inner product of ®(x) and & (x):

K: XxX—=R
(x,x’) = (P(x), P (x’)>H.

Example
If X =1 =R? and ®(x1, x2) = (x¥, x3) then:

K (x,x') = (x)*(x)* + (x2)*(x2)° -



Kernel trick

. . . . . . N li SVM:
» The trick consists in transforming data x; in a Hilbert kermel trick

space H called feature space. ..



Kernel trick

» The trick consists in transforming data x; in a Hilbert
space H called feature space. ..

> ...expecting that (¢ (x1),y1),..., (P (xn),yn) are
(almost) linearly separables in order to apply SVM on
transformed data.

Non linear SVM:
kernel trick
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1. A lot of linear algorithms (in particular SVM) can be
applied to ®(x) without ever computing ®. All we have
to do is to compute K (x, x’).



Kernel trick

. . . . . . N li SVM:
» The trick consists in transforming data x; in a Hilbert kermel trick

space H called feature space. ..

> ...expecting that (¢ (x1),y1),..., (P (xn),yn) are
(almost) linearly separables in order to apply SVM on
transformed data.

1. A lot of linear algorithms (in particular SVM) can be
applied to ®(x) without ever computing ®. All we have
to do is to compute K (x, x).

2. We don’t need to know the space H or the function ®,
we just need to consider a kernelK'!



SVM in the inital space

» The dual problem maximises:

Za/ - *Zza O‘k)/I}/k Xis Xk>

i=1 k=1

Non linear SVM:
kernel trick

under the constraints:

Vie{l,...,n}:0<qa;<C
>y aiyi = 0.

» The decision rule is obtained by calculating the sign of:

Za)/I XH +b*



SVM in the feature space

» The dual problem maximises:

Za, ZZO‘ akyiyk(®(xi), P(xx))

llkl

Non linear SVM:
kernel trick

under the consraints:

Vie{l,...,n}:0<qa;<C
> aiyi = 0.

» The decision rule is obtained by calculating the sign of:

= 3" alyi{®(x), (x)) + b*
i=1



SVM in the feature space with kernels

» The dual problem maximises:

Lp(a) = Z Qj — % Z Z ajouyiyiK (xi, xk)
i=1

i=1 k=1

Non linear SVM:
kernel trick

under the consraints:

Vie{l,...,n}:0<qa;<C
> aiyi = 0.

» The decision rule is obtained by calculating the sign of:

f(x) = Zozfy,-K(x,-,x) + b .
i=1



Conclusion

» To compute SVM, we don't need to know H or &, we Non linear SVI:
just need to know K
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Conclusion

» To compute SVM, we don't need to know H or ¥, we
just need to know K

» Questions: What's a kernel ? How to build a kernel ?
K:X x X — Ris a kernel if and only if it's a symetric and
positive definite function :

L V(x,x') € X2: K(x,x') = K(xX,x) .

2.V (x1,..,xn) € XN et V(ay,...,an) € RV:

ZZa,aj x,,xj )>0.

i=1 j=1

Non linear SVM:
kernel trick



Example

R2 SRS
(x1,x2) r—)(X12,\/§X1X2,X22)

then K (x,x") = (xTx')2.

Non linear SVM:
kernel trick



Kernel examples

1. Linear (on RY): K (x,x") = x"x'.
Non linear SVM:
2. Polynomial (on R9): K (x,x') = (x"x' + 1)¢. kernel trick

3. Gaussian (Gaussian radial basis function ou RBF) (on

RY):
/
K (x.x) — U=
(X,X) exp( =

4. Laplace (sur R): K (x,x") = exp(—v |x — x|).
5. Min (sur R*): K (x,x") = min(x,x’).



Kernel examples

1. Linear (on RY): K (x,x") = x"x'.
Non linear SVM:
2. Polynomial (on R9): K (x,x') = (x"x' + 1)¢. kernel trick

3. Gaussian (Gaussian radial basis function ou RBF) (on

RY):
/
K (x.x) — U=
(X,X) exp( =

4. Laplace (sur R): K (x,x") = exp(—v |x — x|).
5. Min (sur R*): K (x,x") = min(x,x’).

Any positive definite function works. . . It's possible to build
kernels (and so ti apply SVM) on more complex objects
(curves, images, texts. .. ).
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