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General information
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More information online at:
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List of abstracts

(in alphabetical order of the speakers)

Speaker: Pham Hoang Ha

Department of Mathematics, Hanoi National University of Education

A new progress on Weak Dirac conjecture

Abstract: In 2014, Payne-Wood proved that every non-collinear set P of n points

in the Euclidean plane contains a point in at least
n

37
lines determined by P. This is a

remarkable answer for the weak Dirac conjecture, which was proposed by Erdős, that

every non-collinear set P of n points contains a point in at least
n

c1
lines determined by P ,

for some constant c1. In this talk, we would like to discuss some problems on the weak
Dirac conjecture. Firstly, we show that every non-collinear set P of n points contains a

point in at least
n

26
+ 2 lines determined by P . After that, we discuss some relations on

theorem Beck to show that every set P of n points with at most l collinear determines at

least
1

61
n(n − l) lines and at least

1

122
n(n − l) lines with at most three points. This is

joint work with Phi Tien Cuong

Speaker: Vu Dinh Hoa

Department of Computer Sciences, Hanoi University of Education, Vietnam.

Decomposition of complete graphs into cubic graphs

Abstract: We say that a graph G decomposes the graph H if the edges of H can be
covered by edge-disjoint copies of G. This talk will present some recent results and open
problems of the decomposition of complete graphs into cubic graphs.
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Speaker: Pham Tuan Huy

Stanford University

Tight tower-type bounds for progressions
with popular common differences in dense sets

Abstract: Szemerédi’s regularity lemma is one of the most powerful tools in combina-
torics, giving a rough structural decomposition for all graphs. Green proved an arithmetic
analogue of the regularity lemma in order to prove applications in number theory, and
in particular used it to answer a question of Bergelson, Host, and Kra. Observe that a
random subset A of Fn3 of density α almost surely satisfies that for every nonzero d ∈ Fn3 ,
the density of three-term arithmetic progressions with common difference d that are in
A is at least roughy α3. Simple constructions show that there are sets with density
α whose density of three-term arithmetic progressions is substantially smaller than α3.
However, Green used the arithmetic regularity lemma to prove that there is a nonzero
d for which the density of three-term arithmetic progressions with common difference d
is at least roughly α3. Precisely, for each ε > 0, there is a least positive integer n0(ε)
such that for each n ≥ n0(ε) and subset A of Fn3 of density α, the density of three-term
arithmetic progressions of common difference d that are in A is at least α3− ε. Due to the
application of the regularity lemma, Green’s proof gives an upper bound on n0(ε) which is
an exponential tower of twos of height ε−O(1).

We prove new lower and upper bounds which show that n0(ε) grows as an exponential
tower of twos of height Θ(log(1/ε)). This is the first example of an application of a
regularity lemma where the tower-type bound is shown to be necessary.

This is joint work with professor Jacob Fox.

Speaker: Alex Iosevich

Department of Mathematics, University of Rochester

Erdős type problems in vector spaces over finite fields

Abstract: We shall discuss the Erdos/Falconer distance problem in Fdq , which asks how

large E ⊂ Fdq needs to be to ensure that ∆(E) = {||x− y|| : x, y ∈ E}, ||x|| = x21 + · · ·+x2d,
is all of Fq, or at least a positive proportion. We shall ask the same question when ∆(E)
is replaced by

∏
(E) = {x · y : x, y ∈ E}. The similarities and difference in these problems

harken back to the issues that arise in the study of Fourier Integral Operators in the
Euclidean settings. These ideas will be explained in a completely elementary fashion.
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Interaction of combinatorial, analytic and number theoretic
ideas in geometric combinatorics

Abstract: The study of the distribution of simplexes in Fdq generated some valuable
elementary ideas that eventually made their way into the Euclidean setting. Those results,
in turn, found surprising applications in geometric combinatorics, namely the question
of often an equilateral triangle may arise among n points in R2. We shall describe these
connections and outline a number of unsolved problems and possible future directions.

Speaker: Ben Lund

Rutgers University

Recent progress on finite field Nikodym sets

Abstract: This talk will cover recent joint work with Shubhangi Saraf and Charles
Wolf.

Let Fq be the finite field of order q. A subset of F n
q is a Kakeya set if it contains a line

in every direction. A subset E ⊆ F n
q is a Nikodym set if, for each point x ∈ F n

q , there is a
line ` through x such that ` \ {x} is contained in E.

As an analog to a deep (and still open) question in real Euclidean space, in 1999 Wolff
[6] asked for the minimum possible size of a Kakeya set in F n

q . Ten years later, Dvir [1]
proved, with a wonderfully simple application of the polynomial method, that any Kakeya
set in F n

q must have size at least (1/n!)qn, giving the correct exponent of q. Following
refinements of this proof, by Saraf and Sudan [5], and by Dvir, Kopparty, Saraf, and Sudan
[2], improved the lower bound to qn/2n. Dvir et. al. also constructed a Kakeya set of size
qn/2n−1 +O(qn−1), and so the gap between the upper and lower bounds is a factor of at
most 2.

The situation for Nikodym sets is less settled. The lower bound arguments for Kakeya
sets can easily be adapted to give lower bounds on the size of Nikodym sets, so it is known
that any Nikodym set in F n

q must have size at least qn/2n. However, no Nikodym set is
known to exist smaller than (1− o(1))qn, and (1− o(1))qn is likely to be the correct bound.

In this talk, I will discuss some recent results and conjectures on the structure of
Nikodym sets, including a new lower bound for Nikodym sets in F 3

q , constructions of

Nikodym sets, and a connection between Nikodym sets in F 3
q and the question of finding

the minimum number of points that must be contained in a collection of lines in F 3
q , not

too many of which lie in any plane. Incidence questions of this type have recently been
investigated in vector spaces over finite fields by Kollár [4], and by Hablisek and Ellenberg
[3].

References

[1] Z. Dvir, On the size of kakeya sets in finite fields, Journal of the American Mathematical
Society, 22:1093–1097, 2009.

Hanoi Workshop Page 6



First Vietnam Workshop on Graph Theory and Discrete Geometry 07 - 10, Sept., 2016

[2] Z. Dvir, S. Kopparty, S. Saraf, M. Sudan, Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers, Proceedings of the 50th annual IEEE
Symposium on Foundations of Computer Science, pages 181–190, 2009.

[3] J. Ellenberg, M. Hablicsek, An incidence conjecture of Bourgain over fields of positive
characteristic. arXiv preprint arXiv:1311.1479, 2013.

[4] János Kollár, Szemerédi–trotter-type theorems in dimension 3, Advances in Mathemat-
ics, 271:30–61, 2015.

[5] Shubhangi Saraf and Madhu Sudan, Improved lower bound on the size of Kakeya sets
over finite fields, Analysis and PDE, 1(3):375–379, 2008.

[6] Thomas Wolff, Recent work connected with the Kakeya problem, Prospects in mathe-
matics (Princeton, NJ, 1996), 2:129–162, 1999.

Speaker: János Pach

EPF Lausanne, and Rényi Institute, Hungarian Academy of Sciences

Nearly perfect graphs

Abstract: Given a set of (geometric) objects, their intersection graph is a graph whose
vertices correspond to the objects, two vertices being connected by an edge if and only
if their intersection is nonempty. Intersection graphs of intervals on a line [H57], more
generally, chordal graphs and comparability graphs, turned out to be perfect graphs, that
is, for them and for all of their induced subgraph H, we have χ(H) = ω(H), where χ(H)
and ω(H) denote the chromatic number and the clique number of H, respectively. It was
shown [HS58] that the complements of these graphs are also perfect, and based on these
results, Berge [B61] conjectured and Lovász [Lo72] proved that the complement of every
perfect graph is perfect. By now, we have a complete characterization of all perfect graphs,
which immediately implies the Lovász theorem.

Most geometrically defined intersection graphs are not perfect. However, in many
cases they still have nice coloring properties. For example, Asplund and Grünbaum
[AG60] proved that every intersection graph G of axis-parallel rectangles in the plane
satisfies χ(G) = O((ω(G))2). The best known lower bound for χ(G) is linear in ω(G).
For intersection graphs of chords of a circle, Gyárfás [G85] established the bound χ(G) =
O((ω(G))24ω(G)), which was improved to O(2ω(G)) in [KoK97]. Here we have a slightly
superlinear lower bound. In some cases, there is no functional dependence between χ
and ω. The first such example was found by Burling: there are sets of axis-parallel boxes
in R3, whose intersection graphs are triangle-free (ω = 2), but their chromatic numbers
are arbitrarily large. Following Gyárfás and Lehel [GL83], we call a family G of graphs
χ-bounded if there exists a function f such that all elements G ∈ G satisfy the inequality
χ(G) ≤ f(ω(G)). The function f is called a bounding function for G. Heuristically, if a
family of graphs is χ-bounded, then its members can be regarded “nearly perfect”. Consult
[G87, Ko04] for surveys.
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At first glance, one might believe that, in analogy to perfect graphs, a family of
intersection graphs is χ-bounded if and only if the family of their complements is. Burling’s
above mentioned constructions show that this is not the case: the family of complements
of intersection graphs of axis-parallel boxes in Rd is χ-bounded with bounding function
f(x) = O(logd−1 x). More recently, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter,
and Walczak [PKK14] have proved that Burling’s triangle-free graphs can be realized as
intersection graphs of segments in the plane. Consequently, the family of these intersection
graphs is not χ-bounded either. On the other hand, the family of their complements is.

To simplify the exposition, we call the complement of the intersection graph of a set
of objects their disjointness graph. That is, in the disjointness graph two vertices are
connected by an edge if and only if the correspoinding objects are disjoint. Using this
terminology, Larman, Matoušek, Pach, and Törőcsik proved the following result.

Theorem 1. [LMPT94] The family of disjointness graphs of segments in the plane is
χ-bounded.

For the proof of Theorem 1, one has to introduce four partial orders on the family
of segments four times. Although this method does not seem to generalize to higher
dimensions, the statement does. We establish the following.

Theorem 2. P.-Tardos-Tóth [PTT16] The family of disjointness graphs of segments in
Rd, d ≥ 2 is χ-bounded.

Theorem 3. P.-Tardos-Tóth [PTT16]
(i) For every n, there is a system of lines in R3 such that their disjointness graphs Gn

satisfy limn→∞
χ(Gn)
ω(Gn)

=∞.
(ii) For infinitely many values of n, there is a system of n lines in P3 whose disjointness

graph G′n satisfies χ(G′n) ≥ 2ω(G′n)− 1.

A continuous arc in the plane is called a string. One may wonder whether Theorem 1
can be extended to disjointness graphs of strings in place of segments. The answer is no,
in a very strong sense.

Theorem 4. P.-Tardos-Tóth [PTT16] There exist triangle-free disjointness graphs of n
strings in the plane with arbitrarily large chromatic numbers. Moreover, we can assume
that these strings are polygonal paths consisting of at most 4 segments.

The following problems remain open.

Problem 5.
(i) Is the family of disjointness graphs of strings in the plane, any pair of which intersect

in at most one point, χ-bounded?
(ii) Is this true for strings that are polygonal paths consisting of at most k segments,

where k > 1 is fixed?

References

[AG60] E. Asplund and B. Grünbaum: On a colouring problem, Math. Scand. 8 (1960),
181–188.

[B61] C. Berge: Färbung von Graphen, deren sämtlich bzw. deren ungerade Kreise
starr sind. Beiträge zur Graphentheorie (Vorträge während des graphentheoretischen
Kolloquiums in Halle im März 1960, German), Wiss. Zeitchr. Univ. Halle 10 (1961),
114.
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[FK91] H. Furstenberg and Y. Katznelson: A density version of the Hales-Jewett theorem,
J. Anal. Math. 57 (1991), 64–119.

[G85] A. Gyárfás: On the chromatic number of multiple interval graphs and overlap graphs,
Discrete Math. 55(2) (1985), 161–166. Corrigendum: Discrete Math. 62(3) (1986), 333.

[G87] A. Gyárfás: Problems from the world surrounding perfect graphs, in: Proceedings of
the International Conference on Combinatorial Analysis and its Applications (Pokrzywna,
1985), Zastos. Mat. 19(3–4) (1987), 413–441.

[GL83] A. Gyárfás and J. Lehel: Hypergraph families with bounded edge cover or transver-
sal number, Combinatorica 3(3–4) (1983), 351–358.

[HS58] A. Hajnal and J. Surányi: Über die Auflösung von Graphen in vollständige
Teilgraphen (German), Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 1 (1958), 113–
121.

[H57] G. Hajós: Über eine Art von Graphen, Intern. Math. Nachr. 11 (1957), Sondernum-
mer 65.

[Ko04] A. V. Kostochka: Coloring intersection graphs of geometric figures, in: Towards
a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342, Amer.
Math. Soc., Providence, 2004, 127–138.

[KoK97] A. V. Kostochka and J. Kratochv́ıl, Covering and coloring polygon-circle graphs,
Discrete Math. 163(1–3) (1997), 299–305.

[LMPT94] D. Larman, J. Matoušek, J. Pach, and J. Törőcsik: A Ramsey-Type Result for
Convex Sets, Bull. London Math. Soc. 26 (1994), 132–136.

[Lo72] L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Math.
2(3) (1972), 253–267.

[PTT16] J. Pach, G. Tardos, and G. Tóth: Disjointness graphs of segments, Manuscript.

[PKK14] A. Pawlik, J. Kozik, T. Krawczyk, M. Lasoń, P. Micek, , W. T. Trotter, and
B. Walczak: Triangle-free intersection graphs of line segments with large chromatic
number, Journal of Combinatorial Theory, Ser. B, 105 (2014), 6–10.

Speaker: Thang Pham

Department of Mathematics, EPF Lausanne

Right angles in finite spaces

Abstract: We study the distribution of right angles determined by points in a set

E ⊆ Fdq . More precisely, we prove that if |E| ≥ q
d
2 , then the number of right angles

determined by points in E is larger than the expected value, and when q
d+1
2 = o(|E|), the
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number of right angles is (1− o(1)) |E|
3

q
. This is an improvement of a recent result due to

Bennett (2016). This is joint work with Gábor Tardos and Nguyen Minh Sang.

Speaker: Nguyen Duy Phuong

Vietnam National University Hanoi

Incidences between points and spheres in Fd
q

Abstract: Let Fq be a finite field of q elements where q is a large odd prime power
and Q = a1x

c1
1 + · · · + adx

cd
d ∈ Fq[x1, . . . , xd], where 2 ≤ ci ≤ N , gcd(ci, q) = 1, and

ai ∈ Fq for all 1 ≤ i ≤ d. A Q-sphere is a set of the form
{
x ∈ Fdq | Q(x− b) = r

}
, where

b ∈ Fdq , r ∈ Fq. We prove bounds on the number of incidences between a point set P and a
Q-sphere set S, denoted by I(P ,S), as the following.∣∣∣∣I(P ,S)− |P||S|

q

∣∣∣∣ ≤ qd/2
√
|P||S|.

We prove this estimate by studying the spectra of directed graphs. This is a joint work
with Thang Pham and Le Anh Vinh.

Speaker: Andrei Raigorodskii

Department of Discrete Mathematics, Moscow Institute of Physics and Technology

Borsuk’s problem

Abstract: In 1933 Borsuk asked whether any bounded non-singleton set in Rn can be
partitioned into n+1 parts of smaller diameter. Positive answers have been quickly received
for the dimensions n ≤ 3. However, in general case, the question has been remaining open
until 1993 when Kahn and Kalai found a very nice combinatorial construction showing
that n+ 1 is certainly not sufficient in high dimensions. In our lecture, we will exhibit a
colorful history of Borsuk’s problem and its relatives.

Coloring random graphs

Abstract: In our lecture, we will consider various questions concerning colorings of
random graphs in different models.
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Speaker: Günter Rote

Institut für Informatik, Freie Universität Berlin

The Computational Geometry of Congruence Testing

Abstract

Part I. Testing two geometric objects for congruence, i.e., whether they are the same
up to translations and rotations (and possibly reflections) is a fundamental question of
geometry.

In the first part, I will survey the various algorithmic techniques that have been used
since the 1970s to solve the problem in two and three dimensions in O(n log n) time for
two n-point sets, such as string matching, planar graph isomorphism (Sugihara [6]), and
the reduction technique of Atkinson [3].

In d-dimensions, for small constant d, the best previous algorithm takes O(ndd/3e log n)
time (Brass and Knauer [4]). There is also a randomized Monte Carlo algorithm of
Akutsu [1] and Matoušek, which takes O(nbd/2c/2 log n) time but which may miss to find
a congruence, with small probability. I will review the involved techniques: the basic
dimension reduction technique of Alt, Mehlhorn, Wagener, and Welzl [2], the canonical
forms of Akutsu [1], the closest-pair graph of Matoušek.

Part II. In the second part, I will introduce our recent algorithm for solving the 4-
dimensional problem in O(n log n) time (joint work with Heuna Kim [5]). This algorithm
will require the study of four-dimensional geometry, in particular the structure of four-
dimensional rotations, Hopf fibrations, and the regular polytopes.

References

[1] T. Akutsu. On determining the congruence of point sets in d dimensions. Computational
Geometry: Theory and Applications, 4(9):247–256, 1998.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symmetries
of geometric objects. Discrete & Computational Geometry, 3(1):237–256, 1988.

[3] M. D. Atkinson. An optimal algorithm for geometrical congruence. Journal of
Algorithms, 8(2):159–172, 1987.

[4] P. Brass and C. Knauer. Testing the congruence of d-dimensional point sets. In-
ternational Journal of Computational Geometry and Applications, 12(1&2):115–124,
2002.

[5] H. Kim and G. Rote. Congruence testing of point sets in 4-space. In S. Fekete and
A. Lubiw, editors, 32st International Symposium on Computational Geometry (SoCG
2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages
48:1–48:16, 2016. Full version on arXiv:1603.07269.

[6] K. Sugihara. An n log n algorithm for determining the congruity of polyhedra. Journal
of Computer and System Sciences, 29(1):36–47, 1984.
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Speaker: Steven Senger

Department of Mathematics, Missouri State University.

Polychromatic point configurations

Abstract: Suppose that a vector space, V , has been partitioned into k color classes of
roughly equal size. We explore conditions on V and k to guarantee the existence of point
configurations with each point from a different color class. One example is looking for
triples of points which form the vertices of a unit equilateral triangle (with an appropriately
defined notion of distance) for colorings of a vector space over a finite field, with no pair
of points from the triple belonging to the same color class. This should be held in sharp
contrast to traditional Ramsey theoretical problems, where configurations are sought
within a single color class.

Speaker: Gábor Tardos

Rényi Institute, Hungarian Academy of Sciences

Pattern avoidance in ordered graphs and matrices

Abstract: Pattern avoidance is a rich topic and it shows up in many different forms.
In this abstract we focus on graphs and ordered graphs. Other settings in which pattern
avoidance shows up include 0-1 matrices and permutations some of which will come up
during the talk. Here we focus on the extremal theory, but enumerative and Ramsey-type
questions are also widely studied. All these theories are closely related to each other. Some
of the quoted results are not formulated originally for ordered graph but in some other
setting. In these cases the quoted result follows from known equivalences between these
related extremal theories.

No prior knowledge is required beyond the familiarity with graphs. The talk will contain
full proofs of several of the results mentioned here and many other results will also be
mentioned.

Let us start with a brief introduction to classical (also called Turán type) extremal
graph theory. Given a simple graph H we ask what is the maximal number ex(n,H) of
edges a simple graph on n vertices can have if it has no subgraph isomorphic to H. The
earliest result in this area is Mantel’s Theorem from 1907:

Mantel’s Theorem. ex(n,K3) =
⌊
n2

4

⌋
Turán’s Theorem extends this to larger forbidden cliques:

Turán’s Theorem. ex(n,Kr) =
(
1− 1

r−1

)
n2

2
−O(r)

(Turán’s theorem gives the exact value of ex(n,Kr) and also the unique extremal graph
but here we are satisfied with this weaker form.)

A far reaching further generalization is the Erdős-Stone-Simonovits Theorem that
relates the extremal function ex(n,H) to the chromatic number χ(H) for any graph H:
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Erdős-Stone-Simonovits Theorem. ex(n,H) =
(

1− 1
χ(H)−1

)
n2

2
+ oH(n2)

This result establishes the exact asymptotics of ex(n,H) for any fixed non-bipartite
graph H. For bipartite graphs H, however, the above result only states ex(n,H) = oH(n2).
The Kővári-Sós-Turán theorem establishes a much stronger upper bound for complete
bipartite graphs — and by monotonicity to all bipartite graphs, but despite a large body
of research over several decades there are still many bipartite graphs H for which not
even the order of magnitude of ex(n,H) is known. Among them K4,4 is one of the most
notorious.

In this talk I will focus on an extension of this classical theory to ordered graphs. We
give additional structure to simple graphs by specifying a linear order on the set of vertices
to obtain ordered graphs. Subgraphs naturally inherit this order. Using the notions of
ordered graphs and ordered subgraphs we ask the same pattern avoidance questions: Given
an ordered graph H let ex<(n,H) stand for the maximum number of edges an ordered
graph on n vertices can have if it has no ordered subgraph isomorphic to H. If H is a
family of ordered graphs we can similarly define ex<(n,H) as the maximum number of
edges an n vertex ordered graph can have if it has no ordered subgraph isomorphic to
any member of H. To justify that this is an extension of the Turán type extremal graph
theory note that if H is a simple graph and H is the family of ordered graphs obtained
from H by adding all possible linear orders on its vertices, then one clearly has

ex(n,H) = ex<(n,H).

Ordered graphs allow us to ask many more extremal questions and some of these are
better suited for applications in discrete geometry and other fields where an order of
the vertices may arise naturally. Distinct ordered graphs having the same underlying
simple graph typically have wildly different extremal functions. As an example consider
the path P4 on four vertices. With a suitable linear order on its vertices the extremal
function of the resulting ordered graph falls into any one of the following categories:
n2/3 +O(1), n2/4 +O(1), Θ(n log n), Θ(n). Note that no extremal function of the type
Θ(n log n) show up in the classical theory. Indeed, it is easy to see that for forests H
we have ex(n,H) = O(n), while for graphs H containing a cycle Cm we have ex(n,H) ≥
ex(n,Cm) = Ω(n1+1/(m−1)).

To find the extension of the Erdős-Stone-Simonovits theorem to this setting we introduce
the ordered chromatic number χ<(H) (also called interval chromatic number) of an ordered
graph H: this is the smallest number of colors in a proper coloring of the simple graph
underlying H in which the color classes form consecutive intervals in the ordering. With
this notation we have the following for any ordered graph H:

Erdős-Stone-Simonovits Theorem for ordered graphs. [4]

ex<(n,H) =

(
1− 1

χ<(H)− 1

)
n2

2
+ oH(n2)

As in the classical case, this result gives the exact asymptotics for the extremal function
of the ordered graph H unless H is ordered bipartite, that is, χ<(H) ≤ 2.

For ordered bipartite graphs much less is known and there are lot of interesting open
problems. Among these is the characterization of ordered graphs H with a linear extremal
function (that is, satisfying ex<(n,H) = O(n)). Marcus and Tardos [3] proved that
matchings are among them:
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[3] For an ordered bipartite matching H one has ex<(n,H) = O(n).

Based on Balázs Keszeg’s work [2], Jesse Geneson [1] proved that there are an infinite
number of minimal non-linear ordered graphs (i.e., ordered graphs whose extremal function
is not linear, but whose all proper ordered subgraphs have linear extremal functions). This,
however, should not be considered as an unbreachable obstacle in the characterization.
The corresponding problem in the classical theory is very easy, but one still has infinitely
many minimal graphs with non-linear extremal functions: the cycles Cm.

My personal favorite open problem is about ordered bipartite trees, that is about
ordered bipartite graphs H with a tree as their underlying simple graph. Even P4 has an
ordered bipartite ordering with extremal function Θ(n log n), but finding examples with
higher extremal function is difficult. Seth Pettie [5] found an ordered bipartite tree H
with a slightly larger extremal function: Ω(n log n log log n).

Conjecture 1. For any ordered bipartite tree H one has c = c(H) such that ex<(n,H) =
O(n logc n).

The above conjecture may very well be true for c = 2 (independent of H), but even
proving a weaker estimate ex<(n,H) = O(n1+ε) for all ε > 0 would be a breakthrough.
For partial results see Pach and Tardos [4], where the conjecture is established for all
very small trees. The smallest graphs H for which this conjecture is open are two distinct
orderings of the path P7 (see them also in [4]). Meanwhile, an unpublished paper of Tardos

and Weidert [6] established an n2O(
√
logn log logn) bound for the extremal function of one of

these two ordered graphs and a similar bound was established for the other one too, but
for several bipartite orderings of P8 no meaningful upper bound is known.

It would be interesting to find out how far the extremal function of ordered bipartite
graphs can be from the extremal function of the underlying simple graph. The latter is
always a lower bound corresponding to avoiding all possible orderings of the underlying
graph. Pach and Tardos [4] show examples of bipartite orderings of C2m for any m that
are all avoided in some ordered graphs with n vertices and Ω(n4/3) edges. This establishes
a strong separation as by the Even Circuit Theorem of Bondy, Simonovits and Erdős
the corresponding classical extremal function satisfies ex(n,C2m) = O(n1+1/m). Finding
examples where the classical and the ordered extremal function differ by a factor of n1/3 is
still open, but I believe that much larger separation is also possible:

Conjecture 2. For every ε > 0 there exists a bipartite graph H and a bipartite ordering
H< of H such that ex<(n,H<) = Ω(n2−ε), but ex(n,H) = O(n1+ε).

There is just one bipartite ordering of C4, so its extremal function is well understood,
but not even the order of magnitude is known of any bipartite ordering of any other even
cycle.
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Speaker: Tran Nam Trung
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An algebraic characterization of Cameron-Walker graphs

Abstract: Let R = K[x1, ..., xn] is the polynomial ring over a field K and M a finitely
generated graded R-module. By Hilbert syzygy theorem, M has a minimal graded free
resolution of the form:

0←−M ←− F0 ←− F1 ←− · · · ←− Fp ←− 0.

Let ti(M) be the maximal degree of generators of Fi. Then, the Castelnuovo-Mumford
regularity (regularity for short) of M is defined by

reg(M) = max{ti(M)− i | i = 0, . . . , p}.

Let G = (V,E) be a simple graph on the vertex set V = [n]. We associated to G an
ideal

I(G) = (xixj | {i, j} ∈ E)

in R, which is called the edge ideal of G.
Finding bounds for the regularity of I(G) in terms of combinatorial data of G is an

active research program in combinatorial commutative algebra in recent years. Let ν(G)
denote the maximum size of matchings of G and ν0(G) that of induced matchings of G. It
is known that

ν0(G) + 1 6 reg(I(G)) 6 ν(G) + 1.

Cameron and Walker succeeded in classifying the finite connected simple graphs G with
ν(G) = ν0(G). In this case, reg(I(G)) = ν(G) + 1. We say that a finite connected
simple graph G is a Cameron-Walker graph if ν(G) = ν0(G). In this talk, we give a
graph-theoretic characterization of graphs G such that reg(I(G)) = ν(G) + 1.
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Speaker: Le Anh Vinh
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Some geometric combinatorial problems in finite vector spaces -
A spectral graph theory viewpoint

Abstract: Using spectral graph theory, we will study a unified proof of several
geometric combinatorial problems such as the Erdős type problem, point-line incidences,
simplexes distributions and their variants in finite vector spaces. We also outline a number
of unsolved problems, possible future directions and the connection between this approach
and different methods.

N-e.c. graphs

Abstract: For a positive integer n, a graph is n-existentially closed or n-e.c. if we can
extend all n-subsets of vertices in all possible ways. It is known that almost all finite graphs
are n-e.c. Despite this result, until recently, only few explicit examples of n-e.c. graphs
are known for n > 2. In this talk, we give a survey on the current known constructions
and construct explicitly a family of 3-e.c and 4-e.c. graphs via permutation polynomials
and multiplicative groups over finite fields. This is a joint work with N. M. Hai and T. D.
Phuc.

Speaker: David Wood

School of Mathematical Sciences, Monash University, Melbourne, Australia

Nonrepetitive Graph Colouring

Abstract: Graph colouring is a central topic in combinatorial mathematics. Most
famously, the Four Colour Theorem states that the regions of a planar map can be 4-
coloured so that regions that share a common border receive distinct colours. This is
equivalent to the statement that the vertices of every planar graph can be 4-coloured
so that adjacent vertices receive distinct colours. There are numerous extensions of the
notion of graph colouring in the literature.

One such extension is called nonrepetitive colouring. This notion is best introduced
via the theorem of Thue [9] who constructed an arbitrarily long string of three characters
containing no substring of even length where the first half of the substring is the same
as the second half. We can think of Thue’s theorem as a result about 3-colouring paths,
which naturally suggests a generalisation for arbitrary graphs. A nonrepetitive colouring
of a graph G is a function that assigns each vertex of G a colour, such that for every path
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P of even length in G, the sequence of colours on the first half of P is distinct from the
sequence of colours on the second half of P . The nonrepetitive chromatic number of G is
the minimum number of colours in a nonrepetitive colouring of G. It follows from Thue’s
result that the nonrepetitive chromatic number of a path (of length at least 4) equals 3.

What about nonrepetitive colouring of other graph classes? Alon et al. [1] proved
that bounded degree graphs have bounded nonrepetitive chromatic number; in particular,
graphs with maximum degree ∆ are nonrepetitively O(∆2)-colourable. The proof is an
elegant example of the Lovász Local Lemma. Using a recent technique called ‘entropy
compression’, Dujmović et al. [4] reduced this bound to (1 + o(1))∆2. Non-repetitive
colourings have been studied for several well-structured graph families. For example,
Brešar et al. [2] proved that every tree is nonrepetitively 4-colourable. Kündgen and
Pelsmajer [7] generalised this result for graphs of bounded treewidth. Nešetřil et al. [8]
studied nonrepetitive colourings of subdivisions, and concluded that graph classes with
bounded nonrepetitive chromatic number have bounded expansion.

A challenging open problem is whether planar graphs have bounded nonrepetitive
chromatic number [6]. The best known upper bound for n-vertex planar graphs is O(log n)
due to Dujmović et al. [3] This bound was generalised by Dujmović et al. [5] for
graphs excluding a fixed topological minor. The proof employs powerful tools such as the
Robertson–Seymour graph minor structure theorem.

This talk will survey these results, focusing on the tools used, which should be of wide
interest. Only elementary knowledge of graph theory will be assumed.
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Visibility graphs: geometric problems in need of some additive
combinatorics

Abstract: I will discuss a number of open problems in combinatorial geometry that
seem to need additive combinatorics in their solution. The recurring theme is the notion
of the visibility graph of a point set P , which has vertex set P , where distinct points v and
w in P are adjacent whenever the line segment vw contains no other point in P . Many
interesting results and open problems are obtained by studying graph-theoretic properties
of visibility graphs. For example, Székely’s simple proof of the Szemerédi–Trotter Theorem
can be thought of as applying the crossing lemma to a particular subgraph of the visibility
graph. And Beck’s Theorem can be thought of as saying that visibility graphs have many
edges. Open problems related to elliptic curves and Freiman’s Theorem also arise. The
following references are relevant [1–9].
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