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Billiards on the triaxial ellipsoid

To an ellipsoid with 3 different axes

x2

a
+

y2

b
+

z2

c
= 1

there are naturally attached elliptic curves and abelian surfaces and
- as a consequence - elliptic and abelian integrals. We study the
following problems:

– Are the elliptic curves given by curvature lines isomorphic?
– For which a, b, c and which α are the α- curvature lines dense?
– Characterization of non-trivial closed geodesics in terms of
splitting properties of abelian surfaces attached to the ellipsoid.
– Ellipsoid of revolution
– Null-geodesics
– elliptic and abelian period spaces - Schneider’s 3rd problem
revisited
The questions lead to study linear independence of elliptic and
abelian integrals of first, second and third kind.
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Confocal family of ellipsoids

Considern an ellipsoid Ea,b,c in R3 with three different axes
a > b > c > 0 given by

Ea,b,c :
x2

a
+

y2

b
+

z2

c
= 1

and its confocal deformations

Ea,b,c(λ) :
x2

a− λ
+

y2

b − λ
+

z2

c − λ
= 1

for real λ 6= a, b, c .
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Confocal family of ellipsoids

The family is non-trivial only when −∞ ≤ λ ≤ a. For λ ∈ (−∞, c)
we get ellipsoids, for λ ∈ (c , b) 1-sheeted hyperboloids and
2-sheeted hyperboloids for λ ∈ (b, a).

The family is dual to

(a− λ)x2 + (b − λ)y2 + (c − λ)z2 = 1. (1)

with excentricy ε2 = (a− λ)− (b − λ) = a− b independent of λ
and therefore confocal.

The principal curvature lines are the base loci of the family (1).
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elliptic curves attached to the ellisoid

There are 3 different ways to define principal curvature lines:

– intersections of two quadrics in P3 and as such elliptic curves
– loci of maximal respectively minimal curvature
– constucted by contact spheres.
The construction via contact spheres leads to two vector fields
which, when integrated leads to principal curvature lines.

center cuspidal saddle cuspidal center

Figure : Tangent spheres and contact type. A center for small and big
values of r ; saddle for intermediate values of r and cuspidal or more
degenerate contact for r = 1/k1 and r = 1/k2.
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curvature lines

Principal curvature lines define
– 2 pencils of elliptic curves
– elliptic coordinates

There are 2 further elliptic curves attached to the ellipsoid:
– the 2-fold covering of the ellipsoid ramified in the umbillics
– the characteristic curve The latter is the elliptic curve curve
given by

µ2 = χ(λ)

where
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G. Wüstholz (ETH Zürich/UZh) Halong 2017



curvature lines

Principal curvature lines define
– 2 pencils of elliptic curves
– elliptic coordinates

There are 2 further elliptic curves attached to the ellipsoid:
– the 2-fold covering of the ellipsoid ramified in the umbillics
– the characteristic curve The latter is the elliptic curve curve
given by

µ2 = χ(λ)

where
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curvature lines

χ(λ) = (λ− a)(λ− b)(λ− c)

is the characteristic polynomial of the ellipsoid.

Surprisingly

Theorem (R. Garcia, G.W.)

For λ 6= a, b, c the curve C (λ) is isomorphic over Q(a, b, c ;λ, µ) to
the curve with equation

y2 = x(x − 1)(x − δ)

where µ satisfies λ12 − (abc(b − a)χ(λ))3µ2 = 0 and δ = a−c
a−b is

the cross ratio.

The proof makes among others use of the Edwards form of an
elliptic curve

X 2 + y2 = a2 + a2x2y2

by which we transform the space curve into a plane elliptic curve.
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α-curvature lines

α-curvature lines
Let X1, X2 be the principal vector fields defined by the tangent
vectors of the principal curvature lines. For α ∈ (−π

2 ,
π
2 ) we

introduce transversal foliations F±α given by the integral curves of
the vector field Xα := cosαX1 + sinαX2.

U1

U2

U4

U3

A basic problem in dynamical systems is to determine for which α
the leaves of the foliation F±α are dense.
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Cartography on the ellipsoid

Using elliptic coordinates and integrals of the third kind Jacobi
introduced a conformal map from the ellipsoid to the plane

U1U2

U3 U4

U1U2

U3 U4

(π, π)(0, π)

(0, 0) (π, 0)

(π, π)

ϕ+

ϕ−

(0, π)

(0, 0) (π, 0)

in which the principal curvature lines are the images of lines
parallel to the coordinate axes.
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Cartography on the ellipsoid

α-curvature lines are parametrized by lines with angle α to one of
the axes and billiard on the ellipsoid becomes classical billiard

U1U2

U3

U3

U4

U4

U1U2

(−s1, s2) (s1, s2)

(−s1, s2) (s1, s2)(s1, s2)

(−s1,−s2)

(−s1,−s2)

(s1,−s2)

(s1,−s2)

q

Π+
α (q)

q

Π−α (q)
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Characteristic curve

The characteristic polynomial χ(λ) naturally associated with the
pencil defines a family C = {Ca,b,c}a,b,c∈P1 of elliptic curves

y2 = (x − a)(x − b)(x − c) (2)

which come up naturally in the cartographic projection of the
ellipsoid.

The length of the sides of the rectangle are given by∫ √
x

(x − a)(x − b)(x − c)
dx (3)

taken from umbillic to umbillic. They are perods of elliptic
integrals of the third kind.

Theorem (R Garcia, G.W.)

For α ∈ (0, π/2) ∩ 2πQ the foliations Fα on E do not contain any
compact leaf.
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Intersection of quadrics in P5

Geodesics

A basic problem in dynamical systems: which geodesics are closed.

x

z

y

Foliated torus Cylindrical region

The envelopes (caustics) of the geodesic on the ellipsoid are
principal curvature lines.
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Intersection of quadrics in P5

For dealing with geodesics on a triaxial ellipsoid we look at the two
quadrics

w2 = ax2 + by2 + cz2 − µ1w
2
1 − µ2w

2
2

0 = x2 + y2 + z2 − w2
1 − w2

2

with µ = (µ1, µ2) ∈ P1 × P1.

They define a pencil

w2 = (a− λ)x2 + (b − λ)y2 + (c − λ)z2 − (µ1 − λ)w2
1 − (µ2 − λ)w2

2

and the associated characteristic curve is the hyperelliptic curve

C : η2 = (λ− a)(λ− b)(λ− c)(λ− µ1)(λ− µ2).

The Jacobian J(C ) of C is an abelian surface with the property
that it contains a curve of genus 2. We fix an embedding
ν : C → J by choosing once for all a Weierstrass point denoted by
O.
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Closed geodesics

The tangent in O of the embedded curve plays a special role.
In order to determine the tangent we put

W = {ω ∈ H0(C ,Ω1
C ), ω(O) = 0}.

This is a vector space of dimension 1 and we chose a generator ω0

which can be expressed as ν∗ω for a uniquely determined
ω ∈ H0(J,Ω1

J). Let γ be a geodesic on the ellipsoid.
The following theorem gives a necessary and sufficient condition
for the existence of a closed geodesic in Ea,b,c ⊂ P3.

Theorem (R Garcia, G.W.)

The geodesic γ is closed if and only if there exists an elliptic curve
ι : E ↪→ J with the property that ι∗ω = 0

The Theorem above reduces the question on closed geodesics to
decide when the Jacobian of C contains an elliptic curve.
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Humbert Surface

In a series of papers Kani, partly with Frey, has studied problems of
this type. A key role for answering the question is played by the
socalled Humbert invariant of a divisor in Div(J). Let NS(J) be
the Néron-Severi group of J and Θ ∈ Div(J) a divisor. Define for
curves C its degree with respect to Θ as

deg(C ) = degΘ(C ) = (C ·Θ)

where the term (C ·Θ) is the intersection product on the surface.
We obtain a quadratic form

∆(D) = (D ·Θ)2 − (Θ ·Θ)(D · D) (4)

which descends to NS(J,Θ) = NS(J) · D) and gives a positive
definite quadratic form.
A polarized abelian surface is said to satisfy a singular relation with
invariant N if there exists a primitive class [D] ∈ NS(A,Θ) with
Humbert invariant ∆(D) = N.
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Humbert Surface

Let

HN = {(A,Θ); (A,Θ) satisfies singular relation with invariant N}
be the Humbert surface introduced by Humbert. Then

Theorem (Biermann-Humbert)

A principally polarized abelian surface (A,Θ) has an elliptic
subgroup of degree N if and only if (A,Θ) ∈ HN2 .

An immediate consequence is the following

Corollary

A necessary condition for a geodesic to be closed is that J ∈ HN2

for some N.

It would be interesting to see under which conditions the Corollary
also gives a sufficient condition. It is conceivable that one has to
impose the condition on the differential given in Theorem 3. A
discussion of the case N = 1 is given below.
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Kani’s Classification

The theorem reduces in this case the problem to the question
under which assumptions J(C ) is a product of two elliptic curves.
This was answered by E.Kani (2014) based on the careful study of
quadratic forms attached to such products. We briefly report on
his results.

To begin with it is relatively easy to see that if the two elliptic
curves are non-isogenous there are no closed geodesics. This
implies that closed geodesics on the ellipsoid can only exist when
the characteristic curve attached to the ellipsoid in P5 defines a
point in the moduli space of abelian surfaces lying on a countable
union modular curves on the surface and we have to distinguish
between complex multiplication and non-complex multiplication.
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Kani’s Classification

No CM
In the case when E1 and E2 do not have complex multiplication
and such that Hom(E1,E2) = dZ 6= 0 then there is no genus 2
curve on E1 × E2 if and only if d is in the set ΣNCM given by

1, 2, 4, 6, 10, 12, 18, 22, 30, 42, 58, 60, 70, 78, 102, 130, 190, 210, 330, 462

together with at most one more value d = d∗ > 462. In other
words: closed geodesics can only exist in this case when d is not in
the set.

The possible extra value d∗ comes from a class number

problem dealing with the so-called numeri idonei, a problem
introduced by Euler and Gauss. If the assigned conjecture or GRH
is true, then such a d∗ does not exist.
An integer n ≥ 1 is idoneal if it has the following property: if m is
an odd integer prime to n properly represented by
q(x , y) = x2 + ny2 and if the equation q(x , y) = m has only one
solution, then m is prime.
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G. Wüstholz (ETH Zürich/UZh) Halong 2017



Kani’s Classification

CM
If E1 and then also E2 do have complex multiplication we may
assume that A ∼ E × E for a CM elliptic curve E .

Kani shows that
there exist two elliptic curves E1 and E2 such that A ' E1 × E2.
Let ∆(A) denote the discriminant of the intersection pairing on the
Néron-Severi group NS(A) of A.
He then proves that if ∆(A) is in the set ΣCM :

3,4,7,12,15,16,32,44,46,80,96,108, 140,144,300

then there is no hyperelliptic curve on A ' E1 × E2 and taking the
two cases together this leads to the following

Theorem (R. Garcia, G.W.)

There are no closed geodesics on the ellipsoid if and only if
d ∈ ΣNCM or ∆(A) ∈ ΣCM and a possible further isolated value
d∗ > 462.
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Néron-Severi group NS(A) of A.
He then proves that if ∆(A) is in the set ΣCM :

3,4,7,12,15,16,32,44,46,80,96,108, 140,144,300

then there is no hyperelliptic curve on A ' E1 × E2 and taking the
two cases together this leads to the following

Theorem (R. Garcia, G.W.)

There are no closed geodesics on the ellipsoid if and only if
d ∈ ΣNCM or ∆(A) ∈ ΣCM and a possible further isolated value
d∗ > 462.
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G. Wüstholz (ETH Zürich/UZh) Halong 2017



Kani’s Classification

CM
If E1 and then also E2 do have complex multiplication we may
assume that A ∼ E × E for a CM elliptic curve E . Kani shows that
there exist two elliptic curves E1 and E2 such that A ' E1 × E2.
Let ∆(A) denote the discriminant of the intersection pairing on the
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Kani’s Classification

The proof of the Theorem makes use of the determination of the
slope of a geodesics in terms of the slope of the tangent line in a
Weierstrass point of the curve C embedded in the Jacobian.
One direction follows directly from the previous Theorem. For the
converse one has to go back to the description of the tangent in
terms of the differentials.

A different but incomplete approach to the problem was published
by Yu. Fedorov and S. Abenda through KdV techniques. They
studied a family of so-called hyperelliptic tangential coverings
C → E which arise in the spectral theory of Lamé potentials or as
some spectral curves of elliptic Moser-Calogero systems which
describe the motions in an n-body system.
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Geodesics and abelian surfaces

Some remarks on the proofs (geodsics)

Similar to curvature lines, by the work of M. Chasles, C. G. J.
Jacobi, M. Reid, R. Donagi and H. Knörrer geodesics on the
ellipsoid can be parametrized by geodesics on J(C ) which are
linearized by affine lines in the Lie algebra Lie(J(C )) (Linearization
of the geodesic flow). Again elliptic billiard is reduced to billiard on
a billiard table.
The problem then becomes to determine when the tangent in a
Weierstrass point of the characteristic curve C embedded in its
Jacobian intersects non-trivially the period lattice of J(C ). This is
the case if and only if the quotient of two periods of an abelian
integral is rational which leads a linear form in abelian logarithms.
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Proofs

The underlying differential is

ω(u) =
udu√

−u(u − a)(u − b)(u − c)(u − λ)
=

udu√
p(u)

on the genus 2 hyperelliptic curve

C : µ2 = −u(u − a)(u − b)(u − c)(u − λ).

which is holomorphic.
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Linear independence of periods

Some remarks on the proofs (α-curvature lines)

The α-curvature line problem leads us to consider the elliptic
differentials ω = dx/y , η = xω, and ξ on the elliptic curve
y2 = x(x − 1)(x − λ) with ξ a differential of 3rd kind with period
matrix 〈ω, γ 0〉 〈ω, γ1〉 0

〈η, γ 0〉 〈η, γ1〉 0
〈ξ, γ 0〉 〈ξ, γ1〉 2πi resP(ξ)


and with γ0, γ1, γ cycles on the elliptic curve.

The differential ξ has two simple poles and determines a point P in
Ext1(E ,Gm) = E which corresponds to an extension

1→ Gm → Gm → E → 0

of E by Gm.
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G. Wüstholz (ETH Zürich/UZh) Halong 2017



Linear independence of periods

The differential η determines an extension

0→ Ga → Ga → E→ 0

of E by Ga and the entries of the period matrix together with 1
generate a vector space V over Q.

Possible relations come from
endomorphisms of Ga and Gm in terms of the endomorphisms of E
which have to be determined. Out of the two extensions a
commutative algebraic group G is constructed to apply the
Analytic Subgroup Theorem.
We denote by O the ring of integers in the endomorphism algebra
End(E) which is either Q or an imaginary quadratic field K . Then

G. Wüstholz (ETH Zürich/UZh) Halong 2017



Linear independence of periods

The differential η determines an extension

0→ Ga → Ga → E→ 0

of E by Ga and the entries of the period matrix together with 1
generate a vector space V over Q. Possible relations come from
endomorphisms of Ga and Gm in terms of the endomorphisms of E
which have to be determined.

Out of the two extensions a
commutative algebraic group G is constructed to apply the
Analytic Subgroup Theorem.
We denote by O the ring of integers in the endomorphism algebra
End(E) which is either Q or an imaginary quadratic field K . Then
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Linear independence of periods

Theorem

End(Ga) =

{
O ×Ga if [G ] is trivial,

End(E) otherwise

and

End(Gm) =

{
O × Z if [G ] is torsion,

Z otherwise

The first statement is due to Masser using elementary complex
analysis. We give a more conceptional proof using Hodge theory
which extends easily to abelian varieties of higher dimension. For
the second statement our proof uses Serre’s criterion for
endomorphisms of extensions.
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Linear independence of periods

With the previous theorem it is easy to give an upper bound for
the dimension and the analytic subgroup theorem then shows that
the dimensions are equal to the upper bound.

Theorem

dimV ⊗Q =


8 if E has no CM and P is non-torsion

6 if E has no CM and P is torsion

6 if E has CM and P is non-torsion

4 if E has CM and P is torsion

This is used in the proof of the theorem about α – curvature lines.
The link between differentials and commutative algebraic groups
which come up is the generalized Jacobian introduced by
Rosenlicht and Serre which implies that all our differentials are
pullback if invariant differentials on the generalized Jacobian.
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G. Wüstholz (ETH Zürich/UZh) Halong 2017



Ellipsoid of revolution

Ellipsoid of revolution
If two of the half axes of the ellipsoid coincide we are in the case of
an ellipsoid of revolution. We consider only the case

x2

b
+

y2

b
+

z2

c
= 1 (5)

with c < b; the case b < c is similar.

Figure : Geodesic curves in an ellipsoid (oblate) of revolution.
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Ellipsoid of revolution

Let ξ be the differential form

ξ =
vdv

(b − v)
√
v(v − c)(λ− v)

(6)

of the third kind with λ ∈ (c , b) parametrizing the possible
geodesics. In this situation we prove by a deformation argument
the following

Theorem

On an ellipsoid of revolution defined over a number field K there
are no non-trivial closed geodesics.
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Null geodesics

Null geodesic
If the underlying space is replaced by a Minkowski space with
Laurentzian metric the geodesics become Null geodesics and our
problem then turns into the question under which conditions on a,
b, c Null geodesics are closed.

This is Problem 7 in which Tabachnikov asks to find conditions on
the axes a, b, c of the ellipsoid ensuring the existence of
(n; r)-chains defined to be closed null geodesic lines.

z = 0 (equator)

tropic

tropic

Figure : Null-chain on the ellipsoid Ea,b,c .
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Null geodesics

Here we consider a triaxial ellipsoid Ea,b,c in R3,1 with metric
ds2 = dx2 + dy2 − dz2. In this case the null geodesic are lying in a
cylindric region bounded by two regular curves (tropics). In this
strip the null geodesics behaves like a singular billiard and a
Poncelet type theorem was proved by Griffiths, Harris, Tabachnikov
and alii.

Again the key for solving this problem is the Analytic
subspace Theorem which is then used to deduce

Theorem

On an ellipsoid in Minkowski space defined over a number field
there are closed Null geodesics if and only if J ∈ Hn2 for some N.
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