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Abstract

We establish sparsity and summability results for coefficient sequences of Wiener-Hermite
polynomial chaos expansions of countably-parametric solutions of linear elliptic and parabolic
divergence-form partial differential equations with Gaussian random field inputs.

The novel proof technique developed here is based on analytic continuation of parametric
solutions into the complex domain. It differs from previous works that used bootstrap arguments
and induction on the differentiation order of solution derivatives with respect to the parameters.
The present holomorphy-based argument allows a unified, “differentiation-free” proof of sparsity
(expressed in terms of `p-summability or weighted `2-summability) of sequences of Wiener-
Hermite coefficients in polynomial chaos expansions in various scales of function spaces. The
analysis also implies corresponding analyticity and sparsity results for posterior densities in
Bayesian inverse problems subject to Gaussian priors on uncertain inputs from function spaces.

Our results furthermore yield dimension-independent convergence rates of various construc-
tive high-dimensional deterministic numerical approximation schemes such as single-level and
multi-level versions of Hermite-Smolyak anisotropic sparse-grid interpolation and quadrature in
both forward and inverse computational uncertainty quantification.
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2.5.2 Karhunen-Loève expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 Multiresolution representations of GRFs . . . . . . . . . . . . . . . . . . . . . 27
2.5.4 Periodic continuation of a stationary GRF . . . . . . . . . . . . . . . . . . . . 28
2.5.5 Sampling stationary GRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Finite element discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Finite element interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Elliptic divergence-form PDEs with log-Gaussian coefficient 35
3.1 Statement of the problem and well-posedness . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Lipschitz continuous dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Regularity of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Random input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Parametric deterministic coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Deterministic countably parametric elliptic PDEs . . . . . . . . . . . . . . . . 40
3.5.2 Probabilistic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Deterministic complex-parametric elliptic PDEs . . . . . . . . . . . . . . . . . 41

3.6 Analyticity and sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.1 Parametric holomorphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.2 Sparsity of Wiener-Hermite PC expansion coefficients . . . . . . . . . . . . . 44

3.7 Parametric Hs(D)-analyticity and sparsity . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.1 Hs(D)-analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Sparsity of Wiener-Hermite PC expansion coefficients . . . . . . . . . . . . . 54

3.8 Parametric Kondrat’ev analyticity and sparsity . . . . . . . . . . . . . . . . . . . . . 57
3.8.1 Parametric Ks

κ(D)-holomorphy . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3



3.8.2 Summability of Ks
κ-norms of Wiener-Hermite PC expansion coefficients . . . 61

3.9 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Sparsity for holomorphic functions 65
4.1 (b, ξ, δ,X)-Holomorphy and sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 (b, ξ, δ,X)-Holomorphy of composite functions . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Examples of holomorphic data-to-solution maps . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Linear elliptic divergence-form PDE with parametric diffusion coefficient . . . 77
4.3.2 Linear parabolic PDE with parametric coefficient . . . . . . . . . . . . . . . . 79
4.3.3 Linear elastostatics with log-Gaussian modulus of elasticity . . . . . . . . . . 86
4.3.4 Maxwell equations with log-Gaussian permittivity . . . . . . . . . . . . . . . 89
4.3.5 Linear parametric elliptic systems and transmission problems . . . . . . . . . 90

5 Parametric posterior analyticity and sparsity in BIPs 91
5.1 Formulation and well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Posterior parametric holomorphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Example: parametric diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Smolyak sparse-grid interpolation and quadrature 97
6.1 Smolyak sparse-grid interpolation and quadrature . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Smolyak sparse-grid interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.2 Smolyak sparse-grid quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Multiindex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.1 Number of function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Construction of (ck,ν)ν∈F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 Summability properties of the collection (ck,ν)ν∈F . . . . . . . . . . . . . . . 102
6.2.4 Computing Λε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Interpolation convergence rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Quadrature convergence rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Multilevel Smolyak sparse-grid interpolation and quadrature 114
7.1 Setting and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Multilevel Smolyak sparse-grid algorithms . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Construction of an allocation of discretization levels . . . . . . . . . . . . . . . . . . 117
7.4 Multilevel Smolyak sparse-grid interpolation algorithm . . . . . . . . . . . . . . . . . 121
7.5 Multilevel Smolyak sparse-grid quadrature algorithm . . . . . . . . . . . . . . . . . . 124
7.6 Examples for multilevel interpolation and quadrature . . . . . . . . . . . . . . . . . . 128

7.6.1 Parametric diffusion coefficient in polygonal domain . . . . . . . . . . . . . . 128
7.6.2 Parametric holomorphy of the posterior density in Bayesian PDE inversion . 138

7.7 Linear multilevel interpolation and quadrature approximation . . . . . . . . . . . . . 142
7.7.1 Multilevel Smolyak sparse-grid interpolation . . . . . . . . . . . . . . . . . . . 143
7.7.2 Multilevel Smolyak sparse-grid quadrature rates . . . . . . . . . . . . . . . . 146
7.7.3 Applications to parametric divergence-form elliptic PDEs . . . . . . . . . . . 148
7.7.4 Applications to holomorphic functions . . . . . . . . . . . . . . . . . . . . . . 149

8 Conclusions 153

4



1 Introduction

Gaussian random fields (GRFs for short) play a fundamental role in the modelling of spatio-
temporal phenomena subject to uncertainty. In several broad research areas, particularly, in spatial
statistics, data assimilation, climate modelling and meteorology to name but a few, GRFs play a
pivotal role in mathematical models of physical phenomena with distributed, uncertain input data.
Accordingly, there is an extensive literature devoted to mathematical, statistical and computational
aspects of GRFs. We mention only [87, 75, 3] and the references there for mathematical foundations,
and [89, 56] and the references there for a statistical perspective on GRFs.

In recent years, the area of computational uncertainty quantification (UQ for short) has emerged
at the interface of the fields of applied mathematics, numerical analysis, scientific computing,
computational statistics and data assimilation. Here, a key topic is the mathematical and numerical
analysis of partial differential equations (PDEs for short) with random field inputs, and in particular
with GRF inputs. The mathematical analysis of PDEs with GRF inputs addresses questions
of well-posedness, pathwise and Lp-integrability and regularity in scales of Sobolev and Besov
spaces of random solution ensembles of such PDEs. The numerical analysis focuses on questions of
efficient numerical simulation methods of GRF inputs (see, e.g., [89, 50, 58, 28, 29, 12, 14, 100] and
the references there), and the numerical approximation of corresponding PDE solution ensembles,
which arise for GRF inputs. This concerns in particular the efficient representation of such solution
ensembles (see [72, 9, 8, 52, 43]), and the numerical quadrature of corresponding solution fields (see,
e.g., [72, 83, 51, 59, 68, 67, 98, 31, 43] and the references there). Applications include for instance
subsurface flow models (see, e.g., [50, 57]) but also other PDE models for media with uncertain
properties (see, e.g., [76] for electromagnetics). The careful analysis of efficient computational
sampling of solution families of PDEs subject to GRF inputs is also a key ingredient in numerical
data assimilation, e.g., in Bayesian inverse problems (BIPs for short); we refer to the surveys [48, 47]
and the references therein for a mathematical formulation of BIPs for PDEs subject to Gaussian
prior measures and function space inputs.

In the past few years there have been considerable developments in the analysis and numerical
simulation of PDEs with random field input subject to Gaussian measures (GMs for short). The
method of choice in many applications for the numerical treatment of GMs is Monte-Carlo (MC for
short) sampling. The (mean-square) convergence rate 1/2 in terms of the number of MC samples
is assured under rather mild conditions (existence of MC samples, and of finite second moments).
We refer to, e.g., [36, 30, 106, 70] and the references there for a discussion of MC methods in
this context. Given the high cost of MC sampling, recent years have seen the advent of numerical
techniques which afford higher convergence orders than 1/2, also on infinite-dimensional integration
domains. Like MC, these techniques are not prone to the so-called curse of dimensionality. Among
them are Hermite-Smolyak sparse-grid interpolation (also referred to as “stochastic collocation”),
see e.g. [52, 43, 45], and sparse-grid quadrature [31, 52, 63, 43, 45], and quasi-Monte Carlo (QMC
for short) integration as developed in [59, 96, 83, 78, 68, 67] and the reference there.

The key condition which emerged as governing the convergence rates of numerical integration
and interpolation methods for a function is a sparsity of the coefficients of its Wiener-Hermite
polynomial chaos (PC for short) expansion, see, e.g., [72, 12]. Rather than counting the ratio of
nonzero coefficients, the sparsity is quantified by `p-summability and/or weighted `2-summability
of these coefficients. This observation forms the foundation for the current text.
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1.1 An example

To indicate some of the mathematical issues which are considered in this book, consider in the
interval D = (0, 1) and in a probability space (Ω,A,P), a GRF g : Ω × D → R which takes
values in L∞(D). That is to say, that the map ω 7→ g(ω, ·) is an element of the Banach space
L∞(D). Formally, at this stage, we represent realizations of the random element g ∈ L∞(D) with
a representation system (ψj)

J
j=1 ⊂ L∞(D) in affine-parametric form

g(ω, x) =

J∑
j=1

yj(ω)ψj(x) ; , (1.1)

where the coefficients (yj)
J
j=1 are assumed to be i.i.d. standard normal random variables (RVs for

short) and J may be a finite number or infinity. Representations such as (1.1) are widely used both
in the analysis and in the numerical simulation of random elements g taking values in a function
space. The coefficients yj(ω) being standard normal RVs, the sum

∑J
j=1 yjψj(x) may be considered

as a parametric deterministic map g : RJ → L∞(D). The random element g(ω, x) in (1.1) can then
be obtained by evaluating this deterministic map in random coordinates, i.e., by sampling it in
Gaussian random vectors (yj(ω))Jj=1 ∈ RJ .

Gaussian random elements as inputs for PDEs appear in particular, in coefficients of diffusion
equations. Consider, for illustration, in D, and for given f ∈ L2(D), the boundary value problem:
find a random function u : Ω→ V with V := {w ∈ H1(D) : w(0) = 0} such that

f(x) +
d

dx

(
a(x, ω)

d

dx
u(x, ω)

)
= 0 in D , a(1, ω)u′(1, ω) = f̄ . (1.2)

Here, a(x, ω) = exp(g(x, ω)) with GRF g : Ω→ L∞(D), and f̄ := F (1) with

F (x) :=

∫ x

0
f(ξ) dξ ∈ V, x ∈ D.

In order to dispense with summability and measurability issues, let us temporarily assume that the
sum in (1.1) is finite, with J ∈ N terms. We find that a random solution u of the problem must
satisfy

u′(x, ω) = − exp(−g(x, ω))F (x), x ∈ D,ω ∈ Ω .

Inserting (1.1), this is equivalent to the parametric, deterministic family of solutions u(x,y) :
D × RJ → R given by

u′(x,y) = − exp(−g(x,y))F (x), x ∈ D,y ∈ RJ . (1.3)

Hence
‖u′(·,y)‖L2(D) = ‖ exp(−g(·,y))F‖L2(D) , y ∈ RJ ,

which implies the (sharp) bounds

‖u′(·,y)‖L2(D)

{
≥ exp(−‖g(·,y)‖L∞(D))‖F‖L2(D)

≤ exp(‖g(·,y)‖L∞(D))‖F‖L2(D).

Due to the homogeneous Dirichlet condition at x = 0, up to an absolute constant the same bounds
also hold for ‖u(·,y)‖V .
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It is evident from the explicit expression (1.3) and the upper and lower bounds, that for every
parameter y ∈ RJ , the solution u ∈ V exists. However, we can not, in general, expect uniform w.r.t.
y ∈ RJ a-priori estimates, also of the higher derivatives, for smoother functions x 7→ g(x,y) and
x 7→ f(x). Therefore, the parametric problem (1.2) is nonuniformly elliptic, [28, 70]. In particular,
also a-priori error bounds for various discretization schemes will contain this uniformity w.r.t. y.
The random solution will be recovered from (1.3) by inserting for the coordinates yj samples of
i.i.d. standard normal RVs.

This book focuses on developing a regularity theory for countably-parametric solution families
u(·,y) : y ∈ RJ with a particular emphasis on the case J =∞. This allows for arbitrary Gaussian
random fields g(·, ω) in (1.2). Naturally, our results also cover the finite-parametric setting where
the number J of random parameters is finite, but may be very large. Then, all constants in our
error estimates are either independent of the parameter dimension J or their dependence of J is
explicitly indicated. Previous works [8, 9, 59] addressed the `p-summability of the Wiener-Hermite
PC expansion coefficients of solution families {u(·,y) : y ∈ R∞} ⊂ V for the forward problem,
based on moment bounds of derivatives of parametric solutions w.r.t. GM. Estimates for these
coefficients and, in particular, for the summability, were obtained in [72, 8, 9, 59, 71]. In these
references, all arguments were based on real-variable, bootstrapping arguments with respect to y.

1.2 Contributions

We make the following contributions to the area computational UQ for PDEs with GRF inputs.
First, we provide novel proofs of some of the sparsity results in [72, 9, 8] of the infinite-dimensional
parametric forward solution map to PDEs with GRF inputs. The presently developed proof tech-
nique is based on holomorphic continuation and complex variable arguments in order to bound
derivatives of parametric solutions, and their coefficients in Wiener-Hermite PC expansions. This
is in line with similar arguments in the so-called “uniform case” in [39, 32]. There, the random
parameters in the representation of the input random fields range in compact subsets of R. Unlike
in these references, in the present text due to the Gaussian setup the parameter domain R∞ is not
compact. This entails significant modifications of mathematical arguments as compared to those
in [39, 32].

Contrary to the analysis in [8, 9, 59], where parametric regularity results were obtained by real-
variable arguments combined with induction-based bootstrapping with respect to the derivative
order, the present text develops derivative-free, complex variable arguments which allow directly to
obtain bounds of the Wiener-Hermite PC expansion coefficients of the parametric solutions in scales
of Sobolev and Besov spaces in the physical domain D in which the parametric PDE is posed. They
also allow to treat in a unified manner parametric regularity of the solution map in several scales of
Sobolev and Kondrat’ev spaces in the physical domain D which is the topic of Section 3.8, resulting
in novel sparsity results for the solution operators to linear elliptic and parabolic PDEs with GRF
inputs in scales of Sobolev and Besov spaces. We apply the quantified holomorphy of parametric
solution families to PDEs with GRF inputs and preservation of holomorphy under composition, to
problems of Bayesian PDE inversion conditional on noise observation data in Section 5, establishing
in particular quantified parametric holomorphy of the corresponding Bayesian posterior.

We construct deterministic sparse-grid interpolation and quadrature methods for the paramet-
ric solution with convergence rate bounds that are free from the curse of dimensionality, and that
afford possibly high convergence rates, given a sufficient sparsity in the Wiener-Hermite PC expan-
sion of the parametric solutions. For sampling strategies in deterministic numerical quadrature,
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our findings show improved convergence rates, as compared to previous results in this area. Addi-
tionally, our novel sparsity results provided in scales of function spaces of varying spatial regularity
enable us to construct apriori multilevel versions of sparse-grid interpolation and quadrature, with
corresponding approximation rate bounds which are free from the curse of dimensionality, and
explicit in terms of the overall number of degrees of freedom. Lastly, and in contrast to previous
works, leveraging the preservation of holomorphy under compositions with holomorphic maps, our
holomorphy-based arguments enable us to establish that our algorithms and bounds are applica-
ble to posterior distributions in Bayesian inference problems involving GRF or Besov priors, as
developed in [48, 94] and the references there.

1.3 Scope of results

We prove quantified holomorphy of countably-parametric solution families of linear elliptic and
parabolic PDEs. The parameter range equals R∞, corresponding to countably-parametric repre-
sentations of GRF input data, taking values in a separable locally convex space, in particular,
Hilbert or Banach space of uncertain input data, endowed for example with a Gaussian product
measure γ on R∞.

The results established in this text and the related bounds on partial derivatives w.r.t. the
parameters in Karhunen-Loève or Lévy-Cieselsky expansions of uncertain GRF inputs imply con-
vergence rate bounds for several families of computational methods to numerically access these
parametric solution maps. Importantly, we prove that in terms of n ≥ 1, an integer measure of
work and memory, an approximation accuracy O(n−a) for some parameter a > 0 can be achieved,
where the convergence rate a depends on the approximation process and on the amount of sparsity
in the Wiener-Hermite PC expansion coefficients of the GRF under consideration. In the terminol-
ogy of computational complexity, a prescribed numerical tolerance ε > 0 can be reached in work
and memory of order O(ε−1/a). In particular, the convergence rate a and the constant hidden in
the Landau O(·) symbol do not depend on the dimension of the space of active parameters involved
in the approximations which we construct. The approximations developed in the present text are
constructive and linear and can be realized computationally by deterministic algorithms of so-called
“stochastic collocation” or “sparse-grid” type. Error bounds are proved in L2-type Bochner spaces
with respect to the GM γ on the input data space of the PDE, in natural Hilbert or Banach spaces
of solutions of the PDEs under consideration. Here, it is important to notice that the sparsity
of the Wiener-Hermite PC expansion coefficients used in constructive linear approximation algo-
rithms and in estimating convergence rates, takes the form of weighted `2-summability, but not
`p-summability as in best n-term approximations [72, 9, 8]. Furthermore, `p-summability results
are implied from the corresponding weighted `2-summability ones.

All approximation rates for deterministic sampling strategies in the present text are free from
the so-called curse of dimensionality, a terminology coined apparently by R.E. Bellmann (see [17]).
The rates are in fact only limited by the sparsity of the Wiener-Hermite PC expansion coefficients
of the deterministic, countably-parametric solution families. In particular, dimension-independent
convergence rates > 1/2 are possible, provided a sufficient Wiener-Hermite PC expansion coefficient
sparsity, that the random inputs feature sufficient pathwise regularity, and the affine representation
system (being a tight frame on space of admissible input realizations) are stable in a suitable
smoothness scale of inputs.
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1.4 Structure and content of this text

We briefly describe the structure and content of the present text.
In Section 2, we collect known facts from functional analysis and GM theory which are re-

quired throughout this text. In particular, we review constructions and results on GMs on sep-
arable Hilbert and Banach spaces. Special focus will be on constructions via countable products
of univariate GMs on countable products of real lines. We also review assorted known results on
convergence rates of Lagrangian finite elements for linear, second order, divergence-form elliptic
PDEs in polytopal domains D with Lipschitz boundary ∂D.

In Section 3, we address the analyticity and sparsity for elliptic divergence-form PDEs with log-
Gaussian coefficients. In Section 3.1, we introduce a model linear, second order elliptic divergence-
form PDE with log-Gaussian coefficients, with variational solutions in the “energy space” H1

0 (D).
This equation was investigated with parametric input data in a number of references in recent
years [38, 39, 72, 32, 9, 8, 42, 59, 83, 112]. It is considered in this work mainly to develop the holo-
morphic approach to establish our mathematical approach to parametric holomorphy and sparsity
of Wiener-Hermite PC expansions of parametric solutions in a simple setting, and to facilitate
comparisons with the mentioned previous works and results. We review known results on its well-
posedness in Section 3.1, and Lipschitz continuous dependence on the input data in Section 3.2.
We discuss regularity results for parametric coefficients in Section 3.3. Sections 3.4 and 3.5 de-
scribe uncertainty modelling by placing GMs on sets of admissible, countably parametric input
data, i.e., formalizing mathematically aleatoric uncertainty in input data. Here, the Gaussian se-
ries introduced in Section 2.5 will be seen to take a key role in converting operator equations with
GRF inputs to infinitely-parametric, deterministic operator equations. The Lipschitz continuous
dependence of the solutions on input data from function spaces will imply strong measurability
of corresponding random solutions, and render well-defined the uncertainty propagation, i.e., the
push-forward of the GM on the input data. In Section 3.6, we connect the quantified holomorphy of
the parametric, deterministic solution manifold {u(y) : y ∈ R∞} in the space H1

0 (D) with a sparsity
(weighted `2-summability and `p-summability) of the coefficients (uν)ν∈F of the (H1

0 (D)-valued)
Wiener-Hermite PC expansion. With this methodology in place, we show in Section 3.7 how to
obtain holomorphic regularity of the parametric solution family {u(y) : y ∈ R∞} in Sobolev spaces
Hs(D) of possibly high smoothness order s ∈ N and how to derive from here the corresponding
sparsity. The argument is self-contained and provides parametric holomorphy for any differentia-
tion order s ∈ N in a unified way, in domains D of sufficiently high regularity and for sufficiently
high almost sure regularity of coefficient functions. In Section 3.8, we extend these results for lin-
ear second order elliptic differential operators in divergence form in a bounded polygonal domain
D ⊂ R2. Here, corners are well-known to obstruct high almost sure pathwise regularity in the
usual Sobolev and Besov spaces in D for both, PC coefficients and parametric solutions. Therefore,
we develop summability of the Wiener-Hermite PC expansion coefficients (uν)ν∈F of the random
solutions in terms of corner-weighted Sobolev spaces, originating with V.A. Kondrat’ev (see, e.g.,
[61, 24, 90] and the references there). In Section 3.9, we briefly recall some known related results
[32, 37, 38, 39, 72, 10, 11, 9, 8] on `p-summability and weighted `2-summability of the general-
ized PC expansion coefficients of solutions to parametric divergence-form elliptic PDEs, as well as
applications to best n-term approximation.

In Section 4, we investigate sparsity of the Wiener-Hermite PC expansions coefficients of holo-
morphic functions. In Section 4.1, we introduce a concept of (b, ξ, δ,X)-holomorphy of parametric
deterministic functions on the parameter domain R∞ taking values in a separable Hilbert space X.
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This concept is fairly broad and covers a large range of parametric PDEs depending on log-Gaussian
distributed data. In order to extend the results and the approach to bound Wiener-Hermite PC
expansion coefficients via quantified holomorphy beyond the simple, second order diffusion equation
introduced in Section 3, we address sparsity of the Wiener-Hermite PC expansions coefficients of
(b, ξ, δ,X)-holomorphic functions. In Section 4.2, we show that composite functions of a certain
type are (b, ξ, δ,X)-holomorphic under certain conditions. The significance of such functions is that
they cover solution operators of a collection of linear, elliptic divergence-form PDEs in a unified way
along with structurally similar PDEs with log-Gaussian random input data. This will allow to apply
the ensuing results on convergence rates of deterministic collocation and quadrature algorithms to
a wide range of PDEs with GRF inputs and functionals on their random solutions. In Section 4.3,
we analyze some examples of holomorphic functions which are solutions to certain PDEs, including
linear elliptic divergence-form PDEs with parametric diffusion coefficient, linear parabolic PDEs
with parametric coefficient, linear elastostatics equations with log-Gaussian modulus of elasticity,
Maxwell equations with log-Gaussian permittivity.

In Section 5, we apply the preceding abstract results on parametric holomorphy to establish
quantified holomorphy of countably-parametric, posterior densities of corresponding BIPs where
the uncertain input of the forward PDE is a countably-parametric GRF taking values in a separable
Banach space of inputs. As an example, we analyze the BIP for the parametric diffusion coefficient
of the diffusion equation with parametric log-Gaussian inputs.

In Section 6, we discuss deterministic interpolation and quadrature algorithms for approxima-
tion and numerical integration of (b, ξ, δ,X)-holomorphic functions. Such algorithms are necessary
for the approximation of certain statistical quantities (expectations, statistical moments) of the
parametric solutions with respect to a GM on the parameter space. The proposed algorithms are
variants and generalizations of so-called “stochastic collocation” or “sparse-grid” type approxima-
tion, and proved to outperform sampling methods such as MC methods, under suitable sparsity
conditions on coefficients of the Wiener-Hermite PC expansion of integrands. In the quadrature
case, they are also known as “Smolyak quadrature” methods. Their common feature is a) the
deterministic nature of the algorithms, and b) the possibility of achieving convergence rates > 1/2
independent of the dimension of parameters and therefore the curse of dimensionality is broken.
They offer, in particular, the perspective of deterministic numerical approximations for GRFs under
nonlinear pushforwards (being realized via the deterministic data-to-solution map of the PDE of
interest). The decisive analytic property to be established are dimension-explicit estimates of indi-
vidual Wiener-Hermite PC expansion coefficients of parametric solutions, and based on these, sharp
summability estimates of norms of the coefficients of Wiener-Hermite PC expansion of parametric,
deterministic solution families are given. In Sections 6.1 and 6.2, we construct sparse-grid Smolyak-
type interpolation and quadrature algorithms. In Sections 6.3 and 6.4, we prove the convergence
rates of interpolation and quadrature algorithms for (b, ξ, δ,X)-holomorphic functions.

Section 7 is devoted to multilevel interpolation and quadrature of parametric holomorphic func-
tions. We construct deterministic interpolation and quadrature algorithms for generic (b, ξ, δ,X)-
holomorphic functions. For linear second order elliptic divergence-form PDEs with log-Gaussian
coefficients, the results on the weighted `2-summability of the Wiener-Hermite PC expansion co-
efficients of parametric, deterministic solution families with respect to corner-weighted Sobolev
spaces on spatial domain D finally also allow to analyze methods for constructive, deterministic
linear approximations of parametric solution families. Here, a truncation of Wiener-Hermite PC
expansions is combined with approximating the Wiener-Hermite PC expansion coefficients in the
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norm of the “energy space” H1
0 (D) of these solutions from finite-dimensional approximation spaces

which are customary in the numerical approximation of solution instances. Importantly, required
approximation accuracies of the Wiener-Hermite PC expansion coefficients uν will depend on the
relative importance of uν within the Wiener-Hermite PC expansion. This observation gives rise to
multilevel approximations where a prescribed overall accuracy in mean square w.r.t. the GM γ with
respect to H1

0 (D) will be achieved by a ν-dependent discretization level in the physical domain.
Multilevel approximation and integration and the corresponding error estimates will be developed
in this section in an abstract setting: Besides (b, ξ, δ,X)-holomorphy, it is neccessary to require an
assumption on the discretization error in the physical domain in the form of stronger holomorphy of
the approximation error in this discretization. A combined assumption for guaranteeing construc-
tive multilevel approximations is formulated in Section 7.1. In Section 7.2 we introduce multilevel
algorithms for interpolation and quadrature of (b, ξ, δ,X)-holomorphic functions, and discuss work
models and choices of discretization levels. A key for the sparse-grid integration and interpola-
tion approaches is to efficiently numerically allocate discretization levels to Wiener-Hermite PC
expansion coefficients. We develop such an approach in Section 7.3. It is based on greedy searches
and suitable thresholding of (suitable norms of) Wiener-Hermite PC expansion coefficients and on
a-priori bounds for these quantities which are obtained by complex variable arguments. In Sections
7.4 and 7.5, we establish convergence rate bounds of multilevel interpolation and quadrature algo-
rithms for (b, ξ, δ,X)-holomorphic functions. In Section 7.6, we verify the abstract hypotheses of
the sparse-grid multilevel approximations for the forward and inverse problems for concrete linear
elliptic and parabolic PDEs on corner-weighted Sobolev spaces (Kondrat’ev spaces) with log-GRF
inputs. In Section 7.7, we briefly recall some results from [43] (see also, [45] for some corrections) on
linear multilevel (fully discrete) interpolation and quadrature in abstract Bochner spaces based on
weighted `2-summabilities. These results are subsequently applied to parametric divergence-form
elliptic PDEs and to parametric holomorphic functions.

1.5 Notation and conventions

Additional to the real numbers R, the complex numbers C, and the positive integers N, we set
R+ := {x ∈ R : x ≥ 0} and N0 := {0} ∪ N. We denote by R∞ the set of all sequences y = (yj)j∈N
with yj ∈ R, and similarly define C∞, R∞+ and N∞0 . Both, R∞ and C∞, will be understood with
the product topology from R and C, respectively. For α, β ∈ Nd0, d ∈ N ∪ {∞}, the inequality
β ≤ α is understood component-wise, i.e., β ≤ α if and only if βj ≤ αj for all j.

Denote by F the countable set of all sequences of nonnegative integers ν = (νj)j∈N such that
supp(ν) is finite, where supp(ν) := {j ∈ N : νj 6= 0} denotes the “support” of the multi-index ν.
Similarly, we define supp(ρ) of a sequence ρ ∈ R∞+ . For ν ∈ F , and for a sequence b = (bj)j∈N of
positive real numbers, the quantities

ν! :=
∏
j∈N

νj ! , |ν| :=
∑
j∈N

νj , and bν :=
∏
j∈N

b
νj
j

are finite and well-defined.
For a multi-index α ∈ Nd0 and a function u(x,y) of x ∈ Rd and parameter sequence y ∈ R∞ we

use the notation Dαu(x,y) to indicate the partial derivatives taken with respect to x. The partial
derivative of order α ∈ N∞0 with respect to y of finite total order |α| =

∑
j∈N αj is denoted by

∂αu(x,y). In order to simplify notation, we will systematically suppress the variable x ∈ D ⊂ Rd
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in mathematical expressions, except when necessary. For example, instead
∫
D v(x) dx we will write∫

D v dx, etc. For a Banach space X, we denote by XC := X + iX the complexification of X. The
space XC is also a Banach space endowed with the (minimal, among several possible equivalent
ones, see [91]) norm ‖x1 + ix2‖XC := sup0≤t≤2π ‖x1 cos t − x2 sin t‖X . The space X∞ is defined in
a similar way as R∞.

By L(X,Y ) we denote the vector space of bounded, linear operators between to Banach spaces
X and Y . With Lis(X,Y ) we denote the subspace of boundedly invertible, linear operators from
X to Y .

For a function space X(D) defined on the domain D, if there is no ambiguity, when writing the
norm of x ∈ X(D) we will omit D, i.e., we write ‖x‖X instead of ‖x‖X(D).

For 0 < p ≤ ∞ and a finite or countable index set J , we denote by `p(J) the quasi-normed

space of all y = (yj)j∈J with yj ∈ R, equipped with the quasi-norm ‖y‖`p(J) :=
(∑

j∈J |yj |p
)1/p

for p < ∞, and ‖y‖`∞(J) := supj∈J |yj |. Sometimes, we make use of the abbreviation `p = `p(J)
in a particular context if there is no misunderstanding of the meaning. We denote by (ej)j∈J the
standard basis of `2(J), i.e., ej = (ej,i)i∈J with ej,i = 1 for i = j and ej,i = 0 for i 6= j.
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2 Preliminaries

A key technical ingredient in the analysis of numerical approximations of PDEs with GRF in-
puts from function spaces, and of numerical methods for their efficient numerical treatment are
constructions and numerical approximations of GRFs on real Hilbert and Banach spaces. Due to
their high relevance in many areas of science (theoretical physics, quantum field theory, spatial and
high-dimensional statistics, etc.), a rich theory has been developed in the past decades and a large
body of literature is available now. We recapitulate basic definitions and key results, in particular
on GMs, that are necessary for the ensuing developments. We do not attempt to provide a com-
prehensive survey. We require the exposition on GMs on real-valued Hilbert and Banach spaces, as
most PDEs of interest are formulated for real-valued inputs and solutions. However, we crucially
use in the ensuing sections of this text analytic continuation of parametric representations to the
complex parameter domain. This is required in order to bring to bear complex variable methods
for derivative-free, sharp bounds on Hermite expansion coefficients of GRFs. Therefore, we develop
in our presentation solvability, well-posedness and regularity for the PDEs that are subject to GRF
inputs in Hilbert and Banach spaces of complex-valued fields.

The structure of this section is as follows. In Section 2.1, we recapitulate GMs on finite di-
mensional spaces, in particular on Rd and Cd. In Section 2.2, we extend GMs to separable Banach
spaces. Section 2.3 reviews the Cameron-Martin space. In Section 2.4 we recall a notion of Gaus-
sian product measures on a Cartesian product of locally convex spaces. Section 2.5 is devoted to a
summary of known representations of a GRF by a Gaussian series. A key object in these and more
general spaces is the concept of Parseval frame which we introduce. For details, the reader may
consult, for example, the books [3, 87, 21].

In Section 2.6 we recapitulate, from [6, 25, 54], (known) technical results on approximation
properties of Lagrangian Finite Elements (FEs for short) in polygonal and polyhedral domains
D ⊂ Rd, on regular, simplicial partitions of D with local refinement towards corners (and, in space
dimension d = 3, towards edges). These will be used in Section 6 in conjunction with collocation
approximations in the parameter space of the GRF to build deterministic numerical approximations
of solutions in polygonal and in polyhedral domains.

2.1 Finite dimensional Gaussian measures

2.1.1 Univariate Gaussian measures

In dimension d = 1, for every µ, σ ∈ R, there holds the well-known identity

1

σ
√

2π

∫
R

exp

(
−(y − µ)2

2σ2

)
dy = 1 .

A Borel probability measure γ on R is Gaussian if it is either a Dirac measure δµ at µ ∈ R or its
density with respect to Lebesgue measure λ on R is given by

dγ

dλ
= p(·;µ, σ2) , p(·;µ, σ2) := y 7→ 1

σ
√

2π
exp

(
−(y − µ)2

2σ2

)
.

We shall refer to µ as mean, and to σ2 as variance of the GM γ. The case that γ = δµ is understood
to correspond to σ = 0. If σ > 0, we shall say that the GM γ is nondegenerate. Unless explicitly
stated otherwise, we assume GMs to be nondegenerate.
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For µ = 0 and σ = 1, we shall refer to the GM γ1 as the standard GM on R. A GM with µ = 0
is called centered (or also symmetric). For a GM γ on R, there holds

µ =

∫
R
y dγ(y), σ2 =

∫
R

(y − µ)2 dγ(y).

Let (Ω,A,P) be a probability space with sample space Ω, σ-fields A, and probability measure P.
A Gaussian random variable (“Gaussian RV” for short) η : Ω→ R is a RV whose law is Gaussian,
i.e., it admits a Gaussian distribution. If η is a Gaussian RV with mean µ and variance σ2 we write
η ∼ N (µ, σ2).

Linear transformations of Gaussian RVs are Gaussian: every Gaussian RV η can be written as
η = σξ + µ, where ξ is a standard Gaussian RV, i.e., a Gaussian RV whose law is a standard GM
on R.

The Fourier transformation of a GM γ on R is defined, for every ξ ∈ R, as

γ̂1(ξ) :=

∫
R

exp(iξy)γ(y) = exp

(
iµξ − 1

2
σ2ξ2

)
.

We denote by Φ the distribution function of γ1. For the standard normal distribution

Φ(t) =

∫ t

−∞
p(s; 0, 1) ds ∀t ∈ R.

With the convention Φ−1(0) := −∞, Φ−1(1) := +∞, the inverse function Φ−1 of Φ is defined on
[0, 1].

2.1.2 Multivariate Gaussian measures

Consider now a finite dimension d > 1. A Borel probability measure γ on (Rd,B(Rd)) is called
Gaussian if for every f ∈ L(Rd,R) the measure γ ◦ f−1 is a GM on R, where as usually, B(Rd)
denotes the σ-field on Rd. Since d is finite, we may identify L(Rd,R) with Rd, and we denote the
Euclidean inner product on Rd by (·, ·). The Fourier transform of a Borel measure γ on Rd is given
by

γ̂ : Rd → C : γ̂(ξ) =

∫
Rd

exp (i(ξ,y)) dγ(y) .

For a GM γ on Rd, the Fourier transform γ̂ uniquely determines γ.

Proposition 2.1 ([21, Proposition 1.2.2]). A Borel probability measure γ on Rd is Gaussian iff

γ̂(ξ) = exp

(
i(ξ,µ)− 1

2
(Kξ, ξ)

)
, ξ ∈ Rd .

Here, µ ∈ Rd and K ∈ Rd×d is a symmetric positive semidefinite matrix.
We shall say that a GM γ on Rd has a density with respect to Lebesgue measure λ on Rd iff the

matrix K is nondegenerate. Then, this density is given by

dγ

dλ
(x) : x 7→ 1√

(2π)d detK
exp

(
−1

2
(K−1(x− µ),x− µ)

)
.
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Furthermore,

µ =

∫
Rd
y dγ(y), ∀y,y′ ∈ Rd : (Ky,y′) =

∫
Rd

(y,x− µ)(y′,x− µ) dγ(x) .

The symmetric linear operator C ∈ L(Rd,Rd) defined by the later relation and represented by the
symmetric positive definite matrix K is the covariance operator associated to the GM γ on Rd.

When we do not need to distinguish between the covariance operator C and the covariance
matrix K, we simply speak of “the covariance” of a GM γ. If a joint probability distribution of
RVs y1, . . . , yd is a GM on Rd with mean vector µ and covariance matrix K we write (y1, . . . , yd) ∼
N (µ,K).

In what follows, we use γd to denote the standard GM on Rd. Denote by L2(Rd; γd) the Hilbert
space of all γd-measurable, real-valued functions f on Rd such that the norm

‖f‖L2(Rd;γd) :=

(∫
Rd
|f(y)|2 dγd(y)

)1/2

is finite. The corresponding inner product is denoted by (·, ·)L2(Rd;γd).

2.1.3 Hermite polynomials

A key role in the ensuing sparsity analysis of parametric solution families is taken by Wiener-
Hermite PC expansions. We consider GRF inputs and, accordingly, will employ polynomial systems
on R which are orthogonal with respect to the GM γ1 on R, the so-called Hermite polynomials,
as pioneered for the analysis of GRFs by N. Wiener in [109]. To this end, we recapitulate basic
definitions and properties, in particular the various normalizations which are met in the litera-
ture. Particular attention will be paid to estimates for Hermite coefficients of functions which are
holomorphic in a strip, going back to Einar Hille in [69].

Definition 2.2. For k ∈ N0, the normalized probabilistic Hermite polynomial Hk of degree k on R
is defined by

Hk(x) :=
(−1)k√
k!

exp

(
x2

2

)
dk

dxk
exp

(
−x

2

2

)
. (2.1)

For every multi-degree ν ∈ Nm0 , the m-variate Hermite polynomial Hν is defined by

Hν(x1, . . . , xm) :=

m∏
j=1

Hνj (xj), xj ∈ R, j = 1, . . . ,m .

Remark 2.3. [Normalizations of Hermite polynomials and Hermite functions]

(i) Definition (2.1) provides for every k ∈ N0 a polynomial of degree k. The scaling factor in
(2.1) has been chosen to ensure normalization with respect to GM γ1, see also Lemma 2.4,
item (i).

(ii) Other normalizations with at times the same notation are used. The “classical” normalization
of Hk we denote by H̃k(x). It is defined by (see, e.g., [1, Page 787], and compare (2.1) with
[105, Equation (5.5.3)])

H̃k(x/
√

2) := 2k/2
√
k!Hk(x).
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(iii) In [7], so-called “normalized Hermite polynomials” are introduced as

˜̃Hk(x) := [
√
π2kk!]1/2(−1)k exp(x2)

dk

dxk
exp(−x2) .

The system ( ˜̃Hk)k∈N0 is an orthonormal basis (ONB for short) for the space L2(R, ˜̃γ) with
the weight ˜̃γ = exp(−x2) dx, i.e., (compare, e.g., [105, Eqn. (5.5.1)])∫

R

˜̃Hn(x) ˜̃Hn′(x) exp(−x2) dx = δnn′ , n, n′ ∈ N0 .

(iv) With the Hermite polynomials ˜̃Hk, in [69] Hermite functions are introduced for k ∈ N0 as

hk(x) := exp(−x2/2) ˜̃Hk(x) , x ∈ R .

(v) It has been shown in [69, Theorem 1] that in order for functions f : C → C defined in the
strip S(ρ) := {z ∈ C : z = x+ iy, x ∈ R, |y| < ρ} to admit a Fourier-Hermite expansion

∞∑
n=0

fnhn(z), fn :=

∫
R
f(x)hn(x) dx =

∫
R
f(x) ˜̃Hn(x) exp(−x2) dx

which converges to f(z) for z ∈ S(ρ) a necessary and sufficient condition is that a) f is
holomorphic in S(ρ) ⊂ C and b) for every 0 < ρ′ < ρ there exist a finite bound B(ρ′) and β
such that

|f(x+ iy)| ≤ B(ρ′) exp[−|x|(β2 − y2)1/2] , x ∈ R, |y| ≤ ρ′ .
There is a constant C(f) > 0 such that for the Fourier-Hermite coefficients fn, holds

|fn| ≤ C exp(−ρ
√

2n+ 1) ∀n ∈ N0.

We state some basic properties of the Hermite polynomials Hk defined in (2.1).

Lemma 2.4. The collection (Hk)k∈N0 of Hermite polynomials (2.1) in R has the following proper-
ties.

(i) (Hk)k∈N0 is an ONB of the space L2(R; γ1).

(ii) For every k ∈ N holds: H ′k(x) =
√
kHk−1(x) = Hk(x)−

√
k + 1Hk+1(x).

(iii) For all x1, . . . , xm ∈ R holds

m∏
i=1

√
ki!Hki(xi) =

∂k1+...+km

∂tk1
1 . . . ∂tkmm

exp

(
m∑
i=1

tixi −
1

2

m∑
i=1

t2i

)
|t1=...=tm=0 .

(iv) For every f ∈ C∞(R) such that f (k) ∈ L2(R; γ1) for all k ∈ N0 holds∫
R
f(x)Hk(x) dγ1(x) =

(−1)k√
k!
∫
R f

(k)(x) dγ1(x)
,

and, hence, in L2(R; γ1),

f =
∑
k∈N0

(−1)k√
k!

(f (k), 1)L2(R;γ1)Hk .
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It follows from item (i) of this lemma in particular that

{Hν : ν ∈ Nm0 } is an ONB of L2(Rm; γm) .

Denote for k ∈ N0 and m ∈ N by Hk the space of d-variate Hermite polynomials which are
homogeneous of degree k, i.e.,

Hk := span {Hν : ν ∈ Nm0 , |ν| = k} .

Then Hk (“homogeneous polynomial chaos of degree k” [109]) is a closed, linear subspace of
L2(Rm; γm) and

L2(Rm; γm) =
⊕
k∈N0

Hk in L2(Rm; γm) .

2.2 Gaussian measures on separable locally convex spaces

An important mathematical ingredient in a number of applications, in particular in UQ, Bayesian
PDE inversion, risk analysis, but also in statistical learning theory applied to input-output maps
for PDEs, is the construction of measures on function spaces. A particular interest is in GMs on
separable on Hilbert or Banach or, more generally, on locally convex spaces of uncertain input data
for PDEs. Accordingly, we review constructions of such measures, in terms of suitable bases of the
input spaces. This implies, in particular, separability of the spaces of admissible PDE inputs or, at
least, the uncertain input data being a separably-valued random element of otherwise nonseparable
spaces (such as, e.g., L∞(D)) of valid inputs for the PDE of interest.

Let (Ω,A, µ) be a measure space and 1 ≤ p ≤ ∞. Recall that the normed space Lp(Ω, µ) is
defined as the space of all µ-measurable functions u from Ω to R such that the norm

‖u‖Lp(Ω,µ) :=

(∫
Ω
|u(x)|p dµ(x)

)1/p

<∞.

When p =∞ the norm of u ∈ L∞(Ω, µ) is given by

‖u‖L∞(Ω,µ) := ess sup
x∈Ω

|u(x)|.

If Ω ⊂ Rm and µ is the Lebesgue measure, we simply denote these spaces by Lp(Ω).
Throughout this section, X will denote a real separable and locally convex space with Borel

σ-field B(X) and with dual space X∗.

Example 2.5. Let R∞ be the linear space of all sequences y = (yj)j∈N with yj ∈ R. This linear
space becomes a locally convex space (still denoted by R∞) equipped with the topology generated
by the countable family of semi-norms

pj(y) := |yj |, j ∈ N.

The locally convex space R∞ is separable and complete and, therefore, a Fréchet space. However,
it is not normable, and hence not a Banach space.

Example 2.6. Let D ⊂ Rd be an open bounded Lipschitz domain.

17



(i) The Banach spaces C(D) and L1(D) are separable.

(ii) For 0 < s < 1 we denote by Cs(D) the space of s-Hölder continuous functions in D equipped
with the norm and seminorm

‖a‖Cs := ‖a‖L∞ + |a|Cs , |a|Cs := sup
x,x′∈D,x6=x′

|a(x)− a(x′)|
|x− x′|s

.

Then the Banach space Cs(D) is not separable. A separable subspace is

Cs◦(D) :=

{
a ∈ Cs(D) : ∀x ∈ D lim

D3x′→x

|a(x)− a(x′)|
|x− x′|s

= 0

}
.

We review and present constructions of GMs γ on X.

2.2.1 Cylindrical sets

Cylindrical sets are subsets of X of the form

C = {x ∈ X : (l1(x), . . . , ln(x)) ∈ C0 : C0 ∈ B(Rn), li ∈ X∗} , for some n ∈ N .

Here, the Borel set C0 ∈ B(Rn) is sometimes referred to as basis of the cylinder C. We denote by
E(X) the σ-field generated by all cylindrical subsets of X. It is the smallest σ-field for which all
continuous linear functionals are measurable. Evidently then E(X) ⊂ B(X), with in general strict
inclusion (see, e.g., [21, A.3.8]). If, however, X is separable, then E(X) = B(X) ([21, Theorem
A.3.7]).

Sets of the form
{y ∈ R∞ : (y1, . . . , yn) ∈ B,B ∈ B(Rn), n ∈ N}

generate B(R∞) [21, Lemma 2.1.1], and a set C belongs to B(X) iff it is of the form

C = {x ∈ X : (l1(x), . . . , ln(x), . . .) ∈ B, for li ∈ X∗, B ∈ B(R∞)} ,

(see, e.g., [21, Lemma 2.1.2]).

2.2.2 Definition and basic properties of Gaussian measures

Definition 2.7 ([21, Definition 2.2.1]). A probability measure γ defined on the σ-field E(X) gen-
erated by X∗ is called Gaussian if, for any f ∈ X∗ the induced measure γ ◦ f−1 on R is Gaussian.
The measure γ is centered or symmetric if all measures γ ◦ f−1, f ∈ X∗ are centered.

Let (Ω,A,P) be a probability space. A random field u taking values in X (recall that throughout,
X is a separable locally convex space) is a map u : Ω→ X such that

∀B ∈ B(X) : u−1(B) ∈ A .

The law of the random field u is the probability measure mu on (X,B(X)) which is defined as

mu(B) := P(u−1(B)), B ∈ B(X) .

The random field u is said to be Gaussian if its law is a GM on (X,B(X)).
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Images of GMs under continuous affine transformations on X are Gaussian.

Lemma 2.8 ([21, Lemma 2.2.2]). Let γ be a GM on X and let T : X → Y be a linear map to
another locally convex space Y such that l ◦ T ∈ X∗ for all l ∈ Y ∗. Then γ ◦ T−1 is a GM on Y .

This remains true for the affine map x 7→ Tx+ µ for some µ ∈ Y .

The Fourier transform of a measure m over (X,B(X)) is given by

m̂ : X∗ → C : f 7→ m̂(f) :=

∫
X

exp (if(x)) dm(x) .

Theorem 2.9 ([21, Theorem 2.2.4]). A measure γ on X is Gaussian iff its Fourier transform γ̂
can be expressed with some linear functional L(·) on X∗ and a symmetric bilinear form B(., .) on
X∗ ×X∗ such that f 7→ B(f, f) is nonnegative as

∀f ∈ X∗ : γ̂(f) = exp

(
iL(f)− 1

2
B(f, f)

)
. (2.2)

A GM γ on X is therefore characterized by L and B. It also follows from (2.2) that a GM γ
on X is centered iff γ(A) = γ(−A) for all A ∈ B(X), i.e., iff L = 0 in (2.2).

Definition 2.10. Let m be a measure on B(X) such that X∗ ⊂ L2(X,m). Then the element
am ∈ (X∗)′ in the algebraic dual (X∗)′ defined by

am(f) :=

∫
X
f(x) dm(x), f ∈ X∗,

is called mean of m.
The operator Rm : X∗ → (X∗)′ defined by

Rm(f)(g) :=

∫
X

[f(x)− am(f)][g(x)− am(g)] dm(x)

is called covariance operator of m. The quadratic form on X∗ is called covariance of m.

When X is a real separable Hilbert space, one can say more.

Definition 2.11 (Nuclear operators). Let H1, H2 be real separable Hilbert spaces with the norms
‖ ◦ ‖H1 and ‖ ◦ ‖H2, respectively, and with corresponding inner products (·, ·)Hi, i = 1, 2.

A linear operator K ∈ L(H1, H2) is called nuclear or trace class if it can be represented as

∀u ∈ H1 : Ku =
∑
k∈N

(u, x1k)H1x2k in H2 .

Here, (xik)k∈N ⊂ Hi, i = 1, 2 are such that
∑

k∈N ‖x1k‖H1‖x2k‖H2 <∞.

We denote by L1(H1, H2) ⊂ L(H1, H2) the space of all nuclear operators. This is a separable
Banach space when it is endowed with nuclear norm

‖K‖1 := inf

{∑
k∈N
‖x1k‖H1‖x2k‖H2 : Ku =

∑
k∈N

(u, x1k)H1x2k

}
.

When X = H1 = H2, we also write L1(X).
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Proposition 2.12 ([21, Theorem 2.3.1]). Let γ be a GM on a separable Hilbert space X with
innerproduct (·, ·)X , and let X∗ denote its dual, identified with X via the Riesz isometry.

Then there exist µ ∈ X and a symmetric, nonnegative nuclear operator K ∈ L1(X) such that
the Fourier transform γ̂ of γ is

γ̂ : X → C : x 7→ exp

(
i(µ, x)X −

1

2
(Kx, x)X

)
. (2.3)

Remark 2.13. Consider that X is a real, separable Hilbert space with innerproduct (·, ·)X and
assume given a GM γ on X.

(i) In (2.3), K ∈ L(X) and µ ∈ X are determined by

∀u, v ∈ X : (µ, v)X =

∫
X

(x, v)X dγ(x), (Ku, v)X =

∫
X

(u, x− µ)X(v, x− µ)X dγ(x) .

The closure of X = X∗ in L2(X; γ) then equals the completion of X with respect to the norm
x 7→ ‖K1/2x‖X =

√
(Kx, x)X . Let (en)n∈N denote the ONB of X formed by eigenvectors

of K, with corresponding real, non-negative eigenvalues kn ∈ N0, i.e., Ken = knen for n =
1, 2, . . .. Then the completion can be identified with the weighted sequence (Hilbert) space{

(xn)n∈N :
∑
n∈N

knx
2
n <∞

}
.

The nuclear operator K is the covariance of the GM γ on the Hilbert space X.

(ii) In coordinates y = (yj)j∈N ∈ `2(N) associated to the ONB (en)n∈N of X, (2.3) takes the form

γ̂ : `2(N)→ C : y 7→ exp

(
i
∑
n∈N

anyn −
1

2

∑
n∈N

kny
2
n

)
.

(iii) Consider a = 0 ∈ X and, for finite n ∈ N, a cylindrical set C = P−1
n (B) with Pn denoting the

orthogonal projection onto Xn := span{ej : j = 1, . . . , n} ⊂ X, and with B ∈ B(Xn). Then

γ(C) =

∫
B

n∏
j=1

(2πkj)
−1/2 exp

(
− 1

2kj
y2
j

)
dy1 . . . dyn .

For f ∈ X∗ and x ∈ X, one frequently writes the X∗ ×X duality pairing as

f(x) = 〈f, x〉 .

With the notation from Definition 2.10, the covariance operator Cg = Rγg in Definition 2.10 of a
centered, Gaussian random vector g : (Ω,A; γg) → X with Gaussian law γg on a separable, real
Banach space X admits the representations

Rγg = Cg : X∗ → X : Cgϕ := E〈ϕ, g〉g, Cg : X∗ ×X∗ → R : (ψ,ϕ) 7→ 〈ψ,Cgϕ〉 .
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2.3 Cameron-Martin space

Let X be a real separable locally convex space and γ a GM on E(X) such that X∗ ⊂ L2(X; γ).
Then, for every ϕ ∈ X∗, the image measure ϕ(γ) is a GM on R. By [21, Theorem 3.2.3], there
exists a unique aγ ∈ X, the mean of γ, such that

∀ϕ ∈ X∗ : ϕ(aγ) =

∫
X
ϕ(h) dγ(h) .

Denote by X∗γ the closure of the set {ϕ−ϕ(aγ), ϕ ∈ X∗)} embedded into the normed space L2(X; γ)
w.r.t. its norm.

The covariance operator, Rγ , of γ is formally given by

∀ϕ,ψ ∈ X∗ : 〈Rγϕ,ψ〉 =

∫
X
ϕ(h− aγ)ψ(h− aγ) dγ(h) . (2.4)

As X is a separable locally convex space, [21, Theorem 3.2.3] implies that there is a unique linear
operator Rγ : X∗ → X such that (2.4) holds. We define

∀ϕ ∈ X∗ : σ(ϕ) :=
√
〈Rγϕ,ϕ〉 .

If h = Rγϕ for some ϕ ∈ X∗, the map h 7→ ‖h‖ := σ(ϕ) defines a norm on range(Rγ) ⊂ X. There
holds [21, Lemma 2.4.1] ‖h‖ = ‖h‖H(γ) = ‖ϕ‖L2(X;γ).

The Cameron-Martin space of the GM γ on X is the completion of the range of Rγ in X with
respect to the norm ‖ ◦ ‖. The Cameron-Martin space of the GM γ on X is denoted by H(γ). It
is also called the reproducing kernel Hilbert space (RKHS for short) of γ on X.

By [21, Theorem 3.2.7], H(γ) is a separable Hilbert space, and H(γ) ⊂ X with continuous
embedding, according to [21, Proposition 2.4.6]. In case that X ⊂ Y for another Banach space,
with continuous and linear embedding, the Cameron-Martin spaces for X and Y coincide. For
example, in the context of Remark 2.13, item (i), H(γ) = K(X∗γ).

Being a Hilbert space, introduce an innerproduct (·, ·)H(γ) on H(γ) compatible with the norm
‖ ◦ ‖H(γ) via the parallelogram law. Then there holds

∀ϕ ∈ X∗ ∀f ∈ H(γ) : (f,Rγϕ)H(γ) = ϕ(f) .

Since H(γ) is also separable, there is an ONB.

Proposition 2.14 ([21, Theorem 3.5.10, Corollary 3.5.11]). For a centered GM on a real, separable
Banach space X with norm ‖ ◦ ‖X , there exists an ONB (en)n∈N of the Cameron-Martin space
H(γ) ⊂ X such that ∑

n∈N
‖en‖2X <∞ , ∀ϕ ∈ X∗ : Rγϕ =

∑
n∈N

ϕ(en)en .

We remark that Proposition 2.14 is not true for arbitrary ONB (en)n∈N of H(γ).
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2.4 Gaussian product measures

We recall a notion of product measures which gives an efficient method to construct Gaussian
measures on a countable Cartesian product of locally convex spaces.

Definition 2.15 (Product measure, [21, p. 372]). Let µn be probability measures defined on σ-fields
Bn in locally convex spaces Xn. Put

X :=
∏
n∈N

Xn.

Let
B :=

⊗
n∈N
Bn

be the σ-field generated by all the sets of the form

B = B1 ×B2 × . . .×Bn ×Xn+1 ×Xn+2 × . . . , Bi ∈ Bi. (2.5)

The product measure

µ :=
⊗
n∈N

µn

is the probability measure on B defined by µ(B) :=
∏n
i=1 µi(Bi) for the sets B of the form (2.5).

Example 2.16 ([21, Example 2.3.8]). Let (µn)n∈N be a sequence of GMs. Then the product
measure µ := ⊗n∈Nµn is a GM on X :=

∏
n∈NXn. The Cameron-Martin space H(µ) of µ is the

Hilbert direct sum of spaces H(µn), i.e.,

H(µ) =

h = (hj)j∈N ∈ X : hj ∈ H(µj), ‖h‖2H(µ) =
∑
j∈N
‖hj‖2H(µj)

 .

The space X∗µ is the set of all functions of the form

ϕ 7→
∑
j∈N

fj(ϕj), fj ∈ X∗µj ,
∑
j∈N

σ(fj)
2 <∞,

and
aµ(f) =

∑
j∈N

aµj (fj), ∀f = (fj)j∈N ∈ X∗.

Example 2.17 ([21, Example 2.3.5]). Denote by (γ1,n)n∈N a sequence of standard GMs on (R,B(R)).
Then the product measure

γ =
⊗
n∈N

γ1,n

is a centered GM on R∞. Furthermore, H(γ) = `2(N) and X∗γ ' `2(N). If µ is a GM on R∞,
then by a result of Fernique, the measures γ and µ are either mutually singular or equivalent [21,
Theorem 2.12.9]. The locally convex space R∞ with the product measure γ of standard GMs is
the main parametric domain in the stochastic setting of UQ problems for PDEs with GRF inputs
considered in this text.
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2.5 Gaussian series

A key role in the numerical analysis of PDEs with GRF inputs from separable Banach spaces E is
played by representing these GRFs in terms of series with respect to suitable representation systems
(ψj)j∈N ∈ E∞ of E with random coefficients. There arises the question of admissibility of (ψj)j∈N ∈
E∞ so as to allow a) to transfer randomness of function space-valued inputs to a parametric,
deterministic representation (as is customary, for example, in the transition from nonparametric to
parametric models in statistics) and b) to ensure suitability for numerical approximation.

Items a) and b) are closely related to the selection of stable bases for E, with item b) mandating
additional requirements, such as efficient accessibility for float point computations, quadrature, etc.

We first present an abstract result, Theorem 2.21 and then, in Sections 2.5.2 and 2.5.3, we
review several concrete constructions of such series. We discuss in Sections 2.5.2 and 2.5.3 several
examples, in particular the classical Karhunen-Loève Expansion [77, 101] of GRFs taking values
in separable Hilbert space. All examples will be admissible in parametrizing GRF input data for
PDEs and of Gaussian priors in the ensuing sparsity and approximation rate analysis in Section 3
and the following sections.

2.5.1 Some abstract results

We place ourselves in the setting of a real separable locally convex space X, with a GM γ on X,
and with associated Cameron-Martin Hilbert space H(γ) ⊂ X as introduced in Section 2.3.

We first consider expansions of Gaussian random vectors with respect to orthonormal bases
(ej)j∈N of the Cameron-Martin space H(γ). As linear transformations of GM are Gaussian (see
Lemma 2.8), we admit a linear transformation A.

Theorem 2.18 ([21, Theorems. 3.5.1, 3.5.7, (3.5.4)]). Let γ be a centered GM on a real separable
locally convex space X with Cameron-Martin space H(γ) and with some ONB (ej)j∈N of H(γ). Let
further denote (yj)j∈N any sequence of independent standard Gaussian RVs on a probability space
(Ω,A,P) and let A ∈ L(H(γ)) be arbitrary.

Then the Gaussian series ∑
j∈N

yj(ω)Aej

converges P-a.s. in X. The law of its limit is a centered GM λ with covariance Rλ given by

Rλ(f)(g) = (A∗Rγ(f), A∗Rγ(g))H(γ) .

Furthermore, there holds of independent standard Gaussian RVs on a probability space (Ω,A,P).∫
X
f(x)γ( dx) =

∫
Ω
f

(∑
j∈N

yj(ω)ej

)
dP(ω) .

If X is a real separable Banach space X with norm ‖ ◦ ‖X , for all sufficiently small constants c > 0
holds

lim
n→∞

∫
Ω

exp

(
c

∥∥∥∥ ∞∑
j=n

yj(ω)Aej

∥∥∥∥2

X

)
dP(ω) = 1 .

In particular, for every p ∈ [1,∞) we have
∥∥∑∞

j=n yjAej
∥∥p
X
→ 0 in L1(Ω,P) as n→∞.
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Often, in numerical applications, ensuring orthonormality of the basis elements could be com-
putationally costly. It is therefore of some interest to consider Gaussian series with respect to more
general representation systems (ψj)j∈N. An important notion is admissibility of such systems.

Definition 2.19. Let X be a real, separable locally convex space, and let g : (Ω,A,P) → X be
a centered Gaussian random vector with law γg = PX . Let further (yj)j∈N be a sequence of i.i.d.
standard real Gaussian RVs yj ∼ N (0, 1).

A sequence (ψj)j∈N ∈ X∞ is called admissible for g if∑
j∈N

yjψj converges P-a.s. in X and g =
∑
j∈N

yjψj .

To state the next theorem, we recall the notion of frames in separable Hilbert space (see, e.g.,
[65] and the references there for background and theory of frames. In the terminology of frame
theory, Parseval frames correspond to tight frames with frame bounds equal to 1).

Definition 2.20. A sequence (ψj)j∈N ⊂ H in a real separable Hilbert space H with inner product
(·, ·)H is a Parseval frame of H if

∀f ∈ H : f =
∑
j∈N

(ψj , f)H ψj in H .

The following result, from [88], characterizes admissible affine representation systems for GRFs
u taking values in real, separable Banach spaces X.

Theorem 2.21 ([88, Theorem 1]). We have the following.

(i) In a real, separable Banach space X with a centered GM γ on X, a representation system
Ψ = (ψj)j∈N ∈ X∞ is admissible for γ iff Ψ is a Parseval frame for the Cameron-Martin
space H(γ) ⊂ X, i.e.,

∀f ∈ H(γ) : ‖f‖2H(γ) =
∑
j∈N
|〈f, ψj〉|2.

(ii) Let u denote a GRF taking values in X with law γ and with RKHS H(γ). For a countable
collection Ψ = (ψj)j∈N ∈ X∞ the following are equivalent:

(i) Ψ is a Parseval frame of H(γ) and

(ii) there is a sequence y = (yj)j∈N of i.i.d standard Gaussian RVs yj such that there holds
γ − a.s. the representation

u =
∑
j∈N

yjψj in H(γ) .

(iii) Consider a GRF u taking values in X with law γ and covariance Rγ ∈ L(X ′, X). If Rγ = SS′

with S ∈ L(K,X) for some separable Hilbert space K, for any Parseval frame Φ = (ϕj)j∈N
of K, the countable collection Ψ = SΦ = (Sϕj)j∈N is a Parseval frame of the RKHS H(γ)
of u.

24



The last assertion in the preceding result is [88, Proposition 1]. It generalizes the observation
that for a symmetric positive definite matrix M in Rd, any factorization M = LL> implies that
for z ∼ N (0, I) it holds Lz ∼ N (0,M). The result is useful in building customized representation
systems Ψ which are frames of a GRF u with computationally convenient properties in particular
applications.

We review several widely used constructions of Parseval frames. These comprise expansions in
eigenfunctions of the covariance operator K (referred to also as principal component analysis, or as
“Karhunen-Loève expansions”), but also “eigenvalue-free” multiresolution constructions (generaliz-
ing the classical Lévy-Cieselski construction of the Brownian bridge) for various geometric settings,
in particular bounded subdomains of euclidean space, compact manifolds without boundary etc.
Any of these constructions will be admissible choices as representation system of the GRF input
of PDEs to render these PDEs parametric-deterministic where, in turn, our parametric regularity
results will apply.

Example 2.22 (Brownian bridge). On the bounded time interval [0, T ], consider the Brownian
bridge (Bt)t≥0. It is defined in terms of a Wiener process (Wt)t≥0 by conditioning as

(Bt)0≤t≤T :=
{

(Wt)0≤t≤T |WT = 0
}
. (2.6)

It is a simple example of kriging applied to the GRF Wt.
The covariance function of the GRF Bt is easily calculated as

kB(s, t) = E[BsBt] = s(T − t)/T if s < t.

Various other representations of Bt are

Bt = Wt −
t

T
WT =

T − t√
T
Wt/(T−t).

The RKHS H(γ) corresponding to the GRF Bt is the Sobolev space H1
0 (0, T ).

2.5.2 Karhunen-Loève expansion

A widely used representation system in the analysis and computation of GRFs is the so-called
Karhunen-Loève expansion (KL expansion for short) of GRFs, going back to [77]. We present main
ideas and definitions, in a generic setting of [79], see also [3, Chap. 3.3].

Let M be a compact space with metric ρ : M × M → R and with Borel sigma-algebra
B = B(M). Assume given a Borel measure µ on (M,B). Let further (Ω,A,P) be a probability
space. Examples are M = D a bounded domain in Euclidean space Rd, with ρ denoting the
Euclidean distance between pairs (x, x′) of points in D, andM being a smooth, closed 2-surface in
R3, where ρ is the geodesic distance between pairs of points in M.

Consider a measurable map

Z : (M,B)⊗ (Ω,A)→ R : (x, ω) 7→ Zx(ω) ∈ R

such that for each x ∈ M, Zx is a centered, Gaussian RV. We call the collection (Zx)x∈M a GRF
indexed by M.
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Assume furthermore for all n ∈ N, for all x1, . . . , xn ∈M and for every ξ1, . . . , ξn ∈ R
n∑
i=1

ξiZxi is a centered Gaussian RV.

Then the covariance function

K :M×M→ R : (x, x′) 7→ K(x, x′)

associated with the centered GRF (Zx)x∈M is defined pointwise by

K(x, x′) := E[ZxZx′ ] x, x′ ∈M .

Evidently, the covariance function K :M×M → R corresponding to a Gaussian RV indexed by
M is a real-valued, symmetric, and positive definite function, i.e., there holds

∀n ∈ N ∀(xj)1≤j≤n ∈Mn,∀(ξj)1≤j≤n ∈ Rn :
∑

1≤i,j≤n
ξiξjK(xi, xj) ≥ 0 .

The operator K ∈ L(L2(M, µ), L2(M, µ)) defined by

∀f ∈ L2(M, µ) : (Kf)(x) :=

∫
M
K(x, x′)f(x′) dµ(x′) x ∈M

is a self-adjoint, compact positive operator on L2(M, µ). Furthermore, K is trace-class and
K(L2(M, µ)) ⊂ C(M,R).

The spectral theorem for compact, self-adjoint operators on the separable Hilbert space L2(M, µ)
ensures the existence of a sequence λ1 ≥ λ2 ≥ . . . ≥ 0 of real eigenvalues of K (counted accord-
ing to multiplicity and accumulating only at zero) with associated eigenfunctions ψk ∈ L2(M, µ)
normalized in L2(M, µ), i.e., for all k ∈ N holds

Kψk = λkψk in L2(M, µ) ,

∫
M
ψk(x)ψ`(x) dµ(x) = δk` , k, ` ∈ N .

Then, there holds ψk ∈ C(M;R) and the sequence (ψk)k∈N is an ONB of L2(M, µ). From Mercer’s
theorem (see, e.g., [101]), there holds the Mercer expansion

∀x, x′ ∈M : K(x, x′) =
∑
k∈N

λkψk(x)ψk(x
′)

with absolute and uniform convergence on M×M. This result implies that

lim
m→∞

∫
M×M

∣∣∣∣∣∣K(x, x′)−
m∑
j=1

λjψj(x)ψj(x
′)

∣∣∣∣∣∣
2

dµ(x) dµ(x′) = 0 .

We denote by H ⊂ L2(Ω,P) the L2(M, µ) closure of finite linear combinations of (Zx)x∈M. This so-
called Gaussian space (e.g. [75]) is a Hilbert space when equipped with the L2(M, µ) innerproduct.
Then, the sequence (Bk)k∈N ⊂ R defined by

∀k ∈ N : Bk(ω) :=
1√
λk

∫
M
Zx(ω)ψk(x) dµ(x) ∈ H
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is a sequence of i.i.d, N(0, 1) RVs. The expression

Z̃x(ω) :=
∑
k∈N

√
λkψk(x)Bk(ω) (2.7)

is a modification of Zx(ω), i.e., for every x ∈M holds that P({Zx = Z̃x}) = 1, which is referred to
as Karhunen-Loève expansion of the GRF {Zx : x ∈M}.

Example 2.23. [KL expansion of the Brownian bridge (2.6)] On the compact intervalM = [0, T ] ⊂
R, the KL expansion of the Brownian bridge is

Bt =
∑
k∈N

Zk

√
2T

kπ
sin(kπt/T ) , t ∈ [0, T ] .

Then
H(γ) = H1

0 (0, T ) = span{sin(kπt/T ) : k ∈ N}.

In view of GRFs appearing as diffusion coefficients in elliptic and parabolic PDEs, criteria on
their path regularity are of some interest. Many such conditions are known and we present some
of these, from [3, Chapter 3.2, 3.3].

Proposition 2.24. For any compact set M ⊂ Rd, if for α > 0, η > α and some constant C > 0
holds

E[|Zx+h − Zx|α] ≤ C |h|2d

| log |h||1+η
, (2.8)

then
x→ Zx(ω) ∈ C0(M) P− a.s.

Choosing α = 2 in (2.8), we obtain for M such that M = D, where D ⊂ Rd is a bounded
Lipschitz domain, the sufficient criterion that there exist C > 0, η > 2 with

∀x ∈ D : K(x+ h,x+ h)−K(x+ h,x)−K(x,x+ h) +K(x,x) ≤ C |h|2d

| log |h||1+η
.

This is to hold for some η > 2 with the covariance kernel K of the GRF Z, in order to ensure that
[x 7→ Zx] ∈ C1(D) ⊂W 1

∞(D) P-a.s., see [3, Theorem 3.2.5, page 49 bottom].
Further examples of explicit Karhunen-Loève expansions of GRFs can be found in [84, 35, 79]

and a statement for P-a.s Hölder continuity of GRFs Z on smooth manifolds M is proved in [4].

2.5.3 Multiresolution representations of GRFs

Karhunen-Loève expansions (2.7) provide an important source of concrete examples of Gaussian
series representations of GRFs u in Theorem 2.18. Since KL expansions involve the eigenfunctions
of the covariance operators of the GRF u, all terms in these expansions are, in general, globally
supported in the physical domain M indexing the GRF u. Often, it is desirable to have Gaussian
series representations of u in Theorem 2.18 where the elements (en)n∈N of the representation system
are locally supported in the indexing domain M.
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Example 2.25 (Lévy-Cieselsky representation of Brownian bridge, [34]). Consider the Brownian
bridge (Bt)0≤t≤T from Examples 2.22, 2.23. For T = 1, it may also be represented as Gaussian
series (e.g. [34])

Bt =
∑
j∈N

2j−1∑
k=0

Zjk2
−j/2h(2jt− k) =

∑
j∈N

2j−1∑
k=0

Zjkψjk(t), t ∈M = [0, 1] ,

where
ψjk(t) := 2−j/2h(2jt− k),

with h(s) := max{1−2|s−1/2|, 0} denoting the standard, continuous piecewise affine “hat” function
on (0, 1). Here, µ is the Lebesgue measure in M = [0, 1], and Zjk ∼ N (0, 1) are i.i.d standard
normal RVs.

By suitable reordering of the index pairs (j, k), e.g., via the bijection (j, k) 7→ j := 2j + k, the
representation (2.25) is readily seen to be a special case of Theorem 2.21, item ii). The corresponding
system

Ψ = {ψjk : j ∈ N0, 0 ≤ k ≤ 2j − 1}

is, in fact, a basis for C0([0, 1]) := {v ∈ C([0, 1]) : v(0) = v(1) = 0}, the so-called Schauder basis.
There holds ∑

j∈N

2j−1∑
k=0

2js|ψjk(t)| <∞, t ∈ [0, 1] ,

for any 0 ≤ s < 1/2. The functions ψjk are localized in the sense that |supp(ψjk)| = 2−j for
k = 0, 1, . . . , 2j − 1.

Further constructions of such multiresolution representations of GRFs with either Riesz basis or
frame properties are available on polytopal domains M ⊂ Rd, (e.g. [12], for a needlet multiresolution
analysis on the 2-sphere M = S2 embedded in R3, where µ in Section 2.5.2 can be chosen as the
surface measure see, also, for representation systems by so-called spherical needlets [92], [13]).

We also mention [5] for optimal approximation rates of truncated wavelet series approximations
of fractional Brownian random fields, and to [79] for corresponding spectral representations.

Multiresolution constructions are also available on data-graphs M (see, e.g., [41] and the refer-
ences there).

2.5.4 Periodic continuation of a stationary GRF

Let (Zx)x∈D be a GRF indexed by D ⊂ Rd, where D is a bounded domain. We aim for represen-
tations of the general form

Zx =
∑
j∈N

φj(x)yj , (2.9)

where the yj are i.i.d. N (0, 1) RVs and the (φj)j∈N are a given sequence of functions defined on D.
One natural choice of φj is φj =

√
λjψj , where ψj and are the eigen-functions and λj eigenvalues of

the covariance operator. However, Karhunen-Loève eigenfunctions on D are typically not explicitly
known and globally supported in the physical domain D. One of the strategies for deriving better
representations over D is to view it as the restriction to D of a periodic Gaussian process Zext

x

defined on a suitable larger torus Td.
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Since D is bounded, without loss of generality, we may the physical domain D to be contained
in the box [−1

2 ,
1
2 ]d. We wish to construct a periodic process Zext

x on the torus Td where T = [−`, `]
whose restriction of Zext

x on D is such that Zext
x |D = Zx. As a consequence, any representation

Zext
x =

∑
j∈N

yjφ̃j

yields a representation (2.9) where φj = φ̃j |D.
Assume that (Zx)x∈D is a restriction of a real-valued, stationary and centered GRF (Zx)x∈Rd

on Rd whose covariance is given in the form

E[ZxZx′ ] = ρ(x− x′), x,x′ ∈ Rd, (2.10)

where ρ is a real-valued, even function and its Fourier transform is a non-negative function. The
extension is feasible provided that we can find an even and Td-periodic function ρext which agree
with ρ over [−1, 1]d such that the Fourier coefficients

cn(ρext) =

∫
Td
ρext(ξ) exp

(
− i

π

`
(n, ξ)

)
dξ, n ∈ Zd

are non-negative.
A natural way of constructing the function ρext is by truncation and periodization. First one

chooses a sufficiently smooth and even cutoff function ϕκ such that ϕκ|[−1,1]d = 1 and ϕκ(x) = 0

for x 6∈ [−κ, κ]d where κ = 2`− 1. Then ρext is defined as the periodization of the truncation ρϕκ,
i.e.,

ρext(ξ) =
∑
n∈Zd

(ρϕκ)(ξ + 2`n).

It is easily seen that ρext agrees with ρ over [−1, 1]d and

cn(ρext) = ρ̂ϕκ

(π
`
n
)
.

Therefore cn(ρext) is non-negative if we can prove that ρ̂ϕκ(ξ) ≥ 0 for ξ ∈ Rd. The following result
is shown in [12].

Theorem 2.26. Let ρ be an even function on Rd such that

c(1 + |ξ|2)−s ≤ ρ̂(ξ) ≤ C(1 + |ξ|2)−r, ξ ∈ Rd (2.11)

for some s ≥ r ≥ d/2 and 0 < c ≤ C and

lim
R→+∞

∫
|x|>R

|∂αρ(x)|dx = 0, |α| ≤ 2dse.

Then for κ sufficiently large, there exists ϕκ satisfying ϕκ|[−1,1]d = 1 and ϕκ(x) = 0 for x 6∈
[−κ, κ]d such that

0 < ρ̂ϕκ(ξ) ≤ C(1 + |ξ|2)−r, ξ ∈ Rd.
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The assertion in Theorem 2.11 implies that

0 < cn(ρext) ≤ C(1 + |n|2)−r, n ∈ Zd.

In the following we present an explicit construction of the function ϕκ for GRFs with Matérn
covariance

ρλ,ν(x) :=
21−ν

Γ(ν)

(√
2ν|x|
λ

)ν
Kν

(√
2ν|x|
λ

)
,

where λ > 0, ν > 0 and Kν is the modified Bessel functions of the second kind. Note that the
Matérn covariances satisfy the assumption (2.11) with s = r = ν + d/2.

Let P := 2dν + d
2e + 1 and NP be the cardinal B-spline function with nodes {−P, . . . ,−1, 0}.

For κ > 0 we define the even function ϕ ∈ CP−1(R) by

ϕ(t) =


1 if |t| ≤ κ/2
2P

κ

∫ t+κ/2

−∞
NP

(
2P

κ
ξ

)
dξ if t ≤ −κ/2 .

It is easy to see that ϕ(t) = 0 if |t| ≥ κ. We now define

ϕκ(x) := ϕ(|x|).

With this choice of ϕκ, we have ρext = ρλ,ν on [−1, 1]d provided that ` ≥ κ+
√
d

2 . The required size
of κ is given in the following theorem, see [14, Theorem 10].

Theorem 2.27. For ϕκ as defined above, there exist constants C1, C2 > 0 such that for any
0 < λ, ν <∞, we have ρ̂λ,νϕκ > 0 provided that κ > 1 and

κ

λ
≥ C1 + C2 max

{
ν

1
2 (1 + |ln ν|), ν−

1
2

}
.

Remark 2.28. The periodic random field Zext
x on Td provides a tool for deriving series expansions

of the original random field. In contrast to the Karhunen-Loève eigenfunctions on D, which are
typically not explicitly known, the corresponding eigenfunctions ψext

j of the periodic covariance are
explicitly known trigonometric functions and one has the following Karhunen-Loève expansion for
the periodized random field:

Zext
x =

∑
j∈N

yj

√
λext
j ψext

j , yj ∼ N (0, 1) i.i.d.,

with λext
j denoting the eigenvalues of the periodized covariance and the ψext

j are normalized in

L2(Td). Restricting this expansion back to D, one obtains an exact expansion of the original
random field on D

Zx =
∑
j∈N

yj

√
λext
j ψext

j |D, yj ∼ N (0, 1) i.i.d., (2.12)

This provides an alternative to the standard KL expansion of Zx in terms of eigenvalues λj and
eigenfunctions ψj normalized in L2(D). The main difference is that the functions ψext

j

∣∣
D

in (2.12)

are not L2(D)-orthogonal. However, these functions are given explicitly, and thus no approximate
computation of eigenfunctions is required.
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The KL expansion of Zext
x also enables the construction of alternative expansions of Zx of the

basic form (2.12), but with the spatial functions having additional properties. In [12], wavelet-type
representations

Zext
x =

∑
`,k

y`,kψ`,k, y`,k ∼ N (0, 1) i.i.d.,

are constructed where the functions ψ`,k have the same multilevel-type localisation as the Meyer
wavelets. This feature yields improved convergence estimates for tensor Hermite polynomial ap-
proximations of solutions of random diffusion equations with log-Gaussian coefficients .

2.5.5 Sampling stationary GRFs

The simulation of GRFs with specified covariance is a fundamental task in computational statistics
with a wide range of applications. In this section we present an efficient methods for sampling such
fields. Consider a GRF (Zx)x∈D where D is contained in [−1/2, 1/2]d. Assume that (Zx)x∈D is a
restriction of a real-valued, stationary and centered GRF (Zx)x∈Rd on Rd with covariance given in
(2.10). Let m ∈ N and x1, . . . ,xM be M = (m+ 1)d uniform grid points on [−1/2, 1/2]d with grid
spacing h = 1/m. We wish to obtain samples of the Gaussian RV

Z = (Zx1 , . . . , ZxM )

with covariance matrix

Σ = [Σi,j ]
M
i,j=1, Σi,j = ρ(xi − xj), i, j = 1, . . . ,M. (2.13)

Since Σ is symmetric positive semidefinite, this can in principle be done by performing the Cholesky
factorisation Σ = FF> with F = Σ1/2, from which the desired samples are provided by the product
FY where Y ∼ N (0, I). However, since Σ is large and dense when m is large, this factorisation
is prohibitively expensive. Since the covariance matrix Σ is a nested block Toeplitz matrix under
appropriate ordering, an efficient approach is to extend Σ to a appropriate larger nested block
circulant matrix whose spectral decomposition can be rapidly computed using FFT.

For any ` ≥ 1 we construct a 2`-periodic extension of ρ as follows

ρext(x) =
∑
n∈Zd

(
ρχ(−`,`]d

)
(x+ 2`n), x ∈ Rd .

Clearly, ρext is 2`-periodic and ρext = ρ on [−1, 1]d. Denote ξ1, . . . , ξs, s = (2`/h)d, the uniform
grid points on [−`, `]d with grid space h. Let Zext = (Zξ1

, . . . , Zξs) be the extended GRV with
covariance matrix Σext whose entries is given by formula (2.13), with ρ replaced by ρext and xi by
ξi. Hence Σ is embedded into the nested circulant matrix Σext which can be diagonalized using
FFT (with log-linear complexity) to provide the spectral decomposition

Σext = QextΛext(Qext)>,

with Λext diagonal and containing the eigenvalues λext
j of Σext and Qext being a Fourier matrix.

Provided that these eigenvalues are non-negative, the samples of the grid values of Z can be drawn
as follows. First we draw a random vector (yj)j=1,...,s with yj ∼ N (0, 1) i.i.d., then compute

Zext =

s∑
j=1

yj

√
λext
j qj
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using the FFT, with qj the columns of Qext. Finally, a sample of Z is obtained by extracting from
Zext the entries corresponding to the original grid points.

The above mentioned process is feasible, provided that Σ is positive semidefinite. The following
theorem characterizes the condition on ` for GRF with Matérn covariance such that Σext is positive
semidefinite, see [60].

Theorem 2.29. Let 1/2 ≤ ν <∞, λ ≤ 1, and h/λ ≤ e−1. Then there exist C1, C2 > 0 which may
depend on d but are independent of `, h, λ, ν, such that Σext is positive definite if

`

λ
≥ C1 + C2 ν

1
2 log

(
max

{
λ/h, ν

1
2
})
.

Remark 2.30. For GRF with Matérn covariances, it is well-known (see, e.g. [59, Corollary 5], [10,
eq.(64)]) that the exact KL eigenvalues λj of Zx in L2(D) decay with the rate λj ≤ Cj−(1+2ν/d).
It has been proved recently in [14] that the eigenvalue λext

j maintain this rate of decay up to a
factor of order O(|log h|ν).

2.6 Finite element discretization

The approximation results and algorithms to be developed in the present text involve, besides
the Wiener-Hermite PC expansions with respect to Gaussian co-ordinates y ∈ R∞, also certain
numerical approximations in the physical domain D. Due to their wide use in the numerical solution
of elliptic and parabolic PDEs, we opt for considering standard, primal Lagrangian finite element
discretizations. We confine the presentation and analysis to Lipschitz polytopal domains D ⊂ Rd
with principal interest in d = 2 (D is a polygon with straight sides) and d = 3 (D is a polyhedron
with plane faces). We confine the presentation to so-called primal FE discretizations in D but
hasten to add that with minor extra mathematical effort, similar results could be developed also
for so-called mixed, or dual FE discretizations (see,e.g., [20] and the references there).

In presenting (known) results on finite element method (FEM for short) convergence rates, we
consider separately FEM in polytopal domains D ⊂ Rd, d = 1, 2, 3, and FEM on smooth d-surfaces
Γ ⊂ Rd+1, d = 1, 2. See [22, 49]

2.6.1 Function spaces

For a bounded domain D ⊂ Rd, the usual Sobolev function spaces of integer order s ∈ N0 and
integrability q ∈ [1,∞] are denoted by W s

q (D) with the understanding that Lq(D) = W 0
q (D). The

norm of v ∈W s
q (D) is defined by

‖v‖W s
q

:=
∑

α∈Zd+:|α|≤s

‖Dαv‖Lq .

Here Dα denotes the partial weak derivative of order α. We refer to any standard text such as [2] for
basic properties of these spaces. Hilbertian Sobolev spaces are given for s ∈ N0 by Hs(D) = W s

2 (D),
with the usual understanding that L2(D) = H0(D).

For s ∈ N, we call a Cs-domain D ⊂ Rd a bounded domain whose boundary ∂D is locally
parameterized in a finite number of co-ordinate systems as a graph of a Cs function. In a similar
way, we shall call D ⊂ Rd a Lipschitz domain, when ∂D is, locally, the graph of a Lipschitz function.
We refer to [2, 55] and the references there or to [61].
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We call polygonal domain a domain D ⊂ R2 that is a polygon with Lipschitz boundary ∂D
(which precludes cusps and slits) and with a finite number of straight sides.

Let D ⊂ R2 denote an open bounded polygonal domain. We introduce in D a nonnegative
function rD : D → R+ which is smooth in D, and which coincides for x in a vicinity of each corner
c ∈ ∂D with the Euclidean distance |x− c|.

To state elliptic regularity shifts in D, we require certain corner-weighted Sobolev spaces. We
require these only for integrability q = 2 and for q =∞.

For s ∈ N0 and κ ∈ R we define

Ksκ(D) :=
{
u : D → C : r

|α|−κ
D Dαu ∈ L2(D), |α| ≤ s

}
and

Ws
∞(D) :=

{
u : D → C : r

|α|
D Dαu ∈ L∞(D), |α| ≤ s

}
.

Here, for α ∈ N2
0 and as before Dα denotes the partial weak derivative of order α.

The corner-weighted norms in these spaces are given by

‖u‖Ksκ :=
∑
|α|≤s

‖r|α|−κD Dαu‖L2 and ‖u‖Ws
∞ :=

∑
|α|≤s

‖r|α|D Dαu‖L∞ .

The function spaces Ksκ(D) andWs
∞(D) endowed with these norms are Banach spaces, and Ksκ(D)

are separable Hilbert spaces. These corner-weighted Sobolev spaces are called Kondrat’ev spaces.
An embedding of these spaces is H1

0 (D) ↪→ K1
0(D). This follows from the existence of a constant

c(D) > 0 such that for every x ∈ D holds rD(x) ≥ c(D)dist(x, ∂D).

2.6.2 Finite element interpolation

In this section, we review some results on FE approximations in polygonal domains D on locally
refined triangulations T in D. These results are in principle known for the standard Sobolev spaces
Hs(D) and available in the standard texts [23, 33]. For spaces with corner weights in polygonal
domains D ⊂ R2, such as Ksκ andWs

∞, however, which arise in the regularity of the Wiener-Hermite
PC expansion coefficient functions for elliptic PDEs in corner domains in Section 3.8 ahead, we
provide references to corresponding FE approximation rate bounds.

The corresponding FE spaces involve suitable mesh refinement to compensate for the reduced
regularity caused by corner and edge singularities which occur in solutions to elliptic and parabolic
boundary value problems in these domains.

We define the FE spaces in a polygonal domain D ⊂ R2 (see [23, 33] for details). Let T denote a
regular triangulation of D, i.e., a partition of D into a finite number N(T ) of closed, nondegenerate
triangles T ∈ T (i.e., |T | > 0) such that for any two T, T ′ ∈ T , the intersection T ∩ T ′ is either
empty, a vertex or an entire edge. We denote the meshwidth of T as

h(T ) := max{h(T ) : T ∈ T }, where h(T ) := diam(T ) .

For T ∈ T , denote ρ(T ) the diameter of the largest circle that can be inscribed into T . We say T
is κ shape-regular, if

∀T ∈ T :
h(T )

ρ(T )
≤ κ .
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A sequence T := (Tn)n∈N is κ shape-regular if each T ∈ T is κ shape-regular, with one common
constant κ > 1 for all T ∈ T.

In a polygon D, with a regular, simplicial triangulation T , and for a polynomial degree m ∈ N,
the Lagrangian FE space Sm(D, T ) of continuous, piecewise polynomial functions of degree m on
T is defined as

Sm(D, T ) = {v ∈ H1(D) : ∀T ∈ T : v|T ∈ Pm} .

Here, Pm := span{xα : |α| ≤ m} denotes the space of polynomials of x ∈ R2 of total degree at
most m. We also define Sm0 (D, T ) := Sm(D, T ) ∩H1

0 (D).
The main result on FE approximation rates in a polygon D ⊂ R2 in corner-weighted spaces

Ksκ(D) reads as follows.

Proposition 2.31. Consider a bounded polygonal domain D ⊂ R2. Then, for every polynomial
degree m ∈ N, there exists a sequence (Tn)n∈N of κ shape-regular, simplicial triangulations of D
such that for every u ∈ (H1

0 ∩ K
m+1
λ )(D) for some λ > 0, the FE interpolation error converges at

rate m. More precisely, there exists a constant C(D,κ, λ,m) > 0 such that for all T ∈ (Tn)n∈N and
for all u ∈ (H1

0 ∩ K
m+1
λ )(D) holds

‖u− ImT u‖H1 ≤ Ch(T )m‖u‖Km+1
λ

.

Equivalently, in terms of the number n := #(T ) of triangles, there holds

‖u− ImT u‖H1 ≤ Cn−m/2‖u‖Km+1
λ

. (2.14)

Here, ImT : C0(D) → Sm(D, T ) denotes the nodal, Lagrangian interpolant. The constant C > 0
depends on m, D and the shape regularity of T , but is independent of u.

For a proof of this proposition, we refer, for example, to [25, Theorems 4.2, 4.4].
We remark that due to K2

λ(D) ⊂ C0(D), the nodal interpolant ImT in (2.14) is well-defined. We
also remark that the triangulations Tn need not necessarily be nested (the constructions in [6, 25]
do not provide nestedness; for a bisection tree construction of (Tn)n∈N which are nested, such as
typically produced by adaptive FE algorithms, with the error bounds (2.14), we refer to [54].

For similar results in polyhedral domains in space dimension d = 3, we refer to [27, 26, 86] and
to the references there.
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3 Elliptic divergence-form PDEs with log-Gaussian coefficient

We present a model second order linear divergence-form PDE with log-Gaussian input data. We
review known results on its well-posedness, and Lipschitz continuous dependence on the input data.
Particular attention is placed on regularity results in polygonal domains D ⊂ R2. Here, solutions
belong to Kondrat’ev spaces. We discuss regularity results for parametric coefficients, and establish
in particular parametric holomorphy results for the coefficient-to-solution maps.

The outline of this section is as follows. In Section 3.1, we present the strong and variational
forms of the PDE, its well-posedness and the continuity of the data-to-solution map in appropriate
spaces. Importantly, we do not aim at the most general setting, but to ease notation and for
simplicity of presentation we address a rather simple, particular case: in a bounded domain D in
Euclidean space Rd. All the ensuing derivations will directly generalize to linear second order elliptic
systems. A stronger Lipschitz continuous dependence on data result is stated in Section 3.2. Higher
regularity and fractional regularity of the solution provided correspondingly by higher regularity of
data are discussed in Section 3.3.

Sections 3.4 and 3.5 describe uncertainty modelling by placing GMs on sets of admissible,
countably parametric input data, i.e., formalizing mathematically aleatoric uncertainty in input
data. Here, the Gaussian series introduced in Section 2.5 will be seen to take a key role in converting
operator equations with GRF inputs to infinitely-parametric, deterministic operator equations. The
Lipschitz continuous dependence of the solutions on input data from function spaces will imply
strong measurability of corresponding random solutions, and render well-defined the uncertainty
propagation, i.e., the push-forward of the GM on the input data.

In Sections 3.6–3.8, we connect quantified holomorphy of the parametric, deterministic solution
manifold {u(y) : y ∈ R∞} with sparsity of the coefficients (‖uν‖H)ν∈F of Wiener-Hermite PC
expansion as elements of certain Sobolev spaces: We start with the case H = H1

0 (D) in Section 3.6
and subsequently discuss higher regularity H = Hs(D), s ∈ N, in Section 3.7 and finally H being
a Kondrat’ev space on a bounded polygonal domain D ⊂ R2 in Section 3.8.

3.1 Statement of the problem and well-posedness

In a bounded Lipschitz domain D ⊂ Rd (d = 1, 2 or 3), consider the linear second order elliptic
PDE in divergence-form

Pau :=

{
−div(a(x)∇u(x))
τ0(u)

}
=

{
f(x) in D,
0 on ∂D .

(3.1)

Here, τ0 : H1(D) → H1/2(∂D) denotes the trace map. With the notation V := H1
0 (D) and

V ∗ = H−1(D), for any f ∈ V ∗, by the Lax-Milgram lemma the weak formulation given by

u ∈ V :

∫
D
a∇u · ∇v dx = 〈f, v〉V ∗,V , v ∈ V, (3.2)

admits a unique solution u ∈ V whenever the coefficient a satisfies the ellipticity assumption

0 < amin := ess inf
x∈D

a(x) ≤ amax = ‖a‖L∞ <∞ . (3.3)

With ‖v‖V := ‖∇v‖L2 denoting the norm of v ∈ V , there holds the a-priori estimate

‖u‖V ≤
‖f‖V ∗
amin

. (3.4)
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In particular, with
L∞+ (D) :=

{
a ∈ L∞(D) : amin > 0

}
,

the data-to-solution operator

S : L∞+ (D)× V ∗ → V : (a, f) 7→ u (3.5)

is continuous.

3.2 Lipschitz continuous dependence

The continuity (3.5) of the data-to-solution map S allows to infer already strong measurability of
solutions of (3.1) with respect to random coefficients a. For purposes of stable numerical approxi-
mation, we will be interested in quantitative bounds of the effect of perturbations of the coefficient
a in (3.2) and of the source term data f on the solution u = S(a, f). Mere continuity of S as a
map from L∞+ (D) × V ∗ to V = H1

0 (D) will not be sufficient to this end. To quantify the impact
of uncertainty in the coefficient a on the solution u ∈ V , local Hölder or, preferably, Lipschitz
continuity of the map S is required, at least locally, close to nominal values of the data (a, f).

To this end, consider given a1, a2 ∈ L∞+ (D), f1, f2 ∈ L2(D) ⊂ V ∗ with corresponding unique
solutions ui = S(ai, fi) ∈ V , i = 1, 2.

Proposition 3.1. In a bounded Lipschitz domain D ⊂ Rd, for given data bounds ra, rf ∈ (0,∞),
there exist constants ca and cf such that for every ai ∈ L∞+ (D) with ‖ log(ai)‖L∞ ≤ ra, and for
every fi ∈ L2(D) with ‖fi‖L2 ≤ rf , i = 1, 2, it holds

‖u1 − u2‖V ≤
cP

a1,min ∧ a2,min
‖f1 − f2‖L2 +

‖f1‖V ∗ ∨ ‖f2‖V ∗
a1,mina2,min

‖a1 − a2‖L∞ . (3.6)

Therefore
‖S(a1, f1)− S(a2, f2)‖V ≤ ca‖a1 − a2‖L∞ + cf‖f1 − f2‖L2 , (3.7)

and
‖S(a1, f1)− S(a2, f2)‖V ≤ c̃a‖ log(a1)− log(a2)‖L∞ + cf‖f1 − f2‖L2 . (3.8)

Here, we may take cf = cP exp(ra), ca = cP rf exp(2ra) and c̃a = cP rf exp(3ra). The constant
cP = c(D) > 0 denotes the V − L2(D) Poincaré constant of D.

The bounds (3.7) and (3.8) follow from the continuous dependence estimates in [15] by elemen-
tary manipulations. For a proof (in a slightly more general setting), we also refer to Section 4.3.1
ahead.

3.3 Regularity of the solution

It is well known that weak solutions u ∈ V of the linear elliptic boundary value problem (BVP
for short) (3.1) admit higher regularity for more regular data (i.e., coefficient a(x), source term
f(x) and domain D). Standard references for corresponding results are [61, 55]. The proofs in
these references cover general, linear elliptic PDEs, with possibly matrix-valued coefficients, and
aim at sharp results on the Sobolev and Hölder regularity of solutions, in terms of corresponding
regularity of coefficients, source term and boundar ∂D. In order to handle the dependence of
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solutions on random field and parametric coefficients in a quantitative manner, we develop presently
self-contained, straightforward arguments for solution regularity of (3.1).

Here is a first regularity statement, which will be used in several places subsequently. To state
it, we denote by W the normed space of all functions v ∈ V such that ∆v ∈ L2(D). The norm in
W is defined by

‖v‖W := ‖∆v‖L2 .

The map v 7→ ‖v‖W is indeed a norm on W due to the homogeneous Dirichlet boundary condition
of v ∈ V : ‖v‖W = 0 implies that v is harmonic in D, and v ∈ V implies that the trace of v on ∂D
vanishes, whence v = 0 in D by the maximum principle.

Proposition 3.2. Consider the boundary value problem (3.1) in a bounded domain D with Lipschitz
boundary, and with a ∈W 1

∞(D), f ∈ L2(D). Then the weak solution u ∈ V of (3.1) belongs to the
space W and there holds the a-priori estimate

‖u‖W ≤ 1

amin

(
‖f‖L2 + ‖f‖V ∗

‖∇a‖L∞
amin

)
≤ c

amin

(
1 +
‖∇a‖L∞
amin

)
‖f‖L2 , (3.9)

where amin = min{a(x) : x ∈ D}.

Proof. That u ∈ V belongs to W is verified by observing that under these assumptions, there holds

− a∆u = f +∇a · ∇u in the sense of L2(D) . (3.10)

The first bound (3.9) follows by elementary argument using (3.4), the second bound by an appli-
cation of the L2(D)-V ∗ Poincaré inequality in D.

Remark 3.3. The relevance of the space W stems from the relation to the corner-weighted Kon-
drat’ev spaces Kmκ (D) which were introduced in Section 2.6.1. When the domain D ⊂ R2 is a
polygon with straight sides, in the presently considered homogeneous Dirichlet boundary condi-
tions on all of ∂D, it holds that W ⊂ K2

κ(D) with continuous injection provided that |κ| < π/ω
where 0 < ω < 2π is the largest interior opening angle at the vertices of D. Membership of u in
K2
κ(D) in turn implies optimal approximation rates for standard, Lagrangian FE approximations

in D with suitable, corner-refined triangulations in D, see Proposition 2.31.

Remark 3.4. If the physical domain D is convex or of type C1,1, then u ∈ W implies that
u ∈ (H2 ∩H1

0 )(D) and (3.9) gives rise to an H2 a-priori estimate (see, e.g., [61, Theorem 2.2.2.3]).

The regularity in Proposition 3.2 is adequate for diffusion coefficients a(x) which are Lipschitz
continuous in D, which is essentially (up to modification) W 1

∞(D) ' C0,1(D). In view of our
interest in admitting diffusion coefficients which are (realizations of) GRF (see Section 3.4), it is
clear from Example 2.25 that relevant GRF models may exhibit mere Hölder path regularity.

The Hölder spaces Cs(D) on Lipschitz domains D can be obtained as interpolation spaces,
via the so-called K-method of function space interpolation which we briefly recapitulate (see, e.g.,
[107, Chapter 1.3], [18]). Two Banach spaces A0, A1 with continuous embedding A1 ↪→ A0 with
respective norms ‖◦‖Ai , i = 0, 1, constitute an interpolation couple. For 0 < s < 1, the interpolation
space [A0, A1]s,q of smoothness order s with fine index q ∈ [1,∞] is defined via the K-functional:
for a ∈ A0, this functional is given by

K(a, t;A0, A1) := inf
a1∈A1

{‖a− a1‖A0 + t‖a1‖A1} , t > 0 . (3.11)
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For 0 < s < 1 the intermediate, “interpolation” space of order s and fine index q is denoted by
[A0, A1]s,q. It is the set of functions a ∈ A0 such that the quantity

‖a‖[A0,A1]s,q :=

{ (∫∞
0 (t−sK(a, t, A0, A1))q dt

t

)1/q
, 1 ≤ q <∞,

supt>0 t
−sK(a, t, A0, A1) , q =∞

(3.12)

is finite. When the Ai are Banach spaces, the sets [A0, A1]s,q are Banach spaces with norm given
by (3.12). In particular (see, e.g., [2, Lemma 7.36]), in the bounded Lipschitz domain D

Cs(D) = [L∞(D),W 1
∞(D)]s,∞, 0 < s < 1 . (3.13)

With the spaces V := H1
0 (D) and W ⊂ V , we define the (non-separable, non-reflexive) Banach

space
W s := [V,W ]s,∞ , 0 < s < 1 . (3.14)

Then there holds the following generalization of (3.9).

Proposition 3.5. For a bounded Lipschitz domain D ⊂ Rd, d ≥ 2, for every f ∈ L2(D) and
a ∈ Cs(D) for some 0 < s < 1 with

amin = min{a(x) : x ∈ D} > 0,

the solution u ∈ V of (3.1), (3.2) belongs to W s, and there exists a constant c(s,D) such that

‖u‖W s ≤ c

amin

(
1 + ‖a‖1/sCs a

−1/s
min

)
‖f‖L2 . (3.15)

Proof. The estimate follows from the a-priori bounds for s = 0 and s = 1, i.e., (3.4) and (3.9), by
interpolation with the Lipschitz continuity (3.6) of the solution operator.

Let a ∈ Cs(D) with amin > 0 be given. From (3.13), for every δ > 0 exists aδ ∈W 1,∞(D) with

‖a− aδ‖C0 ≤ Cδs‖a‖Cs , ‖aδ‖W 1
∞
≤ Cδs−1‖a‖Cs .

From
min
x∈D

aδ(x) ≥ min
x∈D

a(x)− ‖a− aδ‖C0 ≥ amin − Cδs‖a‖Cs

follows for 0 < δ ≤ 2−1/s ‖a/amin‖−1/s
Cs , that

min
x∈D

aδ(x) ≥ amin/2 .

For such δ and for f ∈ L2(D), (3.1) with aδ admits a unique solution uδ ∈ V and from (3.9)

‖uδ‖W ≤
2c

amin

(
1 +
‖∇aδ‖L∞
amin

)
‖f‖L2 .

From (3.6) (with f1 = f2 = f) we find

‖u− uδ‖V ≤
2c

a2
min

‖a− aδ‖L∞‖f‖L2 ≤ C
δs

a2
min

‖a‖Cs‖f‖L2 .
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This implies in (3.11) that for some constant C > 0 (depending only on D and on s)

K(u, t, V,W ) ≤ C

amin

(
δsAs + t

(
1 + δs−1As

))
‖f‖L2 , t > 0 (3.16)

where we have set As :=
∥∥ a
amin

∥∥
Cs
∈ [1,∞).

To complete the proof, by (3.14) we bound ‖u‖W s = supt>0 t
−sK(u, t, V,W ). To this end,

it suffices to bound K(u, t, V,W ) for 0 < t < 1. Given such t, we choose in the bound (3.16)

δ = tδ0 ∈ (0, δ0) with δ0 := 2−1/sA
−1/s
s . This yields

δsAs + t
(
1 + δs−1As

)
= ts

(
δs0As + t1−s + δs−1

0 As
)

= ts
(

2−1 + t1−s + 2−(s−1)/sA1−(s−1)/s
s

)
and we obtain for 0 < t < 1 the bound

t−sK(u, t, V,W ) ≤ C

amin

(
2 + 2−(s−1)/sA1/s

s

)
‖f‖L2 .

Adjusting the value of the constant C, we arrive at (3.15).

3.4 Random input data

We are in particular interested in the input data a and f of the elliptic divergence-form PDE (3.1)
being not precisely known. The Lipschitz continuous data-dependence in Proposition 3.1 of the
variational solution u ∈ V of (3.1) will ensure that small variations in the data (a, f) ∈ L∞+ (D)×V ∗
imply corresponding small changes in the (unique) solution u ∈ V . A natural paradigm is to model
uncertain data probabilistically. To this end, we work with a base probability space (Ω,A,P). Given
a known right hand side f ∈ L2(D), and uncertain diffusion coefficient a ∈ E ⊆ L∞+ (D), where
E denotes a suitable subset of L∞+ (D) of admissible diffusion coefficients, we model the function a
or log a as RVs taking values in a subset E of L∞(D). We will assume the random data a to be
separably-valued, more precisely, the set E of admissible random data will almost surely belong to
a subset of a separable subspace of L∞(D). See [21, Chap. 2.6] for details on separable-valuedness.
Separability of E is natural from the point of view of numerical approximation of (samples of)
random input a and simplifies many technicalities in the mathematical description; we refer in
particular to the construction of GMs on E in Sections 2.2–2.5. One valid choice for the space
of admissible input data E consists in E = C(D) ∩ L∞+ (D). In the log-Gaussian models to be
analyzed subsequently, E ⊂ L∞+ (D) will be ensured by modelling log(a) as a GRF, i.e., we assume
the probability measure P to be such that the law of log(a) is a GM on L∞(D) which charges
E, so that the random element log(a(·, ω)) ∈ L∞+ (D) P-a.s.. This, in turn, implies with the well-
posedness result in Section 3.1 that there exists a unique random solution u(ω) = S(a, f) ∈ V P-a.s..
Furthermore, the Lipschitz continuity (3.8) then implies that the corresponding map ω 7→ u(ω) is
a composition of the measurable map ω 7→ log(a(·, ω)) with the Lipschitz continuous deterministic
data-to-solution map S, hence strongly measurable, and thus a RV on (Ω,A,P) taking values in V .

3.5 Parametric deterministic coefficient

A key step in the deterministic numerical approximation of the elliptic divergence-form PDE (3.1)
with log-Gaussian random inputs (i.e., log(a) is a GRF on a suitable locally convex space E of
admissible input data) is to place a GM on E and to describe the realizations of GRF b in terms of
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affine-parametric representations discussed in Section 2.5. In Section 3.5.1, we briefly describe this
and in doing so extend a-priori estimates to this resulting deterministic parametric version of elliptic
PDE (3.1). Subsequently, in Section 3.5.3, we show that the resulting, countably-parametric, linear
elliptic problem admits an extension to certain complex parameter domains, while still remaining
well-posed.

3.5.1 Deterministic countably parametric elliptic PDEs

Placing a Gaussian probability measure on the random inputs log(a) to the elliptic divergence-
form PDE (3.1) can be achieved via Gaussian series as discussed in Section 2.5. Affine-parametric
representations which are admissible in the sense of Definition 2.19 of the random input log(a) of
(3.1), subject to a Gaussian law on the corresponding input locally convex space E, render the
elliptic divergence-form PDE (3.1) with random inputs a deterministic parametric elliptic PDE.
More precisely, b := log(a) will depend on the sequence y = (yj)j∈N of parameters from the
parameter space R∞. Accordingly, we consider parametric diffusion coefficients a = a(y), where

y = (yj)j∈N ∈ U.

Here and throughout the rest of this book we make use of the notation

U := R∞.

We develop the holomorphy-based analysis of parametric regularity and Wiener-Hermite PC ex-
pansion coefficient sparsity for the model parametric linear second order elliptic divergence-form
PDE with so-called “log-affine coefficients”

− div
(

exp(b(y))∇u(y)
)

= f in D , u(y)|∂D = 0 , (3.17)

i.e.,
a(y) = exp(b(y)).

Here, the coefficient b(y) = log(a(y)) is assumed to be affine-parametric

b(y) =
∑
j∈N

yjψj(x) , x ∈ D , y ∈ U . (3.18)

We assume that ψj ∈ E ⊂ L∞(D) for every j ∈ N. For any y ∈ U such that b(y) ∈ L∞(D), by
(3.4) we have the estimate

‖u(y)‖V ≤ ‖f‖V ∗‖a(y)−1‖L∞ ≤ exp(‖b(y)‖L∞)‖f‖V ∗ . (3.19)

For every y ∈ U satisfying b(y) ∈ L∞(D), the variational form (3.2) of (3.17) gives rise to the
parametric energy norm ‖v‖a(y) on V which is defined by

‖v‖2a(y) :=

∫
D
a(y)|∇v|2 dx , v ∈ V.

The norms ‖ ◦ ‖a(y) and ‖ ◦ ‖V are equivalent on V but not uniformly w.r.t. y. It holds

exp(−‖b(y)‖L∞)‖v‖2V ≤ ‖v‖2a(y) ≤ exp(‖b(y)‖L∞)‖v‖2V , v ∈ V . (3.20)
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3.5.2 Probabilistic setting

In a probabilistic setting, the parameter sequence y is chosen as a sequence of i.i.d. standard Gaus-
sian RVs N (0, 1) and (ψj)j∈N a given sequence of functions in the Banach space L∞(D) to which
we refer as representation system of the uncertain input. We then treat (3.17) as the stochastic
linear second order elliptic divergence-form PDE with so-called “log-Gaussian coefficients”. We re-
fer to Section 2.5 for the construction of GMs based on affine representation systems (ψj)j∈N. Due
to L∞(D) being non-separable, we consider GRFs b(y) which take values in separable subspaces
E ⊂ L∞(D), such as E = C0(D).

The probability space (Ω,A,P) from Section 3.4 on the parametric solutions {u(y) : y ∈ U} is
chosen as (U,B(U); γ). Here and throughout the rest of this book, we make use of the notation:
B(U) is the σ-field on the locally convex space U generated by cylinders of Borel sets on R, and γ
is the product measure of the standard GM γ1 on R (see the definition in Example 2.17). We shall
refer to γ as the standard GM on U .

It follows from the a-priori estimate (3.19) that for f ∈ V ∗ the parametric elliptic diffusion
problem (3.17) admits a unique solution for parameters y in the set

U0 := {y ∈ U : b(y) ∈ L∞(D)} . (3.21)

The measure γ(U0) of the set U0 ⊂ U depends on the structure of y 7→ b(y). The following sufficient
condition on the representation system (ψj)j∈N will be assumed throughout.

Assumption 3.6. For every j ∈ N, ψj ∈ L∞(D), and there exists a positive sequence (λj)j∈N such
that

(
exp(−λ2

j )
)
j∈N ∈ `

1(N) and the series
∑

j∈N λj |ψj | converges in L∞(D).

For the statement of the next result, we recall a notion of Bochner spaces. For a measure space
(Ω,A, µ) let X a Banach space and 1 ≤ p <∞. Then the Bochner space Lp(Ω, X;µ) is defined as
the space of all strongly µ-measurable mappings u from Ω to X such that the norm

‖u‖Lp(Ω,X;µ) :=

(∫
Ω
‖u(y)‖pX dµ(y)

)1/p

<∞. (3.22)

In particular, when (Ω,A, µ) = (U,B(U); γ), X is separable and p = 2, the hilbertian space
L2(U,X; γ) is one of the most important for the problems considered in this book.

The following result was shown in [9, Theorem 2.2].

Proposition 3.7. Under Assumption 3.6, the set U0 has full GM, i.e., γ(U0) = 1. For all k ∈ N
there holds, with E(·) denoting expectation with respect to γ,

E (exp(k‖b(·)‖L∞)) <∞ .

The solution family {u(y) : y ∈ U0} of the parametric elliptic boundary value problem (3.17) is in
Lk(U, V ; γ) for every finite k ∈ N.

3.5.3 Deterministic complex-parametric elliptic PDEs

Towards the aim of establishing sparsity of Wiener-Hermite PC expansions of the parametric so-
lutions {u(y) : y ∈ U0} of (3.17), we extend the deterministic parametric elliptic problem (3.17)
from real-valued to complex-valued parameters.
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Formally, replacing y = (yj)j∈N ∈ U in the coefficient a(y) by z = (zj)j∈N = (yj+iξj)j∈N ∈ C∞,
the real part of a(z) is

R[a(z)] = exp

(∑
j∈N

yjψj(x)

)
cos

(∑
j∈N

ξjψj(x)

)
. (3.23)

We find that R[a(z)] > 0 if ∥∥∥∥∥∑
j∈N

ξjψj

∥∥∥∥∥
L∞

<
π

2
.

This observation and Proposition 3.7 motivate the study of the analytic continuation of the solution
map y 7→ u(y) to z 7→ u(z) for complex parameters z = (zj)j∈N by formally replacing the parameter
yj by zj in the definition of the parametric coefficient a, where each zj lies in the strip

Sj(ρ) := {zj ∈ C : |Imzj | < ρj} (3.24)

and where ρj > 0 and ρ = (ρj)j∈N ∈ (0,∞)∞ is any sequence of positive numbers such that∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞

<
π

2
.

3.6 Analyticity and sparsity

We address the analyticity (holomorphy) of the parametric solutions {u(y) : y ∈ U0}. We analyze
the sparsity by estimating, in particular, the size of the domains of holomorphy to which the para-
metric solutions can be extended. We also treat the weighted `2-summability and `p-summability
(sparsity) for the series of Wiener-Hermite the PC expansion coefficients (uν)ν∈F of u(y).

3.6.1 Parametric holomorphy

In this section we establish holomorphic parametric dependence u on a and on f as in [39] by
verifying complex differentiability of a suitable complex-parametric extension of y 7→ u(y). We
observe that the Lax-Milgram theory can be extended to the case where the coefficient function
a is complex-valued. In this case, V := H1

0 (D,C) in (3.2) and the ellipticity assumption (3.3) is
extended to the complex domain as

0 < ρ(a) := ess inf
x∈D

<(a(x)) ≤ |a(x)| ≤ ‖a‖L∞ <∞, x ∈ D. (3.25)

Under this condition, there exists a unique variational solution u ∈ V of (3.1) and for this solution,
the estimate (3.4) remains valid, i.e.,

‖u‖V ≤
‖f‖V ∗
ρ(a)

. (3.26)

Let ρ = (ρj)j∈N ∈ [0,∞)∞ be a sequence of non-negative numbers and assume that u ⊆ supp(ρ) is
finite. Define

Su(ρ) :=×
j∈u
Sj(ρ) , (3.27)
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where the strip Sj(ρ) is given in (3.24). For y ∈ U , put

Su(y,ρ) :=
{

(zj)j∈N : zj ∈ Sj(ρ) if j ∈ u and zj = yj if j 6∈ u
}
.

Proposition 3.8. Let the sequence ρ = (ρj)j∈N ∈ [0,∞)∞ satisfy∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞

≤ κ < π

2
. (3.28)

Let y0 = (y0,1, y0,2, . . .) ∈ U be such that b(y0) belongs to L∞(D), and let u ⊆ supp(ρ) be a finite
set.

Then the solution u of the variational form of (3.17) is holomorphic on Su(ρ) as a function of
the parameters zu = (zj)j∈N ∈ Su(y0,ρ) taking values in V with zj = y0,j for j 6∈ u held fixed.

Proof. Let N ∈ N. We denote

Su,N (ρ) :=
{

(yj + iξj)j∈u ∈ Su(ρ) : |yj − y0,j | < N
}
. (3.29)

For zu = (yj + iξj)j∈N ∈ Su(y0,ρ) with (yj + iξj)j∈u ∈ Su,N (ρ) we have∥∥∥∥∥∑
j∈N

yjψj

∥∥∥∥∥
L∞

≤ ‖b(y0)‖L∞ +

∥∥∥∥∥∑
j∈u
|(y − y0,j)ψj |

∥∥∥∥∥
L∞

≤ ‖b(y0)‖L∞ +N

∥∥∥∥∥∑
j∈u
|ψj |

∥∥∥∥∥
L∞

=: M <∞

and ∥∥∥∥∥∑
j∈u

ξjψj

∥∥∥∥∥
L∞

≤

∥∥∥∥∥∑
j∈u
|ρjψj |

∥∥∥∥∥
L∞

≤ κ .

Consequently, we obtain from (3.23)

ρ(a(zu)) ≥ exp

(
−

∥∥∥∥∥∑
j∈N

yjψj

∥∥∥∥∥
L∞

)
cos

(∥∥∥∥∥∑
j∈u

ξjψj

∥∥∥∥∥
L∞

)
≥ exp(−M) cosκ (3.30)

for all zu ∈ Su(y0,ρ) with (yj + iξj)j∈u ∈ Su,N (ρ). From this and the analyticity of exponential
functions we conclude that the map zu → u(zu) is holomorphic on the set Su,N (ρ), see [37, Pages
22, 23]. Since N is arbitrary we deduce that the map zu → u(zu) is holomorphic on Su(ρ).

The analytic continuation of the parametric solutions {u(y) : y ∈ U} to Su(ρ) leads to a result
on parametric V -regularity.

Lemma 3.9. Let ρ = (ρj)j∈N be a non-negative sequence satisfying (3.28). Let y ∈ U with
b(y) ∈ L∞(D) and ν ∈ F such that supp(ν) ⊆ supp(ρ). Then we have

‖∂νu(y)‖V ≤ C0
ν!

ρν
exp

(
‖b(y)‖L∞

)
,

where C0 = eκ(cosκ)−1‖f‖V ∗.
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Proof. Let ν ∈ F such that supp(ν) ⊆ supp(ρ). Denote u = supp(ν). For fixed variable yj
with j 6∈ u, the map Su(y,ρ) 3 zu → u(zu) is holomorphic on the domain Su(y, κ′ρ) where
κ < κκ′ < π/2, see Proposition 3.8. Applying Cauchy’s integral formula gives

∂νu(y) =
ν!

(2πi)|u|

∫
Cy,u(ρ)

u(zu)∏
j∈u(zj − yj)νj+1

∏
j∈u

dzj ,

where
Cy,u(ρ) :=×

j∈u
Cy,j(ρ) , Cy,j(ρ) :=

{
zj ∈ C : |zj − yj | = ρj

}
. (3.31)

This leads to

‖∂νu(y)‖V ≤
ν!

ρν
sup

zu∈Cu(y,ρ)
‖u(zu)‖V (3.32)

with
Cu(y,ρ) =

{
(zj)j∈N ∈ Su(y,ρ) : (zj)j∈u ∈ Cy,u(ρ)

}
. (3.33)

Notice that for zu = (zj)j∈N ∈ Cu(y,ρ) we can write zj = yj + ηj + iξj ∈ Cy,j(ρ) with |ηj | ≤ ρj ,
|ξj | ≤ ρj if j ∈ u and ηj = ξj = 0 if j 6∈ u. By denoting η = (ηj)j∈N and ξ = (ξj)j∈N we see that
‖b(η)‖L∞ ≤ κ and ‖b(ξ)‖L∞ ≤ κ. Hence we deduce from (3.26) that

‖u(zu)‖V ≤
exp

(
‖b(y + η)‖L∞

)
cos
(
‖b(ξ)‖L∞

) ‖f‖V ∗ ≤
exp

(
κ+ ‖b(y)‖L∞

)
cosκ

‖f‖V ∗ .

Inserting this into (3.32) we obtain the desired estimate.

3.6.2 Sparsity of Wiener-Hermite PC expansion coefficients

In this section, we will exploit the analyticity of u to prove a weighted `2-summability result for the
V -norms of the coefficients in the Wiener-Hermite PC expansion of the solution map y → u(y). Our
analysis yields the same `p-summability result as in the papers [9, 8] in the case ψj have arbitrary
supports. In this case, our result implies that the `p-summability of (‖uν‖V )F for 0 < p ≤ 1 (the
sparsity of parametric solutions) follows from the `p-summability of the sequence (jα‖ψj‖L∞)j∈N
for some α > 1/2 which is an improvement over the condition (j‖ψj‖L∞)j∈N ∈ `p(N) in [72], see [9,
Section 6.3]. In the case of disjoint or finitely overlapping supports our analysis obtains a weaker
result compared to [9, 8]. As observed in [39], one advantage of establishing sparsity of Wiener-
Hermite PC expansion coefficients via holomorphy rather than by successive differentiation is that
it allows to derive, in a unified way, summability bounds for the coefficients of Wiener-Hermite
PC expansion whose size is measured in scales of Sobolev and Besov spaces in the domain D.
Using real-variable arguments as, e.g., in [9, 8], establishing sparsity of parametric solutions in
Besov spaces in D of higher smoothness seems to require more involved technical and notational
developments, according to [8, Comment on Page 2157].

The parametric solution {u(y) : y ∈ U} of (3.17) belongs to the space L2(U, V ; γ) or more
generally, L2(U, (H1+s ∩ H1

0 )(D); γ) for s-order of extra differentiability provided by higher data
regularity. We recall from Section 2.1.3 the normalized probabilistic Hermite polynomials (Hk)k∈N0 .
Every u ∈ L2(U,X; γ) admits the Wiener-Hermite PC expansion∑

ν∈F
uνHν(y), (3.34)
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where for ν ∈ F ,

Hν(y) =
∏
j∈N

Hνj (yj),

and

uν :=

∫
U
u(y)Hν(y) dγ(y)

are called Wiener-Hermite PC expansion coefficients. Notice that (Hν)ν∈F forms an ONB of
L2(U ; γ).

For every u ∈ L2(U,X; γ), there holds the Parseval-type identity

‖u‖2L2(U,X;γ) =
∑
ν∈F
‖uν‖2X , u ∈ L2(U,X; γ) . (3.35)

The error of approximation of the parametric solution {u(y) : y ∈ U} of (3.17) will be measured
in the Bochner space L2(U, V ; γ). A basic role in this approximation is taken by the Wiener-Hermite
PC expansion (3.34) of u in the space L2(U, V ; γ).

For a finite set Λ ⊂ F , we denote by uΛ =
∑
ν∈Λ uν the corresponding partial sum of the

Wiener-Hermite PC expansion (3.34). It follows from (3.35) that

‖u− uΛ‖2L2(U,V ;γ) =
∑
ν∈F\Λ

‖uν‖2V .

Therefore, summability results of the coefficients (‖uν‖V )ν∈F imply convergence rate estimates of
finitely truncated expansions uΛn for suitable sequences (Λn)n∈N of sets of n indices ν (see [72, 9,
43]). We next recapitulate some weighted summability results for Wiener-Hermite expansions.

For r ∈ N and a sequence of nonnegative numbers % = (%j)j∈N, we define the Wiener-Hermite
weights

βν(r,%) :=
∑

‖ν′‖`∞≤r

(
ν

ν ′

)
%2ν′ =

∏
j∈N

(
r∑
`=0

(
νj
`

)
%2`
j

)
, ν ∈ F . (3.36)

The following identity was proved in [9, Theorem 3.3]. For convenience to the reader, we present
the proof from that paper.

Lemma 3.10. Let Assumption 3.6 hold. Let r ∈ N and % = (%j)j∈N be a sequence of nonnegative
numbers. Then ∑

ν∈F
βν(r,%)‖uν‖2V =

∑
‖ν‖`∞≤r

%2ν

ν!

∫
U
‖∂νu(y)‖2V dγ(y) . (3.37)

Proof. Recall that p(y) := p(y, 0, 1) = − 1√
2π

exp(−y2/2) is the density function of the standard

GM on R. Let µ ∈ N. For a sufficiently smooth, univariate function v ∈ L2(R; γ), from Hν(y) =
(−1)ν√
ν!

p(ν)(y)
p(y) we have for ν ≥ µ

vν :=

∫
R
v(y)Hν(y)p(y) dy =

(−1)ν√
ν!

∫
R
v(y)p(ν)(y) dy

=
(−1)ν−µ√

ν!

∫
R
v(µ)(y)p(ν−µ)(y) dy =

√
(ν − µ)!

ν!

∫
R
v(µ)(y)Hν−µ(y)p(y) dy.
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Hence √
ν!

µ!(ν − µ)!
vν =

√
1

µ!

∫
R
v(µ)(y)Hν−µ(y) dγ(y).

By Parseval’s identity, we have

1

µ!

∫
R
|v(µ)(y)|2 dγ(y) =

∑
ν≥µ

ν!

µ!(ν − µ)!
|vν |2 =

∑
ν∈N0

(
ν

µ

)
|vν |2 ,

where we use the convention
(
ν
µ

)
= 0 if µ > ν.

For multi-indices and for u ∈ L2(U, V ; γ), if µ ≤ ν, applying the above argument in coordinate-
wise for the coefficients

uν =

√
(ν − µ)!

ν!

∫
U
∂µu(y)Hν−µ(y) dγ(y)

we get
1

µ!

∫
U
‖∂µu(y)‖2V dγ(y) =

∑
ν≥µ

ν!

(µ!(ν − µ)!)
‖uν‖2V =

∑
ν∈F

(
ν

µ

)
‖uν‖2V .

Multiplying both sides by %2µ and summing over µ with ‖µ‖`∞ ≤ r, we obtain

∑
‖µ‖`∞≤r

%2µ

µ!

∫
U
‖∂µu(y)‖2V dγ(y) =

∑
‖µ‖`∞≤r

∑
ν∈F

(
ν

µ

)
%2µ‖uν‖2V =

∑
ν∈F

βν(r,%)‖uν‖2V .

We recall a summability property of the sequence (βν(r,%)−1)j∈N and its proof, given in [9,
Lemma 5.1].

Lemma 3.11. Let 0 < p < ∞ and q := 2p
2−p . Let % = (%j)j∈N ∈ [0,∞)∞ be a sequence of positive

numbers such that
(%−1
j )j∈N ∈ `q(N).

Then for any r ∈ N such that 2
r+1 < p, the family (βν(r,%))ν∈F defined in (3.36) for this r satisfies∑

ν∈F
βν(r,%)−q/2 <∞ . (3.38)

Proof. First we have the decomposition

∑
ν∈F

bν(r,%)−q/2 =
∑
ν∈F

∏
j∈N

( r∑
`=0

(
νj
`

)
%2`
j

)−q/2
=
∏
j∈N

∑
n∈N0

( r∑
`=0

(
n

`

)
%2`
j

)−q/2
.

For each j ∈ N we have

∑
n∈N0

( r∑
`=0

(
n

`

)
%2`
j

)−q/2
≤
∑
n∈N0

[(
n

min{n, r}

)
%

2 min{n,r}
j

]−q/2
=

r−1∑
n=0

%−nqj + Cr,q%
−rq
j , (3.39)
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where

Cr,q :=

+∞∑
n=r

(
n

r

)−q/2
= (r!)q/2

∑
n∈N0

[
(n+ 1) . . . (n+ r)

]−q/2
.

Since lim
n→+∞

(n+1)...(n+r)
nr = 1, we find that Cr,q is finite if and only if q > 2/r. This is equivalent

to 2
r+1 < p. From the assumption (%−1

j )j∈N ∈ `q(N) we find some J > 1 such that %j > 1 for all

j > J . This implies %−nqj ≤ %−qj for n = 1, . . . , r and j > J . Therefore, one can bound the right

side of (3.39) by 1 + (Cr,q + r − 1)%−qj . Hence we obtain∑
ν∈F

bν(r,%)−q/2 ≤ C
∏
j>J

[
1 + (Cr,q + r − 1)%−qj

]
≤ C

∏
j>J

exp
(

(Cr,q + r − 1)%−qj

)
≤ C exp

(
(Cr,q + r − 1)‖(%−1

j )j∈N‖q`q
)

which is finite since (%−1
j )j∈N ∈ `q(N).

In what follows, we denote by (ej)j∈N the standard basis of `2(N), i.e., ej = (ej,i)i∈N with
ej,i = 1 for i = j and ej,i = 0 for i 6= j. The following lemma was obtained in [38, Lemma 7.1,
Theorem 7.2] and [37, Lemma 3.17].

Lemma 3.12. Let α = (αj)j∈N be a sequence of nonnegative numbers. Then we have the following.

(i) For 0 < p <∞, the family (αν)ν∈F belongs to `p(F) if and only if ‖α‖`p <∞ and ‖α‖`∞ < 1.

(ii) For 0 < p ≤ 1, the family (αν |ν|!/ν!)ν∈F belongs to `p(F) if and only if ‖α‖`p < ∞ and
‖α‖`1 < 1.

Proof. Step 1. We prove the first statement. Assume that ‖α‖`∞ < 1. Then we have∑
ν∈F

ανp =
∏
j∈N

∑
n∈N0

αpnj =
∏
j∈N

1

1− αpj

=
∏
j∈N

(
1 +

αpj
1− αpj

)
≤
∏
j∈N

exp

(
αpj

1− αpj

)

≤
∏
j∈N

exp

(
1

1− ‖α‖p`∞
αpj

)
= exp

(
1

1− ‖α‖p`∞
‖α‖p`p

)
,

where in the last equality we have used (αν)ν∈F ∈ `p(F).
Since the sequence (αj)j∈N = (αej )j∈N is a subsequence of (αν)ν∈F , (αν)ν∈F ∈ `p(F) implies

α belong to `p(N). Moreover we have for any j ≥ 1∑
n∈N0

αnpj =
∑
n∈N0

αnejp ≤
∑
ν∈F

ανp <∞.

From this we have αpj < 1 which implies αj < 1 for all j ∈ N. Since α ∈ `p(N) it is easily seen that
‖α‖`∞ < 1.
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Step 2. We prove the second statement. We observe that

∑
ν∈F

|ν|
ν!
αν =

∑
k∈N0

∑
|ν|=k

|ν|
ν!
αν =

∑
k∈N0

(∑
j∈N

αj

)k
.

From this we deduce that (αν |ν|!/ν!)ν∈F belongs to `1(F) if and only if α ∈ `1(N) and ‖α‖`1 < 1.
Suppose that

(αν |ν|!/ν!)ν∈F ∈ `p(F)

for some p ∈ (0, 1). As in Step 1, the sequence (αj)j∈N = (αej )j∈N and (αnj )n∈N0 = (αnej )n∈N0 are
subsequences of (αν)ν∈F . Therefore (αν |ν|!/ν!)ν∈F belongs to `p(F) implies that ‖α‖`p <∞ and
‖α‖`1 < 1.

Conversely, assume that ‖α‖`p < ∞ and ‖α‖`1 < 1. We put δ := 1 − ‖α‖`1 > 0 and η := δ
3 .

Take J large enough such that
∑

j>J α
p
j ≤ η. We define the sequence c and d by

cj = (1 + η)αj , dj =
1

1 + η

if j ≤ J and
cj = αpj , dj = α1−p

j

if j > J . By this construction we have αj = cjdj for all j ∈ N. For the sequence c we have

‖c‖`1 ≤ (1 + η)‖α‖`1 +
∑
j>J

αpj ≤ (1 + η)(1− δ) + η < 1− η.

Next we show that ‖d‖`∞ < 1. Indeed, for 1 ≤ j ≤ J we have dj = 1
1+η < 1 and for j > J we have

dj = (αpj )
(1−p)/p ≤ η(1−p)/p < 1.

Moreover since d
(p/(1−p))
j = αpj for j > J we have d ∈ `p/(1−p)(N). Now we get from Hölder’s

inequality ∑
ν∈F

(
|ν|
ν!
αν
)p

=
∑
ν∈F

(
|ν|
ν!
cν
)p
dpν ≤

(∑
ν∈F

|ν|
ν!
cν
)p(∑

ν∈F
dνp/(1−p)

)1−p
.

Observe that the first factor on the right side is finite since c ∈ `1(N) and ‖c‖`1 < 1. Applying the
first statement, the second factor on the right side is finite, whence (αν |ν|!/ν!)ν∈F ∈ `p(F).

With these sequence summability results at hand, we are now in position to formulate Wiener-
Hermite summation results for parametric solution families of PDEs with log-Gaussian random
field data.

Theorem 3.13 (General case). Let Assumption 3.6 hold and assume that % = (%j)j∈N ∈ [0,∞)∞

is a sequence satisfying (%−1
j )j∈N ∈ `q(N) for some 0 < q <∞. Assume that, for each ν ∈ F , there

exists a sequence ρν = (ρν,j)j∈N ∈ [0,∞)∞ such that supp(ν) ⊆ supp(ρν),

sup
ν∈F

∥∥∥∥∥∑
j∈N

ρν,j |ψj |

∥∥∥∥∥
L∞

≤ κ < π

2
, and

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

<∞ (3.40)
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with r ∈ N, r > 2/q. Then∑
ν∈F

βν(r,%)‖uν‖2V <∞ with
(
βν(r,%)−1/2

)
ν∈F ∈ `

q(F). (3.41)

Furthermore,

(‖uν‖V )ν∈F ∈ `p(F) with
1

p
=

1

q
+

1

2
.

Proof. By Proposition 3.7 Assumption 3.6 implies that b(y) belongs to L∞(D) for γ-a.e. y ∈ U
and E(exp(k‖b(y)‖L∞)) is finite for all k ∈ [0,∞).

For y ∈ U such that b(y) ∈ L∞(D) and ν ∈ F with u = supp(ν), the solution u of (3.17) is
holomorphic in Su(ρν), see Proposition 3.8. This, (3.40) and Lemmata 3.9 and 3.10 yield that∑

ν∈F
βν(r,%)‖uν‖2V =

∑
‖ν‖`∞≤r

%2ν

ν!

∫
U
‖∂νu(y)‖2V dγ(y)

≤ C2
0

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

E
(
exp

(
2‖b(y)‖L∞

))
<∞.

Since r > 2
q and (%−1

j )j∈N ∈ `q(N), by Lemma 3.11 the family
(
βν(r,%)−1/2

)
ν∈F belongs to `q(F).

The relation (3.41) is proven.
From (3.41), by Hölder’s inequality we get that

∑
ν∈F
‖uν‖pV ≤

(∑
ν∈F

βν(r,%)‖uν‖2V

)p/2(∑
ν∈F

βν(r,%)−q/2

)1−p/2

<∞ .

Corollary 3.14 (The case of global supports). Assume that there exists a sequence of positive
numbers λ = (λj)j∈N such that(

λj‖ψj‖L∞
)
j∈N ∈ `

1(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞. Then we have (‖uν‖V )ν∈F ∈ `p(F) with 1
p = 1

q + 1
2 .

Proof. Let ν ∈ F . We define the sequence ρν = (ρν,j)j∈N by ρν,j :=
νj

|ν|‖ψj‖L∞
for j ∈ supp(ν) and

ρν,j = 0 if j 6∈ supp(ν) and choose % = τλ, τ is an appropriate positive constant. It is obvious that

sup
ν∈F

∥∥∥∥∥∑
j∈N

ρν,j
∣∣ψj∣∣

∥∥∥∥∥
L∞

≤ 1.

We first show that Assumption 3.6 is satisfied for the sequence λ′ = (λ′j)j∈N with λ′j := λ
1/2
j by a

similar argument as in [9, Remark 2.5]. From the assumption (λ−1
j )j∈N ∈ `q(N) we derive that up to

a nondecreasing rearrangement, λ′j ≥ Cj1/(2q) for some C > 0. Therefore,
(

exp(−λ′2j )
)
j∈N ∈ `

1(N).

The convergence in L∞(D) of
∑

j∈N λ
′
j |ψj | can be proved as follows.∥∥∥∥∥∑

j∈N
λ′j |ψj |

∥∥∥∥∥
L∞

≤ sup
j∈N

λ
−1/2
j

∑
j∈N

λj‖ψj‖L∞ <∞.
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With r > 2/q we have∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

≤
∑

‖ν‖`∞≤r

|ν|2|ν|

ν2ν

∏
j∈supp(ν)

(
τ
√
r!λj‖ψj‖L∞

)2νj
≤

( ∑
‖ν‖`∞≤r

|ν||ν|

νν

∏
j∈supp(ν)

(
τ
√
r!λj‖ψj‖L∞

)νj)2

≤

( ∑
‖ν‖`∞≤r

|ν|!
ν!

∏
j∈supp(ν)

(
eτ
√
r!λj‖ψj‖L∞

)νj)2

.

(3.42)

In the last step we used the inequality

|ν||ν|

νν
≤ e|ν||ν|!

ν!
,

which is immediately derived from the inequalities m! ≤ mm ≤ emm!. Since
(
τ
√
r!λj‖ψj‖L∞

)
j∈N ∈

`1(N), we can choose a positive number τ so that∥∥(eτ√r!λj‖ψj‖L∞)j∈N∥∥`1 < 1.

This implies by Lemma 3.12(ii) that the last sum in (3.42) is finite. Applying Theorem 3.13 the
desired result follows.

Corollary 3.15 (The case of disjoint supports). Assuming ψj ∈ L∞(D) for all j ∈ N with disjoint
supports and, furthermore, that there exists a sequence of positive numbers λ = (λj)j∈N such that(

λj‖ψj‖L∞
)
j∈N ∈ `

2(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞. Then (‖uν‖V )ν∈F ∈ `p(F) with 1
p = 1

q + 1
2 .

Proof. Fix ν ∈ F , arbitrary. For this ν we define the sequence ρν = (ρj)j∈N by ρj := 1
‖ψj‖L∞

for

j ∈ N and % = τλ, where a positive number τ will be chosen later on. It is clear that∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞

≤ 1.

Since
(
λjρ
−1
j

)
j∈N ∈ `

2(N) and (λ−1
j )j∈N ∈ `q(N), by Hölder’s inequality we get (ρ−1

j )j∈N ∈ `q0(N)

with 1
q0

= 1
2 + 1

q . Hence, similarly to the proof of Corollary 3.14, we can show that Assumption 3.6

holds for the sequence λ′ = (λ′j)j∈N with λ′j := λ
1/2
j . In addition, with r > 2/q we have by Lemma

3.12(i) ∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

≤
∑

‖ν‖`∞≤r

( ∏
j∈supp(ν)

(
τ
√
r!λj‖ψj‖L∞

)2νj) <∞,

since by the condition
(
τ
√
r!λj‖ψj‖L∞

)
j∈N ∈ `2(N) a positive number τ can be chosen so that

supj∈N(τ
√
r!λj‖ψj‖L∞) < 1. Finally, we apply Theorem 3.13 to obtain the desired results.
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Remark 3.16. We comment on the situation when there exists ρ = (ρj)j∈N ∈ (0,∞)∞ such that∥∥∥∥∥∑
j∈N

ρj |ψj |

∥∥∥∥∥
L∞

= κ <
π

2

and (ρ−1
j )j∈N ∈ `q0(N) for some 0 < q0 < ∞ as given in [9, Theorem 1.2]. We choose % = (%j)j∈N

by

%j = ρ
1−q0/2
j

1
√
r!‖(ρ−1

j )j∈N‖
q0/2
`q0

and ρν = (ρj)j∈N. Then we obtain (%−1
j )j∈N ∈ `q0/(1−q0/2)(N) and

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

=
∑

‖ν‖`∞≤r

ν!
∏

j∈suppν

(
ρ−q0j

r!‖(ρ−1
j )j∈N‖q0`q0

)νj
<∞.

This implies (‖uν‖V )ν∈F ∈ `p(F) with p = q0.

Remark 3.17. The `p-summability (‖uν‖V )ν∈F ∈ `p(F) proven in Theorem 3.13, has been used
in establishing the convergence rate of the best n-term approximation of the solution u to the
parametric elliptic PDE (3.17) [9]. However, such a property cannot be used for estimating conver-
gence rates of high-dimensional deterministic numerical approximation constructive schemes such
as single-level and multi-level versions of anisotropic sparse-grid Hermite-Smolyak interpolation
and quadrature in Section 7. In the latter situation, the weighted `2-summability presented in
Theorem 3.13 ∑

ν∈F
βν(r,%)‖uν‖2V <∞ with

(
βν(r,%)−1/2

)
ν∈F ∈ `

q(F)

and its generalization∑
ν∈F

(σν‖uν‖X)2 <∞ with
(
pν(τ, λ)σ−1

ν

)
ν∈F ∈ `

q(F) (3.43)

for a Hilbert space X are efficiently applied, where 0 < q < ∞, λ, τ ≥ 0,
(
σν
)
ν∈F is a family of

positive numbers and

pν(τ, λ) :=
∏
j∈N

(1 + λνj)
τ , ν ∈ F .

Weighted summability properties such as (3.43) have been employed in [31, 43, 45, 52] for particular
questions in quadrature and interpolation with respect to GMs.

In Sections 6 and 7, we will see that weighted `2-summabilities of the form (3.43) play a basic
role in constructing approximation algorithms of sparse-grid interpolation and quadrature and in
establishing their convergence rates.

3.7 Parametric Hs(D)-analyticity and sparsity

Whereas the previous results were, in principle, already known from the real-variable analyses in
[16, 9, 8], in this and the subsequent sections, we prove via analytic continuation the sparsity of the
Wiener-Hermite PC expansion coefficients of the parametric solutions of (3.17) with log-Gaussian
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coefficient a(y) = exp(b(y)) when the Wiener-Hermite PC expansion coefficients of the parametric
solution family {u(y) : y ∈ U} are measured in higher Sobolev norms. In Section 3.8 we shall
establish corresponding results when the physical domain D is a plane Lipschitz polygon whose
sides are analytic arcs.

3.7.1 Hs(D)-analyticity

As Hs(D) regularity in D is relevant in particular in conjunction with Galerkin discretization in D
by continuous, piecewise polynomial, Lagrangian FEM, we review the elementary regularity results
from Section 3.3. To state them, we recall the Sobolev spaces Hs(D), and W s

∞(D) of functions v
on D for s ∈ N0, equipped with the respective norms

‖v‖Hs :=
∑

k∈Zd+:|k|≤s

‖Dkv‖L2 , ‖v‖W s
∞ :=

∑
k∈Zd+:|k|≤s

‖Dkv‖L∞ .

With these definitions H0(D) = L2(D) and W 0
∞(D) = L∞(D). We recall from Section 3.3 that we

identify L2(D) with its own dual, so that the space H−1(D) is defined as the dual of H1
0 (D) with

respect to the pivot space L2(D).

Lemma 3.18. Let s ∈ N and D be a bounded domain in Rd with either C∞-boundary or with
convex Cs−1-boundary. Assume that there holds the ellipticity condition (3.25), a ∈W s−1

∞ (D) and
f ∈ Hs−2(D). Then the solution u of (3.1) belongs to Hs(D) and there holds

‖u‖Hs ≤


‖f‖H−1

ρ(a) s = 1,

Cd,s
ρ(a)

(
‖f‖Hs−2 + ‖a‖W s−1

∞
‖u‖Hs−1

)
s > 1,

(3.44)

with Cd,s depending on d, s, and ρ(a) given as in (3.25).

Proof. Defining, for s ∈ N, Hs
0(D) := (Hs∩H1

0 )(D), since D is a bounded domain in Rd with either
C∞-boundary or convex Cs−1-boundary, we have the following norm equivalence

‖v‖Hs �

‖v‖H1
0
, s = 1,

‖∆v‖Hs−2 , s > 1,
∀v ∈ Hs

0 , (3.45)

see [61, Theorem 2.5.1.1]. The lemma for the case s = 1 and s = 2 is given in (3.4) and (3.9). We
prove the case s > 2 by induction on s. Suppose that the assertion holds true for all s′ < s. We
will prove it for s. Let a k ∈ Zd+ with |k| = s− 2 be given. Differentiating both sides of (3.10) and
applying the Leibniz rule of multivariate differentiation we obtain

−
∑

0≤k′≤k

(
k

k′

)
Dk
′
aDk−k

′(
∆u
)

= Dkf +
∑

0≤k′≤k

(
k

k′

)(
∇Dk

′
a,∇Dk−k

′
u
)
,

see also [8, Lemma 4.3]. Hence,

−aDk∆u = Dkf +
∑

0≤k′≤k

(
k

k′

)(
∇Dk

′
a,∇Dk−k

′
u
)

+
∑

0≤k′≤k,k′ 6=0

(
k

k′

)
Dk
′
aDk−k

′
∆u.
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Taking the L2-norm of both sides, by the ellipticity condition (3.3) we derive the inequality

ρ(a) ‖∆u‖Hs−2 ≤ C ′d,s
(
‖f‖Hs−2 + ‖a‖W s−1

∞
‖u‖Hs−1 + ‖a‖W s−2

∞
‖∆u‖Hs−3

)
which yields (3.44) due to (3.45) and the inequality

‖a‖W s−2
∞
‖∆u‖Hs−3 ≤ ‖a‖W s−1

∞
‖u‖Hs−1 ,

where C ′d,s is a constant depending on d, s only. By induction, this proves that u belongs to Hs.

Corollary 3.19. Let s ∈ N and D be a bounded domain in Rd with either C∞-boundary or
convex Cs−1-boundary. Assume that there holds the ellipticity condition (3.3), a ∈ W s−1

∞ (D) and
f ∈ Hs−2(D). Then the solution u of (3.1) belongs to Hs(D) and there holds the estimate

‖u‖Hs ≤ ‖f‖Hs−2

ρ(a)

1, s = 1,

Cd,s

(
1 +

‖a‖
Ws−1
∞

ρ(a)

)s−1
, s > 1,

where Cd,s is a constant depending on d, s only, and ρ(a) is given as in (3.25).

We need the following lemma.

Lemma 3.20. Let s ∈ N and assume that b(y) belongs to W s
∞(D). Then we have

‖a(y)‖W s
∞ ≤ C‖a(y)‖L∞

(
1 + ‖b(y)‖W s

∞

)s
,

where the constant C depends on s and m but is independent of y.

Proof. For α = (α1, . . . , αd) ∈ Nd0 with 1 ≤ |α| ≤ s, we observe that for αj > 0 the product rule
implies

Dαa(y) = Dα−ej
[
a(y)Dejb(y)

]
=

∑
0≤γ≤α−ej

(
α− ej
γ

)
Dα−γb(y)Dγa(y) . (3.46)

Here, we recall that (ej)
d
j=1 is the standard basis of Rd. Taking norms on both sides, we can

estimate

‖Dαa(y)‖L∞ =
∥∥Dα−ej[a(y)Dejb(y)

]∥∥
L∞

≤
∑

0≤γ≤α−ej

(
α− ej
γ

)
‖Dα−γb(y)‖L∞‖Dγa(y)‖L∞

≤ C

( ∑
0≤γ≤α−ej

‖Dγa(y)‖L∞
)( ∑

|k|≤s

‖Dkb(y)‖L∞
)
.

Similarly, each term ‖Dγa(y)‖L∞ with |γ| > 0 can be estimated

‖Dγa(y)‖L∞ ≤ C

( ∑
0≤γ′≤γ−ej

‖Dγ′a(y)‖L∞
)( ∑

|k|≤s

‖Dkb(y)‖L∞
)
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if γj > 0. This implies

‖Dαa(y)‖L∞ ≤ C‖a(y)‖L∞
(

1 +
∑
|k|≤s

‖Dkb(y)‖L∞
)|α|

,

for 1 ≤ |α| ≤ s. Summing up these terms with ‖a(y)‖L∞ we obtain the desired estimate.

Proposition 3.21. Let s ∈ N and D be a bounded domain in Rd with either C∞-boundary or
convex Cs−1-boundary. Assume that (3.28) holds and all the functions ψj belong to W s−1

∞ (D). Let
u ⊆ supp(ρ) be a finite set and let y0 = (y0,1, y0,2, . . .) ∈ U be such that b(y0) belongs to W s−1

∞ (D).
Then the solution u of (3.17) is holomorphic in Su(ρ) as a function in variables zu = (zj)j∈N ∈
Su(y0,ρ) taking values in Hs(D) where zj = y0,j for j 6∈ u held fixed .

Proof. Let Su,N (ρ) be given in (3.29) and zu = (yj+iξj)j∈N ∈ Su(y0,ρ) with (yj+iξj)j∈u ∈ Su,N (ρ).
Then we have from Corollary 3.19

‖u(zu)‖Hs ≤ Cρ(a(zu))
(

1 + ρ(a(zu))‖a(zu)‖W s−1
∞

)s−1
.

Using Lemma 3.20 we find

‖a(zu)‖W s−1
∞
≤ C‖a(zu)‖L∞

(
1 + ‖b(zu)‖W s−1

∞

)s−1

≤ C‖a(zu)‖L∞
(

1 + ‖b(y0)‖W s−1
∞

+

∥∥∥∥∥∑
j∈u

(yj − y0,j + iξj)ψj

∥∥∥∥∥
W s−1
∞

)s−1

≤ C‖a(zu)‖L∞
(

1 + ‖b(y0)‖W s−1
∞

+
∑
j∈u

(N + ρj)‖ψj‖W s−1
∞

)s−1

and

‖a(zu)‖L∞ ≤ exp

(
‖b(y0)‖L∞ +

∥∥∥∥∥∑
j∈u

(yj − y0,j + iξj)ψj

∥∥∥∥∥
L∞

)
<∞. (3.47)

From this and (3.30) we obtain
‖u(zu)‖Hs ≤ C <∞

which implies the map zu → u(zu) is holomorphic on the set Su,N (ρ) as a consequence of [24,
Lemma 2.2]. For more details we refer the reader to [111, Examples 1.2.38 and 1.2.39]. Since N is
arbitrary we conclude that the map zu → u(zu) is holomorphic on Su(ρ).

3.7.2 Sparsity of Wiener-Hermite PC expansion coefficients

For sparsity of Hs-norms of Wiener-Hermite PC expansion coefficients we need the following as-
sumption.
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Assumption 3.22. Let s ∈ N. For every j ∈ N, ψj ∈W s−1
∞ (D) and there exists a positive sequence

(λj)j∈N such that
(

exp(−λ2
j )
)
j∈N ∈ `

1(N) and the series∑
j∈N

λj |Dαψj |

converges in L∞(D) for all α ∈ Nd0 with |α| ≤ s− 1.

As a consequence of [9, Theorem 2.2] we have the following

Lemma 3.23. Let Assumption 3.22 hold. Then the set Us−1 := {y ∈ U : b(y) ∈ W s−1
∞ (D)} has

full measure, i.e., γ(Us−1) = 1. Furthermore, E(exp(k‖b(·)‖W s−1
∞

)) is finite for all k ∈ [0,∞).

The Hs-analytic continuation of the parametric solutions {u(y) : y ∈ U} to Su(ρ) leads to the
following result on parametric Hs-regularity.

Lemma 3.24. Let D ⊂ Rd be a bounded domain with either C∞-boundary or convex Cs−1-
boundary. Assume that for each ν ∈ F , there exists a sequence ρν = (ρν,j)j∈N ∈ [0,∞)∞ such that
supp(ν) ⊆ supp(ρν), and such that

sup
ν∈F

∑
|α|≤s−1

∥∥∥∥∥∑
j∈N

ρν,j |Dαψj |

∥∥∥∥∥
L∞

≤ κ < π

2
.

Then we have

‖∂νu(y)‖Hs ≤ C ν!

ρνν
exp

(
‖b(y)‖L∞

){
1 + exp(2‖b(y)‖L∞)

(
1 + ‖b(y)‖W s−1

∞

)s−1
}s−1

, (3.48)

where C is a constant depending on κ, d, s only.

Proof. Let ν ∈ F with u = supp(ν) and y ∈ U such that b(y) ∈ W s−1
∞ (D). Let furthermore

Cy,u(ρν) and Cu(y,ρν) be given as in (3.31) and (3.33). Using Cauchy’s formula as in the proof of
Lemma 3.9 we obtain

‖∂νu(y)‖Hs ≤ ν!

ρνν
sup

zu∈Cu(y,ρν)
‖u(zu)‖Hs . (3.49)

For zu = (zj)j∈N ∈ Cu(y,ρν) we can write zj = yj + ηj + iξj ∈ Cy,j(ρν) with |ηj | ≤ ρν,j and
|ξj | ≤ ρν,j for j ∈ u and hence we get

‖Dαb(zu)‖L∞ =

∥∥∥∥∥Dα(b(y) +
∑
j∈u

(ηj + iξj)ψj

)∥∥∥∥∥
L∞

≤ ‖Dαb(y)‖L∞ +
√

2

∥∥∥∥∥∑
j∈u

ρν,j |Dαψj |

∥∥∥∥∥
L∞

≤ ‖Dαb(y)‖L∞ + κ
√

2 .

In addition we have

1

ρ(a(zu))
≤

exp(‖b(y +
∑

j∈u ηjψj‖L∞)

cos(‖
∑

j∈u ξjψj‖L∞)
≤

exp
(
κ+ ‖b(y)‖L∞

)
cosκ

(3.50)
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and

‖a(zu)‖L∞ =

∥∥∥∥∥ exp

(
b(y) +

∑
j∈u

(ηj + iξj)ψj

)∥∥∥∥∥
L∞

≤ eκ
√

2 exp(‖b(y)‖L∞) . (3.51)

Consequently, we can bound

‖a(zu)‖W s−1
∞
≤ C‖a(zu)‖L∞

(
1 + ‖b(zu)‖W s−1

∞

)s−1

≤ C exp(‖b(y)‖L∞)
(
1 + ‖b(y)‖W s−1

∞

)s−1
.

Now Corollary 3.19 implies the inequality

sup
zu∈Cu(y,ρν)

‖u(zu)‖Hs ≤ C exp
(
‖b(y)‖L∞

){
1 + exp(2‖b(y)‖L∞)

(
1 + ‖b(y)‖W s−1

∞

)s−1
}s−1

, (3.52)

which together with (3.49) proves the lemma.

We are now in position to formulate sparsity results for the Hs-norms of Wiener-Hermite PC
expansion coefficients of the solution u.

Theorem 3.25 (General case). Let s, r ∈ N and D ⊂ Rd denote a bounded domain with either C∞-
boundary or convex Cs−1-boundary. Let further Assumption 3.22 hold, assume that f ∈ Hs−2(D),
and assume given a sequence % = (%j)j∈N ⊂ (0,∞)∞ that satisfies (%−1

j )j∈N ∈ `q(N) for some 0 <
q <∞. Assume in addition that, for each ν ∈ F , there exists a sequence ρν = (ρν,j)j∈N ∈ [0,∞)∞

such that supp(ν) ⊆ supp(ρν), and such that, with r > 2/q,

sup
ν∈F

∑
|α|≤s−1

∥∥∥∥∥∑
j∈N

ρν,j |Dαψj |

∥∥∥∥∥
L∞

≤ κ < π

2
, and

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

<∞.

Then there holds, with βν(r,%) as in (3.36),∑
ν∈F

βν(r,%)‖uν‖2Hs <∞ with
(
βν(r,%)−1/2

)
ν∈F ∈ `

q(F) . (3.53)

Furthermore,

(‖uν‖Hs)ν∈F ∈ `p(F) with
1

p
=

1

q
+

1

2
.

Proof. Arguing as in the proof of [9, Theorem 3.3] we obtain that for any r ∈ N there holds
following generalization of the Parseval-type identity∑

ν∈F
βν(r,%)‖uν‖2Hs =

∑
‖ν‖`∞≤r

%2ν

ν!

∫
U
‖∂νu(y)‖2Hs dγ(y) . (3.54)

By (3.52), Lemma 3.23 and Hölder’s inequality we derive that∫
U

(
sup

zu∈Cu(y,ρν)
‖u(zu)‖Hs

)2

dγ(y) ≤ C
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and in particular, E(‖u(y)‖kHs) is finite for all k ∈ [0,∞). Now (3.54), Lemma 3.24 and our
assumption give∑

ν∈F
βν(r,%)‖uν‖2Hs =

∑
‖ν‖`∞≤r

%2ν

ν!

∫
U
‖∂νu(y)‖2Hs dγ(y)

≤ C2
∑

‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

∫
U

dγ(y) = C2
∑

‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

<∞,

where C is the constant in (3.48). As in the proof of Theorem 3.13, by Lemma 3.11 the family(
βν(r,%)−1/2

)
ν∈F belongs to `q(F). The relation (3.53) is proven.

The assertion (‖uν‖Hs)ν∈F ∈ `p(F) can be proved in the same way as in the proof of Theo-
rem 3.13.

Similarly to Corollaries 3.14 and 3.15 from Theorem 3.25 we obtain

Corollary 3.26 (The case of global supports). Let s ∈ N and D ⊂ Rd denote a bounded domain
with either C∞-boundary or convex Cs−1-boundary. Assume that for all j ∈ N holds ψj ∈W s−1

∞ (D),
and that f ∈ Hs−2(D). Assume further that there exists a sequence of positive numbers λ = (λj)j∈N
such that (

λj‖ψj‖W s−1
∞

)
j∈N ∈ `

1(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞. Then we have (‖uν‖Hs)ν∈F ∈ `p(F) with 1
p = 1

q + 1
2 .

Corollary 3.27 (The case of disjoint supports). Let s ∈ N and D ⊂ Rd denote a bounded domain
with either C∞-boundary or convex Cs−1-boundary. Assume that f ∈ Hs−2(D) and for all j ∈ N
holds ψj ∈W s−1

∞ (D) with disjoint supports. Assume further that there exists a sequence of positive
numbers λ = (λj)j∈N such that(

λj‖ψj‖W s−1
∞

)
j∈N ∈ `

2(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞.
Then (‖uν‖Hs)ν∈F ∈ `p(F) with 1

p = 1
q + 1

2 .

3.8 Parametric Kondrat’ev analyticity and sparsity

In the previous section, we investigated the weighted `2-summability and `p-summability of Wiener-
Hermite PC expansion coefficients of parametric solutions measured in the standard Sobolev spaces
Hs(D). We assumed that D ⊂ Rd with boundary ∂D of sufficient smoothness (depending on s).
In this section we consider in space dimension d = 2 the case when the physical domain D is a
polygonal domain. In such domains, elliptic regularity shift results and shift theorems in D hold in
Kondrat’ev spaces which are corner-weighted Sobolev spaces. We refer to [61, 90] and the references
there for an extensive survey.

To state corresponding results for the log-Gaussian parametric elliptic problems, we first review
definitions of the weighted Sobolev spaces of Kondrat’ev type and results from [24] on the holo-
morphy of parametric solutions in weighted Kondrat’ev spaces in polygonal domains D. Then, we
establish summability results of the coefficients of Wiener-Hermite PC expansions of the paramet-
ric solutions in Kondrat’ev spaces. FE approximation results for Wiener-Hermite PC expansion
coefficient functions which are in these spaces were provided in Section 2.6.
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3.8.1 Parametric Ks
κ(D)-holomorphy

We recall the Kondrat’ev spaces in a bounded polygonal domain D introduced in Section 2.6.1: for
s ∈ N0 and κ ∈ R,

Ksκ(D) :=
{
u : D → C : r

|α|−κ
D Dαu ∈ L2(D), |α| ≤ s

}
and

Ws
∞(D) :=

{
u : D → C : r

|α|
D Dαu ∈ L∞(D), |α| ≤ s

}
.

The weighted Sobolev norms in these spaces are given in Section 2.6.1.

Lemma 3.28. Let s ∈ N0. Assume that y ∈ U is such that b(y) ∈ Ws
∞(D).

Then
‖a(y)‖Ws

∞ ≤ C‖a(y)‖L∞
(
1 + ‖b(y)‖Ws

∞

)s
,

where the constant C depends on s and m.

Proof. The proof proceeds along the lines of the proof of Lemma 3.20. Let α = (α1, . . . , αd) ∈ Nd0
with 1 ≤ |α| ≤ s and recall that (ej)

d
j=1 is the standard basis of Rd. Assuming that αj > 0 we

have (3.46). We apply corner-weighted norms to both sides of (3.46). This implies

‖r|α|D Dαa(y)‖L∞ =
∥∥Dα−ej[a(y)Dejb(y)

]∥∥
L∞

≤
∑

0≤γ≤α−ej

(
α− ej
γ

)
‖r|α−γ|D Dα−γb(y)‖L∞‖r|γ|D Dγa(y)‖L∞

≤ C

( ∑
0≤γ≤α−ej

‖r|γ|D Dγa(y)‖L∞
)( ∑

|k|≤s

‖r|k|D Dkb(y)‖L∞
)

= C

( ∑
0≤γ≤α−ej

‖r|γ|D Dγa(y)‖L∞
)
‖b(y)‖Ws

∞ .

Similarly, if γj > 0, each term ‖r|γ|D Dγa(y)‖L∞ with |γ| > 0 can be estimated

‖r|γ|D Dγa(y)‖L∞ ≤ C

( ∑
0≤γ′≤γ−ej

‖r|γ
′|

D Dγ
′
a(y)‖L∞

)
‖b(y)‖Ws

∞ .

This implies

‖r|α|D Dαa(y)‖L∞ ≤ C‖a(y)‖L∞
(
1 + ‖b(y)‖Ws

∞

)|α|
,

for 1 ≤ |α| ≤ s. This finishes the proof.

We recall the following result from [24, Theorem 1].
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Theorem 3.29. Let D ⊂ R2 be a polygonal domain, η0 > 0, s ∈ N and Ns = 2s+1 − s − 2. Let
a ∈ L∞(D,C).

Then there exist τ and Cs with the following property: for any a ∈ Ws−1
∞ (D) and for any κ ∈ R

such that
|κ| < η := min{η0, τ

−1‖a‖−1
L∞ρ(a)},

the operator Pa defined in (3.1) induces an isomorphism

Pa : Ksκ+1(D) ∩ {u|∂D = 0} → Ks−2
κ−1(D)

such that P−1
a depends analytically on the coefficients a and has norm

‖P−1
a ‖ ≤ Cs

(
ρ(a)− τ |κ|‖a‖L∞

)−Ns−1‖a‖NsWs−1
∞

.

The bound of τ and Cs depends only on s, D and η0.

Applying this result to our setting, we obtain the following parametric regularity.

Theorem 3.30. Suppose η0 > 0, ψj ∈ Ws−1
∞ (D) for all j ∈ N and that (3.28) holds. Let u ⊆

supp(ρ) be a finite set. Let further y0 = (y0,1, y0,2, . . .) ∈ U be such that b(y0) belongs to Ws−1
∞ (D).

We denote
ϑ := inf

zu∈Su(y0,ρ)
ρ
(
a(zu)

)
‖a(zu)‖−1

L∞ .

Let τ > 0 be as given in Theorem 3.29.
Then there exists a positive constant Cs such that for κ ∈ R with |κ| ≤ min{η0, τ

−1ϑ/2}, and
for f ∈ Ks−2

κ−1(D), the solution u of (3.17) is holomorphic in the cylinder Su(ρ) as a function in
variables zu = (zj)j∈N ∈ Su(y0,ρ) taking values in Ksκ+1(D) ∩ V , where zj = y0,j for j 6∈ u held
fixed. Furthermore, we have the estimate

‖u(zu)‖Ksκ+1
≤ Cs

1(
ρ(a(zu)

)Ns+1
‖a(zu)‖NsWs−1

∞
.

Proof. Observe first that for the parametric coefficient a(zu), the conditions of Proposition 3.8 are
satisfied.

Thus, the solution u is holomorphic in Su(ρ) as a V -valued map in variables zu = (zj)j∈N ∈
Su(y0,ρ). We assume that ϑ > 0. Let Su,N (ρ) be given in (3.29) and zu = (yj +iξj)j∈N ∈ Su(y0,ρ)
with (yj + iξj)j∈u ∈ Su,N (ρ). From Lemma 3.28 we have

‖a(zu)‖Ws−1
∞
≤ C‖a(zu)‖L∞

(
1 + ‖b(zu)‖Ws−1

∞

)s−1
.

Furthermore

‖b(zu)‖Ws−1
∞

=
∑
|α|≤s−1

∥∥∥∥∥r|α|D

∑
j∈N

(yj + iξj)D
αψj

∥∥∥∥∥
L∞

≤
∑
j∈u

(|yj − y0,j |+ ρj)‖ψj‖Ws−1
∞

+ ‖b(y0)‖Ws−1
∞

<∞ .
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This together with (3.47) implies ‖a(zu)‖Ws−1
∞
≤ C. From the condition of κ we infer |κ|τ ≤ ϑ/2

which leads to
τ |κ|‖a(zu)‖L∞ ≤ ρ(a(zu))/2.

As a consequence we obtain (
ρ(a(zu))− τ |κ|‖a(z)‖L∞

)−1 ≤ 1

ρ(a(zu)
.

Since the function exp is analytic in Su,N (ρ), the assertion follows for the case ϑ > 0 by applying
Theorem 3.29. In addition, for zu = (zj)j∈N ∈ Su(y0,ρ) with (zj)j∈u ∈ Su,N (ρ), we have

ρ(a(zu))‖a(zu)‖−1
L∞ ≥ C > 0,

From this we conclude that u is holomorphic in the cylinder Su,N (ρ) as a Ks1(D) ∩ V -valued map,
by again Theorem 3.29. This completes the proof.

Remark 3.31. The value of ϑ depends on the system (ψj)j∈N. Assume that ψj = j−α for some
α > 1. Then for any y ∈ U , ρ satisfying (3.28), and finite set u ⊂ supp(ρ) we have

ϑ = inf
zu∈Su(y,ρ)

<[exp(
∑

j∈N(yj + iξj)j
−α)]

exp(
∑

j∈N yjj
−α)

≥ cosκ .

We consider another case when there exists some ψj such that ψj ≥ C > 0 in an open set Ω in D
and ‖ exp(yjψj)‖L∞ ≥ 1 for all yj ≤ 0. With y0 = (. . . , 0, yj , 0, ...) and v0 ∈ C∞0 (Ω) we have in this
case

ϑ ≤ ρ(exp(yjψj))→ 0 when yj → −∞ .

Hence, only for κ = 0 is satisfied Theorem 3.30 in this situation.
Due to this observation, for Kondrat’ev regularity we consider only the case κ = 0. In Section

7.6.1, we will present a stronger regularity result for a polygonal domain D ⊂ R2.

Lemma 3.32. Let ν ∈ F , f ∈ Ks−2
−1 (D), and assume that ψj ∈ Ws−1

∞ (D) for j ∈ N. Let y ∈ U
with b(y) ∈ Ws−1

∞ (D). Assume further that there exists a non-negative sequence ρν = (ρν,j)j∈N
such that supp(ν) ⊂ supp(ρν) and

∑
|α|≤s−1

∥∥∥∥∥∑
j∈N

ρν,j |r|α|D Dαψj |

∥∥∥∥∥
L∞

≤ κ < π

2
. (3.55)

Then we have the estimate

‖∂νu(y)‖Ks1 ≤ C
ν!

ρνν

(
exp

(
‖b(y)‖L∞

)2Ns+1
(

1 + ‖b(y)‖Ws−1
∞

)(s−1)Ns
.

Proof. Let ν ∈ F with u = supp(ν). By our assumption, it is clear that (with α = 0 in (3.55))∥∥∥∥∥∑
j∈N

ρν,j |ψj |

∥∥∥∥∥
L∞

≤ κ < π

2
.
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Consequently, if we fix the variable yj with j 6∈ u, the function u of (3.17) is holomorphic on the
domain Su(ρν), see Theorem 3.30. Hence, applying Cauchy’s formula gives that

‖∂νu(y)‖Ks1 ≤
ν!

ρνν
sup

zu∈Cu(y,ρν)
‖u(zu)‖Ks1

≤ C ν!

ρνν
sup

zu∈Cu(y,ρν)

1(
ρ(a(zu))

)Ns+1
‖a(zu)‖NsWs−1

∞
,

where Cu(y,ρν) is given as in (3.33). Notice that for zu = (zj)j∈N ∈ Cu(y,ρν), we can write
zj = yj + ηj + iξj ∈ Cy,j(ρν) with |ηj | ≤ ρν,j and |ξj | ≤ ρν,j for j ∈ u. Hence, by (3.50), (3.51) and

‖a(zu)‖Ws−1
∞
≤ C‖a(zu)‖L∞

(
1 + ‖b(zu)‖Ws−1

∞

)s−1

= C exp(‖b(y)‖L∞)

[
1 +

∑
|α|≤s−1

∥∥∥∥∥r|α|D

∑
j∈N

(yj + ηj + iξj)D
αψj

∥∥∥∥∥
L∞

]s−1

= C exp(‖b(y)‖L∞)

[
1 +

∑
|α|≤s−1

∥∥∥∥∥2
∑
j∈u

ρν,j |r|α|D Dαψj |

∥∥∥∥∥
L∞

+ ‖b(y)‖Ws−1
∞

]s−1

≤ C exp(‖b(y)‖L∞)
(

1 + 2κ+ ‖b(y)‖Ws−1
∞

)s−1
,

we obtain the desired result.

3.8.2 Summability of Ks
κ-norms of Wiener-Hermite PC expansion coefficients

To establish weighted `2-summability and `p-summability of Ks
κ-norms of Wiener-Hermite PC

expansion coefficients we need the following assumption.

Assumption 3.33. Let s ∈ N. All functions ψj belong to Ws−1
∞ (D) and there exists a positive

sequence (λj)j∈N such that
(

exp(−λ2
j )
)
j∈N ∈ `

1(N) and the series∑
j∈N

λj

∣∣∣r|α|D Dαψj

∣∣∣
converges in L∞(D) for all α ∈ Nd0 with |α| ≤ s− 1.

Lemma 3.34. Suppose that Assumption 3.33 holds. Then b(y) belongs toWs−1
∞ (D) γ−a.e. y ∈ U .

Furthermore, E(exp(k‖b(y)‖Ws−1
∞

)) is finite for all k ∈ [0,∞).

Proof. Under Assumption 3.33, by [9, Theorem 2.2.] we infer that for α ∈ Nd0, |α| ≤ s − 1, the
sequence  N∑

j=1

yjr
|α|
D Dαψj


N∈N

converges to some ψα in L∞ for γ−a.e. y ∈ U and E(exp(k‖ψα(y)‖L∞)) is finite for all k ∈ [0,∞).
Hence, for γ − a.e. y ∈ U , the sequence

(∑N
j=1 yjψj

)
N∈N is a Cauchy sequence in Ws−1

∞ (D). Since

Ws−1
∞ (D) is a Banach space, the statement follows.
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Theorem 3.35 (General case). Let s ∈ N, s ≥ 2 and D be a bounded curvilinear polygonal domain.
Let f ∈ Ks−2

−1 (D) and Assumption 3.33 hold. Assume there exists a sequence

% = (%j)j∈N ∈ (0,∞)∞ with (%−1
j )j∈N ∈ `q(N)

for some 0 < q < ∞. Assume furthermore that, for each ν ∈ F , there exists a sequence ρν :=
(ρν,j)j∈N ∈ [0,∞)∞ such that supp(ν) ⊂ supp(ρν),

sup
ν∈F

∑
|α|≤s−1

∥∥∥∥∥∑
j∈N

ρν,j |r|α|D Dαψj |

∥∥∥∥∥
L∞

≤ κ < π

2
, and

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

<∞

with r ∈ N, r > 2/q.
Then ∑

ν∈F
βν(r,%)‖uν‖2Ks1 <∞ with

(
βν(r,%)−1/2

)
ν∈F ∈ `

q(F),

where βν(r,%) is given in (3.36). Furthermore,

(‖uν‖Ks1)ν∈F ∈ `p(F) with
1

p
=

1

q
+

1

2
.

Proof. For each ν ∈ F with u = supp(ν) and y ∈ U such that b(y) ∈ Ws−1
∞ (D), Assumption 3.33

implies that the solution u of (3.17) is holomorphic in Su(ρν) as a Ks1(D) ∩ V -valued map, see
Theorem 3.30.

We obtain from Lemmata 3.32 and 3.34∫
U
‖∂νu(y)‖2Ks1 dγ(y) ≤ C ν!

ρ2ν
ν

∫
U

(
exp

(
‖b(y)‖L∞

)4Ns+2
(

1 + ‖b(y)‖Ws−1
∞

)2(s−1)Ns
dγ(y)

≤ C ν!

ρ2ν
ν

<∞ .

This leads to∑
ν∈F

βν(r,%)‖uν‖2Ks1 =
∑

‖ν‖`∞≤r

%2ν

ν!

∫
U
‖∂νu(y)‖2Ks1 dγ(y) ≤ C

∑
‖ν‖`∞≤r

ν!%2ν

ρ2ν
ν

<∞ .

The rest of the proof follows similarly to the proof of Theorem 3.13.

Similarly to Corollaries 3.14 and 3.15 from Theorem 3.35 we obtain

Corollary 3.36 (The case of global supports). Let s ∈ N, s ≥ 2 and D be a bounded curvilinear,
polygonal domain. Assume that for all j ∈ N holds ψj ∈ Ws−1

∞ (D), and that f ∈ Ks−2
−1 (D). Assume

further that there exists a sequence of positive numbers λ = (λj)j∈N such that(
λj‖ψj‖Ws−1

∞

)
j∈N ∈ `

1(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞. Then we have (‖uν‖Ks1)ν∈F ∈ `p(F) with 1
p = 1

q + 1
2 .

Corollary 3.37 (The case of disjoint supports). Let s ∈ N, s ≥ 2 and D ⊂ Rd with d ≥ 2 be a
bounded curvilinear polygonal domain. Assume that all the functions ψj belong to Ws−1

∞ (D) and
have disjoint supports. Assume further that f ∈ Ks−2

−1 (D) and that there exists a sequence of positive
numbers λ = (λj)j∈N such that(

λj‖ψj‖Ws−1
∞

)
j∈N ∈ `

2(N) and (λ−1
j )j∈N ∈ `q(N),

for some 0 < q <∞. Then (‖uν‖Ks1)ν∈F ∈ `p(F) with 1
p = 1

q + 1
2 .
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3.9 Bibliographical remarks

In this section, we briefly recall some known related results in previous works on `p-summability and
on weighted `2-summability of the generalized PC expansion coefficients of solutions to parametric
divergence-form elliptic PDEs (3.17), as well as some applications to best n-term approximation.

A basic role in the approximation and numerical integration for parametric divergence-form
elliptic PDEs (3.17) are generalized PC expansions for the dependence on the parametric variables.
In [32, 37, 38, 39], based on the conditions

(
‖ψj‖W 1

∞

)
j∈N ∈ `

p(N) for some 0 < p < 1 on the affine
expansion

a(y) = ā+
∞∑
j=1

yjψj , y ∈ [0, 1]∞, (3.56)

the authors have proven `p-summability of the coefficients in a Taylor or Legendre PC expansion
and hence proposed adaptive best n-term rate optimal approximation methods of Galerkin and
collocation type by choosing a set of n largest estimated terms in these expansions. To derive a
fully discrete approximation, the best n-term approximants are then discretized by finite element
methods. Some results on convergence rates of Galerkin approximation were proven in [72] for
the log-Gaussian expansion (3.18), based on the summability

(
j‖ψj‖W 1

∞

)
j∈N ∈ `p(N) for some

0 < p < 1. However, in these papers possible local support properties of the component functions
ψj were not taken into account.

A different approach to studying summability that takes into account the support properties
has been recently proposed in [10] for the affine-parametric case, in [9] for the log-exponential,
parametric case, and in [8] for extension of both cases to higher-order Sobolev norms of the corre-
sponding generalized PC expansion coefficients. This approach leads to significant improvements
on the results on `p-summability and therefore, on best n-term semi-discrete and fully discrete
approximations when the functions ψj have limited overlap, such as splines, finite elements or com-
pactly supported wavelet bases. These approximation results provide a benchmark for convergence
rates.

We present some results from [9] and [8] on `p-summability and weighted `2-summability of the
Wiener-Hermite PC expansion coefficients of the solution to the parametric divergence-form elliptic
PDEs (3.17)–(3.18) which were proven by real-variable bootstrapping arguments.

For convenience, we use the conventions:

W 1 := V, W 2 := W, H−1(D) := V ′, H0(D) := L2(D), W 0,∞(D) := L∞(D),

where we recall W := {v ∈ V : ∆v ∈ L2(D)} , is the space equipped with the norm ‖v‖W :=
‖∆v‖L2 . The following theorem and lemma were proven in [9] for i = 1 and in [8] for i = 2.

Theorem 3.38. Let i = 1, 2. Assume that the right side f in (3.17) belongs to H i−2(D), that
the domain D has Ci−1,1 smoothness, that all functions ψj belong to W i−1,∞(D). Assume that
there exist a number 0 < qi < ∞ and a sequence %i = (%i;j)j∈N of positive numbers such that
(%−1
i;j )j∈N ∈ `qi(N) and

sup
|α|≤i−1

∥∥∥∥∥∥
∑
j∈N

%i;j |Dαψj |

∥∥∥∥∥∥
L∞

<∞. (3.57)

Then we have that for any r ∈ N,∑
ν∈F

(σi;ν‖uν‖W i)2 <∞ and (σ−1
i;ν )ν∈F ∈ `qi(F), (3.58)
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where

σ2
i;ν :=

∑
‖ν′‖`∞≤r

(
ν

ν ′

)
%2ν′
i . (3.59)

Furthermore,
(‖uν‖W i)ν∈F ∈ `2qi/(2+qi)(F).

Notice that the assumption (3.57) which give the weighted `2-summability (3.58), already re-
flects the support properties of the component functions ψj .

For τ, λ ≥ 0, we define the family

pν(τ, λ) :=
∏
j∈N

(1 + λνj)
τ , ν ∈ F , (3.60)

with the abbreviation pν(τ) := pν(τ, 1).
We make use of the following notation

F1 := F , F2 := {ν ∈ F : νj 6= 1, j ∈ N}. (3.61)

Lemma 3.39. Let 0 < q < ∞, s = 1, 2 and τ, λ ≥ 0. Let ρ = (ρj)j∈N be a sequence of positive
numbers such (ρ−1

j )j∈N belongs to `q(N). For r ∈ N, define the family (σν)ν∈F by

σ2
ν :=

∑
‖ν′‖`∞≤r

(
ν

ν ′

)
ρ2ν′ .

Then for any r > 2s(τ+1)
q , we have ∑

ν∈Fs

pν(τ, λ)σ
−q/s
ν <∞.

This lemma has been proven in [43, Lemma 5.3]. Observe that for s = 1 and τ = 0, an equivalent
formulation of Lemma 3.39 is Lemma 3.11.

Theorem 3.38 and Lemma 3.39 directly imply the following corollary.

Corollary 3.40. Under the assumptions of Theorem 3.38, let s = 1, 2 and τ, λ ≥ 0. Then we have
that for any r > 2s(τ+1)

q ,∑
ν∈Fs

(σi;ν‖uν‖W i)2 <∞ and (pν(τ, λ)σ−1
i;ν )ν∈Fs ∈ `qi/s(Fs). (3.62)

As commented in Section 3.6.2, in the case of disjoint or finitely overlapping supports the results
on sparsity of Theorem 3.38 and Corollary 3.40 are stronger than those in Sections 3.6.2 and 3.7.2.
They play a basic role in best n-term approximation [9, 8] and linear approximation and quadrature
[43] (see also [45]) of the solution to the parametric divergence-form elliptic PDEs (3.17)–(3.18).
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4 Sparsity for holomorphic functions

In Section 3 we introduced a concept of holomorphic extensions of countably-parametric families
{u(y) : y ∈ U} ⊂ V in the separable Hilbert space V with respect to the parameter y into
the Cartesian product Su(ρ) of strips in the complex domain (cp. (3.27)). We now introduce
a refinement which is required for the ensuing results on rates of numerical approximation and
integration of such families, based on sparsity (weighted `2-summability) and of Wiener-Hermite
PC expansions of {u(y) : y ∈ U}: quantified parametric holomorphy of (complex extensions of)
the parametric families {u(y) : y ∈ U} ⊂ X for a separable Hilbert space X. Section 4.1 presents
a definition of quantified holomorphy of families {u(y) : y ∈ U} and discusses the sparsity of
the Wiener-Hermite PC expansion coefficients of these families. In Section 4.2, we present the
notion (b, ξ, δ,X)-holomorphy of composite functions. In Section 4.3, we analyze some examples of
holomorphic functions which are solutions to certain PDEs.

There are two basic steps in the approximations which we consider:

(i) We truncate the countably-parametric family {u(y) : y ∈ U} ⊂ X to a finite number N ∈ N
of parameters. This step, which is sometimes also referred to as “dimension-truncation”, of course
implicitly depends on the enumeration of the coordinates yj ∈ y. We assume throughout that this
numbering is fixed by the indexing of the Parseval frame in Theorem 2.21 which frame is used as
affine representation system to parametrize the uncertain input a = exp(b) of the PDE of interest.
We emphasize that the finite dimension N ∈ N of the truncated parametric Wiener-Hermite PC
expansion is a discretization parameter, and we will be interested in quantitative bounds on the
error incurred by restricting {u(y) : y ∈ U} ⊂ X to Wiener-Hermite PC expansions of the first N
active variables only. We denote these restrictions by {uN (y) : y ∈ U}.

(ii) The coefficients uν ∈ X of the resulting, finite-parametric Wiener-Hermite PC expansion, can
not be computed exactly, but must be numerically approximated. As is done in stochastic col-
location and stochastic Galerkin algorithms, we seek numerical approximations of uν in suitable,
finite-dimensional subspaces Xl ⊂ X. Assuming the collection (Xl)l∈N ⊂ X to be dense in X, any
prescribed tolerance ε > 0 of approximation of uN (y) in L2(U,X; γ) can be met. For notational
convenience, we also set X0 = {0}.

In computational practice, however, given a target accuracy ε ∈ (0, 1], one searches an allocation
of l : F × (0, 1]→ N : (ν, ε) 7→ l(ν, ε) of discretization levels along the “active” Wiener-Hermite PC
expansion coefficients which ensures that the prescribed tolerance ε ∈ (0, 1] is met with possibly
minimal “computational budget”. We propose and analyze the a-priori construction of an alloca-
tion l which ensures convergence rates of the corresponding collocation approximations which are
independent of N (i.e. they are free from the “curse of dimensionality”). These approximations
are based on “stochastic collocation”, i.e. on sampling the parametric family {u(y) : y ∈ U} ⊂ V
in a collection of deterministic Gaussian coordinates in U . We prove, subsequently, dimension-
independent convergence rates of the sparse collocation w.r.t. y ∈ U and w.r.t. the subspaces
Xl ⊂ X realize convergence rates which are free from the curse of dimensionality. These rates de-
pend only on the summability (resp. sparsity) of the coefficients of the norm of the Wiener-Hermite
PC expansion of the parametric family {u(y) : y ∈ U} with respect to y.
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4.1 (b, ξ, δ,X)-Holomorphy and sparsity

We introduce the concept of “(b, ξ, δ,X)-holomorphic functions”, which constitutes a subset of
L2(U,X; γ). As such these functions are typically not pointwise well defined for each y ∈ U . In
order to still define a suitable form of pointwise function evaluations to be used for numerical
algorithms such as sampling at y ∈ U for “stochastic collocation” or for quadrature in “stochastic
Galerkin” algorithms, we define them as L2(U,X; γ) limits of certain smooth (pointwise defined)
functions, cp. Remark. 4.4 and Example 6.9 ahead.

For N ∈ N and % = (%j)
N
j=1 ∈ (0,∞)N set (cp. (3.27))

S(%) := {z ∈ CN : |Imzj | < %j ∀j} and B(%) := {z ∈ CN : |zj | < %j ∀j}. (4.1)

Definition 4.1 ((b, ξ, δ,X)-Holomorphy). Let X be a complex, separable Hilbert space, b = (bj)j∈N ∈
(0,∞)∞ and ξ > 0, δ > 0.

For N ∈ N, % ∈ (0,∞)N is called (b, ξ)-admissible if

N∑
j=1

bj%j ≤ ξ . (4.2)

A function u ∈ L2(U,X; γ) is called (b, ξ, δ,X)-holomorphic if

(i) for every N ∈ N there exists uN : RN → X, which, for every (b, ξ)-admissible % ∈ (0,∞)N ,
admits a holomorphic extension (denoted again by uN ) from S(%)→ X; furthermore, for all
N < M

uN (y1, . . . , yN ) = uM (y1, . . . , yN , 0, . . . , 0) ∀(yj)Nj=1 ∈ RN , (4.3)

(ii) for every N ∈ N there exists ϕN : RN → R+ such that ‖ϕN‖L2(RN ;γN ) ≤ δ and

sup
%∈(0,∞)N

is (b, ξ)-adm.

sup
z∈B(%)

‖uN (y + z)‖X ≤ ϕN (y) ∀y ∈ RN ,

(iii) with ũN : U → X defined by ũN (y) := uN (y1, . . . , yN ) for y ∈ U it holds

lim
N→∞

‖u− ũN‖L2(U,X;γ) = 0.

We interpret the definition of (b, ξ, δ,X)-holomorphy in the following remarks.

Remark 4.2. While the numerical value of ξ > 0 in Definition 4.1 of (b, ξ, δ,X)-holomorphy is of
minor importance in the definition, the sequence b and the constant δ will crucially influence the
magnitude of our upper bounds of the Wiener-Hermite PC expansion coefficients: The stronger
the decay of b, the larger we can choose the elements of the sequence %, so that % satisfies (4.2).
Hence stronger decay of b indicates larger domains of holomorphic extension. The constant δ is an
upper bound of these extensions in the sense of item (ii). Importantly, the decay of b will determine
the sparsity of the Wiener-Hermite PC expansion coefficients, while decreasing δ by a factor will
roughly speaking translate to a decrease of all coefficients by the same factor.

Remark 4.3. Since uN ∈ L2(RN , X; γN ), the function ũN in item (iii) belongs to L2(U,X; γ) by
Fubini’s theorem.
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Remark 4.4. [Evaluation of countably-parametric functions] In the following sections, for arbitrary
N ∈ N and (yj)

N
j=1 ∈ RN we will write

u(y1, . . . , yN , 0, 0, . . . ) := uN (y1, . . . , yN ). (4.4)

This is well-defined due to (4.3). Note however that (4.4) should be considered as an abuse of
notation, since pointwise evaluations of functions u ∈ L2(U,X; γ) are in general not well-defined.

Remark 4.5. The assumption of X being separable is not necessary in Definition 4.1: Every
function uN : RN → X as in Definition 4.1 is continuous since it allows a holomorphic extension.
Hence,

AN,n := {uN ((yj)
N
j=1) : yj ∈ [−n, n] ∀j} ⊆ X

is compact and thus there is a countable set XN,n ⊆ X which is dense in AN,n for every N , n ∈ N.
Then

⋃
n∈NAN,n is contained in the (separable) closed span X̃ of⋃

N,n∈N
XN,n ⊆ X.

Since ũN ∈ L2(U, X̃; γ) for every N ∈ N we also have

u = lim
N→∞

uN ∈ L2(U, X̃; γ).

Hence, u is separably valued.

Lemma 4.6. Let u be (b, ξ, δ,X)-holomorphic, let N ∈ N and 0 < κ < ξ < ∞. Let uN , ϕN be as
in Definition 4.1. Then with bN = (bj)

N
j=1 it holds for every ν ∈ NN0

‖∂νuN (y)‖X ≤
ν!|ν||ν|bνN
κ|ν|νν

ϕN (y) ∀y ∈ RN .

Proof. For ν ∈ NN0 fixed we choose % = (%j)
N
j=1 with %j = κ

νj
|ν|bj for j ∈ supp(ν) and %j = ξ−κ

Nbj
for

j 6∈ supp(ν). Then
N∑
j=1

%jbj = κ
∑

j∈supp(ν)

νj
|ν|

+
∑

j 6∈supp(ν)

ξ − κ
N
≤ ξ.

Hence % is (b, ξ)-admissible, i.e. there exists a holomorphic extension uN : S(%)→ X as in Defini-
tion 4.1 (i)-(ii). Applying Cauchy’s integral formula as in the proof of Lemma 3.9 we obtain the
desired estimate.

Let us recall the following. Let again X be a separable Hilbert space and u ∈ L2(U,X; γ). Then

L2(U,X; γ) = L2(U ; γ)⊗X

with Hilbertian tensor product, and u can be represented in a Wiener-Hermite PC expansion

u =
∑
ν∈F

uνHν , (4.5)
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where

uν =

∫
U
u(y)Hν(y) dγ(y)

are the Wiener-Hermite PC expansion coefficients. Also, there holds the Parseval-type identity

‖u‖2L2(U,X;γ) =
∑
ν∈F
‖uν‖2X .

When u is (b, ξ, δ,X)-holomorphic, then we have for the functions uN : RN → X in Definition 4.1

uN =
∑
ν∈NN0

uN,νHν ,

where

uN,ν =

∫
RN

uN (y)Hν(y) dγN (y).

In an analogous manner to (3.36), for r ∈ N and a finite sequence of nonnegative numbers
%N = (%j)

N
j=1, we define

βν(r,%N ) :=
∑

ν′∈NN0 : ‖ν′‖`∞≤r

(
ν

ν ′

)
%2ν′ =

N∏
j=1

(
r∑
`=0

(
νj
`

)
%2`
j

)
, ν ∈ NN0 . (4.6)

Lemma 4.7. Let u be (b, ξ, δ,X)-holomorphic, let N ∈ N and let %N = (%j)
N
j=1 ∈ [0,∞)N .

Then, for any fixed r ∈ N, there holds the identity∑
ν∈NN0

βν(r,%N )‖uN,ν‖2X =
∑

{ν∈NN0 : ‖ν‖`∞≤r}

%2ν
N

ν!

∫
RN
‖∂νuN (y)‖2X dγN (y). (4.7)

Proof. From Lemma 4.6, for any ν ∈ NN0 , we have with bN = (bj)
N
j=1∫

RN
‖∂νuN (y)‖2X dγN (y) ≤

∫
RN

∣∣∣ν!|ν||ν|bνN
κ|ν|νν

ϕN (y)
∣∣∣2 dγN (y)

=
(ν!|ν||ν|bνN

κ|ν|νν

)2
∫
RN

∣∣ϕN (y)
∣∣2 dγN (y) <∞ (4.8)

by our assumption. This condition allows us to integrate by parts as in the proof of [9, Theorem
3.3]. Following the argument there we obtain (4.7).

Theorem 4.8. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ `p(N) and some p ∈ (0, 1). Let r ∈ N.
Then, with

%j := bp−1
j

ξ

4
√
r!‖b‖`p

, j ∈ N, (4.9)

and %N = (%j)
N
j=1 it holds for all N ∈ N,∑

ν∈NN0

βν(r,%N )‖uN,ν‖2X ≤ δ2C(b) <∞ with ‖βν(r,%N )−1/2‖`p/(1−p)(NN0 ) ≤ C
′(b, ξ) <∞ (4.10)
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for some constants C(b) and C ′(b, ξ) depending on b and ξ, but independent of δ and N ∈ N.
Furthermore, for every N ∈ N and every q > 0 there holds

(‖uN,ν‖X)ν∈NN0
∈ `q(NN0 ).

If q ≥ 2p
2−p then there exists a constant C > 0 such that for all N ∈ N holds∥∥(‖uN,ν‖X)ν

∥∥
`q(NN0 )

≤ C <∞ .

Proof. We have ∑
j∈N

%jbj =
ξ

4
√
r!‖b‖`p

∑
j∈N

bpj <∞,

and (%−1
j )j∈N ∈ `p/(1−p)(N). Set κ := ξ/2 ∈ (0, ξ). Inserting (4.8) into (4.7) we obtain with

%N = (%j)
N
j=1

∑
ν∈NN0

βν(r,%N )‖uN,ν‖2X ≤ δ2
∑

{ν∈NN0 : ‖ν‖`∞≤r}

(
(ν!)1/2|ν||ν|%νNb

ν
N

κ|ν|νν

)2

≤ δ2
∑

{ν∈NN0 : ‖ν‖`∞≤r}

 |ν||ν|
∏N
j=1

(
bpj

2‖b‖`p

)νj
νν


2

,

where we used (%jbj)
2 = b2pj κ/(2(r!)) and the bound∫

RN
ϕN (y)2 dγN (y) ≤ δ2

from Definition 4.1 (ii). With b̃j := bpj/(2‖b‖`p) the last term is bounded independent of N by

δ2C(b) with

C(b) :=

(∑
ν∈F

|ν||ν|

νν
b̃
ν

)1/2

,

since the `1-norm is an upper bound of the `2-norm. As is well-known, the latter quantity is finite
due to ‖b̃‖`1 < 1, see, e.g., the argument in [37, Page 61].

Now introduce %̃N,j := %j if j ≤ N and %̃N,j := exp(j) otherwise. For any q > 0 we then have
(%̃−1
N,j)j∈N ∈ `q(N) and by Lemma 3.11 this implies

(βν(r, %̃N )−1)ν∈F ∈ `q/2(F)

as long as r > 2/q. Using βν(r, %̃N ) = β(νj)Nj=1
(r,%N ) for all ν ∈ F with suppν ⊆ {1, . . . , N} we

conclude
(βν(r,%N )−1)ν∈NN0

∈ `q/2(NN0 )
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for any q > 0. Now fix q > 0 (and 2/q < r ∈ N). Then, by Hölder’s inequality with s :=
2(q/2)/(1 + q/2), there holds∑

ν∈NN0

‖uN,ν‖sX =
∑
ν∈NN0

‖uN,ν‖sXβν(r,%N )
s
2βν(r,%N )−

s
2

≤

( ∑
ν∈NN0

‖uN,ν‖2Xβν(r,%N )

) s
2
( ∑
ν∈NN0

βν(r,%N )
s

2−s

) 2−s
2

,

which is finite since s/(2− s) = q/2. Thus we have shown

∀q > 0, N ∈ N : (‖uN,ν‖X)ν∈NN0
∈ `q/(1+q/2)(NN0 ) .

Finally, due to (%−1
j )j∈N ∈ `p/(1−p)(N), Lemma 3.11 for all N ∈ N it holds

(βν(r,%N )−1)ν∈NN0
∈ `p/(2(1−p))(NN0 )

and there exists a constant C ′(b, ξ) such that for all N ∈ N it holds∥∥(βν(r,%N )−1)ν
∥∥
`p/(2(1−p))(NN0 )

≤ C ′(b, ξ) <∞ .

This completes the proofs of (4.10) and of the last statement.

The following result states the sparsity of Wiener-Hermite PC expansion coefficients of (b, ξ, δ,X)-
holomorphic maps.

Theorem 4.9. Under the assumptions of Theorem 4.8 it holds∑
ν∈F

βν(r,%)‖uν‖2X ≤ δ2C(b) <∞ with
(
βν(r,%)−1/2

)
ν∈F ∈ `

p/(1−p)(F), (4.11)

where C(b) is the same constant as in Theorem 4.8 and βν(r,%) is given in (3.36). Furthermore,

(‖uν‖X)ν∈F ∈ `2p/(2−p)(F).

Proof. Let ũN ∈ L2(U,X; γ) be as in Definition 4.1 and for ν ∈ F denote by

ũN,ν :=

∫
U
ũN (y)Hν(y) dγ(y) ∈ X

the Wiener-Hermite PC expansion coefficient. By Fubini’s theorem

ũN,ν =

∫
U
uN ((yj)

N
j=1)

N∏
j=1

Hνj (yj) dγN ((yj)
N
j=1) = uN,(νj)Nj=1

for every ν ∈ F with suppν ⊆ {1, . . . , N}. Furthermore, since ũN is independent of the variables
(yj)

∞
j=N+1 we have ũN,ν = 0 whenever suppν ( {1, . . . , N}. Therefore Theorem 4.8 implies

∑
ν∈F

βν(r,%)‖ũN,ν‖2X ≤
C(b)

δ2
∀N ∈ N.
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Now fix an arbitrary, finite set Λ ⊂ F . Because of ũN → u ∈ L2(U,X; γ) it holds

lim
N→∞

ũN,ν = uν

for all ν ∈ F . Therefore∑
ν∈Λ

βν(r,%)‖uν‖2X = lim
N→∞

∑
ν∈Λ

βν(r,%)‖ũN,ν‖2X ≤
C(b)

δ2
.

Since Λ ⊂ F was arbitrary, this shows that∑
ν∈F

βν(r,%)‖uν‖2X ≤ δ2C(b) <∞.

Finally, due to b ∈ `p(N), with

%j = bp−1
j

ξ

4
√
r!‖b‖`p

as in Theorem 4.8 we have (%−1
j )j∈N ∈ `p/(1−p)(N). By Lemma 3.11, it holds

(βν(r,%)−1/2)ν∈F ∈ `p/(1−p)(F). (4.12)

The relation (4.11) is proven. Hölder’s inequality can be used to show that (4.12) gives

(‖uν‖X)ν∈F ∈ `2p/(2−p)(F)

(by a similar calculation as at the end of the proof of Theorem 4.8 with q = p/(1− p)).

Remark 4.10. We establish the convergence rate of best n-term approximation of (b, ξ, δ,X)-
holomorphic functions based on the `p-summability. Let u be (b, ξ, δ,X)-holomorphic for some

b ∈ `p(N) and some p ∈ (0, 1) as in Theorem 4.8. By Theorem 4.9 we then have (‖uν‖X)ν∈F ∈ `
2p

2−p .
Let Λn ⊆ F be a set of cardinality n ∈ N containing n multiindices ν ∈ F such that ‖uµ‖X ≤

‖uν‖X whenever ν ∈ Λn and µ /∈ Λn. Then, by Theorem 4.9, for the truncated the Wiener-Hermite
PC expansion we have the error bound∥∥∥∥∥u(y)−

∑
ν∈Λn

uνHν(y)

∥∥∥∥∥
2

L2(U,X;γ)

=
∑

ν∈F\Λn

‖uν‖2X ≤ sup
ν∈F\Λn

‖uν‖
2− 2p

2−p
X

∑
µ∈F\Λn

‖uµ‖
2p

2−p
X .

For a nonnegative, monotonically decreasing sequence (xj)j∈N ∈ `q(N) with q > 0 we have

xqn ≤
1

n

n∑
j=1

xqj

and thus
xn ≤ n−

1
q ‖(xj)j∈N‖`q(N).

With q = 2p
2−p this implies

(
sup

ν∈F\Λn
‖uν‖X

)2− 2p
2−p

≤

n− 2−p
2p

(∑
ν∈F
‖uν‖

2p
2−p
X

) 2−p
2p

2− 2p
2−p

= O(n
− 2
p

+2
).
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Hence, by truncating the Wiener-Hermite PC expansion (4.5) after n largest terms yields the best
n-term convergence rate∥∥∥∥∥u(y)−

∑
ν∈Λn

uνHν(y)

∥∥∥∥∥
L2(U,X;γ)

= O(n
− 1
p

+1
) as n→∞. (4.13)

4.2 (b, ξ, δ,X)-Holomorphy of composite functions

We now show that certain composite functions of the type

u(y) = U
(

exp

(∑
j∈N

yjψj

))
(4.14)

are (b, ξ, δ,X)-holomorphic under certain conditions.
The significance of such functions is the following: if we think for example of U as the solution

operator S in (3.5) (for a fixed f) which maps the diffusion coefficient a ∈ L∞(D) to the solution
U(a) ∈ H1

0 (D) of an elliptic PDE on some domain D ⊆ Rd, then U
(

exp
(∑

j∈N yjψj
))

is exactly the
parametric solution discussed in Sections 3.1–3.6. We explain this in more detail in Section 4.3.1.
The presently developed, abstract setting allows, however, to consider U as a solution operator of
other, structurally similar PDEs with log-Gaussian random input data. Furthermore, if G is another
map with suitable holomorphy properties, the composition G

(
U
(

exp
(∑

j∈N yjψj
)))

is again of the

general type Ũ
(

exp
(∑

j∈N yjψj
))

with Ũ = G ◦ U .
This will allow to apply the ensuing results on convergence rates of deterministic collocation

and quadrature algorithms to a wide range of PDEs with GRF inputs and functionals on their
random solutions. As a particular case in point, we apply our results to posterior densities in
Bayesian inversion, as we explain subsequently in Section 5. As a result, the concept of (b, ξ, δ,X)-
holomorphy is fairly broad and covers a large range of parametric PDEs depending on log-Gaussian
distributed data.

To formalize all of this, we now provide sufficient conditions on the solution operator U and
the sequence (ψj)j∈N guaranteeing (b, ξ, δ,X)-holomorphy. Let d ∈ N, D ⊆ Rd be an open set and
E a complex Banach space which is continuously embedded into L∞(D;C), and finally let X be
another complex Banach space. Additionally, suppose that there exists CE > 0 such that for all
ψ1, ψ2 ∈ E and some m ∈ N

‖ exp(ψ1)− exp(ψ2)‖E ≤ CE‖ψ1 − ψ2‖E max
{

exp
(
m‖ψ1‖E

)
; exp

(
m‖ψ2‖E

)}
. (4.15)

This inequality covers in particular the Sobolev spaces W k
∞(D;C), k ∈ N0, on bounded Lipschitz

domains D ⊆ Rd, but also the Kondrat’ev spaces Wk
∞(D;C) on polygonal domains D ⊆ R2,

cp. Lemma 3.28.
For a function ψ ∈ E ⊆ L∞(D;C) we will write <(ψ) ∈ L∞(D;R) ⊆ L∞(D;C) to denote its

real part and =(ψ) ∈ L∞(D;R) ⊆ L∞(D;C) its imaginary part so that ψ = <(ψ) + i=(ψ). Recall
that the quantity ρ(a) is defined in (3.25) for a ∈ L∞(D;C).

Theorem 4.11. Let 0 < δ < δmax, K > 0, η > 0 and m ∈ N. Let the inequality (4.15) hold for
the space E. Assume that for an open set O ⊆ E containing

{exp(ψ) : ψ ∈ E, ‖=(ψ)‖E ≤ η},

it holds
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(i) U : O → X is holomorphic,

(ii) for all a ∈ O

‖U(a)‖X ≤ δ
(

1 + ‖a‖E
min{1, ρ(a)}

)m
,

(iii) for all a, b ∈ O

‖U(a)− U(b)‖X ≤ K
(

1 + max{‖a‖E , ‖b‖E}
min{1, ρ(a), ρ(b)}

)m
‖a− b‖E ,

(iv) (ψj)j∈N ⊆ E ∩ L∞(D) and with bj := ‖ψj‖E it holds b ∈ `1(N).

Then there exists ξ > 0 and for every δmax > 0 there exists C̃ depending on b, δmax, CE and m
but independent of δ ∈ (0, δmax), such that with

uN
(
(yj)

N
j=1

)
= U

(
exp

( N∑
j=1

yjψj

))
∀(yj)Nj=1 ∈ RN ,

and ũN (y) = uN (y1, . . . , yN ) for y ∈ U , the function

u := lim
N→∞

ũN ∈ L2(U,X; γ)

is well-defined and (b, ξ, δC̃,X)-holomorphic.

Proof. Step 1. Choosing ψ2 ≡ 0 in (4.15) with ψ1 = ψ, we obtain

‖ exp(ψ)‖E ≤ C ′E exp
(
(m+ 1)‖ψ‖E

)
. (4.16)

for some positive constant C ′E . Indeed,

‖ exp(ψ1)‖E ≤ ‖1‖E + CE‖ψ1‖E exp
(
m‖1‖E +m‖ψ1‖E

)
≤ C ′E

(
1 + ‖ψ1‖E

)
exp

(
m‖ψ1‖E

)
≤ C ′E exp

(
(m+ 1)‖ψ1‖E

)
.

We show that uN ∈ L2(RN , X; γN ) for every N ∈ N. To this end we recall that for any s > 0
(see, e.g., [73, Appendix B], [9, (38)] for a proof)∫

R
exp(s|y|) dγ1(y) ≤ exp

(
s2

2
+

√
2s

π

)
. (4.17)

Since E is continuously embedded into L∞(D;C), there exists C0 > 0 such that

‖ψ‖L∞(D) ≤ C0‖ψ‖E ∀ψ ∈ E.

Using (ii), (4.16), and

1

ess infx∈D
(

exp
(∑N

j=1 yjψj(x)
)) ≤ ∥∥∥∥ exp

(
−

N∑
j=1

yjψj

)∥∥∥∥
L∞

≤ exp

(∥∥∥∥ N∑
j=1

yjψj

∥∥∥∥
L∞

)
≤ exp

(
C0

N∑
j=1

|yj |
∥∥ψj∥∥E),
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we obtain the bound

‖uN (y)‖X ≤ δ
(

1 +

∥∥∥∥ exp

( N∑
j=1

yjψj

)∥∥∥∥
E

)m
exp

(
C0m

N∑
j=1

|yj |
∥∥ψj∥∥E)

≤ δ

(
1 + C ′E exp

(
(m+ 1)

N∑
j=1

|yj | ‖ψj‖E

))m
exp

(
C0m

N∑
j=1

|yj |
∥∥ψj∥∥E)

≤ C1 exp

(
(2 + C0)m2

N∑
j=1

|yj | ‖ψj‖E

)

for some constant C1 > 0 depending on δ, CE and m. Hence, by (4.17) we have∫
RN
‖uN (y)‖2X dγN (y) ≤ C1

∫
RN

exp

(
(2 + C0)m2)

N∑
j=1

|yj |‖ψj‖E
)

dγN (y)

≤ C1 exp

(
(2 + C0)2m4

2

N∑
j=1

b2j +

√
2(2 + C0)m2

π

N∑
j=1

bj

)
<∞.

Step 2. We show that (ũN )N∈N which is defined as ũN (y) := uN (y1, . . . , yN ) for y ∈ U , is a
Cauchy sequence in L2(U,X; γ). For any N < M by (iii)

‖ũM − ũN‖2L2(U,X;γ) =

∫
U

∥∥∥∥U( exp
( M∑
j=1

yjψj

))
− U

(
exp

( N∑
j=1

yjψj

))∥∥∥∥2

X

dγ(y)

≤ K
∫
U

[(
1 +

∥∥∥∥ exp
( M∑
j=1

yjψj

)∥∥∥∥
E

+

∥∥∥∥ exp
( N∑
j=1

yjψj

)∥∥∥∥
E

)m

× exp

(
C0m

M∑
j=1

|yj |
∥∥ψj∥∥E) · ∥∥∥∥ exp

( M∑
j=1

yjψj

)
− exp

( N∑
j=1

yjψj

)∥∥∥∥
E

]
dγ(y).

Using (4.16) again we can estimate

‖ũM − ũN‖2L2(U,X;γ) ≤ K
∫
U

[(
1 + 2C ′E exp

(
(m+ 1)

M∑
j=1

|yj | ‖ψj‖E

))m

× exp

(
C0m

M∑
j=1

|yj |
∥∥ψj∥∥E) · ∥∥∥∥ exp

( M∑
j=1

yjψj

)
− exp

( N∑
j=1

yjψj

)∥∥∥∥
E

]
dγ(y)

≤ C2

∫
U

[
exp

(
(2 + C0)m2)

M∑
j=1

|yj | ‖ψj‖E

)∥∥∥∥ exp
( M∑
j=1

yjψj

)
− exp

( N∑
j=1

yjψj

)∥∥∥∥
E

]
dγ(y)
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for C2 > 0 depending only on K,CE , and m. Now, employing (4.15) we obtain∥∥∥∥ exp
( M∑
j=1

yjψj

)
− exp

( N∑
j=1

yjψj

)∥∥∥∥
E

≤ CE
M∑

j=N+1

|yj |‖ψj‖E exp

(
m

M∑
j=1

|yj |‖ψj‖E

)

≤ CE
M∑

j=N+1

|yj |‖ψj‖E exp

(
m2

M∑
j=1

|yj |‖ψj‖E
)
.

Therefore for a constant C3 depending on CE and δ (but independent of N), using |yj | ≤ exp(|yj |),

‖ũM − ũN‖2L2(U,X;γ)

≤ C3

M∑
j=N+1

‖ψj‖E
∫
RM
|yj | exp

(
(3 + C0)m2

M∑
i=1

|yi|‖ψi‖E
)

dγM ((yi)
M
i=1)

≤ C3

M∑
j=N+1

‖ψj‖E
∫
RM

exp

(
|yj |+ (3 + C0)m2

M∑
i=1

|yi|‖ψi‖E
)

dγM ((yi)
M
i=1)

≤ C3

( M∑
j=N+1

bj

)(
exp

(
1

2
+

√
2

π
+

(3 + C0)2m4

2

M∑
i=1

b2j +

√
2(3 + C0)m2

π

M∑
j=1

bj

))
,

where we used (4.17) and in the last inequality. Since b ∈ `1(N) the last term is bounded by

C4

(∑∞
j=N+1 bj

)
for a constant C4 depending on CE , K and b but independent of N , M . Due to

b ∈ `1(N), it also holds
∞∑

j=N+1

bj → 0 as N →∞.

Since N < M are arbitrary, we have shown that (ũN )N∈N is a Cauchy sequence in the Banach
space L2(U,X; γ). This implies that there is a function

u := lim
N→∞

ũN ∈ L2(U,X; γ).

Step 3. To show that u is (b, ξ, δC̃,X) holomorphic, we provide constants ξ > 0 and C̃ > 0
independent of δ so that uN admits holomorphic extensions as in Definition 4.1. This concludes
the proof.

Let ξ := π/(4C0). Fix N ∈ N and assume

N∑
j=1

bj%j < ξ

(i.e. (%j)
N
j=1 is (b, δ1)-admissible). Then for zj = yj + iζj ∈ C such that |=(zj)| = |ζj | < %j for all j,

ρ

(
exp

( N∑
j=1

zjψj(x)
))

= ess inf
x∈D

(
exp

( N∑
j=1

yjψj(x)
))

cos

(
N∑
j=1

ζjψj(x)

)
.
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Due to

ess sup
x∈D

∣∣∣∣∣
N∑
j=1

ζjψj(x)

∣∣∣∣∣ ≤
N∑
j=1

%j‖ψj‖L∞ ≤
N∑
j=1

C0%j‖ψj‖V =

N∑
j=1

C0%jbj ≤
π

4
,

we obtain for such (zj)
N
j=1

ρ

(
exp

( N∑
j=1

zjψj(x)
))
≥ exp

(
−

N∑
j=1

|yj |‖ψj‖L∞
)

cos

(
π

4

)
> 0. (4.18)

This shows that for every % = (%j)
N
j=1 ∈ (0,∞)N such that

∑N
j=1 bj%j < ξ, it holds

N∑
j=1

zjψj ∈ O ∀z ∈ S(%).

Since U : O → X is holomorphic, the function

uN
(
(yj)

N
j=1

)
= U

(
exp

( N∑
j=1

yjψj

))

can be holomorphically extended to arguments (zj)
N
j=1 ∈ S(%).

Finally we fix again N ∈ N and provide a function ϕN ∈ L2(U ; γ) as in Definition 4.1. Fix
y ∈ RN and z ∈ B% and set

a :=
N∑
j=1

(yj + zj)ψj .

By (ii), (4.18) and because bj = ‖ψj‖E and

N∑
j=1

bj%j ≤ ξ,

we have that

‖uN ((yj + zj)
N
j=1)‖X ≤ δ

(
1 + ‖a‖E

min{1, ρ(a)}

)m
≤ δ

(
1 + C ′E exp

(
(m+ 1)

∑N
j=1(|yj |+ |zj |)‖ψj‖E

)
exp(−C0

∑N
j=1(|yj |+ |zj |)‖ψj‖E) cos(π4 )

)m

≤ δ

(
1 + C ′E exp

(
(m+ 1)

∑N
j=1 |yj |bj

)
exp((m+ 1)ξ)

exp(−C0
∑N

j=1 |yj |bj) exp(−C0ξ) cos(π4 )

)m

≤ δL exp

(
(2 + C0)m2

N∑
j=1

|yj |bj
)
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for some L depending only on CE , C0 and m. Let us define the last quantity as ϕN

(
(yj)

N
j=1

)
.

Then by (4.17) and because γN is a probability measure on RN ,

‖ϕN‖L2(RN ;γN ) ≤ δL exp

( N∑
j=1

(2 + C0)2m4b2j
2

+ (2 + C0)m2

√
2bj
π

)

≤ δL exp

(∑
j∈N

(2 + C0)2m4b2j
2

+ (2 + C0)m

√
2bj
π

)
≤ δC̃(b, C0, CE ,m),

for some constant C̃(b, C0, CE ,m) ∈ (0,∞) because b ∈ `1(N). In all, we have shown that u satisfies
(b, ξ, δC̃,X)-holomorphy as in Definition 4.1.

4.3 Examples of holomorphic data-to-solution maps

We revisit the example of linear elliptic divergence-form PDE with diffusion coefficient introduced
in Section 3. Its coefficient-to-solution map S from (3.5) for a fixed f ∈ X ′, gives rise to parametric
maps which are parametric-holomorphic. This kind of function will, on the one hand, arise as
generic model of Banach-space valued uncertain inputs of PDEs, and on the other hand as model
of solution manifolds of PDEs. The connection is made through preservation of holomorphy under
composition with inversion of boundedly invertible differential operators.

Let f ∈ X ′ be given. If A(a) ∈ Lis(X,X
′) is an isomorphism depending (locally) holomorphi-

cally on a ∈ E, then
U : E → X : a 7→ (inv ◦A(a))f

is also locally holomorphic as a function of a ∈ E. Here inv denotes the inversion map. This is
a consequence of the fact that the inv : Lis(X,X

′) → Lis(X
′, X) is holomorphic, see e.g. [111,

Example 1.2.38]. This argument can be used to show that the solution operator corresponding to
the solution of certain PDEs is holomorphic in the parameter. We informally discuss this for some
parametric PDEs and refer to [111, Chapter 1 and 5] for more details.

4.3.1 Linear elliptic divergence-form PDE with parametric diffusion coefficient

Let us again consider the model linear elliptic PDE

− div(a∇U(a)) = f in D , U(a) = 0 on ∂D (4.19)

where d ∈ N, D ⊆ Rd is a bounded Lipschitz domain, X := H1
0 (D;C), f ∈ H−1(D;C) :=

(H1
0 (D;C))′ and a ∈ E := L∞(D;C). Then the solution operator U : O → X maps the coefficient

function a to the weak solution U(a), where

O := {a ∈ L∞(D;C) : ρ(a) > 0},

with ρ(a) defined in (3.25) for a ∈ L∞(D;C). With A(a) denoting the differential operator
−div(a∇·) ∈ L(X,X ′) we can also write U(a) = A(a)−1f . We now check assumptions (i)–(iii)
of Theorem 4.11.
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(i) As mentioned above, complex Fréchet differentiability (i.e. holomorphy) of U : O → X is
satisfied because the operation of inversion of linear operators is holomorphic on the set of
boundedly invertible linear operators, A depends boundedly and linearly (thus holomorphi-
cally) on a, and therefore, the map

a 7→ A(a)−1f = U(a)

is a composition of holomorphic functions. We refer once more to [111, Example 1.2.38] for
more details.

(ii) For a ∈ O, it holds

‖U(a)‖2X ρ(a) ≤
∣∣∣∣∫
D
∇U(a)>a∇U(a) dx

∣∣∣∣ =
∣∣∣〈f,U(a)

〉∣∣∣ ≤ ‖f‖X′‖U(a)‖X .

Here 〈·, ·〉 denotes the dual product between X ′ and X. This gives the usual a-priori bound

‖U(a)‖X ≤
‖f‖X′
ρ(a)

. (4.20)

(iii) For a, b ∈ O and with w := U(a)− U(b), we have that

‖w‖2X
ρ(a)

≤
∣∣∣∣∫
D
∇w>a∇w dx

∣∣∣∣
=

∣∣∣∣∫
D
∇U(a)>a∇w dx−

∫
D
∇U(b)>b∇w dx−

∫
D
∇U(b)>(a− b)∇w dx

∣∣∣∣
≤ ‖U(b)‖X‖w‖X‖a− b‖E

≤ ‖f‖X
′

ρ(b)
‖w‖X‖a− b‖E ,

and thus

‖U(a)− U(b)‖X ≤ ‖f‖X′
‖a‖E
ρ(b)

‖a− b‖E . (4.21)

Hence, if (ψj)j∈N ⊂ E such that with bj := ‖ψj‖E it holds b ∈ `1(N), then the solution

u(y) = lim
N→∞

U

exp

 N∑
j=1

yjψj

 ∈ L2(U,X; γ)

is well-defined and (b, ξ, δ,X)-holomorphic by Theorem 4.11.
This example can easily be generalized to spaces of higher-regularity, e.g., if D ⊆ Rd is a

bounded Cs−1 domain for some s ∈ N, s ≥ 2, then we may set X := H1
0 (D;C) ∩ Hs(D;C) and

E := W s
∞(D;C) and repeat the above calculation.
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4.3.2 Linear parabolic PDE with parametric coefficient

Let 0 < T < ∞ denote a finite time-horizon and let D be a bounded domain with Lipschitz
boundary ∂D in Rd. We define I := (0, T ) and consider the initial boundary value problem (IBVP
for short) for the linear parabolic PDE

∂u(t,x)
∂t − div

(
a(x)∇u(t,x)

)
= f(t,x), (t,x) ∈ I ×D,

u|∂D×I = 0,

u|t=0 = u0(x).

(4.22)

In this section, we prove that the solution to this problem satisfies the assumptions of Theorem 4.11
for certain spaces E and X. We first review results on the existence and uniqueness of solutions
to the equation (4.22). We refer to [97] and the references there for proofs and more detailed
discussion.

We denote V := H1
0 (D;C) and V ′ := H−1(D;C). The parabolic IBPV given by equation (4.22)

is a well-posed operator equation in the intersection space of Bochner spaces (e.g. [97, Appendix],
and e.g. [110, 53] for the definition of spaces)

X := L2(I, V ) ∩H1(I, V ′) =
(
L2(I)⊗ V

)
∩
(
H1(I)⊗ V ′

)
equipped with the sum norm

‖u‖X :=
(
‖u‖2L2(I,V ) + ‖u‖2H1(I,V ′)

)1/2
, u ∈ X,

where

‖u‖2L2(I,V ) =

∫
I
‖u(t, ·)‖2V dt ,

and

‖u‖2H1(I,V ′) =

∫
I
‖∂tu(t, ·)‖2V ′ dt .

To state a space-time variational formulation and to specify the data space for (4.22), we introduce
the test-function space

Y = L2(I, V )× L2(D) =
(
L2(I)⊗ V

)
× L2(D)

which we endow with the norm

‖v‖Y =
(
‖v1‖2L2(I,V ) + ‖v2‖2L2(D)

)1/2
, v = (v1, v2) ∈ Y .

Given a time-independent diffusion coefficient a ∈ L∞(D;C) and (f, u0) ∈ Y ′, the continuous
sesquilinear and antilinear forms corresponding to the parabolic problem (4.22) reads for u ∈ X
and v = (v1, v2) ∈ Y as

B(u, v; a) :=

∫
I

∫
D
∂tu v1 dx dt+

∫
I

∫
D
a∇u · ∇v1 dxdt+

∫
D
u0 v2 dx

and

L(v) :=

∫
I

〈
f(t, ·), v1(t, ·)

〉
dt+

∫
D
u0 v2 dx,
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where 〈·, ·〉 is the anti-duality pairing between V ′ and V . Then the space-time variational formula-
tion of equation (4.22) is: Find U(a) ∈ X such that

B(U(a), v; a) = L(v), ∀v ∈ Y . (4.23)

The existence and uniqueness of solution to the equation (4.23) was proved in [97] which reads as
follows.

Proposition 4.12. Assume that (f, u0) ∈ Y ′ and that

0 < ρ(a) := ess inf
x∈D

<(a(x)) ≤ |a(x)| ≤ ‖a‖L∞ <∞, x ∈ D (4.24)

Then the parabolic operator B ∈ L(X,Y ′) defined by

(Bu)(v) = B(u, v; a),

is an isomorphism and B−1 : Y → X has the norm

‖B−1‖ ≤ 1

β(a)
,

where

β(a) :=
min

(
ρ(a)‖a‖−2

L∞ , ρ(a)
)√

2 max(ρ(a)−2, 1) + ϑ2
and ϑ := sup

w 6=0,w∈X

‖w(0, ·)‖L2(D)

‖w‖X
.

The constant ϑ depends only on T .

The data space for the equation (4.22) for complex-valued data is E := L∞(D,C). With the
set of admissible diffusion coefficients in the data space

O := {a ∈ L∞(D,C) : ρ(a) > 0},

from the above proposition we immediately deduce that for given (f, u0) ∈ Y ′, the map

U : O → X : a 7→ U(a)

is well-defined.
Furthermore, there holds the a-priori estimate

‖U(a)‖X ≤
1

β(a)

(
‖f‖2L2(I,V ′) + ‖u0‖2L2

)1/2
. (4.25)

This bound is a consequence of the following result which states that the data-to-solution map
a→ U(a) is locally Lipschitz continuous.

Lemma 4.13. Let (f, u0) ∈ Y ′. Assume that U(a) and U(b) be solutions to (4.23) with coefficients
a, b satisfying (4.24), respectively.

Then, with the function β(·) in variable a as in Proposition 4.12, we have

‖U(a)− U(b)‖X ≤
1

β(a)β(b)
‖a− b‖L∞

(
‖f‖2L2(I,V ′) + ‖u0‖2L2

)1/2
.
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Proof. From (4.23) we find that for w := U(a)− U(b),∫
I

∫
D
∂tw v1 dx dt+

∫
I

∫
D
a∇w · ∇v1 dx dt+

∫
D
w
∣∣
t=0

v2 dx

= −
∫
I

∫
D

(
a− b

)
∇U(b) · ∇v1 dx dt .

This is a parabolic equation in the variational form with (f̃ , 0) ∈ Y ′ where f̃ : L2(I, V ) → C is
given by

f̃(v1) := −
∫
I

∫
D

(
a− b

)
∇U(b) · ∇v1 dx dt , v1 ∈ L2(I, V ).

Now applying Proposition 4.12 we find

‖U(a)− U(b)‖X ≤
‖f̃‖L2(I,V ′)

β(a)
. (4.26)

We also have

‖f̃‖L2(I,V ′) = sup
‖v1‖L2(I,V )=1

|f̃(v1)| ≤ ‖a− b‖L∞‖U(b)‖L2(I,V )‖v1‖L2(I,V )

≤ ‖a− b‖L∞
1

β(b)

(
‖f‖2L2(I,V ′) + ‖u0‖2L2

)1/2
,

where in the last estimate we used again Proposition 4.12. Inserting this into (4.26) we obtain the
desired result.

We are now in position to verify the assumptions (i)–(iii) of Theorem 4.11 for the data-to-
solution map a 7→ U(a) to the equation (4.22).

(i) For the first condition, it has been shown that the weak solution to the linear parabolic PDEs
(4.22) depends holomorphically on the data a ∈ O by the Ladyzhenskaya-Babuška-Brezzi
theorem in Hilbert spaces over C, see e.g. [37, Pages 26, 27].

(ii) Let a ∈ O. Using the elementary estimate a+ b ≤ ab with a, b ≥ 2, we get√
2 max(ρ(a)−2, 1) + ϑ2 ≤

√
2 max(ρ(a)−2, 1) + max(ϑ2, 2)

≤
√

2 max(ρ(a)−2, 1) max(ϑ2, 2) ≤ max(ϑ
√

2, 2)(ρ(a)−1 + 1) .

Hence, from (4.25) we can bound

‖U(a)‖X ≤
C0(ρ(a)−1 + 1)

min
(
ρ(a)‖a‖−2

L∞ , ρ(a)
) =

C0(1 + ρ(a))

ρ(a)2 min
(
‖a‖−2

L∞ , 1
)

≤
C0(1 + ‖a‖L∞)‖a‖2L∞

min
(
ρ(a)4, 1

) ≤ C0

(
1 + ‖a‖L∞

min
(
ρ(a), 1

))4

,

(4.27)

where
C0 = max(ϑ

√
2, 2)

(
‖f‖2L2(I,V ′) + ‖u0‖2L2

)1/2
.
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(iii) The third assumption follows from Lemma 4.13 and the part (ii), i.e., for a, b ∈ O holds

‖U(a)− U(b)‖X ≤ C
(

1 + ‖a‖L∞
min

(
ρ(a), 1

))4( 1 + ‖b‖L∞
min

(
ρ(b), 1

))4

‖a− b‖L∞ , (4.28)

for some C > 0 depending on f , u0 and T .

In conclusion, if (ψj)j∈N ⊂ L∞(D) such that with bj := ‖ψj‖L∞ it holds b ∈ `1(N), then the
solution

u(y) = lim
N→∞

U

exp

 N∑
j=1

yjψj

 (4.29)

belonging to L2(U,X; γ) is well-defined and (b, ξ, δ,X)-holomorphic by Theorem 4.11.
We continue studying the holomorphy of the solution map to the equation (4.22) in function

space of higher-regularity. Denote by H1(I, L2(D)) the space of all functions v(t,x) ∈ L2(I, L2(D))
such that the norm

‖v‖H1(I,L2) :=
(
‖v‖2L(I,L2) + ‖∂tv‖2L2(I,L2)

)1/2

is finite. We put

Z := L2(I,W ) ∩H1(I, L2(D)), W :=
{
v ∈ V : ∆v ∈ L2(D)

}
,

and

‖v‖Z :=
(
‖v‖2H1(I,L2) + ‖v‖2L2(I,W )

)1/2
.

In the following the constant C and C ′ may change their values from line to line.

Lemma 4.14. Assume that a ∈ W 1
∞(D) ∩ O and f ∈ L2(I, L2(D)) and u0 ∈ V . Suppose further

that U(a) ∈ X is the weak solution to the equation (4.22). Then U(a) ∈ L2(I,W ) ∩H1(I, L2(D)).
Furthermore,

‖∂tU(a)‖L2(I,L2) ≤
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)4(
‖u0‖V + ‖f‖L2(I,L2)

)1/2
,

and

‖∆U(a)‖L2(I,L2) ≤ C
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
,

where C > 0 independent of f and u0. Therefore,

‖U(a)‖Z ≤ C
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
.

Proof. The argument follows along the lines of, e.g., [53, Section 7.1.3] by separation of variables.
Let (ωk)k∈N ⊂ V be an orthogonal basis which is orthonormal basis of L2(D), [eigenbasis in polygon
generally not smooth], see, e.g. [53, Page 353]. Let further, for m ∈ N,

Um(a) =

m∑
k=1

dkm(t)ωk ∈ Vm
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be a Galerkin approximation to U(a) on Vm := span{ωk, k = 1, . . . ,m}.
Then we have

∂tUm(a) =
m∑
k=1

d

dt
dkm(t)ωk ∈ Vm.

Multiplying both sides with ∂tUm(a) we get∫
D
∂tUm(a)∂tUm(a) dx+

∫
D
a∇Um(a) · ∂t∇Um(a) dx =

∫
D
f∂tUm(a) dx.

The conjugate equation is given by∫
D
∂tUm(a)∂tUm(a) dx+

∫
D
a∇Um(a) · ∂t∇Um(a) dx =

∫
D
f̄∂tUm(a) dx.

Consequently we obtain

2‖∂tUm(a)‖2L2 +
d

dt

∫
D
<(a)|∇Um(a)|2 dx =

∫
D
f∂tUm(a) dx+

∫
D
f̄∂tUm(a) dx.

Integrating both sides with respect to t on I and using the Cauchy-Schwarz inequality we arrive at

2‖∂tUm(a)‖2L2(I,L2) +

∫
D
<(a)

∣∣∇Um(a)
∣∣
t=T

∣∣2 dx

≤
∫
D
<(a)

∣∣∇Um(a)
∣∣
t=0

∣∣2 dx+ ‖f‖2L2(I,L2) + ‖∂tUm(a)‖2L2(I,L2),

which implies

‖∂tUm(a)‖2L2(I,L2) ≤
∫
D
<(a)

∣∣∇Um(a)
∣∣
t=0

∣∣2 dx+ ‖f‖2L2(I,L2)

≤ ‖a‖L∞
∥∥∇Um(a)

∣∣
t=0

∥∥2

L2 + ‖f‖2L2(I,L2)

≤ ‖a‖L∞‖u0‖2V + ‖f‖2L2(I,L2),

(4.30)

where we used the bounds ‖∇Um(a)
∣∣
t=0
‖L2 ≤ ‖u0‖V , see [53, Page 362].

Passing to limits we deduce that

‖∂tU(a)‖L2(I,L2) ≤
(
‖a‖L∞‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
≤ (‖a‖L∞ + 1)1/2

(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
≤ C

(
1 + ‖a‖W 1

∞

min(ρ(a), 1)

)4(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
.

We also have from (4.25) and (4.27) that

‖U(a)‖L2(I,L2) ≤ C‖U(a)‖L2(I,V ) ≤
C

β(a)

(
‖f‖2L2(I,V ′) + ‖u0‖2L2

)1/2
≤ C

β(a)

(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
≤ C

(
1 + ‖a‖L∞

min(ρ(a), 1)

)4(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
≤ C

(
1 + ‖a‖W 1

∞

min(ρ(a), 1)

)4(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
.

(4.31)
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We now estimate ‖∆U(a)‖L2(I,L2). From the identity (valid in L2(I, L2(D)))

−∆U(a) =
1

a

[
∇a · ∇U(a) + f − ∂tU(a)

]
,

and (4.30), (4.31) we obtain that

‖∆U(a)‖L2(I,L2) ≤
1

ρ(a)

[
‖a‖W 1

∞
‖U(a)‖L2(I,V ) + ‖f‖L2(I,L2) + ‖∂tU(a)‖L2(I,L2)

]
≤ C
‖a‖W 1

∞

ρ(a)

(
1 + ‖a‖L∞

min(ρ(a), 1)

)4(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
≤ C

(
1 + ‖a‖W 1

∞

min(ρ(a), 1)

)5(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
,

with C > 0 independent of f and u0. Combining this and (4.30), (4.31), the desired result follows.

Lemma 4.15. Assume f ∈ L2(I, L2(D)) and u0 ∈ V . Let U(a) and U(b) be the solutions to (4.23)
with a, b ∈W 1

∞(D) ∩O, respectively. Then we have

‖U(a)− U(b)‖Z ≤ C ′
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5( 1 + ‖b‖W 1
∞

min(ρ(b), 1)

)5

‖a− b‖W 1
∞
,

with C ′ > 0 depending on f and u0.

Proof. Denote w := U(a)− U(b). Then w is the solution to the equation
∂tw − div

(
a∇w

)
= ∇(a− b) · ∇U(b) + (a− b)∆U(b),

w|∂D×I = 0,

w|t=0 = 0.

(4.32)

Hence

−∆w =
1

a

[
∇a · ∇w +∇(a− b) · ∇U(b) + (a− b)∆U(b)− ∂tw

]
which leads to

‖∆w‖L2(I,L2) ≤
1

ρ(a)

[
‖a‖W 1

∞
‖w‖L2(I,V ) + ‖∂tw‖L2(I,L2)

+ ‖a− b‖W 1
∞

(
‖U(b)‖L2(I,W ) + ‖U(b)‖L2(I,V )

)]
.

Lemma 4.14 gives that

‖∂tw‖L2(I,L2) ≤
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5(
‖∇(a− b) · ∇U(b)‖2L2(I,L2) + ‖(a− b)∆U(b)‖2L2(I,L2)

)1/2
≤
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5

‖a− b‖W 1
∞

(
‖U(b)‖2L2(I,W ) + ‖U(b)‖2L2(I,V )

)1/2
,
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and

‖U(b)‖L2(I,W ) + ‖U(b)‖L2(I,V ) ≤ C
(

1 + ‖b‖W 1
∞

min(ρ(b), 1)

)5(
‖u0‖2V + ‖f‖2L2(I,L2)

)1/2
,

which implies

‖a− b‖W 1
∞

(
‖U(b)‖L2(I,W ) + ‖U(b)‖L2(I,V )

)
+ ‖∂tw‖L2(I,L2)

≤ C ′
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5( 1 + ‖b‖W 1
∞

min(ρ(b), 1)

)5

‖a− b‖W 1
∞

We also have

‖w‖L2(I,V ) ≤
1

β(a)β(b)
‖a− b‖L∞ ≤ C ′

(
1 + ‖a‖L∞

min(ρ(a), 1)

)4( 1 + ‖b‖L∞
min(ρ(b), 1)

)4

‖a− b‖W 1
∞
,

see (4.28). Hence

‖∆w‖L2(I,L2) ≤ C ′
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5( 1 + ‖b‖W 1
∞

min(ρ(b), 1)

)5

‖a− b‖W 1
∞
. (4.33)

Since the terms ‖∂tw‖L2(I,L2) and ‖w‖L2(I,L2) are also bounded by the right side of (4.33), we arrive
at

‖w‖Z =
(
‖∆w‖2L2(I,L2) + ‖∂tw‖2L2(I,L2) + ‖w‖2L2(I,L2)

)1/2

≤ C ′
(

1 + ‖a‖W 1
∞

min(ρ(a), 1)

)5( 1 + ‖b‖W 1
∞

min(ρ(b), 1)

)5

‖a− b‖W 1
∞

which is the claim.

From Lemma 4.15, by the same argument as in the proof of [71, Proposition 4.5] we can verify
that the solution map a 7→ U(a) from W 1

∞(D) ∩ O to Z is holomorphic. If we assume further
that (ψj)j∈N ⊆ W 1

∞(D) and with bj := ‖ψj‖W 1
∞

, it holds b ∈ `1(N) and all the conditions in
Theorem 4.11 are satisfied. Therefore, u(y) given by the formula (4.29) is (b, ξ, δ, Z)-holomorphic
with appropriate ξ and δ.

Remark 4.16. For s > 1, let

Zs :=

s⋂
k=0

Hk(I,H2s−2k(D))

with the norm

‖v‖Zs =

(
s∑

k=0

∥∥∥∥ dkv

dtk

∥∥∥∥2

L2(I,H2s−2k)

)1/2

.

Assume that a ∈ W 2s−1
∞ (D) ∩ O. At present we do not know whether the solution map a 7→ U(a)

from W 2s−1
∞ (D) ∩ O to Zs is holomorphic. To obtain the holomorphy of the solution map, we

need a result similar to that in Lemma 4.15. In order for this to hold, higher-order regularity and
compatibility of the data for equation (4.32) is required, i.e,

g0 = 0 ∈ V, g1 = h(0)− Lg0 ∈ V, . . . , gs =
ds−1h

dts−1
(0)− Lgs−1 ∈ V,
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where
h = ∇(a− b) · ∇U(b) + (a− b)∆U(b), L = ∂t · − div

(
a∇ ·

)
.

See e.g. [110, Theorem 27.2]. It is known that without such compatibility, the solution will develop
spatial singularities at the corners and edges of D, and temporal singularities as t ↓ 0; see e.g. [81].

In general the compatibility condition does not hold when we only assume that

u0 ∈ H2s−1(D) ∩ V and
dkf

dtk
∈ L2(I,H2s−2k−2(D))

for k = 0, . . . , s− 1.

4.3.3 Linear elastostatics with log-Gaussian modulus of elasticity

We illustrate the foregoing abstract setting of Section 4.1 for another class of boundary value prob-
lems. In computational mechanics, one is interested in the numerical approximation of deformations
of elastic bodies. We refer to e.g. [108] for an accessible exposition of the mathematical foundations
and assumptions. In linearized elastostatics one is concerned with small (in a suitable sense, see
[108] for details) deformations.

We consider an elastic body occupying the domain D ⊂ Rd, d = 2, 3 (the physically relevant
case naturally is d = 3, we include d = 2 to cover the so-called model of “plane-strain” which is
widely used in engineering, and has governing equations with the same mathematical structure). In
the linear theory, small deformations of the elastic body occupying D, subject to, e.g., body forces
f : D → Rd such as gravity are modeled in terms of the displacement field u : D → Rd, describing
the displacement of a material point x ∈ D (see [108] for a discussion of axiomatics related to this
mathematical concept). Importantly, unlike the scale model problem considered up to this point,
modeling now involves vector fields of data (e.g., f) and solution (i.e., u).

Governing equations for the mathematical model of linearly elastic deformation, subject to
homogeneous Dirichlet boundary conditions on ∂D, read: to find u : D → Rd such that

divσ[u] + f = 0 in D ,
u = 0 on ∂D .

(4.34)

Here σ : D → Rd×dsym is a symmetric matrix function, the so-called stress tensor. It depends on the

displacement field u via the so-called (linearized) strain tensor ε[u] : D → Rd×dsym , which is given by

ε[u] :=
1

2

(
gradu+ (gradu)>

)
, (ε[u])ij :=

1

2
(∂jui + ∂iuj) , i, j = 1, ..., d . (4.35)

In the linearized theory, the tensors σ and ε in (4.34), (4.35) are related by the linear constitutive
stress-strain relation (“Hooke’s law”)

σ = Aε . (4.36)

In (4.36), A is a fourth order tensor field, i.e.

A = {Aijkl : i, j, k, l = 1, ..., d},

with certain symmetries that must hold among its d4 components independent of the particular
material constituting the elastic body (see, e.g., [108] for details). Thus, (4.36) reads in components
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as σij = Aijklεkl with summation over repeated indices implied. Let us now fix d = 3. Symmetry
implies that ε and σ are characterized by 6 components. If, in addition, the material constituting
the elastic body is isotropic, the tensor A can in fact be characterized by only two independent
coefficient functions. We adopt here the Poisson ratio, denoted ν, and the modulus of elasticity E.
With these two parameters, the stress-strain law (4.36) can be expressed in the component form

σ11

σ22

σ33

σ12

σ13

σ23

 =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν





ε11

ε22

ε33

ε12

ε13

ε23

 .

(4.37)
We see from (4.37) that for isotropic elastic materials, the tensor A is proportional to the modulus
E > 0, with the Poisson ratio ν ∈ [0, 1/2). We remark that for common materials, ν ↑ 1/2 arises in
the so-called incompressible limit. In that case, (4.34) can be described by the Stokes equations.

With the constitutive law (4.36), we may cast the governing equation (4.34) into the so-called
“primal”, or “displacement-formulation”: find u : D → Rd such that

− div(Aε[u]) = f in D , u|∂D = 0 . (4.38)

This form is structurally identical to the scalar diffusion problem (3.1).
Accordingly, we fix ν ∈ [0, 1/2) and model uncertainty in the elastic modulus E > 0 in (4.37)

by a log-Gaussian random field

E(y)(x) := exp(b(y))(x) , x ∈ D , y ∈ U . (4.39)

Here, b(y) is a Gaussian series representation of the GRF b(Y (ω)) as discussed in Section 2.5. The
log-Gaussian ansatz E = exp(b) ensures

Emin(y) := ess inf
x∈D

E(y)(x) > 0 γ-a.e. y ∈ U ,

i.e., the γ-almost sure positivity of (realizations of) the elastic modulus E. Denoting the 3 × 3
matrix relating the stress and strain components in (4.37) also by A (this slight abuse of notation
should, however, not cause confusion in the following), we record that for 0 ≤ ν < 1/2, the matrix
A is invertible:

A−1 =
1

E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

 . (4.40)

It readily follows from this explicit expression that due to

E−1(y)(x) = exp(−b(y)(x)),

by the Gerschgorin theorem invertibility holds for γ-a.e. y ∈ U . Also, the components of A−1 are
GRFs (which are, however, fully correlated for deterministic ν).
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Occasionally, instead of the constants E and ν, one finds the (equivalent) so-called Lamé-
constants λ, µ. They are related to E and ν by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (4.41)

For GRF models (4.39) of E, (4.41) shows that for each fixed ν ∈ (0, 1/2), also the Lamé-constants
are GRFs which are fully correlated. This implies, in particular, that “large” realizations of the
GRF (4.39) do not cause so-called “volume locking” in the equilibrium equation (4.34): this effect
is related to the elastic material described by the constitutive equation (4.36) being nearly incom-
pressible. Incompressibility here arises as either ν ↑ 1/2 at fixed E or, equivalently, as λ → ∞ at
fixed µ.

Parametric weak solutions of (4.38) with (4.39) are within the scope of the abstract theory
developed up to this point. To see this, we provide a variational formulation of (4.38). Assuming for
convenience homogeneous Dirichlet boundary conditions, we multiply (4.38) by a test displacement
field v ∈ X := V d with V := H1

0 (D), and integrate by parts, to obtain the weak formulation: find
u ∈ X such that, for all v ∈ X holds (in the matrix-vector notation (4.37))∫

D
ε[v] · Aε[u] dx = 2µ(ε[u], ε[v]) + λ(divu,div v) = (f ,v) . (4.42)

The variational form (4.42) suggests that, as λ → ∞ for fixed µ, the “volume-preservation” con-
straint ‖ divu‖L2 = 0 is imposed for v = u in (4.42).

Unique solvability of (4.42) follows upon verifying coercivity of the corresponding bilinear form
on the left-hand side of (4.42). It follows from (4.37) and (4.40) that

∀v ∈ H1(D)d : Ecmin(ν)‖ε[v]‖2L2 ≤
∫
D
ε[v] · Aε[v] dx ≤ Ecmax(ν)‖ε[v]‖2L2 .

Here, the constants cmin, cmax are positive and bounded for 0 < ν < 1/2 and independent of E.
For the log-Gaussian model (4.39) of the elastic modulus E, the relations (4.41) show in particu-

lar, that the volume-locking effect arises as in the deterministic setting only if ν ' 1/2, independent
of the realization of E(y). Let us consider well-posedness of the variational formulation (4.42), for
log-Gaussian, parametric elastic modulus E(y) as in (4.39). To this end, with A1 denoting the
matrix A in (4.37) with E = 1, we introduce in (4.42) the parametric bilinear forms

b(u,v;y) := E(y)

∫
D
ε[v] · A1ε[u] dx =

E(y)

1 + ν

(
(ε[u], ε[v]) +

ν

1− 2ν
(divu,div v)

)
.

Let us verify continuity and coercivity of the parametric bilinear forms

{b(·, ·;y) : X ×X → R : y ∈ U}, (4.43)

where we recall that U := R∞. With A1 as defined above, we write for arbitrary v ∈ X = H1
0 (D)d,
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d = 2, 3, and for all y ∈ U0 ⊂ U where the set U0 is as in (3.21),

b(v,v;y) =

∫
D
ε[v] · (Aε[v]) dx =

∫
D
E(y) (ε[v] · (A1ε[v])) dx

≥ c(ν)

∫
D
E(y)‖ε[v]‖22 dx

≥ c(ν) exp(−‖b(y)‖L∞)

∫
D
‖ε[v]‖22 dx

≥ c(ν)

2
amin(y)|v|2H1

≥ CP
c(ν)

2
amin(y)‖v‖2H1 .

Here, in the last two steps we employed the first Korn’s inequality, and the Poincaré inequality,
respectively. The lower bound E(y) ≥ exp(−‖b(y)‖L∞) is identical to (3.20) in the scalar diffusion
problem.

In a similar fashion, continuity of the bilinear forms (4.43) may be established: there exists a
constant c′(ν) > 0 such that

∀u,v ∈ X, ∀y ∈ U0 : |b(u,v;y)| ≤ c′(ν) exp(‖b(y)‖L∞)‖u‖H1‖v‖H1 .

With continuity and coercivity of the parametric forms (4.43) verified for y ∈ U0, the Lax-Milgram
lemma ensures for given f ∈ L2(D)d the existence of the parametric solution family

{u(y) ∈ X : b(u,v;y) = (f ,v) ∀v ∈ X,y ∈ U0} . (4.44)

Similar to the scalar case discussed in Proposition 3.7, the following result on almost everywhere
existence and measurability holds.

Proposition 4.17. Under Assumption 3.6, γ(U0) = 1. For all k ∈ N there holds, with E(·)
denoting expectation with respect to γ,

E (exp(k‖b(·)‖L∞)) <∞ .

The parametric solution family (4.44) of the parametric elliptic boundary value problem (4.42) with
log-Gaussian modulus E(y) as in (4.39) is in Lk(U, V ; γ) for every finite k ∈ N.

For the parametric solution family (4.44), analytic continuations into complex parameter do-
mains, and parametric regularity results may be developed in analogy to the development in Sections
3.7 and 3.8. The key result for bootstrapping to higher order regularity is, in the case of smooth
boundaries ∂D, classical elliptic regularity for linear, Agmon-Douglis-Nirenberg elliptic systems
which comprise (4.38). In the polygonal (for d = 2) or polyhedral (d = 3) case, weighted regularity
shifts in Kondrat’ev type spaces are available in [62, Theorem 5.2] (for d = 2) and in [103] (for
both, d = 2, 3).

4.3.4 Maxwell equations with log-Gaussian permittivity

Similar models are available for time-harmonic, electromagnetic waves in dielectric media with
uncertain conductivity. We refer to [76], where log-Gaussian models are employed. There, also the
parametric regularity analysis of the parametric electric and magnetic fields is discussed, albeit by
real-variable methods. The setting in [76] is, however, so that the presently developed, complex
variable methods can be brought to bear on it. We refrain from developing the details.
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4.3.5 Linear parametric elliptic systems and transmission problems

In Section 3.8.1, Theorem 3.29 we obtained parameter-explicit elliptic regularity shifts for a scalar,
linear second order parametric elliptic divergence-form PDE in polygonal domain D ⊂ R2. A
key feature of these estimates in the subsequent analysis of sparsity of gpc expansions was the
polynomial dependence on the parameter in the bounds on parametric solutions in corner-weighted
Sobolev spaces of Kondrat’ev type. Such a-priori bounds are not limited to the particular setting
considered in Section 3.8.1, but hold for rather general, linear elliptic PDEs in smooth domains
D ⊂ Rd of space dimension d ≥ 2, with parametric differential and boundary operators of general
integer order. In particular, for example, for linear, anisotropic elastostatics in R3, for parametric
fourth order PDEs in R2 which arise in dimensionally reduced models of elastic continua (plates,
shells, etc.). We refer to [80] for statements of results and proofs.

In the results in Section 3.8.1, we admitted inhomogeneous coefficients which are regular in all
of D. In many applications, transmission problems with parametric, inhomogeneous coefficients
with are piecewise regular on a given, fixed (i.e. non-parametric) partition of D is of interest. Also
in these cases, corresponding a-priori estimates of parametric solution families with norm bounds
which are polynomial with respect to the parameters hold. We refer to [95] for such results, in
smooth domains D, with smooth interfaces.
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5 Parametric posterior analyticity and sparsity in BIPs

We have investigated the parametric analyticity of the forward solution maps of linear PDEs with
uncertain parametric inputs which typically arise from GRF models for these inputs. We have
also provided an analysis of sparsity in the Wiener-Hermite PC expansion of the corresponding
parametric solution families.

We now explore the notion of parametric holomorphy in the context of BIPs for linear PDEs.
For these PDEs we adopt the Bayesian setting as outlined, e.g., in [48] and the references there. This
Bayesian setting is briefly recapitulated in Section 5.1. With a suitable version of Bayes’ theorem,
the main result is a (short) proof of parametric (b, ξ, δ,C)-holomorphy of the Bayesian posterior
density for unbounded parameter ranges. This implies sparsity of the coefficients in Wiener-Hermite
PC expansions of the Bayesian posterior density, which can be leveraged to obtain higher-order
approximation rates that are free from the curse of dimensionality for various deterministic approx-
imation methods of the Bayesian expectations, for several classes of function space priors modelled
by product measures on the parameter sequences y. In particular, the construction of Gaussian
priors described in Section 2.2 is applicable. Concerning related previous works, we remark the
following. In [98] holomorphy for a bounded parameter domain (in connection with uniform prior
measure) has been addressed by complex variable arguments in the same fashion. In [96], MC and
QMC integration has been analyzed by real-variable arguments for such Gaussian priors. In [66],
corresponding results have been obtained also for so-called Besov priors, again by real-variable
arguments for the parametric posterior. Since the presently developed, quantified parametric holo-
morphy results are independent of the particular measure placed upon the unbounded parameter
domain R∞. The sparsity and approximation rate bounds for the parametric deterministic poste-
rior densities will imply approximate rate bounds also for prior constructions beyond the Gaussian
ones.

5.1 Formulation and well-posedness

With E and X denoting separable Banach and Hilbert spaces over C, respectively, we consider
a forward solution map U : E → X and an observation map O : X → Rm. In the context of
the previous sections, U could denote again the map which associates with a diffusion coefficient
a ∈ E := L∞(D;C) the solution U(a) ∈ X := H1

0 (D;C) of the equation (5.7) below. We assume
the map U to be Borel measurable.

The inverse problem consists in determining the (expected value of an) uncertain input datum
a ∈ E from noisy observation data d ∈ Rm. Here, the observation noise η ∈ Rm is assumed additive
centered Gaussian, i.e., the observation data d for input a is

d = O ◦ U(a) + η ,

where η ∼ N (0,Γ). We assume the observation noise covariance Γ ∈ Rm×m is symmetric positive
definite.

In the so-called Bayesian setting of the inverse problem, one assumes that the uncertain input a
is modelled as RV which is distributed according to a prior measure π0 on E. Then, under suitable
conditions, which are made precise in Theorem 5.2 below, the posterior distribution π(·|d) on the
conditioned RV U|d is absolutely continuous w.r.t. the prior measure π0 on E and there holds
Bayes’ theorem in the form

dπ(·|d)

dπ0
(a) =

1

Z
Θ(a). (5.1)
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In (5.1), the posterior density Θ and the normalization constant Z are given by

Θ(a) = exp(−Φ(d; a)), Φ(d; a) =
1

2
‖Γ−1/2(d−O(U(a)))‖22, Z = Eπ0 [Θ(·)] . (5.2)

Additional conditions ensure that the posterior measure π(·|d) is well-defined and that (5.1) holds
according to the following result from [48].

Proposition 5.1. Assume that O ◦ U : E → Rm is continuous and that π0(E) = 1. Then the
posterior π(·|d) is absolutely continuous with respect to π0, and (5.2) holds.

The condition π0(E) = 1 can in fact be weakened to π0(E) > 0 (e.g. [48, Theorem 3.4]).
The solution of the BIP amounts to the evaluation of the posterior expectation Eµd [·] of a

continuous linear map φ : X → Q of the map U(a), where Q is a suitable Hilbert space over C.
Solving the Bayesian inverse problem is thus closely related to the numerical approximation of the
posterior expectation

Eπ(·|d)[φ(U(·))] ∈ Q.

For computational purposes, and to facilitate Wiener-Hermite PC approximation of the density
Θ in (5.1), one parametrizes the input data a = a(y) ∈ E by a Gaussian series as discussed
in Section 2.5. Inserting into Θ(a) in (5.1), (5.2) this results in a countably-parametric density
U 3 y 7→ Θ(a(y)), for y ∈ U , and the Gaussian reference measure π0 on E in (5.1) is pushed
forward into a countable product γ of the sequence of Gaussian measures {γ1,n}n∈N on R: using
(5.1) and choosing a Gaussian prior (e.g. [48, Section 2.4] or [66, 85])

π0 = γ =
⊗
j∈N

γ1,n

on U (see Example 2.17), the Bayesian estimate, i.e., the posterior expectation, can then be written
as a (countably) iterated integral [98, 48, 96] with respect to the product GM γ, i.e.

Eπ(·|d)[φ(U(a(·)))] =
1

Z

∫
U
φ(U(a(y)))Θ(a(y)) dγ(y) ∈ Q, Z =

∫
U

Θ(a(y)) dγ(y) ∈ R. (5.3)

The parametric density U → R in (5.3) which arises in Bayesian PDE inversion under Gaussian
prior and also under more general, so-called Besov prior measures on U , see, e.g. [48, Section 2.3],
[66, 85]. The parametric density

y 7→ φ(U(a(y)))Θ(a(y)) ,

inherits sparsity from the forward map y 7→ U(a(y)), whose sparsity is expressed as before in terms
of `p-summability and weighted `2-summability of Wiener-Hermite PC expansion coefficients. We
employ the parametric holomorphy of the forward map a 7→ U(a) to quantify the sparsity of the
parametric posterior densities y 7→ Θ(a(y)) and y 7→ φ(U(a(y)))Θ(a(y)) in (5.3).

5.2 Posterior parametric holomorphy

With a Gaussian series in the data space E, for the resulting parametric data-to-solution map

u : U → X : y 7→ U(a(y)),
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we now prove that under certain conditions both, the corresponding parametric posterior density

y 7→ exp
(
−(d−O(u(y)))>Γ−1(d−O(u(y)))

)
(5.4)

in (5.2), and the integrand

y 7→ φ(u(y)) exp
(
−(d−O(u(y)))>Γ−1(d−O(u(y)))

)
(5.5)

in (5.3) are (b, ξ, δ,C)-holomorphic and (b, ξ, δ,Q)-holomorphic, respectively.

Theorem 5.2. Let r > 0. Assume that the map u : U → X is (b, ξ, δ,X)-holomorphic with
constant functions ϕN ≡ r, N ∈ N, in Definition 4.1. Let the observation noise covariance matrix
Γ ∈ Rm×m be symmetric positive definite.

Then, for any bounded linear quantity of interest φ ∈ L(X,Q), and for any observable O ∈
(X ′)m with arbitrary, finite m, the function in (5.4) is (b, ξ, δ,C)-holomorphic and the function in
(5.5) is (b, ξ, δ,Q)-holomorphic.

Proof. We only show the statement for the parametric integrand in (5.5), as the argument for the
posterior density in (5.4) is completely analogous.

Consider the map

Ξ : {v ∈ X : ‖v‖X ≤ r} → Q : v 7→ φ(v) exp(−(d−O(v))Γ−1(d−O(v))).

This function is well-defined. We have |O(v)| ≤ ‖O‖X′r and |φ(v)| ≤ ‖φ‖L(X;Q)r for all v ∈ X
with ‖v‖X ≤ r. Since exp : C → C is Lipschitz continuous on compact subsets of C and since
φ ∈ L(X;Q) is bounded linear map (and thus Lipschitz continuous), we find that

sup
‖v‖X≤r

‖Ξ(v)‖Q =: r̃ <∞

and that
Ξ : {v ∈ X : ‖v‖X ≤ r} → C

is Lipschitz continuous with some Lipschitz constant L > 0.
Let us recall that the (b, ξ, δ,X)-holomorphy of u : U → X, implies the existence of (continuous)

functions uN ∈ L2(RN , X; γN ) such that with ũN (y) = uN (y1, . . . , yN ) it holds limN→∞ ũN = u in
the sense of L2(U,X; γ). Furthermore, if

N∑
j=1

bj%j ≤ δ

(i.e. % = (%j)
N
j=1 is (b, ξ)-admissible in the sense of Definition 4.1), then uN allows a holomorphic

extension
uN : S% → X

such that for all y ∈ RN

sup
z∈B%

‖uN (y + z)‖X ≤ ϕN (y) = r ∀y ∈ RN , (5.6)
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see (4.1) for the definition of S% and B%.
We want to show that f(y) := Ξ(u(y)) is well-defined in L2(U,Q; γ), and given as the limit of

the functions
f̃N (y) = fN ((yj)

N
j=1)

for all y ∈ U and N ∈ N, where

fN ((yj)
N
j=1) = Ξ(uN ((yj)

N
j=1).

Note at first that fN : RN → Q is well-defined. In the case

N∑
j=1

bj%j ≤ δ,

fN allows a holomorphic extension fN : S% → X given through Ξ ◦ uN . Using (5.6), this extension
satisfies for any N ∈ N and any (b, ξ)-admissible % ∈ (0,∞)N

sup
z∈B%

|fN (y + z)| ≤ sup
‖v‖X≤r

|Ξ(v)| = r̃ ∀y ∈ RN .

This shows assumptions (i)-(ii) of Definition 4.1 for fN : RN → Q.
Finally we show assumption (iii) of Definition 4.1. By assumption it holds limN→∞ ũN = u in

the sense of L2(U,X; γ). Thus for f = Ξ ◦ u and with fN = Ξ ◦ uN∫
U
‖f(y)− fN (y)‖2Q dγ(y) =

∫
U
‖Ξ(u(y))− Ξ(uN (y))‖2Q dγ(y)

≤ L2

∫
U
‖u(y)− uN (y)‖2X dγ(y),

which tends to 0 as N →∞. Here we used that L is a Lipschitz constant of Ξ.

Let us now discuss which functions satisfy the requirements of Theorem 5.2. Additional to
(b, ξ, δ,X)-holomorphy, we had to assume boundedness of the holomorphic extensions in Defini-

tion 4.1. For functions of the type as in Theorem 4.11 u(y) = limN→∞ U
(

exp
(∑N

j=1 yjψj

))
, the

following result gives sufficient conditions such that the assumptions of Theorem 5.2 are satisfied
for the forward map.

Corollary 5.3. Assume that U : O → X and (ψj)j∈N ⊂ E satisfy Assumptions (i), (iii) and (iv)
of Theorem 4.11 and additionally for some r > 0

(ii) ‖U(a)‖X ≤ r for all a ∈ O.

Then

u(y) = lim
N→∞

U

exp

 N∑
j=1

yjψj

 ∈ L2(U,X; γ)

is (b, ξ, δ,X)-holomorphic with constant functions ϕN ≡ r, N ∈ N, in Definition 4.1.

Proof. By Theorem 4.11, u is (b, ξ, δ,X)-holomorphic. Recalling the construction of ϕN : RN → R
in Step 3 of the proof of Theorem 4.11, we observe that ϕN can be chosen as ϕN ≡ r.
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5.3 Example: parametric diffusion coefficient

We revisit the example of the diffusion equation with parametric log-Gaussian coefficient as intro-
duced in Section 3.5 and used in Section 4.3.1. With the Lipschitz continuity of the data-to-solution
map established in Section 4.3.1, we verify the well-posedness of the corresponding BIP.

We fix the dimension d ∈ N of the physical domain D ⊆ Rd, being a bounded Lipschitz domain,
and choose E = L∞(D;C) and X = H1

0 (D;C). We assume that f ∈ X ′ and a0 ∈ E with

ρ(a0) > 0.

For
a ∈ O := {a ∈ E : ρ(a) > 0},

let U(a) be the solution to the equation

−div((a0 + a)∇U(a)) = f in D, U(a) = 0 on ∂D, (5.7)

for some fixed f ∈ X ′.
Due to

ρ(a0 + a) ≥ ρ(a0) > 0,

for every a ∈ O, as in (4.20) we find that U(a) is well-defined and it holds

‖U(a)‖X ≤
‖f‖X′
ρ(a0)

=: r ∀a ∈ O.

This shows assumption (ii) in Corollary 5.3. Slightly adjusting the arguments in Section 4.3.1 one
observes that U : O → X satisfies assumptions (i) and (iii) in Theorem 4.11. Fix a representation
system (ψj)j∈N ⊆ V such that with bj := ‖ψj‖E it holds (bj)j∈N ∈ `1(N). Then Corollary 5.3
implies that the forward map

u(y) = lim
N→∞

U
(

exp
( N∑
j=1

yjψj

))
satisfies the assumptions of Theorem 5.2. Theorem 5.2 in turn implies that the posterior density for
this model is (b, ξ, δ,X)-holomorphic. We shall prove in Section 6 that sparse-grid quadratures can
be constructed which achieve higher order convergence for the integrands in (5.4) and (5.5), with the
convergence rate being a decreasing function of p ∈ (0, 4/5) such that b ∈ `p(N), see Theorem 6.16.
Furthermore, Theorem 4.9 implies a certain sparsity for the family of Wiener-Hermite PC expansion
coefficients of the parametric maps in (5.4) and (5.5).
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6 Smolyak sparse-grid interpolation and quadrature

Theorem 4.9 shows that if v is (b, ξ, δ,X)-holomorphic for some b ∈ `p(N) and some p ∈ (0, 1), then
(‖vν‖X)ν∈F ∈ `2p/(2−p)(F). In Remark 4.10, based on this summability of the Wiener-Hermite PC
expansion coefficients, we derived the convergence rate of best n-term approximation as in (4.13).
This approximation is not linear since the approximant is taken accordingly to the N largest terms
‖vν‖X . To construct a linear approximation which gives the same convergence rate it is suitable
to use the stronger weighted `2-summability result (4.11) in Theorem 4.9.

In Theorem 4.9 of Section 4, we have obtained the weighted `2-summability∑
ν∈F

βν(r,%)‖uν‖2X <∞ with
(
βν(r,%)−1/2

)
ν∈F ∈ `

p/(1−p)(F), (6.1)

for the norms of the Wiener-Hermite PC expansion coefficients of (b, ξ, δ,X)-holomorphic functions
u if b ∈ `p(N) for some 0 < p < 1. In Section 4.2 and Section 5 we saw that solutions to certain
parametric PDEs as well as posterior densities satisfy (b, ξ, δ,X)-holomorphy.

The goal of this section is in a constructive way to sharpen and improve these results in a
form more suitable for numerical implementation by using some ideas from [43, 45, 114]. We
shall construct a new weight family (cν)ν∈F based on (βν(r,%))ν∈F , such that (6.1) with βν(r,%)

replaced by cν , and its generalization of the form (3.43) for σν = c
1/2
ν hold. Once a suitable family

(cν)ν∈F has been identified, we obtain a multiindex set Λε ⊆ F for ε > 0 via

Λε := {ν ∈ F : c−1
ν ≥ ε}, (6.2)

The set Λε will then serve as an index set to define interpolation operators IΛε and quadrature
operators QΛε . As the sequence (cν)ν∈F is used to construct sets of multiindices, it should possess
certain features, including each cν to be easily computable for ν ∈ F , and for the resulting numerical
algorithm to be efficient.

6.1 Smolyak sparse-grid interpolation and quadrature

6.1.1 Smolyak sparse-grid interpolation

Recall that for every n ∈ N0 denote by (χn,j)
n
j=0 ⊆ R the Gauss-Hermite points in one dimension

(in particular, χ0,0 = 0), that is, the roots of Hermite polynomial Hn+1. Let

In : C0(R)→ C0(R)

be the univariate polynomial Lagrange interpolation operator defined by

(Inu)(y) :=
n∑
j=0

u(χn,j)
n∏
i=0
i 6=j

y − χn,i
χn,j − χn,i

, y ∈ R,

with convention that I−1 : C0(R)→ C0(R) is defined as the constant 0 operator.
For any multi-index ν ∈ F , introduce the tensorized operators Iν by

I0u := u((χ0,0)j∈N),
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and for ν 6= 0 via

Iν :=
⊗
j∈N

Iνj , (6.3)

i.e.,

Iνu(y) =
∑

{µ∈F :µ≤ν}

u((χνj ,µj )j∈N)
∏
j∈N

νj∏
i=0
i 6=µj

yj − χνj ,i
χνj ,µj − χνj ,i

, y ∈ U.

The operator Iν can thus be applied to functions u which are pointwise defined at each (χνj ,µj )j∈N ∈
U . Via Remark 4.4, we can apply it in particular to (b, ξ, δ,X)-holomorphic functions. Observe
that the product over j ∈ N in (6.3) is a finite product, since for every j with νj = 0, the inner
product over i ∈ {0, . . . , µj − 1, µj + 1, . . . , νj} is over an empty set, and therefore equal to one by
convention. Then for a finite set Λ ⊆ F

IΛ :=
∑
ν∈Λ

⊗
j∈N

(Iνj − Iνj−1). (6.4)

Expanding all tensor product operators, we get

IΛ =
∑
ν∈Λ

σΛ;νIν where σΛ;ν :=
∑

{e∈{0,1}∞ :ν+e∈Λ}

(−1)|e|. (6.5)

Definition 6.1. An index set Λ ⊆ F is called downward closed, if it is finite and if for every
ν ∈ Λ it holds µ ∈ Λ whenever µ ≤ ν. Here, the ordering “≤” between two indices µ = (µj)j∈N
and ν = (νj)j∈N in F expresses that for all j ∈ N holds µj ≤ νj with strict inequality for at least
one index j.

As is well-known, IΛ possesses the following crucial property, see for example [111, Lemma
1.3.3].

Lemma 6.2. Let Λ ⊆ F be downward closed. Then IΛf = f for all f ∈ span{yν : ν ∈ Λ}.

The reason to choose the collocation points (χn,j)
n
j=0 as the Gauss-Hermite points, is that it

was recently shown that the interpolation operators In then satisfy the following stability estimate,
see [52, Lemma 3.13].

Lemma 6.3. For every n ∈ N0 and every m ∈ N it holds

‖In(Hm)‖L2(R;γ1) ≤ 4
√

2m− 1.

With the presently adopted normalization of the GM γ1, it holds H0 ≡ 1 and therefore In(H0) =
H0 for all n ∈ N0 (since the interpolation operator In exactly reproduces all polynomials of degree
n ∈ N0). Hence

‖In(H0)‖L2(R;γ1) = ‖H0‖L2(R;γ1) = 1

for all n ∈ N0. Noting that 4
√

2m− 1 ≤ (1 +m)2 for all m ∈ N, we get

‖In(Hm)‖L2(R;γ1) ≤ (1 +m)2 ∀n, m ∈ N0.
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Consequently

‖Iν(Hµ)‖L2(U ;γ) =
∏
j∈N
‖Iνj (Hµj )‖L2(R;γ1) ≤

∏
j∈N

(1 + µj)
2 ∀ν, µ ∈ F . (6.6)

Recall that for ν ∈ F and τ ≥ 0, we denote

pν(τ) :=
∏
j∈N

(1 + νj)
τ .

If νj > µj then (Iνj − Iνj−1)Hµj = 0. Thus,⊗
j∈N

(Iνj − Iνj−1)Hµ = 0,

whenever there exists j ∈ N such that νj > µj . Hence, for any downward closed set Λ, it holds

‖IΛ(Hµ)‖L2(U ;γ) ≤ pµ(3). (6.7)

Indeed,

‖IΛ(Hµ)‖L2(U ;γ) ≤
∑

{ν∈Λ :ν≤µ}

pµ(2) ≤ |{ν ∈ Λ : ν ≤ µ}|pµ(2) =
∏
j∈N

(1 + µj)pµ(2) = pµ(3).

6.1.2 Smolyak sparse-grid quadrature

Recall that analogously to In we introduce univariate polynomial quadrature operators via

Qnu :=
n∑
j=0

u(χn,j)ωn,j , ωn,j :=

∫
R

∏
i 6=j

y − χn,i
χn,j − χn,i

dγ1(y).

Furthermore, we define
Q0u := u((χ0,0)j∈N),

and for ν 6= 0,

Qν :=
⊗
j∈N

Qνj ,

i.e.,

Qνu =
∑

{µ∈F :µ≤ν}

u((χνj ,µj )j∈N)
∏
j∈N

ωνj ,µj ,

and finally for a finite downward closed Λ ⊆ F with σΛ;ν as in (6.5),

QΛ :=
∑
ν∈Λ

σΛ;νQν .

Again we emphasize that the above formulas are meaningful as long as point evaluations of u at
each (χνj ,µj )j∈N are well defined, ν ∈ F , µ ≤ ν. Also note that

QΛf =

∫
U

IΛf(y) dγ(y). (6.8)
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Recall that the set F2 is defined by

F2 := {ν ∈ F : νj 6= 1 ∀j}. (6.9)

We thus have F2 ( F . Similar to Lemma 6.2 we have the following lemma, which can be proven
completely analogous to [111, Lemma 1.3.16] (also see [114, Remark 4.2]).

Lemma 6.4. Let Λ ⊆ F be downward closed. Then

QΛv =

∫
U
v(y) dγ(y)

for all v ∈ span{yν : ν ∈ Λ ∪ (F\F2)}.

With (6.6) it holds

|Qν(Hµ)| =
∣∣∣∣∫
U

Iν(Hµ)(y) dγ(y)

∣∣∣∣ ≤ ‖Iν(Hµ)‖L2(U ;γ) ≤
∏
j∈N

(1 + µj)
2 ∀ν, µ ∈ F ,

and similarly, using (6.7), we have the bound

|QΛ(Hµ)| ≤ pµ(3). (6.10)

6.2 Multiindex sets

In this section, we first recall some arguments from [43, 45, 114] which allow to bound the number
of required function evaluations in the interpolation an quadrature algorithm. Subsequently, a
construction of a suitable family (ck,ν)ν∈F is provided for k ∈ {1, 2}. The index k determines
whether the family will be used for a sparse-grid interpolation (k = 1) or a Smolyak-type sparse-
grid quadrature (k = 2) algorithm. Finally, it is shown that the multiindex sets Λk,ε as in (6.2)
based on (ck,ν)ν∈F , guarantee algebraic convergence rates for certain truncated Wiener-Hermite
PC expansions. This will be exploited to verify convergence rates for interpolation in Section 6.3
and for quadrature in Section 6.4.

6.2.1 Number of function evaluations

In order to obtain a convergence rate in terms of the number of evaluations of u, we need to
determine the number of interpolation points used by the operator IΛ or QΛ. Since the discussion
of QΛ is very similar, we concentrate here on IΛ.

Computing the interpolant Iνu in (6.3) requires knowledge of the function values of u at each
point in

{(χνj ,µj )j∈N : µ ≤ ν}.

The cardinality of this set is bounded by
∏
j∈N(1 + νj) = pν(1). Denote by

pts(Λ) := {(χνj ,µj )j∈N : µ ≤ ν, ν ∈ Λ} (6.11)

the set of interpolation points defining the interpolation operator IΛ (i.e., |pts(Λ)| is the number
of function evaluations of u required to compute IΛu). By (6.5) we obtain the bound

|pts(Λ)| ≤
∑

{ν∈Λ :σΛ,ν 6=0}

∏
j∈N

(1 + νj) =
∑

{ν∈Λ :σΛ,ν 6=0}

pν(1). (6.12)
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6.2.2 Construction of (ck,ν)ν∈F

We are now in position to construct (ck,ν)ν∈F . As mentioned above, we distinguish between the
cases k = 1 and k = 2, which correspond to polynomial interpolation or quadrature. Note that in
the next lemma we define ck,ν for all ν ∈ F , but the estimate provided in the lemma merely holds
for ν ∈ Fk, k ∈ {1, 2}, where F1 := F and F2 is defined in (6.9). Throughout what follows, empty
products shall equal 1 by convention.

Lemma 6.5. Assume that τ > 0, k ∈ {1, 2} and r > max{τ, k}. Let % ∈ (0,∞)∞ be such that
%j →∞ as j →∞.

Then there exist K > 0 and C0 > 0 such that

ck,ν :=
∏

j∈supp(ν)

max {1,K%j}2k νr−τj , ν ∈ F , (6.13)

satisfies
C0ck,νpν(τ) ≤ βν(r,%) ∀ν ∈ Fk (6.14)

with βν(r,%) as in (3.36).

Proof. Step 1. Fix ν ∈ Fk, then j ∈ supp(ν) implies νj ≥ k and thus min{r, νj} ≥ k since r > k
by assumption. With s := min{r, νj} ≤ νj , for all j ∈ N holds(

νj
s

)
=

νj !

(νj − s)!s!
≥ 1

s!
(νj − s+ 1)s ≥ νsj

1

s!ss
≥ νsj

1

r!rr
= ν

min{νj ,r}
j

1

r!rr
≥ νrj

1

r!r2r
.

Furthermore, if j ∈ supp(ν), then due to s = min{νj , r} ≥ k, with %0 := min{1,minj∈N %j} we have

%2r
0 ≤ min{1, %j}2r ≤ %2(s−k)

j .

Thus
%

min{νj ,r}
j ≥ %2r

0 %
2k
j

for all j ∈ N. In all, we conclude

βν(r,%) =
∏
j∈N

(
r∑
l=0

(
νj
l

)
%2l
j

)
≥

∏
j∈supp(ν)

(
νj

min{νj , r}

)
%

2 min{νj ,r}
j ≥

∏
j∈supp(ν)

%2r
0

r!r2r
%2k
j ν

r
j . (6.15)

Since ν ∈ Fk was arbitrary, this estimate holds for all ν ∈ Fk.
Step 2. Denote %̂j := max{1,K%j}, where K > 0 is still at our disposal. We have

pν(τ) ≤
∏

j∈supp(ν)

2τντj

and thus
ck,νpν(τ) ≤

∏
j∈supp(ν)

2τ %̂2k
j ν

r
j . (6.16)

Again, this estimate holds for any ν ∈ Fk.
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With %0 := min{1,minj∈N %j} denote

Cb :=

(
%2r

0

r!r2r

)1/(2k)

and Cc := (2τ )1/(2k).

Set

K :=
Cb
Cc
, %̃j = K%j

for all j ∈ N. Then

Cb%j = Cc%̃j = Cc%̂j

{
1 if K%j ≥ 1,

K%j if K%j < 1.

Let
C0 :=

∏
{j∈N :K%j<1}

(K%j)
2k

and note that this product is over a finite number of indices, since %j → ∞ as j → ∞. Then for
any ν ∈ Fk ∏

j∈supp(ν)

Cc%̃j ≥ C
1
2k
0

∏
j∈supp(ν)

Cc%̂j .

With (6.15) and (6.16) we thus obtain for every ν ∈ Fk,

βν(r,%) ≥
∏

j∈supp(ν)

(Cb%j)
2kνrj =

∏
j∈supp(ν)

(Cc%̃j)
2k νrj

≥ C0

∏
j∈supp(ν)

(Cc%̂j)
2kνrj ≥ C0ck,νpν(τ).

6.2.3 Summability properties of the collection (ck,ν)ν∈F

First we discuss the summability of the collection (ck,ν)ν∈F . We will require the following lemma
which is a modification of [43, Lemma 6.2].

Lemma 6.6. Let θ ≥ 0. Let further k ∈ {1, 2}, τ > 0, r > max{k, τ} and q > 0 be such that
(r − τ)q/(2k) − θ > 1. Assume that (%j)j∈N ∈ (0,∞)∞ satisfies (%−1

j )j∈N ∈ `q(N). Then with
(ck,ν)ν∈F as in Lemma 6.5 it holds ∑

ν∈F
pν(θ)c

− q
2k

k,ν <∞.

Proof. This lemma can be proven in the same way as the proof of [43, Lemma 6.2]. We provide a
proof for completeness. With %̂j := max{1,K%j} it holds (%̂−1

j )j∈N ∈ `q(N). By definition of ck,ν ,
factorizing, we get

∑
ν∈F

pν(θ)c
− q

2k
k,ν =

∑
ν∈F

∏
j∈supp(ν)

(1 + νj)
θ
(
%̂2k
j ν

r−τ
j

)− q
2k ≤

∏
j∈N

(
2θ%̂−qj

∑
n∈N

n
−q(r−τ)

2k nθ

)
.
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The sum over n equals some finite constant C since by assumption q(r− τ)/2k− θ > 1. Using the
inequality log(1 + x) ≤ x for all x > 0, we get

∑
ν∈F

c
− q

2k
k,ν ≤

∏
j∈N

(
1 + C%̂−qj

)
= exp

∑
j∈N

log(1 + C%̂−qj )

 ≤ exp

∑
j∈N

C%̂−qj

 ,

which is finite since (%̂−1
j ) ∈ `q(N).

Based on (6.2), for ε > 0 and k ∈ {1, 2} let

Λk,ε := {ν ∈ F : c−1
k,ν ≥ ε} ⊆ F . (6.17)

The summability shown in Lemma 6.6 implies algebraic convergence rates of the tail sum as provided
by the following proposition. This is well-known and follows by Stechkin’s lemma [102] which itself
is a simple consequence of Hölder’s inequality.

Proposition 6.7. Let k ∈ {1, 2}, τ > 0, and q > 0. Let (%−1
j )j∈N ∈ `q(N) and r > max{k, τ},

(r − τ)q/(2k) > 2. Assume that (aν)ν∈F ∈ [0,∞)∞ is such that∑
ν∈F

βν(r,%)a2
ν <∞. (6.18)

Then there exists a constant C solely depending on (ck,ν)ν∈F in (6.13) such that for all ε > 0 it
holds that ∑

ν∈Fk\Λk,ε

pν(τ)aν ≤ C

(∑
ν∈F

βν(r,%)a2
ν

) 1
2

ε
1
2
− q

4k ,

and
|pts(Λk,ε)| ≤ Cε−

q
2k . (6.19)

Proof. We estimate

∑
ν∈Fk\Λk,ε

pν(τ)aν ≤

( ∑
ν∈Fk\Λk,ε

pν(τ)2a2
νck,ν

)1/2( ∑
ν∈Fk\Λk,ε

c−1
k,ν

)1/2

.

The first sum is finite by (6.18) and because C0pν(τ)2ck,ν ≤ βν(r,%) according to (6.14). By
Lemma 6.6 and (6.17) we obtain∑

ν∈Fk\Λk,ε

c−1
k,ν =

∑
c−1
k,ν<ε

c
− q

2k
k,ν c

−1+ q
2k

k,ν ≤ Cε1− q
2k

which proves the first statement. Moreover, for each ν ∈ F , the number of interpolation (quadra-
ture) points is pν(1). Hence

|pts(Λk,ε)| =
∑
ν∈Λk,ε

pν(1) =
∑
c−1
k,ν≥ε

pν(1)c
− q

2k
k,ν c

q
2k
k,ν ≤ ε

− q
2k

∑
ν∈Fk

pν(1)c
− q

2k
k,ν ≤ Cε

− q
2k

again by Lemma 6.6 and (6.17).
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6.2.4 Computing Λε

Having identified appropriate sequences (cν)ν∈F , in order to be able to implement the Smolyak
sparse-grid interpolation operator IΛε and the Smolyak sparse-grid quadrature operator QΛε , in
practice it remains to compute the sets Λε = in (6.2). We now recall Algorithm 2 in [111, Sec. 3.1.3]
which achieves this in O(|Λε|) work and memory. For the convenience of the reader we recall the
main statement regarding the algorithm’s complexity below in Lemma 6.8. Additionally, we point
to [19, Alg. 4.13] which presents an alternative approach—a recursive algorithm that also achieves
linear computational complexity.

In the following denote ej := (δij)j∈N ∈ N∞0 .

Algorithm 1 Lambda(ε, (cν)ν∈F ))

1: ν ← 0
2: if cν < ε then
3: Λ← ∅
4: return Λ
5: else
6: Λ← {ν}
7: while True do
8: d← 1
9: while aν+ed < ε do

10: if νd 6= 0 then . Reject ν + ed where νd 6= 0
11: νd ← 0
12: d← d+ 1
13: else if ν 6= 0 then . Reject ν + ed where νd = 0
14: d = min{j ∈ N : νj 6= 0}
15: else . Reject ed ⇒ stop algorithm
16: return Λ
17: ν ← ν + ed
18: Λ← Λ ∪ {ν}

The algorithm is of linear complexity in the following sense [111, 3.1.12]:

Lemma 6.8. Let (cν)ν∈F ⊆ [0,∞) be a null-sequence such that (i) µ ≤ ν implies cµ ≥ cν and (ii)
if ν ∈ F and for some i < j it holds νi = νj = 0, then cν+ei ≥ cν+ej .

Then for any ε > 0, Algorithm 1 terminates and returns Λε in (6.2). Moreover each line of
Algorithm 1 is executed at most 4|Λε|+ 1 times.

6.3 Interpolation convergence rate

If X is a Hilbert space, then the Wiener-Hermite PC expansion of u : U → X converges in
general only in L2(U,X; γ). As mentioned before this creates some subtleties when working with
interpolation and quadrature operators based on pointwise evaluations of the target function. To
demonstrate this, we recall the following example from [40], which does not satisfy (b, ξ, δ,C)-
holomorphy, since Definition 4.1 (iii) does not hold.
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Example 6.9. Define u : U → C pointwise by

u(y) :=

{
1 if |{j ∈ N : yj 6= 0}| <∞
0 otherwise.

Then u vanishes on the complement of the γ-null set⋃
n∈N

Rn × {0}∞.

Consequently u is equal to the constant zero function in the sense of L2(U ; γ). Hence there holds
the expansion u =

∑
ν∈F 0 ·Hν with convergence in L2(U ; γ). Now let Λ ⊆ F be nonempty, finite

and downward closed. As explained in Section 6.1.1, the interpolation operator IΛ reproduces all
polynomials in span{yν : ν ∈ Λ}. Since any point (χνj ,µj )j∈N with µj ≤ νj is zero in all but finitely
many coordinates (due to χ0,0 = 0), we observe that

IΛu ≡ 1 6= 0 ≡
∑
ν∈F

0 · IΛHν .

This is due to the fact that u =
∑
ν∈F 0 · Hν only holds in the L2(U ; γ) sense, and interpolation

or quadrature (which require pointwise evaluation of the function) are not meaningful for L2(U ; γ)
functions.

The above example shows that if

u =
∑
ν∈F

uνHν ∈ L2(U ; γ)

with Wiener-Hermite PC expansion coefficients (uν)ν∈F ⊂ R, then the formal equalities

IΛu =
∑
ν∈F

uνIΛHν ,

and
QΛu =

∑
ν∈F

uνQΛHν

do in general not hold in L2(U ; γ). Our definition of (b, ξ, δ,X)-holomorphy allows to circumvent
this by interpolating not u itself but the approximations uN to u which are pointwise defined and
only depend on finitely many variables, cp. Definition 4.1.

Our analysis starts with the following result about pointwise convergence. For k ∈ {1, 2} and
N ∈ N we introduce the notation

FNk := {ν ∈ Fk : supp(ν) ⊆ {1, . . . , N}}.

These sets thus contain multiindices ν for which νj = 0 for all j > N .

Lemma 6.10. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ (0,∞)∞. Let N ∈ N, and let
ũN : U → X be as in Definition 4.1. For ν ∈ F define

ũN,ν :=

∫
U
ũN (y)Hν(y) dγ(y).
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Then,

ũN (y) =
∑
ν∈FN1

ũN,νHν(y) (6.20)

with the equality and pointwise absolute convergence in X for all y ∈ U .

Proof. From the Cramér bound

|H̃n(x)| < 2n/2
√
n! exp(x2/2),

see [74], and where H̃n(x/
√

2) := 2n/2
√
n!Hn(x), see [1, Page 787], we have for all n ∈ N0

sup
x∈R

exp(−x2/4)|Hn(x)| ≤ 1. (6.21)

By Theorem. 4.8 (ũN,ν)ν∈F ∈ `1(F). Note that for ν ∈ FN1

ũN,ν =

∫
U
ũN (y)Hν(y) dγ(y) =

∫
RN

uN (y1, . . . , yN )

N∏
j=1

Hνj (yj) dγN ((yj)
N
j=1)

and thus ũN,ν coincides with the Wiener-Hermite PC expansion coefficient of uN w.r.t. the multi-
index (νj)

N
j=1 ∈ NN0 . The summability of the collection‖uN,ν‖X‖ N∏

j=1

Hνj (yj)‖L2(RN ;γN )


ν∈FN1

now implies in particular,

uN ((yj)
N
j=1) =

∑
ν∈FN1

uN,ν

N∏
j=1

Hνj (yj)

in the sense of L2(RN ; γN ).
Due to (6.21) and (‖uN,ν‖X)ν∈FN1

∈ `1(FN1 ) we can define a continuous function

ûN : (yj)
N
j=1 7→

∑
ν∈NN0

uN,ν

N∏
j=1

Hνj (yj) (6.22)

on RN . By (6.21), for every fixed (yj)
N
j=1 ∈ RN we have the uniform bound |

∏N
j=1Hνj (yj)| ≤∏N

j=1 exp(
y2
j

4 ) independent of ν ∈ FN1 . The summability of (‖uN,ν‖X)ν∈FN1
implies the absolute

convergence of the series in (6.22) for every fixed (yj)
N
j=1 ∈ RN .

Since they have the same Wiener-Hermite PC expansion, it holds ûN = uN in the sense of
L2(RN ; γN ).

By Definition 4.1 the function u : RN → X is in particular continuous (it even allows a
holomorphic extension to some subset of CN containing RN ). Now ûN , uN : RN → X are two
continuous functions which are equal in the sense of L2(RN ; γN ). Thus they coincide pointwise and
it holds in X for every y ∈ U ,

ũN (y) = uN ((yj)
N
j=1) =

∑
ν∈FN1

ũN,νHν(y).
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The result on the pointwise absolute convergence in Lemma 6.10 is not sufficient for establishing
the convergence rate of the interpolation approximation in the space L2(U,X; γ). To this end, we
need the result on convergence in the space L2(U,X; γ) in the following lemma.

Lemma 6.11. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ (0,∞)∞. Let N ∈ N, and let
ũN : U → X be as in Definition 4.1 and ũN,ν as in Lemma 6.10. Let Λ ⊂ F1 be a finite, downward
closed set.

Then we have

IΛũN =
∑
ν∈FN1

ũN ;νIΛHν (6.23)

with the equality and unconditional convergence in the space L2(U,X; γ).

Proof. For a function v : U → X we have

IΛv(y) =
∑
ν∈Λ

σΛ;ν

∑
µ∈F ,µ≤ν

v(χν,µ)Lν,µ(y), (6.24)

where σΛ;ν is defined in (6.5) and recall, χν,µ = (χνj ,µj )j∈N and

Lν,µ(y) :=
∏
j∈N

νj∏
i=0
i 6=µj

yj − χνj ,i
χνj ,µj − χνj ,i

, y ∈ U. (6.25)

Since in a Banach space the absolute convergence implies the unconditional convergence, from
Lemma 6.10 it follows that for any y ∈ U ,

ũN (y) =
∑
ν∈FN1

ũN,νHν(y) (6.26)

with the equality and unconditional convergence in X. Let {Fn}n∈N ⊂ FN1 be any sequence of
finite sets in FN1 exhausting FN1 . Then

∀y ∈ U : ũ
(n)
N (y) :=

∑
ν∈Fn

ũN,νHν(y) → ũN (y), n→∞, (6.27)

with the sequence convergence in the spaceX. Notice that the functions IΛũN and
∑
ν∈Fn ũN,νIΛHν

belong to the space L2(U,X; γ). Hence we have that∥∥∥∥IΛũN −
∑
ν∈Fn

ũN,νIΛHν

∥∥∥∥
L2(U,X;γ)

=
∥∥IΛũN − IΛũ

(n)
N ‖L2(U,X;γ) =

∥∥IΛ

(
ũN − ũ(n)

N

)
‖L2(U,X;γ)

≤
∑
ν∈Λ

|σΛ;ν |
∑

µ∈F ,µ≤ν

∥∥ũN (χν,µ)− ũ(n)
N (χν,µ)

∥∥
X

∫
U
|Lν,µ(y)|dγ(y).

(6.28)

Observe that Lν,µ is a polynomial of order |ν|. Since {µ ∈ F : µ ≤ ν} and Λ are finite sets, we
can choose C := C(Λ) > 0 so that ∫

U
|Lν,µ(y)|dγ(y) ≤ C
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for all µ ≤ ν and ν ∈ Λ, and, moreover, by using (6.27) we can choose n0 so that

‖ũN (χν,µ)− ũ(n)
N (χν,µ)‖X ≤ ε

for all n ≥ n0 and µ ≤ ν, ν ∈ Λ. Consequently, we have that for all n ≥ n0,∥∥∥∥IΛũN −
∑
ν∈Fn

ũN,νIΛHν

∥∥∥∥
L2(U,X;γ)

≤ C
∑
ν∈Λ

|σΛ;ν |
∑
µ≤ν

ε = Cε
∑
ν∈Λ

|σΛ;ν |pν(1). (6.29)

Hence we derive the convergence in the space L2(U,X; γ) of the sequence
∑
ν∈Fn ũN,νIΛHν to

IΛũN (n → ∞) for any sequence of finite sets {Fn}n∈N ⊂ FN1 exhausting FN1 . This proves the
lemma.

Remark 6.12. Under the assumption of Lemma 6.11, in a similar way, we can prove that for every
y ∈ U

IΛũN (y) =
∑
ν∈FN1

ũN ;νIΛHν(y) (6.30)

with the equality and unconditional convergence in the space X.

We arrive at the following convergence rate result, which improves the convergence rate in [52]
(in terms of the number of function evaluations) by a factor 2 (for the case when the elements
of the representation system are supported globally in D). Additionally, we provide an explicit
construction of suitable index sets. Recall that pointwise evaluations of a (b, ξ, δ,X)-holomorphic
functions are understood in the sense of Remark. 4.4.

Theorem 6.13. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ `p(N) and some p ∈ (0, 2/3). Let
(c1,ν)ν∈F be as in Lemma 6.5 with % as in Theorem 4.8.

Then there exist C > 0 and, for every n ∈ N, εn > 0 such that |pts(Λ1,εn)| ≤ n (with Λ1,εn as
in (6.17)) and

‖u− IΛ1,εn
u‖L2(U,X;γ) ≤ Cn

− 1
p

+ 3
2 .

Proof. For ε > 0 small enough and satisfying |Λ1,ε| > 0, take N ∈ N with

N ≥ max{j ∈ supp(ν) : ν ∈ Λ1,ε},

so large that

‖u− ũN‖L2(U,X;γ) ≤ ε
1
2
− p

4(1−p) , (6.31)

which is possible due to the (b, ξ, δ,X)-holomorphy of u (cp. Definition 4.1 (iii)). An appropriate
value of ε depending on n will be chosen below. In the following for ν ∈ FN1 we denote by ũN,ν ∈ X
the PC coefficient of ũN and for ν ∈ F as earlier uν ∈ X is the PC coefficient of u.

Because
N ≥ max{j ∈ supp(ν) : ν ∈ Λ1,ε}

and χ0,0 = 0, we have
IΛ1,εu = IΛ1,ε ũN

(cp. Remark 4.4). Hence by (6.31)

‖u− IΛ1,εu‖L2(U,X;γ) = ‖u− IΛ1,ε ũN‖L2(U,X;γ) ≤ ε
1
2
− p

4(1−p) + ‖ũN − IΛ1,ε ũN‖L2(U,X;γ). (6.32)

108



We now give a bound of the second term on the right side of (6.32). By Lemma 6.11 we can
write

IΛ1,ε ũN =
∑
ν∈FN1

ũN ;νIΛ1,εHν

with the equality and unconditional in L2(U,X; γ). Hence by Lemma 6.2 and (6.7) we have that

‖ũN − IΛ1,ε ũN‖L2(U,X;γ) =

∥∥∥∥∥∥
∑

ν∈F\Λ1,ε

ũN ;ν(Hν − IΛ1,εHν)

∥∥∥∥∥∥
L2(U,X;γ)

≤
∑

ν∈F\Λ1,ε

‖ũN ;ν‖X
(
‖Hν‖L2(U ;γ) + ‖IΛ1,εHν‖L2(U ;γ)

)
≤

∑
ν∈FN1 \Λ1,ε

‖ũN ;ν‖X (1 + pν(3))

≤ 2
∑

ν∈FN1 \Λ1,ε

‖ũN ;ν‖Xpν(3).

Choosing r > 4/p − 1 (q := p/(1 − p), τ = 3), according to Proposition 6.7, (6.14) and
Theorem 4.8 (with (%−1

j )j∈N ∈ `p/(1−p)(N) as in Theorem 4.8) the last sum is bounded by

C

 ∑
ν∈FN1

βν(r,%)‖ũN,ν‖2X

 ε
1
2
− q

4 ≤ C(b)δ2ε
1
2
− q

4 = C(b)δ2ε
1
2
− p

4(1−p) ,

and the constant C(b) from Theorem 4.8 does not depend on N and δ. Hence, by (6.32) we obtain

‖u− IΛ1,εu‖L2(U,X;γ) ≤ C1ε
1
2
− p

4(1−p) . (6.33)

From (6.19) it follows that

|pts(Λ1,ε)| ≤ C2ε
− q

2 = C2ε
− p

2(1−p) .

For every n ∈ N, we choose an εn > 0 satisfying the condition

n/2 ≤ C2ε
− p

2(1−p)
n ≤ n.

Then due to (6.33), the claim holds true for the chosen εn.

Remark 6.14. Comparing the best n-term convergence result in Remark 4.10 with the interpola-
tion result of Theorem 6.13, we observe that the convergence rate is reduced by 1/2, and moreover,
rather than p ∈ (0, 1) as in Remark 4.10, Theorem 6.13 requires p ∈ (0, 2/3). This discrepancy
can be explained as follows: Since (Hν)ν∈F forms an orthonormal basis of L2(U ; γ), for the best
n-term result we could resort to Parseval’s identity, which merely requires `2-summability of the

Hermite PC coefficients, i.e. (‖uν‖X)ν∈F ∈ `2(F). Due to (‖uν‖X)ν∈F ∈ `
2p

2−p by Theorem 4.9,
this is ensured as long as p ∈ (0, 1). On the other hand, for the interpolation result we had to
use the triangle inequality, since the family (IΛ1,εn

Hν)ν∈F of interpolated multivariate Hermite
polynomials does not form an orthonormal family of L2(U ; γ). This argument requires the stronger
condition (‖uν‖X)ν∈F ∈ `1(F), resulting in the stronger assumption p ∈ (0, 2/3) of Theorem 6.13.
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6.4 Quadrature convergence rate

We first prove a result on equality and unconditional convergence in the space X for quadrature op-
erators, which is similar to that in Lemma 6.11. It is needed to establish the quadrature convergence
rate.

Lemma 6.15. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ (0,∞)∞. Let N ∈ N, and let
ũN : U → X be as in Definition 4.1 and ũN,ν as in Lemma 6.10. Let Λ ⊂ F1 be a finite downward
closed set.

Then we have
QΛũN =

∑
ν∈FN1

ũN ;νQΛHν (6.34)

with the equality and unconditional convergence in the space X.

Proof. For a function v : U → X by (6.8) and (6.24) we have

QΛv =
∑
ν∈Λ

σΛ;ν

∑
µ∈F ,µ≤ν

v(χν,µ)

∫
U
Lν,µ(y) dγ(y),

where χν,µ = (χνj ,µj )j∈N, σΛ;ν , Lν,µ are defined in (6.5) and (6.25), respectively. By using this
representation, we can prove the lemma in a way similar to the proof of Lemma 6.11 with some
appropriate modifications.

Analogous to Theorem 6.13 we obtain the following result for the quadrature convergence with
an improved convergence rate compared to interpolation.

Theorem 6.16. Let u be (b, ξ, δ,X)-holomorphic for some b ∈ `p(N) and some p ∈ (0, 4/5). Let
(c2,ν)ν∈F be as in Lemma 6.5 with % as in Theorem 4.8. Then there exist C > 0 and, for every
N ∈ N, εn > 0 such that |pts(Λ2,εn)| ≤ n (with Λ2,εn as in (6.17)) and∥∥∥∥∫

U
u(y) dγ(y)−QΛ2,εn

u

∥∥∥∥
X

≤ Cn
− 2
p

+ 5
2 .

Proof. For ε > 0 small enough and satisfying |Λ2,ε| > 0, take N ∈ N, N ≥ max{j ∈ supp(ν) : ν ∈
Λ2,ε} so large that∥∥∥∥∫

U

[
u(y)− ũN (y)

]
dγ(y)

∥∥∥∥
X

≤ ‖u− ũN‖L2(U,X;γ) ≤ ε
1
2
− p

8(1−p) , (6.35)

which is possible due to the (b, ξ, δ,X)-holomorphy of u (cp. Definition 4.1 (iii)). An appropriate
value of ε depending on n will be chosen below. In the following for ν ∈ F we denote by ũN,ν
the Wiener-Hermite PC expansion coefficient of ũN and as earlier uν is the Wiener-Hermite PC
expansion coefficient of u.

Because
N ≥ max{j ∈ supp(ν) : ν ∈ Λ2,ε}

and χ0,0 = 0, we have QΛ2,εu = QΛ2,ε ũN (cp. Remark. 4.4). Hence by (6.35)∥∥∥∥∫
U
u(y) dγ(y)−QΛ2,εu

∥∥∥∥
X

=

∥∥∥∥∫
U
u(y) dγ(y)−QΛ2,ε ũN

∥∥∥∥
X

≤ ε
1
2
− p

8(1−p) +

∥∥∥∥∫
U
ũN (y) dγ(y)−QΛ2,ε ũN

∥∥∥∥
X

. (6.36)
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By Lemma 6.15 we have

QΛ2,ε ũN =
∑
ν∈FN1

ũN ;νQΛ2,εHν =
∑
ν∈FN2

ũN ;νQΛ2,εHν

with the equality and unconditional convergence in the space X. Since Λ2,ε is nonempty and
downward closed we have 0 ∈ Λ2,ε. Then, by Lemma 6.4, (6.10), and using∫

U
Hν(y) dγ(y) = 0

for all 0 6= ν ∈ F\F2, we have that

∥∥∥∥∫
U
ũN (y) dγ(y)−QΛ2,ε ũN

∥∥∥∥
X

=

∥∥∥∥∥∥
∑

ν∈F2\Λ2,ε

ũN ;ν

(∫
U
Hν(y) dγ(y)−QΛ2,εHν

)∥∥∥∥∥∥
X

≤
∑

ν∈F2\Λ2,ε

‖ũN ;ν‖X(‖Hν‖L2(U ;γ) + |QΛ2,εHν |)

≤
∑

ν∈F2\Λ2,ε

‖ũN ;ν‖X (1 + pν(3))

≤ 2
∑

ν∈F2\Λ2,ε

‖ũN ;ν‖Xpν(3).

Choosing r > 8/p−5 (q = p
1−p , τ = 3), according to Proposition 6.7, (6.14) and Theorem 4.8 (with

(%−1
j )j∈N ∈ `p/(1−p)(N) as in Theorem 4.8) the last sum is bounded by

C

(∑
ν∈F

βν(r,%)‖ũN,ν‖2X

)
ε

1
2
− q

8 ≤ C(b)δ2ε
1
2
− q

8 = C(b)ε
1
2
− p

8(1−p) ,

and the constant C(b) from Theorem 4.8 does not depend on N and δ. Hence, by (6.35) and (6.36)
we obtain that ∥∥∥∥∫

U
u(y) dγ(y)−QΛ2,εu

∥∥∥∥
X

≤ C1ε
1
2
− p

8(1−p) . (6.37)

From (6.19) it follows that

|pts(Λk,ε)| ≤ C2ε
− q

4 = C2ε
− p

4(1−p) .

For every n ∈ N, we choose an εn > 0 satisfying the condition

n/2 ≤ C2ε
− p

4(1−p)
n ≤ n.

Then due to (6.37) the claim holds true for the chosen εn.

Remark 6.17. Interpolation formulas based on index sets like

Λ(ξ) := {ν ∈ F : βν(r,%) ≤ ξ2/q},
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(where ξ > 0 is a large parameter), have been proposed in [52, 43] for the parametric, elliptic
divergence-form PDE (3.17) with log-Gaussian inputs (3.18) satisfying the assumptions of Theorem
3.38 with i = 1. There, dimension-independent convergence rates of sparse-grid interpolation were
obtained. Based on the weighted `2-summability of the Wiener-Hermite PC expansion coefficients
of the form∑

ν∈F
βν(r,%)‖uν‖2X <∞ with

(
pν(τ, λ)βν(r,%)−1/2

)
ν∈F ∈ `

q(F) (0 < q < 2), (6.38)

the rate established in [52] is 1
2(1/q− 1/2) which lower than those obtained in the present analysis.

The improved rate 1/q − 1/2 has been established in [44]. This rate coincides with the rate in
Theorem 6.13 for the choice q = p/(1− p).

The existence of Smolyak type quadratures with a proof of dimension-independent convergence
rates was shown first in [31] and then in [43]. In [31], the symmetry of the GM and correspond-
ing cancellations were not exploited, and these quadrature formulas provide the convergence rate
1
2(1/q−1/2) which is lower (albeit dimension-independent) convergence rates in terms of the number
of function evaluations as in Theorems 6.13 and 6.16. By using this symmetry, for a given weighted
`2-summability of the Wiener-Hermite PC expansion coefficients (3.43) with σν = βν(r,%)1/2, the
rate established in [43] (see also [45]) is 2/q−1/2 which coincides with the rate of convergence that
was obtained in Theorem 6.16 for the choice q = p/(1− p).
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7 Multilevel Smolyak sparse-grid interpolation and quadrature

In this section we introduce a multilevel interpolation and quadrature algorithm which are suit-
able for numerical implementation. The presentation and arguments follow mostly [112] and [111,
Section 3.2], where multilevel algorithms for the uniform measure on the hypercube [−1, 1]∞ were
analyzed (in contrast to the case of a product GM on U , which we consider here). In Section 7.1,
we introduce the setting for the multilevel algorithms, in particular a notation of “work-measure”
related to the discretization of a Wiener-Hermite PC expansion coefficient uν for ν in the set of
multi-indices that are active in a given (interpolation or quadrature) approximation. Section 7.2
describes the general structure of the algorithms, Section 7.3 addresses algorithms for the determi-
nation of sets Λ ⊂ F of active multi-indices and a corresponding allocation of discretization levels in
linear in |Λ| work and memory. Section 7.4 addresses the error analysis of the Smolyak sparse-grid
interpolation, and Section 7.5 contains the error analysis of the corresponding Smolyak sparse-grid
quadrature algorithm. All algorithms are formulated and analyzed in terms of several abstract hy-
potheses. Section 7.6 verifies these abstract conditions for a concrete family of parametric, elliptic
PDEs. Finally, Section 7.7 addresses convergence rates achieveable with the mentioned Smolyak
sparse-grid interpolation and quadrature algorithms assuming at hand optimal multi-index sets.
The major finding being that the corresponding rates differ only by logarithmic terms from the
error bounds furnished by those realized by the algorithms in Sections 7.2-7.5.

7.1 Setting and notation

To approximate the solution u to a parametric PDE as in the examples of the preceding sections,
the interpolation operator IΛ introduced in Section 6.1.1 requires function values of u at different
interpolation points in the parameter space U . For a parameter y ∈ U , typically the PDE solution
u(y), which is a function belonging to a Sobolev space over a physical domain D, is not given
in closed form and has to be approximated. The idea of multilevel approximations is to combine
interpolants of approximations to u at different spatial accuracies, in order to reduce the overall
computational complexity. This will now be formalized.

First, we assume given a sequence (wl)l∈N0 ⊂ N, exhibiting the properties of the following
assumption. Throughout wl will be interpreted as a measure for the computational complexity of
evaluating an approximation ul : U → X of u : U → X at a parameter y ∈ U . Here we use a
superscript l rather than a subscript for the approximation level, as the subscript is reserved for
the dimension truncated version uN of u as in Definition 4.1.

Assumption 7.1. The sequence (wl)l∈N0 ⊆ N0 is strictly monotonically increasing and w0 = 0.
There exists a constant KW ≥ 1 such that for all l ∈ N

(i)
∑l

j=0 wj ≤ KWwl,

(ii) l ≤ KW(1 + log(wl)),

(iii) wl ≤ KW(1 + wl−1),

(iv) for every r > 0 there exists C = C(r) > 0 independent of l such that

∞∑
j=l

w−rj ≤ C(1 + wl)
−r.
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Assumption 7.1 is satisfied if (wl)l∈N is exponentially increasing, (for instance wl = 2l, l ∈ N).
In the following we write W := {wl : l ∈ N0} and

bxcW := max{wl : wl ≤ x}.

We work under the following hypothesis on the discretization errors in physical space: we quan-
tify the convergence of the discretization scheme with respect to the discretization level l ∈ N.
Specifically, we assume the approximation ul to u to behave asymptotically as

‖u(y)− ul(y)‖X ≤ C(y)w−αl ∀l ∈ N, (7.1)

for some fixed convergence rate α > 0 of the “physical space discretization” and with constant
C(y) > 0 depending on the parameter sequence y. We will make this assumption on ul more
precise shortly. If we think of ul(y) ∈ H1(D) for the moment as a FEM approximation to the exact
solution u(y) ∈ H1(D) of some y-dependent elliptic PDE, then wl could stand for the number of
degrees of freedom of the finite element space. In this case α corresponds to the FEM convergence
rate. Assumption (7.1) will for instance be satisfied if for each consecutive level the meshwidth is
cut in half. Examples are provided by the FE spaces discussed in Section 2.6.2, Proposition 2.31.
As long as the computational cost of computing the FEM solution is proportional to the dimension
wl of the FEM space, w−αl is the error in terms of the work wl. Such an assumption usually holds
in one spatial dimension, where the resulting stiffness matrix is tridiagonal. For higher spatial
dimensions solving the corresponding linear system is often times not of linear complexity, in which
case the convergence rate α > 0 has to be adjusted accordingly.

We now state our assumptions on the sequence of functions (ul)l∈N approximating u. Equation
(7.1) will hold in the L2 sense over all parameters y ∈ U , cp. Assumption 7.2 (iii), and Definition
4.1 (ii).

Assumption 7.2. Let X be a separable Hilbert space and let (wl)l∈N0 satisfy Assumption 7.1.
Furthermore, 0 < p1 ≤ p2 < ∞, b1 ∈ `p1(N), b2 ∈ `p2(N), ξ > 0, δ > 0 and there exist functions
u ∈ L2(U,X; γ), (ul)l∈N ⊆ L2(U,X; γ) such that

(i) u ∈ L2(U,X; γ) is (b1, ξ, δ,X)-holomorphic,

(ii) (u− ul) ∈ L2(U,X; γ) is (b1, ξ, δ,X)-holomorphic for every l ∈ N,

(iii) (u− ul) ∈ L2(U,X; γ) is (b2, ξ, δw
−α
l , X)-holomorphic for every l ∈ N.

Remark 7.3. Items (ii) and (iii) are two assumptions on the domain of holomorphic extension
of the discretization error el := u − ul : U → X. As pointed out in Remark 4.2, the faster the
sequence b decays the larger the size of holomorphic extension, and the smaller δ the smaller the
upper bound of this extension.

Hence items (ii) and (iii) can be interpreted as follows: Item (ii) implies that el has a large
domain of holomorphic extension. Item (iii) is related to the assumption (7.1). It yields that by
considering the extension of el on a smaller domain, we can get a (l-dependent) smaller upper bound
of the extension of el (in the sense of Definition 4.1 (ii)). Hence there is a tradeoff between choosing
the size of the domain of the holomorphic extension and the upper bound of this extension.
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7.2 Multilevel Smolyak sparse-grid algorithms

Let l = (lν)ν∈F ⊆ N0 be a family of natural numbers associating with each multiindex ν ∈ F of a
PC expansion a discretization level lν ∈ N0. Typically, this is a family of discretization levels for
some hierarchic, numerical approximation of the PDE in the physical domain D, associating with
each multiindex ν ∈ F of a PC expansion of the parametric solution in the parameter domain a
possibly coefficient-dependent discretization level lν ∈ N0. With the sequence lν ∈ N0, we associate
sets of multiindices via

Γj = Γj(l) := {ν ∈ F : lν ≥ j} ∀j ∈ N0. (7.2)

Throughout we will assume that

|l| := ‖l‖`1(F) :=
∑
ν∈F

lν <∞

and that l is monotonically decreasing, meaning that ν ≤ µ implies lν ≥ lµ. In this case each
Γj ⊆ F , j ∈ N, is finite and downward closed. Moreover Γ0 = F , and the sets (Γj)j∈N0 are nested
according to

F = Γ0 ⊇ Γ1 ⊇ Γ2 . . . .

With (ul)l∈N as in Assumption 7.2, we now define the multilevel sparse-grid interpolation algo-
rithm

IML
l u :=

∑
j∈N

(IΓj − IΓj+1)uj . (7.3)

A few remarks are in order. First, the index l indicates that the sets Γj = Γj(l) depend on the
choice of l, although we usually simply write Γj in order to keep the notation succinct. Secondly,
due to |l| <∞ it holds

max
ν∈F

lν =: L <∞

and thus Γj = ∅ for all j > L. Defining I∅ as the constant 0 operator, the infinite series (7.3) can
also be written as the finite sum

IML
l u =

L∑
j=1

(IΓj − IΓj+1)uj = IΓ1u
1 + IΓ2(u2 − u1) + · · ·+ IΓL(uL − uL−1),

where we used IΓL+1
= 0. If we had Γ1 = · · · = ΓL, this sum would reduce to IΓLu

L, which is the
interpolant of the approximation uL at the (highest) discretization level L. The main observation
of multilevel analyses is that it is beneficial not to choose all Γj equal, but instead to balance out
the accuracy of the interpolant IΓj (in the parameter) and the accuracy of the approximation uj

of u.
A multilevel sparse-grid quadrature algorithm is defined analogously via

QML
l u :=

∑
j∈N

(QΓj −QΓj+1)uj , (7.4)

with Γj = Γj(l) as in (7.2). In the following we will prove algebraic convergence rates of multilevel
interpolation and quadrature algorithms w.r.t. the L2(U,X; γ)-norm and X, respectively. The
convergence rates will hold in terms of the work of computing IML

l and QML
l .
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As mentioned above, for a level l ∈ N, we interpret wl ∈ N as a measure of the computational
complexity of evaluating ul at an arbitrary parameter y ∈ U . As discussed in Section 6.2.1,
computing IΓju or QΓju requires to evaluate the function u at each parameter in the set pts(Γj) ⊆ U
introduced in (6.11). We recall the bound

|pts(Γj)| ≤
∑
ν∈Γj

pν(1),

on the cardinality of this set obtained in (6.12). As an upper bound of the work corresponding to
the evaluation of all functions required for the multilevel interpolant in (7.3), we obtain

∑
j∈N

wj

 ∑
ν∈Γj(l)

pν(1) +
∑

ν∈Γj+1(l)

pν(1)

 . (7.5)

Since Γj+1 ⊆ Γj , up the factor 2 the work of a sequence l is defined by

work(l) :=
L∑
j=1

wj

∑
ν∈Γj(l)

pν(1) =
∑
ν∈F(l)

pν(1)

lν∑
j=1

wj , (7.6)

where we used the definition of Γj(l) in (7.2), L := maxν∈F lν <∞ and the finiteness of the set

F(l) := {ν ∈ F : lν > 0}.

The efficiency of the multilevel interpolant critically relies on a suitable choice of levels l =
(lν)ν∈F . This will be achieved with the following algorithm, which constructs l based on two
collections of positive real numbers, (cν)ν∈F ∈ `q1(F) and (dν)ν∈F ∈ `q2(F). The algorithm is
justified due to Lemma 7.4 which was shown in Section 7.3. This technical lemma, which is a
variant of [111, Lemma 3.2.7], constitutes the central part of the proofs of the convergence rate
results presented in the rest of this section.

Algorithm 2 (lν)ν∈F = ConstructLevels((cν)ν∈F , (dν)ν∈F , q1, α, ε)

1: (lν)ν∈F ← (0)ν∈F
2: Λε ← {ν ∈ F : c−1

ν ≥ ε}
3: for ν ∈ Λε do

4: δ ← ε−
1/2−q1/4

α d
−1

1+2α
ν

(∑
µ∈Λε

d
−1

1+2α
µ

) 1
2α

5: lν ← max{j ∈ N0 : wj ≤ δ}
6: return (lν)ν∈F

Note that the determination of the sets Λε in line 2 of Algorithm 2 can be done with Algorithm 1.

7.3 Construction of an allocation of discretization levels

We detail the construction of an allocation of discretization levels along the coefficients of Wiener-
Hermite PC expansion. It is valid for collections (uν)ν∈F of Wiener-Hermite PC expansion coeffi-
cients taking values in a separable Hilbert space, say X, with additional regularity, being Xs ⊂ X,
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allowing for weaker (weighted) summability of the V s-norms (‖uν‖Xs)ν∈F . In the setting of elliptic
BVPs with log-Gaussian diffusion coefficient, X = V = H1

0 (D), and Xs is, for example, a weighted
Kondrat’ev space in D as introduced in Section 3.8.1. We phrase the result and the construction in
abstract terms so that the allocation is applicable to more general settings, such as the parabolic
IBVP in Section 4.3.2.

For a given, dense sequence (Xl)l∈N0 ⊂ X of nested, finite-dimensional subspaces and target
accuracy 0 < ε ≤ 1, in the numerical approximation of Wiener-Hermite PC expansions of ran-
dom fields u taking values in X, we consider approximating the Wiener-Hermite PC expansion
coefficients uν in X from Xl. The assumed density of the sequence (Xl)l∈N0 ⊂ X in X ensures
that for u ∈ L2(U,X; γ) the coefficients (uν)ν∈F ⊂ X are square summable, in the sense that
(‖uν‖X)ν∈F ∈ `2(F)

The following lemma is a variation of [111, Lemma 3.2.7]. Its proof, is, with several minor
modifications, taken from [111, Lemma 3.2.7]. We remark that the construction of the map l(ε,ν),
as described in the lemma, mimicks Algorithm 2. Again, a convergence rate is obtained that is not
prone to the so-called “curse of dimensionality”, being limited only by the available sparsity in the
coefficients of Wiener-Hermite PC expansion for the parametric solution manifold.

Lemma 7.4. Let W = {wl : l ∈ N0} satisfy Assumption 7.1. Let q1 ∈ [0, 2), q2 ∈ [q1,∞) and
α > 0. Let

(i) (aj,ν)ν∈F ⊆ [0,∞) for every j ∈ N0,

(ii) (cν)ν∈F ⊆ (0,∞) and (dν)ν∈F ⊆ (0,∞) be such that

(c
−1/2
ν )ν∈F ∈ `q1(F) and

(
d
−1/2
ν pν(1/2 + α)

)
ν∈F ∈ `

q2(F),

(iii)

sup
j∈N0

(∑
ν∈F

a2
j,νcν

)1/2

=: C1 <∞, sup
j∈N0

(∑
ν∈F

(wα
j aj,ν)2dν

)1/2

=: C2 <∞. (7.7)

For every ε > 0 define Λε = {ν ∈ F : c−1
ν ≥ ε}, ωε,ν := 0 for all ν ∈ F\Λε, and define

ωε,ν :=

ε− 1/2−q1/4
α d

−1
1+2α
ν

( ∑
µ∈Λε

d
−1

1+2α
µ

) 1
2α


W

∈W ∀ν ∈ Λε.

Furthermore, for every ε > 0 and ν ∈ F let lε,ν ∈ N0 be the corresponding discretization level, i.e.,
ωε,ν = wlε,ν , and define the maximal discretization level

L(ε) := max{lε,ν : ν ∈ F}.

Denote lε = (lε,ν)ν∈F .
Then there exists a constant C > 0 and tolerances εn ∈ (0, 1] such that for every n ∈ N holds

work(lεn) ≤ n and ∑
ν∈F

L(εn)∑
j=lεn,ν

aj,ν ≤ C(1 + log n)n−R,

where the rate R is given by

R = min

{
α,

α(q−1
1 − 1/2)

α+ q−1
1 − q2

−1

}
.
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Proof. Throughout this proof denote δ := 1/2− q1/4 > 0. In the following

ω̃ε,ν := ε−
δ
αd

−1
1+2α
ν

( ∑
µ∈Λε

d
−1

1+2α
µ

) 1
2α

∀ν ∈ Λε,

i.e. ωε,ν = bω̃ε,νcW. Note that 0 < ω̃ε,ν is well-defined for all ν ∈ Λε since dν > 0 for all ν ∈ F by
assumption. Due to Assumption 7.1 (iii) it holds

ω̃ε,ν
KW

≤ 1 + ωε,ν ≤ 1 + ω̃ε,ν ∀ν ∈ Λε. (7.8)

Since (c
−1/2
ν )ν∈F ∈ `q1(F) and (7.7), we get

∑
ν∈F\Λε

aj,ν ≤

( ∑
ν∈F\Λε

a2
j,νcν

)1/2( ∑
ν∈F\Λε

c−1
ν

)1/2

≤ C1

( ∑
c−1
ν ≤ε

c
− q1

2
ν c

q1
2
−1

ν

)1/2

≤ Cεδ

with the constant C independent of j and ε. Thus,

∑
ν∈F\Λε

L(ε)∑
j=0

aj,ν =

L(ε)∑
j=0

∑
ν∈F\Λε

aj,ν ≤ C1(1 + L(ε))εδ. (7.9)

Next with C2 as in (7.7),

∑
ν∈Λε

L(ε)∑
j=lε,ν

aj,ν =
∑
ν∈Λε

L(ε)∑
j=lε,ν

aj,νw
α
jw
−α
j d

1/2
ν d

−1/2
ν

≤

( ∑
ν∈Λε

L(ε)∑
j=0

(
aj,νw

α
j d

1/2
ν

)2) 1
2
( ∑
ν∈Λε

∑
j≥lε,ν

(
d
−1/2
ν w−αj

)2) 1
2

≤ C2(1 + L(ε))

( ∑
ν∈Λε

∑
j≥lε,ν

(
d
−1/2
ν w−αj

)2) 1
2

. (7.10)

Assumption 7.1 (iv) implies for some C3∑
j≥lε,ν

w−2α
j ≤ C2

3 (1 + wlε,ν )−2α = C2
3 (1 + ωε,ν)−2α,

so that by (7.8) and (7.10)

∑
ν∈Λε

L(ε)∑
j=lε,ν

aj,ν ≤ C3C2(1 + L(ε))

(∑
ν∈Λε

(
d
−1/2
ν (1 + ωε,ν)−α

)2) 1
2

≤ C3C2K
α
W(1 + L(ε))

(∑
ν∈Λε

(
d
−1/2
ν ω̃−αε,ν

)2) 1
2

. (7.11)
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Inserting the definition of ω̃ε,ν , we have(∑
ν∈Λε

(
d
−1/2
ν ω̃−αε,ν

)2) 1
2

= εδ

( ∑
µ∈Λε

d
−1

1+2α
µ

)−α 1
2α
(∑
ν∈Λε

d−1
ν d

2α
1+2α
ν

) 1
2

= εδ, (7.12)

where we used

−1 +
2α

1 + 2α
=
−(1 + 2α) + 2α

1 + 2α
=
−1

1 + 2α
.

Using Assumption 7.1 (ii) and the definition of work(lε) in (7.6) we get

L(ε) ≤ log(1 + max
ν∈F

ωε,ν) ≤ log(1 + work(lε)). (7.13)

Hence, (7.9), (7.11), (7.12) and (7.13) yield

∑
ν∈F

L(ε)∑
j=lε,ν

aj,ν =
∑
ν∈Λε

L(ε)∑
j=lε,ν

aj,ν +
∑

ν∈F\Λε

L(ε)∑
j=0

aj,ν ≤ C
(
1 + log(work(lε))

)
εδ. (7.14)

Next, we compute an upper bound for work(lε). By definition of work(lε) in (7.6), and using
Assumption 7.1 (i) as well as ωε,ν = wlε,ν ,

work(lε) =
∑
ν∈Λε

pν(1)
∑

{j∈N : j≤lε,ν}

wj ≤
∑
ν∈Λε

pν(1)KWωε,ν

≤ KW

∑
ν∈Λε

pν(1)ω̃ε,ν ≤ KWε
− δ
α

(∑
ν∈Λε

pν(1)d
−1

1+2α
ν

) 1
2α

+1

= KWε
− δ
α

(∑
ν∈Λε

(
pν(1/2 + α)d

−1/2
ν

) 2
1+2α

) 1
2α

+1

, (7.15)

where we used pν(1) = pν(1/2 + α)2/(1+2α) and the fact that pν(1) ≥ 1 for all ν.
We distinguish between the two cases

2

1 + 2α
≥ q2 and

2

1 + 2α
< q2.

In the first case, since (pµ(1/2 + α)d
−1/2
µ )µ∈F ∈ `q2(F), (7.15) implies

work(lε) ≤ Cε−
δ
α (7.16)

and hence, log(work(lε)) ≤ log
(
Cε−

δ
α

)
. Then (7.14) together with (7.16) implies

∑
ν∈F

L(ε)∑
j=lε,ν

aj,ν ≤ C(1 + | log(ε−1)|)εδ.

For every n ∈ N, we can find εn > 0 such that n
2 ≤ Cε

− δ
α

n ≤ n. Then the claim of the corollary in
the case 2

1+2α ≥ q2 holds true for the chosen εn.
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Finally, let us address the case 2
1+2α < q2. Then, by (7.15) and using Hölder’s inequality with

q2
1+2α

2 > 1 we get

work(lε) ≤ KWε
− δ
α ‖(pν(1/2 + α)d

−1/2
ν )ν∈F‖

1
α

`q2 (F)|Λε|
(

1− 2
q2(1+2α)

)
1+2α

2α .

Since

|Λε| =
∑
ν∈Λε

1 =
∑
c−1
ν ≥ε

c
− q1

2
ν c

q1
2
ν ≤ Cε−

q1
2 ,

we obtain

work(lε) ≤ KWε
− δ
α
− q1

2
(1− 2

q2(1+2α)
) 1+2α

2α ≤ Cε−
q1
2α

(
α− 1

q2
+ 1
q1

)
.

For every n ∈ N, we can find εn > 0 such that

n

2
≤ Cε

− q1
2α

(
α− 1

q2
+ 1
q1

)
n ≤ n.

Thus the claim also holds true in the case 2
1+2α < q2.

7.4 Multilevel Smolyak sparse-grid interpolation algorithm

We are now in position to formulate a multilevel Smolyak sparse-grid interpolation convergence
theorem. To this end, we observe that our proofs of approximation rates have been constructive:
rather than being based on a best N -term selection from the infinite set of Wiener-Hermite PC
expansion coefficients, a constructive selection process of “significant” Wiener-Hermite PC expan-
sion coefficients, subject to a given prescribed approximation tolerance, has been provided. In the
present section, we turn this into a concrete, numerical selection process with complexity bounds.
In particular, we provide an a-priori allocation of discretization levels to Wiener-Hermite PC ex-
pansion coefficients. This results on the one hand in an explicit, algorithmic definition of a family
of multilevel interpolants which is parametrized by an approximation threshold ε > 0. On the other
hand, it will result in mathematical convergence rate bounds in terms of computational work rather
than in terms of, for example, number of active Wiener-Hermite PC expansion coefficients, which
rate bounds are free from the curse of dimensionality.

The idea is as follows: let b1 = (b1,j)j∈N ∈ `p1(N), b2 = (b2,j)j∈N ∈ `p2(N), and ξ be the two
sequences and constant from Assumption 7.2. For two constants K > 0 and r > 3 (which are still
at our disposal and which will be specified below), set for all j ∈ N

%1,j := bp1−1
1,j

ξ

4‖b1‖`p1
, %2,j := bp2−1

2,j

ξ

4‖b2‖`p2
. (7.17)

We let for all ν ∈ F (as in Lemma 6.5 for k = 1 and with τ = 3)

cν :=
∏
j∈N

max{1,K%1,j}2νr−3
j , dν :=

∏
j∈N

max{1,K%2,j}2νr−3
j . (7.18)

Based on those two multi-index collections, Algorithm 2 provides a collection of discretization levels
which sequence depends on ε > 0 and is indexed over F . We denote it by lε = (lε,ν)ν∈F . We now
state an upper bound for the error of the corresponding multilevel interpolants in terms of the work
measure in (7.6) as ε→ 0.
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Theorem 7.5. Let u ∈ L2(U,X; γ) and ul ∈ L2(U,X; γ), l ∈ N, satisfy Assumption 7.2 with
some constants α > 0 and 0 < p1 < 2/3 and p1 ≤ p2 < 1. Set q1 := p1/(1 − p1). Assume that
r > 2(1 + (α + 1)q1)/q1 + 3 (for r as defined in (7.18)). There exist constants K > 0 (in (7.18))
and C > 0 such that the following holds.

For every n ∈ N, there are positive constants εn ∈ (0, 1] such that work(lεn) ≤ n and with
lεn = (lεn,ν)ν∈F as defined in Lemma 7.4 (where cν , dν as in (7.18)) it holds

‖u− IML
lεn
u‖L2(U,X;γ) ≤ C(1 + log n)n−R

with the convergence rate

R := min

{
α,

α(p−1
1 − 3/2)

α+ p−1
1 − p

−1
2

}
. (7.19)

Proof. Throughout this proof we write b1 = (b1,j)j∈N and b2 = (b2,j)j∈N for the two sequences in
Assumption 7.2. We observe that Γj defined in (7.2) is downward closed for all j ∈ N0. This can be
easily deduced from the fact that the multi-index collections (cν)ν∈F and (dν)ν∈F are monotonically
increasing (i.e., e.g., ν ≤ µ implies cν ≤ cµ) and the definition of Λε and lε,ν in Algorithm 2. We
will use this fact throughout the proof, without mentioning it at every instance.

Step 1. Given n ∈ N, we choose ε := εn as in Lemma 7.4. Fix N ∈ N such that

N > max{j : j ∈ supp(ν), lε,ν > 0}

and so large that
‖u− ũN‖L2(U,X;γ) ≤ n−R, (7.20)

where ũN : U → X is as in Definition 4.1. This is possible due to

lim
N→∞

‖u− ũN‖L2(U,X;γ) = 0,

which holds by the (b1, ξ, δ,X)-holomorphy of u. By Assumption 7.2, for every j ∈ N the func-
tion ej := u − uj ∈ L2(U,X; γ) is (b1, ξ, δ,X)-holomorphic and (b2, ξ, δw

γ
j , X)-holomorphic. For

notational convenience we set e0 := u− 0 = u ∈ L2(U,X; γ), so that e0 is (b1, ξ, δ,X)-holomorphic
and (b2, ξ, δ,X)-holomorphic. Hence, for every j ∈ N0 there exists a function ẽjN = ũN − ũjN as in
Definition 4.1 (iii).

In the rest of the proof we use the following facts:

(i) By Lemma 6.10, for every j ∈ N0, with the Wiener-Hermite PC expansion coefficients

ẽjN,ν :=

∫
U
Hν(y)ẽjN (y) dγ(y),

it holds
ẽjN (y) =

∑
ν∈F

ẽjN,νHν(y) ∀y ∈ U,

with pointwise absolute convergence.

(ii) By Lemma 6.5, upon choosing K > 0 in (7.18) large enough, and because r > 3,

C0cνpν(3) ≤ βν(r,%1), C0dνpν(3) ≤ βν(r,%2) ∀ν ∈ F1.

We observe that by definition of %i, i ∈ {1, 2}, in (7.17), it holds %i,j ∼ b−(1−pi)
i,j and therefore

(%−1
i,j )j∈N ∈ `qi(N) with qi := pi/(1− pi), i ∈ {1, 2}.
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(iii) Due to r > 2(1 + (α+ 1)q1)/q1 + 3, the condition of Lemma 6.6 is satisfied (with k = 1, τ = 3
and θ = (α+ 1)q1). Hence the lemma gives∑

ν∈F
pν((α+ 1)q1)c

−q1/2
ν <∞ ⇒ (pν(α+ 1)c

−1/2
ν )ν∈F ∈ `q1(F)

and similarly∑
ν∈F

pν((α+ 1)q2)d
−q2/2
ν <∞ ⇒ (pν(α+ 1)d

−1/2
ν )ν∈F ∈ `q2(F).

(iv) By Theorem 4.8 and item (ii), for all j ∈ N0

C0

∑
ν∈F

cν‖ẽjN,ν‖
2
Xpν(3) ≤

∑
ν∈F

βν(r,%1)‖ẽjN,ν‖
2
X ≤ Cδ2

and

C0

∑
ν∈F

dν‖ẽjN,ν‖
2
Xpν(3) ≤

∑
ν∈F

βν(r,%2)‖ẽjN,ν‖
2
X ≤ C

δ2

w2α
j

,

with the constant C independent of j, wj and N .

(v) Because N ≥ max{j ∈ supp(ν) : lε,ν ≥ 0} and χ0,0 = 0 we have

IΓj (u− uj) = IΓje
j = IΓj ẽ

j
N

for all j ∈ N (cp. Remark 4.4). Similarly IΓju = IΓj ũN for all j ∈ N.

Step 2. Observe that Γj = ∅ for all j > L(ε) := maxν∈F lε,ν (cp. (7.2)), which is finite due to
|lε| <∞. With the conventions IΓ0 = IF = Id (i.e. IΓ0 is the identity) and I∅ ≡ 0 this implies

u = IΓ0u =

L(ε)∑
j=0

(IΓj − IΓj+1)u = (IΓ0 − IΓ1)u+ · · ·+ (IΓL(ε)−1
− IΓL(ε)

)u+ IΓL(ε)
u.

By definition of the multilevel interpolant in (7.3)

IML
lε u =

L(ε)∑
j=1

(IΓj − IΓj+1)uj = (IΓ1 − IΓ2)u1 + · · ·+ (IΓL(ε)−1
− IΓL(ε)

)uL(ε)−1 + IΓL(ε)
uL(ε).

By item (v) of Step 1, we can write

(IΓ0 − IΓ1)u = u− IΓ1u = u− IΓ1 ũN = (u− ũN ) + (IΓ0 − IΓ1)ũN = (u− ũN ) + (IΓ0 − IΓ1)ẽ0
N ,

where in the last equality we used e0
N = uN , by definition of e0 = u (and ẽ0

N = ũN ∈ L2(U,X; γ)
as in Definition 4.1). Hence, again by item (v),

u− IML
lε u = (IΓ0 − IΓ1)u+

L(ε)∑
j=1

(IΓj − IΓj+1)(u− uj)

= (u− ũN ) + (IΓ0 − IΓ1)ũN +

L(ε)∑
j=1

(IΓj − IΓj+1)ẽjN

= (u− ũN ) +

L(ε)∑
j=0

(IΓj − IΓj+1)ẽjN . (7.21)
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We will use this representation to bound the norm ‖u− IML
lε
u‖L2(U,X;γ). From item (i) of Step 1 it

follows that for every j ∈ N0

ẽjN (y) =
∑
ν∈F

ẽjN,νHν(y),

with the equality and unconditional convergence in the space X for all y ∈ U . Therefore, by the
same argument as in the proof of Lemma 6.11, we can prove that

(IΓj − IΓj+1)ẽjN =
∑
ν∈F

ẽjN,ν(IΓj − IΓj+1)Hν (7.22)

with equality and unconditional convergence in the space L2(RN , X; γN ).
Using (7.21) and

(IΓj − IΓj+1)Hν = 0

for all ν ∈ Γj+1 ⊆ Γj by Lemma 6.2, we get

‖u− IML
lε u‖L2(U,X;γ) ≤ ‖u− ũN‖L2(U,X;γ) +

∑
ν∈F

L(ε)∑
j=lε,ν

‖ẽjN,ν‖X‖(IΓj − IΓj+1)Hν‖L2(U ;γ). (7.23)

Step 3. We wish to apply Lemma 7.4 to the bound (7.23). By (6.7), we have for all ν ∈ F

‖(IΓj − IΓj+1)Hν‖L2(U ;γ) ≤ ‖IΓjHν‖L2(U ;γ) + ‖IΓj+1Hν‖L2(U ;γ) ≤ 2pν(3).

Note these inequalities also hold when j = 0, that is when IΓ0 = Id. By items (iii) and (iv) of Step
1, the collections (aj,ν)ν∈F , j ∈ N0, and (cν)ν∈F , (dν)ν∈F , satisfy the assumptions of Lemma 7.4.
Therefore, (7.23), (7.20) and Lemma 7.4 give

‖u− IML
lεn
u‖L2(U,X;γ) ≤ n−R +

∑
ν∈F

L(εn)∑
j=lεn,ν

aj,ν ≤ C(1 + log n)n−R,

with the convergence rate

R = min

{
α,

α(q−1
1 − 1/2)

α+ q−1
1 − q

−1
2

}
= min

{
α,

α(p−1
1 − 3/2)

α+ p−1
1 − p

−1
2

}
,

where we used q1 = p1/(1− p1) and q2 = p2/(1− p2) as stated in item (ii) of Step 1.

7.5 Multilevel Smolyak sparse-grid quadrature algorithm

We next formulate an analog of Theorem 7.5 for a multilevel Smolyak sparse-grid quadrature
algorithm. First, the definition of the multi-index sets in (7.18) (which are used to construct the
quadrature via Algorithm 2) has to be slightly adjusted. Then, we state and prove a convergence
rate result for the corresponding algorithm. Its proof is along the lines of the proof of Theorem 7.5.

Let b1 = (b1,j)j∈N ∈ `p1(N), b2 = (b2,j)j∈N ∈ `p2(N), and ξ be the two sequences and the
constant from Assumption 7.2. For two constants K > 0 and r > 3, which are still at our disposal
and which will be defined below, we set for all j ∈ N

%1,j := bp1−1
1,j

ξ

4‖b1‖`p1
, %2,j := bp2−1

2,j

ξ

4‖b2‖`p2
. (7.24)
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Furthermore, we let for all ν ∈ F (as in Lemma 6.5 for k = 2 and with τ = 3)

cν :=
∏
j∈N

max{1,K%1,j}4νr−3
j , dν :=

∏
j∈N

max{1,K%2,j}4νr−3
j . (7.25)

Theorem 7.6. Let u ∈ L2(U,X; γ) and ul ∈ L2(U,X; γ), l ∈ N, satisfy Assumption 7.2 with
some constants α > 0 and 0 < p1 < 4/5 and p1 ≤ p2 < 1. Set q1 := p1/(1 − p1). Assume that
r > 2(1 + (α+ 1)q1/2)/q1 + 3 (for r in (7.25)). There exist constants K > 0 (in (7.25)) and C > 0
such that the following holds.

There exist C > 0 and, for every n ∈ N there exists εn ∈ (0, 1] such that such that work(lεn) ≤ n
and with lεn = (lεn,ν)ν∈F as in Corollary 7.4 (with cν , dν as in (7.25)) it holds∥∥∥∥∫

U
u(y) dγ(y)−QML

lεn
u

∥∥∥∥
X

≤ C(1 + log n)n−R,

with the convergence rate

R := min

{
α,

α(2p−1
1 − 5/2)

α+ 2p−1
1 − 2p−1

2

}
. (7.26)

Proof. Throughout this proof we write b1 = (b1,j)j∈N and b2 = (b2,j)j∈N for the two sequences in
Assumption 7.2. As in the proof of Theorem 7.5 we highlight that the multi-index set Γj which
was defined in (7.2) is downward closed for all j ∈ N0.

Step 1. Given n ∈ N, we choose ε := εn as in Lemma 7.4. Fix N ∈ N such that N > max{j :
j ∈ supp(ν), lε,ν > 0} and so large that∥∥∥∥∫

U
(u(y)− ũN (y)) dγ(y)

∥∥∥∥
X

≤ n−R, (7.27)

where ũN : U → X is as in Definition 4.1 (this is possible due limN→∞ ‖u− ũN‖L2(U,X;γ) = 0 which
holds by the (b1, ξ, δ,X)-holomorphy of u).

By Assumption 7.2, for every j ∈ N the function ej := u − uj ∈ L2(U,X; γ) is (b1, ξ, δ,X)-
holomorphic and (b2, ξ, δw

α
j , X)-holomorphic. For notational convenience we set e0 := u− 0 = u ∈

L2(U,X; γ), so that e0 is (b1, ξ, δ,X)-holomorphic and (b2, ξ, δ,X)-holomorphic. Hence for every
j ∈ N0 there exists a function ẽjN = ũN − ũjN as in Definition 4.1 (iii).

The following assertions are identical to the ones in the proof of Theorem 7.5, except that we
now admit different summability exponents q1 and q2.

(i) By Lemma 6.10, for every j ∈ N0, with the Wiener-Hermite PC expansion coefficients

ẽjN,ν :=

∫
U
Hν(y)ẽjN (y) dγ(y),

it holds
ẽjN (y) =

∑
ν∈F

ẽjN,νHν(y) ∀y ∈ U,

with pointwise absolute convergence.
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(ii) By Lemma 6.5, upon choosing K > 0 in (7.18) large enough, and because r > 3,

C0cνpν(3) ≤ βν(r,%1), C0dνpν(3) ≤ βν(r,%2) ∀ν ∈ F2.

Remark that by definition of %i, i ∈ {1, 2}, in (7.24), it holds %i,j ∼ b
−(1−pi)
i,j and therefore

(%−1
i,j )j∈N ∈ `qi(N) with qi := pi/(1− pi), i ∈ {1, 2}.

(iii) Due to r > 2(1 + 2(α + 1)q1)/q1 + 3, the condition of Lemma 6.6 is satisfied (with k = 2,
τ = 3 and θ = (α+ 1)q1/2). Hence the lemma gives∑

ν∈F
pν((α+ 1)q1/2)c

−q1/4
ν <∞ ⇒ (pν(α+ 1)c

−1/2
ν )ν∈F ∈ `q1/2(F)

and similarly∑
ν∈F

pν((α+ 1)q2/2)d
−q2/4
ν <∞ ⇒ (pν(α+ 1)d

−1/2
ν )ν∈F ∈ `q2/2(F).

(iv) By Theorem 4.8 and item (ii), for all j ∈ N0

C0

∑
ν∈F2

cν‖ẽjN,ν‖
2
Xpν(3) ≤

∑
ν∈F2

βν(r,%1)‖ẽjN,ν‖
2
X ≤ Cδ2

and

C0

∑
ν∈F2

dν‖ẽjN,ν‖
2
Xpν(3) ≤

∑
ν∈F2

βν(r,%2)‖ẽjN,ν‖
2
X ≤ C

δ2

w2α
j

,

with the constant C independent of j, wj and N .

(v) Because N ≥ max{j ∈ supp(ν) : lε,ν ≥ 0} and χ0,0 = 0 we have QΓj (u − uj) = QΓje
j =

QΓj ẽ
j
N for all j ∈ N (cp. Remark 4.4). Similarly QΓju = QΓj ũN for all j ∈ N.

Step 2. Observe that Γj = ∅ for all

j > L(ε) := max
ν∈F

lε,ν

(cp. (7.2)), which is finite due to |lε| <∞. With the conventions

QΓ0 = QF =

∫
U
·dγ(y)

(i.e. QΓ0 is the exact integral operator) and Q∅ ≡ 0 this implies

∫
U
u(y) dγ(y) = QΓ0u =

L(ε)∑
j=0

(QΓj −QΓj+1)u

= (QΓ0 −QΓ1)u+ . . .+ (QΓL(ε)−1
−QΓL(ε)

)u+ QΓL(ε)
u.
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By definition of the multilevel quadrature in (7.4)

QML
lε u =

L(ε)∑
j=1

(QΓj −QΓj+1)uj

= (QΓ1 −QΓ2)u1 + . . .+ (QΓL(ε)−1
−QΓL(ε)

)uL(ε) + QΓL(ε)
uL(ε).

By item (v) of Step 1, we can write

(QΓ0 −QΓ1)u =

∫
U
u(y) dγ(y)−QΓ1u

=

∫
U
u(y) dγ(y)−QΓ1 ũN

=

∫
U

(u(y)− ũN (y)) dγ(y) + (QΓ0 −QΓ1)ũN

=

∫
U

(u(y)− ũN (y)) dγ(y) + (QΓ0 −QΓ1)ẽ0
N ,

where in the last equality we used e0
N = uN , by definition of e0 = u (and ẽ0

N = ũN ∈ L2(U,X; γ)
as in Definition 4.1). Hence, again by item (v),

∫
U
u(y) dγ(y)−QML

lε u = (QΓ0 −QΓ1)u+

L(ε)∑
j=1

(QΓj −QΓj+1)(u− uj)

=

∫
U

(u(y)− ũN (y)) dγ(y) + (QΓ0 −QΓ1)ũN +

L(ε)∑
j=1

(QΓj −QΓj+1)ẽjN

=

∫
U

(u(y)− ũN (y)) dγ(y) +

L(ε)∑
j=0

(QΓj −QΓj+1)ẽjN .

Let us bound the norm. From item (i) of Step 1 it follows that for every j ∈ N0,

ẽjN (y) =
∑
ν∈FN1

ẽjN,νHν(y),

with the equality and unconditional convergence in X for all y ∈ FN1 . Hence similar to Lemma 6.15
we have

(QΓj −QΓj+1)ejN =
∑
ν∈FN1

ẽjN,ν(QΓj −QΓj+1)Hν

with the equality and unconditional convergence in X. Since (QΓj − QΓj+1)Hν = 0 ∈ X for all
ν ∈ Γj+1 ⊆ Γj and all ν ∈ F\F2 by Lemma 6.2, we get

∥∥∥∥∫
U
u(y) dγ(y)−QML

lε u

∥∥∥∥
X

≤
∥∥∥∥∫

U
(u(y)− ũN (y)) dγ(y)

∥∥∥∥
X

+
∑
ν∈F2

L(ε)∑
j=lε,ν

‖ẽjN,ν‖X |(QΓj−QΓj+1)Hν |.

(7.28)
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Step 3. We wish to apply Lemma 7.4 to the bound (7.28). By (6.10), for all ν ∈ F

|(QΓj −QΓj+1)Hν | ≤ |QΓjHν |+ |QΓj+1Hν | ≤ 2pν(3).

Define
aj,ν := ‖ẽjN,ν‖Xpν(3) ∀ν ∈ F2,

and aj,ν := 0 for ν ∈ F\F2. By items (iii) and (iv) of Step 1, the collections (aj,ν)ν∈F , j ∈ N0,
and (cν)ν∈F , (dν)ν∈F , satisfy the assumptions of Lemma 7.4 (with q̃1 := q1/2 and q̃2 := q2/2).
Therefore (7.28), (7.27) and Lemma 7.4 give∥∥∥∥∫

U
u(y) dγ(y)−QML

lε u

∥∥∥∥
X

≤ n−R +
∑
ν∈F

L(ε)∑
j=lε,ν

aj,ν ≤ C(1 + log n)n−R,

with

R = min

{
α,

α(q̃−1
1 − 1/2)

α+ q̃−1
1 − q̃

−1
2

}
= min

{
α,

α(2p−1
1 − 5/2)

α+ 2p−1
1 − 2p−1

2

}
,

where we used q̃1 = q1/2 = p1/(2− 2p1) and q̃2 = q2/2 = p2/(2− 2p2) as stated in item (ii) of Step
1.

7.6 Examples for multilevel interpolation and quadrature

We revisit the examples in Sections 4 and 5, and demonstrate how to verify the assumptions required
for the multilevel convergence rate results in Theorems 7.5 and 7.6.

7.6.1 Parametric diffusion coefficient in polygonal domain

Let D ⊆ R2 be a bounded polygonal domain, and consider once more the elliptic equation

− div(a∇U(a)) = f in D, U(a) = 0 on ∂D, (7.29)

as in Section 4.3.1.
For s ∈ N0 and κ ∈ R, recall the Kondrat’ev spaces Ws

∞(D) and Ksκ(D) with norms

‖u‖Ksκ :=
∑
|α|≤s

‖r|α|−κD Dαu‖L2 and ‖u‖Ws
∞ :=

∑
|α|≤s

‖r|α|D Dαu‖L∞

introduced in Section 3.8.1. Here, as earlier, rD : D → [0, 1] denotes a fixed smooth function that
coincides with the distance to the nearest corner, in a neighbourhood of each corner. According to
Theorem 3.29, assuming s ≥ 2, f ∈ Ks−2

κ−1(D) and a ∈ Ws−1
∞ (D) the solution U(a) of (7.29) belongs

to Ksκ+1(D) provided that with

ρ(a) := ess inf
x∈D

<(a(x)) > 0,

|κ| < ρ(a)

τ‖a‖L∞
, (7.30)

where τ is a constant depending on D and s. Our goal is to treat, in a unified manner, a family
of diffusion coefficients a(y), y ∈ U , where for certain y ∈ U the diffusion coefficient a(y) is such
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that the right-hand side of (7.30) might be arbitrarily small. This only leaves us with the choice
κ = 0, see Remark 3.31. On the other hand, the motivation of using Kondrat’ev spaces in the
analysis of approximations to PDE solutions U(a(y)), is that functions in Ksκ+1(D) on polygonal
domains in R2 can be approximated with the optimal convergence rate s−1

2 w.r.t. the H1-norm by
suitable finite element spaces (on graded meshes; i.e. this analysis accounts for corner singularities
which prevent optimal convergence rates on uniform meshes). Such results are well-known, see for
example [25], however they require κ > 0. For this reason we need a stronger regularity result,
giving uniform Ksκ+1-regularity with κ > 0 independent of the parameter. This is the purpose of
the next theorem. For its proof we shall need the following lemma, which is shown in a similar way
as in [113, Lemma C.2]. We recall that

‖f‖W s
∞ :=

∑
|ν|≤s

‖Dνf‖L∞ .

Lemma 7.7. Let s ∈ N0 and let D ⊆ R2 be a bounded polygonal domain, d ∈ N.
Then there exist Cs and C̃s such that for any two functions f , g ∈ Ws

∞(D)

(i) ‖fg‖Ws
∞ ≤ Cs‖f‖Ws

∞‖g‖Ws
∞,

(ii) ‖ 1
f ‖Ws

∞ ≤ C̃s
‖f‖sWs∞

ess infx∈D |f(x)|s+1 if ess infx∈D |f(x)| > 0.

These statements remain true if Ws
∞(D) is replaced by W s

∞(D). Furthermore, if κ ∈ R, then for
f ∈ Ksκ(D) and a ∈ Ws

∞(D)

(iii) ‖fa‖Ksκ ≤ Cs‖f‖Ksκ‖a‖Ws
∞,

(iv) ‖∇f · ∇a‖Ks−1
κ−1
≤ Cs−1‖f‖Ksκ+1

‖a‖Ws
∞ if s ≥ 1.

Proof. We will only prove (i) and (ii) for functions in Ws
∞(D). The case of W s

∞(D) is shown
similarly (by omitting all occurring functions rD in the following).

Step 1. We start with (i), and show a slightly more general bound: for τ ∈ R introduce

‖f‖Ws
τ,∞ :=

∑
|ν|≤s

‖rτ+|ν|
D Dνf‖L∞ ,

i.e. Ws
0,∞(D) =Ws

∞(D). We will show that for τ1 + τ2 = τ

‖fg‖Ws
τ,∞ ≤ Cs‖f‖Ws

τ1,∞
‖g‖Ws

τ2,∞
. (7.31)

Item (i) then follows with τ = τ1 = τ2 = 0.
Using the multivariate Leibniz rule for Lipschitz functions, for any multiindex ν ∈ Nd0 with

d ∈ N fixed,

Dν(fg) =
∑
µ≤ν

(
ν

µ

)
Dν−µfDµg. (7.32)

Thus if |ν| ≤ s

‖rτ+|ν|
D Dν(fg)‖L∞ ≤

∑
µ≤ν

(
ν

µ

)
‖rτ1+|ν−µ|
D Dν−µf‖L∞‖rτ2+|µ|

D Dµg‖L∞ ≤ 2|ν|‖f‖Ws
τ1,∞
‖g‖Ws

τ2,∞
,
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where we used
(
ν
µ

)
=
∏d
j=1

(
νj
µj

)
and

∑νj
i=0

(νj
i

)
= 2νj . We conclude

‖fg‖Ws
τ,∞ ≤ Cs‖f‖W s

τ,∞‖g‖W s
∞

with Cs =
∑
|ν|≤s 2|ν|. Hence (i) holds.

Step 2. We show (ii), and claim that for all |ν| ≤ s it holds

Dν
(

1

f

)
=

pν

f |ν|+1
, (7.33)

where pν satisfies

‖pν‖Ws−|ν|
|ν|,∞

≤ Ĉ|ν|‖f‖
|ν|
Ws
∞

(7.34)

for some Ĉ|ν| solely depending on |ν|. We proceed by induction over |ν| and start with |ν| = 1,

i.e., ν = ej = (δij)
d
i=1 for some j ∈ {1, . . . , d}. Then Dej 1

f =
−∂jf
f2 and pej = −∂jf satisfies

‖pej‖Ws−1
1,∞

=
∑
|µ|≤s−1

‖r1+|µ|
D Dµpej‖L∞ =

∑
|µ|≤s−1

‖r|µ+ej |
D Dµ+ejf‖L∞ ≤ ‖f‖Ws

∞ ,

i.e. Ĉ1 = 1. For the induction step fix ν with 1 < |ν| < s and j ∈ {1, . . . , d}. Then by the induction
hypothesis Dν 1

f = pν
f |ν|+1 and

Dν+ej
1

f
= ∂j

(
pν

f |ν|+1

)
=
f |ν|+1∂jpν − (|ν|+ 1)f |ν|pν∂jf

f2|ν|+2
=
f∂jpν − (|ν|+ 1)pν∂jf

f |ν|+2
,

and thus
pν+ej := f∂jpν − (|ν|+ 1)pν∂jf.

Observe that

‖∂jg‖Ws
τ,∞ =

∑
|µ|≤s

‖rτ+|µ|
D Dµ+ejg‖L∞ ≤

∑
|µ|≤s+1

‖rτ+|µ|−1
D Dµg‖L∞ = ‖g‖Ws+1

τ−1,∞
. (7.35)

Using (7.31) and (7.35), we get with τ := |ν|+ 1

‖pν+ej‖Ws−τ
τ,∞
≤ ‖f∂jpν‖Ws−τ

τ,∞
+ (|ν|+ 1)‖pν∂jf‖Ws−τ

τ,∞

≤ Cs−τ‖f‖Ws−τ
0,∞
‖∂jpν‖Ws−τ

τ,∞
+ (|ν|+ 1)Cs−τ‖pν‖Ws−τ

τ−1,∞
‖∂jf‖Ws−τ

1,∞

≤ Cs−τ‖f‖Ws−τ
0,∞
‖pν‖Ws−τ+1

τ−1,∞
+ (|ν|+ 1)Cs−τ‖pν‖Ws−τ+1

τ−1,∞
‖f‖Ws−τ+1

0,∞
.

Due to τ − 1 = |ν| and the induction hypothesis (7.34) for pν ,

‖pν+ej‖Ws−(|ν|+1)
|ν|+1,∞

≤ Cs−(|ν|+1)

(
Ĉ|ν|‖f‖Ws−(|ν|+1)

∞
‖f‖|ν|Ws

∞
+ (|ν|+ 1)Ĉ|ν|‖f‖

|ν|
Ws
∞
‖f‖Ws−|ν|

∞

)
≤ Cs−(|ν|+1)Ĉ|ν|(|ν|+ 2)‖f‖|ν|+1

W∞s .

In all this shows the claim with Ĉ1 := 1 and inductively for 1 < k ≤ s,

Ĉk := Cs−kĈk−1(k + 1).
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By (7.33) and (7.34), for every |ν| ≤ s∥∥∥∥r|ν|D Dν
(

1

f

)∥∥∥∥
L∞
≤ Ĉ|ν|

‖f‖|ν|Ws
∞

ess infx∈D |f(x)||ν|+1
.

Due to
‖f‖Ws

∞ ≥ ‖f‖L∞ ≥ ess infx∈D |f(x)|,

this implies ∥∥∥∥ 1

f

∥∥∥∥
Ws
∞

=
∑
|ν|≤s

∥∥∥∥r|ν|D Dν
(

1

f

)∥∥∥∥
L∞
≤ C̃s

‖f‖sWs
∞

ess infx∈D |f(x)|s+1

with C̃s :=
∑
|ν|≤s Ĉ|ν|.

Step 3. We show (iii) and (iv). If f ∈ Ksκ(D) and a ∈ Ws
∞(D), then by (7.32) for Sobolev

functions,

rν−κD Dν(fa) =
∑
µ≤ν

(
ν

µ

)
(r
|ν−µ|−κ
D Dν−µf)(r

|µ|
D Dµa)

and hence

‖fa‖Ksκ =
∑
|ν|≤s

‖r|ν|−κD Dν(fa)‖L2

≤
∑
|ν|≤s

∑
µ≤ν

(
ν

µ

)
‖r|ν−µ|−κD Dν−µf‖L2‖r|µ|D Dµa‖L∞

≤ Cs
∑
|ν|≤s

‖r|ν|−κD Dνf‖L2

∑
|µ|≤s

‖r|µ|D Dµa‖L∞

= Cs‖f‖Ksκ‖a‖Ws
∞ .

Finally if s ≥ 1,

‖∇f · ∇a‖Ks−1
κ−1

=
∑
|ν|≤s−1

∥∥∥∥∥∥r|ν|−κ+1
D Dν

 d∑
j=1

∂jf∂ja

∥∥∥∥∥∥
L2

≤
∑
|ν|≤s−1

∑
µ≤ν

(
ν

µ

) d∑
j=1

‖r|ν−µ|−κD Dν−µ+ejf‖L2‖r|µ|+1
D Dµ+eja‖L∞

≤ Cs−1d
∑
|ν|≤s

‖r|ν|−κ−1
D Dνf‖L2

∑
|µ|≤s

‖r|µ|D Dµa‖L∞

= Cs−1d‖f‖Ksκ+1
‖a‖Ws

∞ .

The proof of the next theorem is based on Theorem 3.29. In order to get regularity in Ksκ+1(D)
with κ > 0 independent of the diffusion coefficient a, we now assume a ∈ W 1

∞(D) ∩ Ws−1
∞ (D) in

lieu of the weaker assumption a ∈ Ws−1
∞ that was required in Theorem 3.29.
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Theorem 7.8. Let D ⊆ R2 be a bounded polygonal domain and s ∈ N, s ≥ 2. Then there exist κ >
0 and Cs > 0 depending on D and s (but independent of a) such that for all a ∈W 1

∞(D)∩Ws−1
∞ (D)

and all f ∈ Ks−2
κ−1(D) the weak solution U ∈ H1

0 (D) of (7.29) satisfies with Ns := s(s−1)
2

‖U‖Ksκ+1
≤ Cs

1

ρ(a)

(
‖a‖Ws−1

∞
+ ‖a‖W 1

∞

ρ(a)

)Ns
‖f‖Ks−2

κ−1
. (7.36)

Proof. Throughout this proof let κ ∈ (0, 1) be a constant such that

−∆ : Kjκ+1(D) ∩H1
0 (D)→ Kj−2

κ−1(D) (7.37)

is a boundedly invertible operator for all j ∈ {2, . . . , s}; such κ exists by Theorem 3.29, and κ
merely depends on D and s.

Step 1. We prove the theorem for s = 2, in which case a ∈W 1
∞ ∩W1

∞ = W 1
∞.

Applying Theorem 3.29 directly to (7.29) yields the existence of some κ̃ ∈ (0,κ) (depending
on a) such that U ∈ K2

κ̃+1. Here we use

f ∈ K0
κ−1(D) ↪→ K0

κ̃−1(D)

due to κ̃ ∈ (0,κ). By the Leibniz rule for Sobolev functions we can write

−div(a∇U) = −a∆U −∇a · ∇U

in the sense of K0
κ̃−1(D): (i) it holds ∆U ∈ K0

κ̃−1(D) and

a ∈W 1
∞(D) ↪→ L∞(D)

which implies a∆U ∈ K0
κ̃−1(D) (ii) it holds

∇U ∈ K1
κ̃(D) ↪→ K0

κ̃(D),

and ∇a ∈ L∞(D) which implies ∇a · ∇U ∈ K0
κ̃−1(D). Hence,

−div(a∇U) = −a∆U −∇a · ∇U = f,

and further

−∆U =
1

a

(
f +∇a · ∇U

)
=: f̃ ∈ K0

κ̃−1(D)

since 1
a ∈ L∞(D) due to ρ(a) > 0. Our goal is to show that in fact f̃ ∈ K0

κ−1(D). Because of

−∆U = f̃ and U|∂D ≡ 0, Theorem 3.29 then implies

‖U‖K2
κ+1
≤ C‖f̃‖K0

κ−1
(7.38)

for a constant C solely depending on D.
Denote by CH a constant (solely depending on D) such that

‖r−1
D v‖L2 ≤ CH‖∇v‖L2 ∀v ∈ H1

0 (D).
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This constant exists as a consequence of Hardy’s inequality, see e.g. [64] and [82, 93] for the
statement and proof of the inequality on bounded Lipschitz domains. Then due to

ρ(a)‖∇U‖2L2 ≤ <
(∫

D
a∇U · ∇U dx

)
= <

(∫
D
fU dx

)
≤ ‖r1−κ

D f‖L2‖rκ−1
D U‖L2 ≤ ‖f‖K0

κ−1
‖r−1
D U‖L2

≤ CH‖f‖K0
κ−1
‖∇U‖L2

it holds

‖∇U‖L2 ≤
CH‖f‖K0

κ−1

ρ(a)
.

Hence, using r1−κ
D ≤ 1, we have that

‖f̃‖K0
κ−1

=

∥∥∥∥∥r1−κ
D

a

(
f +∇a · ∇U

)∥∥∥∥∥
L2

≤
∥∥∥∥1

a

∥∥∥∥
L∞

(
‖r1−κ
D f‖L2 + ‖∇a‖L∞‖∇U‖L2

)
≤ 1

ρ(a)

(
‖f‖K0

κ−1
+ ‖a‖W 1

∞

CH‖f‖K0
κ−1

ρ(a)

)

=
‖f‖K0

κ−1

ρ(a)

(
1 +

CH‖a‖W 1
∞

ρ(a)

)
≤ (1 + CH)

1

ρ(a)

‖a‖W 1
∞

ρ(a)
‖f‖K0

κ−1
.

The statement follows by (7.38).
Step 2. For general s ∈ N, s ≥ 2, we proceed by induction. Assume the theorem holds for

s− 1 ≥ 2. Then for
f ∈ Ks−2

κ−1(D) ↪→ Ks−3
κ−1(D)

and
a ∈W 1

∞(D) ∩Ws−1
∞ (D) ↪→W 1

∞(D) ∩Ws−2
∞ (D),

we get

‖U‖Ks−1
κ+1
≤ Cs−1

ρ(a)

(
‖a‖W 1

∞
+ ‖a‖Ws−2

∞

ρ(a)

)Ns−1

‖f‖Ks−3
κ−1

. (7.39)

As in Step 1, it holds

−∆U =
1

a

(
f +∇a · ∇U

)
=: f̃ .

By Lemma 7.7 and (7.39), for some constant C (which can change in each line, but solely depends
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on D and s) we have that

‖f̃‖Ks−2
κ−1
≤ C

∥∥∥∥1

a

∥∥∥∥
Ws−2,∞

‖f +∇a · ∇U‖Ks−2
κ−1

≤ C
‖a‖s−2
Ws−2

ρ(a)s−1

(
‖f‖Ks−2

κ−1
+ ‖a‖Ws−1

∞
‖U‖Ks−1

κ+1

)
≤ C
‖a‖s−2
Ws−2

ρ(a)s−1

‖f‖Ks−2
κ−1

+ Cs−1

‖a‖Ws−1
∞

ρ(a)

(
‖a‖W 1

∞
+ ‖a‖Ws−2

∞

ρ(a)

)Ns−1

‖f‖Ks−3
κ−1


≤ C 1

ρ(a)

(
‖a‖W 1

∞
+ ‖a‖Ws−1

∞

ρ(a)

)Ns−1+1+(s−2)

‖f‖Ks−2
κ−1

.

Note that

Ns−1 + (s− 1) =
(s− 1)(s− 2)

2
+ (s− 1) =

s(s− 1)

2
= Ns.

We now use (7.39) and the fact that (7.37) is a boundedly invertible isomorphism to conclude that
there exist Cs such that (7.36) holds.

Throughout the rest of this section D is assumed a bounded polygonal domain and κ > 0 the
constant from Theorem 7.8.

Assumption 7.9. For some fixed s ∈ N, s ≥ 2, there exist constants C > 0 and α > 0, and a
sequence (Xl)l∈N of subspaces of X = H1

0 (D;C) =: H1
0 , such that

(i) wl := dim(Xl), l ∈ N, satisfies Assumption 7.1 (for some KW > 0),

(ii) for all l ∈ N

sup
0 6=u∈Ksκ+1

infv∈Xl ‖u− v‖H1
0

‖u‖Ksκ+1

≤ Cw−αl . (7.40)

The constant α in Assumption 7.9 can be interpreted as the convergence rate of the finite element
method. For the Kondrat’ev space Ksκ+1(D), finite element spaces Xl of piecewise polynomials of
degree s − 1 have been constructed in [25, Theorem 4.4], which achieve the optimal (in space
dimension 2) convergence rate

α =
s− 1

2
(7.41)

in (7.40). For these spaces, Assumption 7.9 holds with this α, which consequently allows us to
retain optimal convergence rates. Nonetheless we keep the discussion general in the following, and
assume arbitrary positive α > 0.

We next introduce the finite element solutions of (7.29) in the spaces Xl, and provide the basic
error estimate.

Lemma 7.10. Let Assumption 7.9 be satisfied for some s ≥ 2. Let f ∈ Ks−2
κ−1(D) and

a ∈W 1
∞(D) ∩Ws−1

∞ (D) ⊆ L∞(D)
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with ρ(a) > 0 and denote for l ∈ N by U l(a) ∈ Xl the unique solution of∫
D
a(∇U l)>∇v dx = 〈f, v〉 ∀v ∈ Xl,

where the right hand side denotes the (sesquilinear) dual pairing between H−1(D) and H1
0 (D). Then

for the solution U(a) ∈ H1
0 (D) it holds with the constants Ns, Cs from Theorem. 7.8,

‖U(a)− U l(a)‖H1
0
≤ w−αl C

‖a‖L∞
ρ(a)

‖U(a)‖Ksκ+1
≤ w−αl CCs

(‖a‖W 1
∞

+ ‖a‖Ws−1
∞

)Ns+1

ρ(a)Ns+2
‖f‖Ks−2

κ−1
.

Here C > 0 is the constant from Assumption 7.9.

Proof. By Céa’s lemma in complex form we derive that

‖U(a)− U l(a)‖H1
0
≤ ‖a‖L

∞

ρ(a)
inf
v∈Xl
‖U(a)− v‖H1

0
.

Hence the assertion follows by Assumption 7.9 and (7.36).

Throughout the rest of this section, as earlier we expand the logarithm of the diffusion coefficient

a(y) = exp

(∑
j∈N

yjψj

)

in terms of a sequence ψj ∈W 1
∞(D) ∩Ws−1

∞ (D), j ∈ N. Denote

b1,j := ‖ψj‖L∞ , b2,j := max
{
‖ψj‖W 1

∞
, ‖ψj‖Ws−1

∞

}
(7.42)

and b1 := (b1,j)j∈N, b2 := (b2,j)j∈N.

Example 7.11. Let D = [0, 1] and ψj(x) = sin(jx)j−r for some r > 2. Then b1 ∈ `p1(N) for every
p1 >

1
r and b2 ∈ `p2(N) for every p2 >

1
r−(s−1) .

In the next proposition we verify Assumption 7.2. This will yield validity of the multilevel
convergence rates proved in Theorems 7.5 and 7.6 in the present setting as we discuss subsequently.

Proposition 7.12. Let Assumption 7.9 be satisfied for some s ≥ 2 and α > 0. Let b1 ∈ `p1(N),
b2 ∈ `p2(N) with p1, p2 ∈ (0, 1).

Then there exist ξ > 0 and δ > 0 such that

u(y) := U

(
exp

(∑
j∈N

yjψj

))
(7.43)

is (b1, ξ, δ,H
1
0 )-holomorphic, and for every l ∈ N

(i) ul(y) := U l(exp(
∑

j∈N yjψj)) is (b1, ξ, δ,H
1
0 )-holomorphic,

(ii) u− ul is (b1, ξ, δ,H
1
0 )-holomorphic,

(iii) u− ul is (b2, ξ, δw
−α
l , H1

0 )-holomorphic.
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Proof. Step 1. We show (i) and (ii). The argument to show that ul is (b1, ξ, δ,H
1
0 )-holomorphic

(for some constants ξ > 0, δ > 0 independent of l) is essentially the same as in Section 4.3.1.
We wish to apply Theorem 4.11 with E = L∞(D) and X = H1

0 . To this end let

O1 = {a ∈ L∞(D;C) : ρ(a) > 0} ⊂ L∞(D;C).

By assumption, b1,j = ‖ψj‖L∞ satisfies b1 = (b1,j)j∈N ∈ `p1(N) ⊆ `1(N), which corresponds to
assumption (iv) of Theorem 4.11. It remains to verify assumptions (i), (ii) and (iii) of Theorem
4.11:

(i) U l : O1 → H1
0 is holomorphic: This is satisfied because the operation of inversion of linear

operators is holomorphic on the set of boundedly invertible linear operators. Denote by
Al : Xl → X ′l the differential operator

Alu = −div(a∇u) ∈ X ′l

via

〈Alu, v〉 =

∫
D
a∇u>∇v dx ∀v ∈ Xl.

Observe that Al depends boundedly and linearly (thus holomorphically) on a, and therefore,
the map a 7→ Al(a)−1f = U l(a) is a composition of holomorphic functions. We refer once
more to [111, Example 1.2.38] for more details.

(ii) It holds for all a ∈ O

‖U l(a)‖H1
0
≤
‖f‖X′l
ρ(a)

≤ ‖f‖H−1

ρ(a)
.

The first inequality follows by the same calculation as (4.20) (but with X replaced by Xl),
and the second inequality follows by the definition of the dual norm, viz

‖f‖X′l = sup
0 6=v∈Xl

| 〈f, v〉 |
‖v‖H1

0

≤ sup
06=v∈H1

0

| 〈f, v〉 |
‖v‖H1

0

= ‖f‖H−1 .

(iii) For all a, b ∈ O we have

‖U l(a)− U l(b)‖H1
0
≤ ‖f‖H−1

1

min{ρ(a), ρ(b)}2
‖a− b‖L∞ ,

which follows again by the same calculation as in in the proof of (4.21).

According to Theorem 4.11 the map

U l ∈ L2(U,Xl; γ) ⊆ L2(U,H1
0 ; γ)

is (b1, ξ1, C̃1, H
1
0 )-holomorphic, for some fixed constants ξ1 > 0 and C̃1 > 0 depending on O1 but

independent of l. In fact the argument also works withH1
0 instead ofXl, i.e. also u is (b1, ξ1, C̃1, H

1
0 )-

holomorphic (with the same constants ξ1 and C̃1).
Finally, it follows directly from the definition that the difference u − ul is (b1, ξ, 2δ,H

1
0 )-

holomorphic.
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Step 2. To show (iii), we set

O2 = {a ∈W 1
∞(D) ∩Ws−1

∞ (D) : ρ(a) > 0},

and verify again assumptions (i), (ii) and (iii) of Theorem 4.11, but now with “E” in this lemma
being W 1

∞(D) ∩Ws−1
∞ (D). First, observe that with

b2,j := max
{
‖ψj‖Ws−1

∞
, ‖ψj‖W 1

∞

}
,

by assumption
b2 = (b2,j)j∈N ∈ `p2(N) ↪→ `1(N)

which corresponds to the assumption (iv) of Theorem 4.11.
For every l ∈ N:

(i) U − U l : O2 → H1
0 (D) is holomorphic: Since O2 can be considered a subset of O1 (and O2

is equipped with a stronger topology than O1), Fréchet differentiability follows by Fréchet
differentiability of

U − U l : O1 → H1
0 (D),

which holds by Step 1.

(ii) For every a ∈ O2

‖(U − U l)(a)‖H1
0
≤ w−αl CCs‖f‖Ks−2

κ−1︸ ︷︷ ︸
=:δl

(‖a‖W 1
∞

+ ‖a‖Ws−1
∞

)Ns+1

ρ(a)Ns+2

by Lemma 7.10.

(iii) For every a, b ∈ O2 ⊆ O1, by Step 1 and (4.21),

‖(U − U l)(a)− (U − U l)(b)‖H1
0
≤ ‖U(a)− U(b)‖H1

0
+ ‖U l(a)− U l(b)‖H1

0

≤ ‖f‖H−1

2

min{ρ(a), ρ(b)}2
‖a− b‖L∞ .

We conclude with Theorem 4.11 that there exist ξ2 and C̃2 depending on O2, D but indepen-
dent of l such that u− ul is (b2, ξ2, C̃2δl, H

1
0 )-holomorphic.

In all, the proposition holds with

ξ := min{ξ1, ξ2} and δ := max{C̃1, C̃2CCs‖f‖Ks−2
κ−1
}.

Items (ii) and (iii) of Proposition 7.12 show that Assumption 7.9 implies validity of Assump-
tion 7.2. This in turn allows us to apply Theorems 7.5 and 7.6. Specifically, assuming the optimal
convergence rate α = s−1

2 in (7.41), we obtain that for u in (7.43) and every n ∈ N there is
ε := εn > 0 such that work(lε) ≤ n and the multilevel interpolant IML

l defined in (7.3) satisfies

‖u− IML
lε u‖L2(U,H1

0 ;γ) ≤ C(1 + log n)n−RI , RI = min

{
s− 1

2
,

s−1
2 ( 1

p1
− 3

2)
s−1

2 + 1
p1
− 1

p2

}
,
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and the multilevel quadrature operator QML
l defined in (7.4) satisfies∥∥∥∥∫

U
u(y) dγ(y)−QML

lε u

∥∥∥∥
H1

0

≤ C(1 + log n)n−RQ , RQ = min

{
s− 1

2
,

s−1
2 ( 2

p1
− 5

2)
s−1

2 + 2
p1
− 2

p2

}
.

Let us consider these convergence rates in the case where the ψj are algebraically decreasing, with
this decrease encoded by some r > 1: if for fixed but arbitrarily small ε > 0 holds ‖ψj‖L∞ ∼ j−r−ε,
and we assume (cp. Ex. 7.11)

max
{
‖ψj‖W 1

∞
, ‖ψj‖Ws−1

∞

}
∼ j−r+(s−1)−ε,

then setting s := r we can choose p1 = 1
r and p2 = 1. Inserting those numbers, the convergence

rates become

RI = min

{
r − 1

2
,
r−1

2 (r − 3
2)

r−1
2 + r − 1

}
=
r

3
− 1

2
and RQ = min

{
r − 1

2
,
r−1

2 (2r − 5
2)

r−1
2 + 2r − 2

}
=

2r

5
− 1

2
.

7.6.2 Parametric holomorphy of the posterior density in Bayesian PDE inversion

Throughout this section we assume that D ⊆ R2 is a polygonal Lipschitz domain and that f ∈
Ks−2

κ−1(D) with κ as in Theorem 7.8.
As in Section 5, to treat the approximation of the (unnormalized) posterior density or its

integral, we need an upper bound on ‖u(y)‖H1
0

for all y. This is achieved by considering (7.29)
with diffusion coefficient a0 + a where

ρ(a0) := ess inf
x∈D

<(a0) > 0.

The shift of the diffusion coefficient by a0 ensures uniform ellipticity for all

a ∈ {a ∈ L∞(D,C) : ρ(a) ≥ 0}.

As a consequence, solutions U(a0 + a) ∈ X = H1
0 (D;C) =: H1

0 of (7.29) satisfy the apriori bound
(cp. (4.20))

‖U(a0 + a)‖H1
0
≤ ‖f‖H−1

ρ(a0)
.

As before, for a sequence of subspaces (Xl)l∈N of H1
0 (D,C), for a ∈ O we denote by U l(a) ∈ Xl the

finite element approximation to U(a). By the same calculation as for U it also holds

‖U l(a0 + a)‖H1
0
≤ ‖f‖H−1

ρ(a0)

independent of l.
Assuming that bj = ‖ψj‖L∞ satisfies (bj)j∈N ∈ `1(N), the function u(y) = U(a0 + a(y)) with

a(y) = exp

(∑
j∈N

yjψj

)
,
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is well-defined. For a fixed observation d ∈ Rm consider again the (unnormalized) posterior density
given in (5.4),

π̃(y|d) := exp
(
−(d−O(u(y)))>Γ−1(d−O(u(y)))

)
.

Recall that O : X → Cm (the observation operator) is assumed to be a bounded linear map,
and Γ ∈ Rm×m (the noise covariance matrix) is symmetric positive definite. For l ∈ N (tagging
discretization level of the PDE), and with ul(y) = U l(a0 + a(y)), we introduce approximations

π̃l(y|d) := exp
(
−(d−O(ul(y)))>Γ−1(d−O(ul(y)))

)
to π̃(y|d). In the following we show the analog of Proposition 7.12, that is we show validity of the
assumptions required for the multilevel convergence results.

Lemma 7.13. Let O : H1
0 (D;C) → Cm be a bounded linear operator, d ∈ Cm and Γ ∈ Rm×m

symmetric positive definite. Set

Φ :=

{
H1

0 (D;C)→ C
u 7→ exp(−(d−O(u))>Γ−1(d−O(u))).

Then the function Φ is continuously differentiable and for every r > 0 has a Lipschitz constant K
solely depending on ‖Γ−1‖, ‖O‖L(H1

0 ;Cm), ‖d‖ and r, on the set

{u ∈ H1
0 (D;C) : ‖u‖H1

0
< r}.

Proof. The function Φ is continuously differentiable as a composition of continuously differentiable
functions. Hence for u, v with w := u− v and with the derivative DΦ : H1

0 → L(H1
0 ;C) of Φ,

Φ(u)− Φ(v) =

∫ 1

0
DΦ(v + tw)w dt. (7.45)

Due to the symmetry of Γ it holds

DΦ(u+ tw)w = 2O(w)>Γ−1(d−O(u+ tw)) exp
(
− (d−O(u+ tw))>Γ−1(d−O(u+ tw))

)
.

If ‖u‖H1
0
, ‖v‖H1

0
< r then also ‖u+ tw‖H1

0
< r for all t ∈ [0, 1] and we can bound

|DΦ(u+ tw)w| ≤ K‖w‖H1
0
,

where

K := 2‖O‖L(H1
0 ;Cm)‖Γ−1‖(‖d‖ + r‖O‖L(H1

0 ;Cm)) exp(‖Γ−1‖(‖d‖ + ‖O‖L(H1
0 ;Cm)r)

2). (7.46)

The statement follows by (7.45).

Remark 7.14. The reason why we require the additional positive a0 term in (7.44), is to guarantee
boundedness of the solution U(a) and Lipschitz continuity of Φ.
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Proposition 7.15. Let Assumption 7.9 be satisfied for some s ≥ 2 and α > 0. Let a0, (ψj)j∈N ⊆
W 1
∞(D) ∩Ws−1

∞ (D) and b1 ∈ `p1(N), b2 ∈ `p2(N) with p1, p2 ∈ (0, 1) (see (7.42) for the definition
of b1, b2). Fix d ∈ Cm.

Then there exist ξ > 0 and δ > 0 such that π̃(y|d) is (b1, ξ, δ,C)-holomorphic, and for every
l ∈ N

(i) π̃l(y|d) is (b1, ξ, δ,C)-holomorphic,

(ii) π̃(y|d)− π̃l(y|d) is (b1, ξ, δ,H
1
0 )-holomorphic,

(iii) π̃(y|d)− π̃l(y|d) is (b2, ξ, δw
−α
l , H1

0 )-holomorphic.

Proof. Step 1. We show (i) and (ii). Set

O1 := {a ∈ L∞(D;C) : ρ(a) > 0}.

By (7.44) for all a ∈ O1 and all l ∈ N with r :=
‖f‖H−1

ρ(a0)

‖U l(a0 + a)‖H1
0
≤ r and ‖U(a0 + a)‖H1

0
≤ r. (7.47)

As in Step 1 of the proof of Proposition 7.12, one can show that u(y) = U(a0 + a(y)) and ul(y) =
U(a0 + a(y)) where a(y) = exp(

∑
j∈N yjψj) are (b1, ξ1, C̃1, H

1
0 )-holomorphic for certain ξ1 > 0 and

C̃1 > 0 (the only difference to Proposition 7.12 is the affine offset a0 in (7.29), which ensures a
positive lower bound for a + a0). In the following Φ is as in Lemma 7.13 and Ta0(a) := a0 + a so
that

π̃(y|d) = Φ(U l(Ta0(a(y)))). (7.48)

With b1,j = ‖ψj‖L∞ , by the assumption

b1 = (b1,j)j∈N ∈ `p1(N) ↪→ `1(N)

which corresponds to assumption (iv) of Theorem 4.11. We now verify assumptions (i), (ii) and
(iii) of Theorem 4.11 for (7.48).

For every l ∈ N:

(i) The map

Φ ◦ U l ◦ Ta0 :

{
O1 → C
a 7→ Φ(U(Ta0(a)))

is holomorphic as a composition of holomorphic functions.

(ii) for all a ∈ O1, since ‖U l(Ta0(a))‖H1
0
≤ r

|Φ(U l(Ta0(a)))| ≤ exp((‖d‖ + ‖O‖L(H1
0 (D;C);Cm)r)

2‖Γ−1‖)

and thus assumption (ii) of Theorem 4.11 is trivially satisfied for some δ > 0 independent of
l,
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(iii) for all a, b ∈ O1 by Lemma 7.13 and the same calculation as in (4.21)

|Φ(U l(Ta0(a)))− Φ(U l(Ta0(b)))| ≤ K‖U l(Ta0(a))− U l(Ta0(b))‖H1
0

≤ K ‖f‖H−1

ρ(a0)
‖a− b‖L∞ ,

(7.49)

where K is the constant given as in (7.46).

Now we can apply Theorem 4.11 to conclude that there exist ξ1, δ1 (independent of l) such
that π̃l(·|d) is (b1, ξ1, δ1, H

1
0 )-holomorphic for every l ∈ N. Similarly one shows that π̃(·|d) is

(b1, ξ1, δ1, H
1
0 )-holomorphic, and in particular π̃(·|d)− π̃l(·|d) is (b1, ξ1, 2δ1, H

1
0 )-holomorphic.

Step 2. Set
O2 = {a ∈W 1

∞(D) ∩Ws−1
∞ (D) : ρ(a) > 0}.

We verify once more assumptions (i), (ii) and (iii) of Theorem 4.11 with “E” in this lemma being
W 1
∞(D) ∩Ws−1

∞ (D). With b2,j = max{‖ψj‖W 1
∞
, ‖ψj‖Ws−1

∞
}, by the assumption

4b2 = (b2,j)j∈N ∈ `p2(N) ↪→ `1(N),

which corresponds to assumption (iv) of Theorem 4.11.
We will apply Theorem 4.11 with the function

π̃(y|d)− π̃l(y|d) = Φ(U(Ta0(a(y))))− Φ(U l(Ta0(a(y)))). (7.50)

For every l ∈ N:

(i) By item (i) in Step 1 (and because O2 ⊆ O1)

Φ ◦ U ◦ Ta0 − Φ ◦ U l ◦ Ta0 :

{
O2 → C
a 7→ Φ(U(Ta0(a)))− Φ(U l(Ta0(a)))

is holomorphic,

(ii) for every a ∈ O2, by Lemma 7.10

‖U(Ta0(a))− U l(Ta0(a))‖H1
0
≤ w−αl CCs

(‖a0 + a‖W 1
∞

+ ‖a0 + a‖Ws−1
∞

)Ns+1

ρ(a0 + a)Ns+2
‖f‖Ks−2

κ−1
.

Thus by (7.47) and Lemma 7.13

|Φ(U(Ta0(a)))− Φ(U l(Ta0(a)))| ≤ w−αl KCCs
(‖a0 + a‖W 1

∞
+ ‖a0 + a‖Ws−1

∞
)Ns+1

ρ(a0 + a)Ns+2
‖f‖Ks−2

κ−1
,

(iii) for all a, b ∈ O2 ⊆ O1 by (7.49) (which also holds for U l replaced by U):

|Φ(U(Ta0(a)))− Φ(U l(Ta0(a)))− (Φ(U(b))− Φ(U l(b)))| ≤ 2K
‖f‖H−1

ρ(a0)
‖a− b‖L∞ .

By Theorem 4.11 and (7.50) we conclude that there exists δ > 0 and ξ2 independent of l such that
π̃(y|d)− π̃l(y|d) is (b2, δw

−α
l , ξ2, H

1
0 )-holomorphic.
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Items (ii) and (iii) of Proposition 7.12 show that Assumption 7.9 implies validity of Assumption
7.2. This in turn allows us to apply Theorems 7.5 and 7.6. Specifically, assuming the optimal
convergence rate (7.41), we obtain that for every n ∈ N there is ε := εn > 0 such that work(lε) ≤ n
and the multilevel interpolant IML

l defined in (7.3) satisfies

‖π̃(·|d)− IML
lε π̃(·|d)‖L2(U,H1

0 ;γ) ≤ C(1 + log n)n−RI , RI = min

{
s− 1

2
,

s−1
2 ( 1

p1
− 3

2)
s−1

2 + 1
p1
− 1

p2

}
.

Of higher practical interest is the application of the multilevel quadrature operator QML defined
in (7.4). In case the prior is chosen as γ, then∫

U
π̃(y|d) dγ(y)

equals the normalization constant in (5.2). It can be approximated with the error converging like∣∣∣∣∫
U
π̃(y|d) dγ(y)−QML

lε u

∣∣∣∣ ≤ C(1 + log n)n−RQ , RQ := min

{
s− 1

2
,

s−1
2 ( 2

p1
− 5

2)
s−1

2 + 2
p1
− 2

p2

}
. (7.51)

Typically, one is not merely interested in the normalization constant

Z =

∫
U
π̃(y|d) dγ(y),

but for example also in an estimate of the jth parameter yj given as the conditional expectation,
which up to multiplying with the normalization constant 1

Z , corresponds to∫
U
yj π̃(y|d) dγ(y).

Since y 7→ yj is analytic, one can show the same convergence rate as in (7.51) for the multilevel
quadrature applied with the approximations y 7→ yj π̃

l(y|d) for l ∈ N. Moreover, for example if
φ : H1

0 (D;C) → C is a bounded linear functional representing some quantity of interest, then we
can show the same error convergence for the approximation of∫

U
φ(u(y))π̃(y|d) dγ(y)

with the multilevel quadrature applied with the approximations φ(ul(y))π̃l(y|d) dγ(y) to the inte-
grand for l ∈ N.

7.7 Linear multilevel interpolation and quadrature approximation

In this section, we briefly recall some results from [43] (see also [45] for some corrections). The
difference with Sections 7.1 - 7.6 is, that the interpolation and quadrature operators presented
in this section are linear operators; in contrast, the operators IML, QML in (7.3), (7.4) are in
general nonlinear, since they build on the approximations un of u from Assumption 7.2. These
approximations are not assumed to be linear (and, in general, are not linear) in u.
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In this section we proceed similarly, but with un := Pnu for a linear operator Pn; if u denotes
the solution of an elliptic PDE in H1(D), Pn could for instance be the orthogonal projection from
H1(D) into some fixed finite dimensional subspace. We emphasize, that such operators are not
available in practice, and many widely used implementable algorithms (such as the finite element
method, boundary element method, finite differences) realize projections that are not of this type.
We will discuss this in more detail in Remark 7.31. Therefore the present results are mainly of
theoretical rather than of practical importance. On a positive note, the convergence rates for
both, Smolyak sparse-grid interpolation and quadrature obtained in this section via thresholding
(see (7.54) ahead) improve the rates shown in the previous sections for the discretization levels
allocated via Algorithm 2 by a logarithmic factor, cp. Theorems 7.5 and 7.6. Yet we emphasize
that the latter are computable (in linear complexity, see Sec. 6.2.4).

7.7.1 Multilevel Smolyak sparse-grid interpolation

In this section, we recall some results in [43] (see also, [45] for some corrections) on linear multilevel
polynomial interpolation approximation in Bochner spaces.

In order to have a correct definition of interpolation operator let us impose some necessary
restrictions on v ∈ L2(U,X; γ). Let E be a γ-measurable subset in U such that γ(E) = 1 and
E contains all y ∈ U with |y|0 < ∞, where |y|0 denotes the number of nonzero components yj
of y. For a given E and separable Hilbert space X, let CE(U) the set of all functions v on U
taking values in X such that v are continuous on E w.r. to the local convex topology of U := R∞
(see Example 2.5). We define L2

E(U,X, γ) := L2(U,X; γ) ∩ CE(U). We will treat all elements
v ∈ L2

E(U,X, γ) as their representative belonging to CE(U). Throughout this and next sections, we
fix a set E .

We define the univariate operator ∆I
m for m ∈ N0 by

∆I
m := Im − Im−1,

with the convention I−1 = 0, where Im is defined in Section 6.1.1.
For v ∈ L2

E(U,X; γ), we introduce the tensor product operator ∆I
ν for ν ∈ F by

∆I
ν(v) :=

⊗
j∈N

∆I
νj (v),

where the univariate operator ∆I
νj is applied to the univariate function

⊗j−1
j′=1 ∆I

νj′
(v) by considering

this function as a function of variable yj with all remaining variables held fixed. From the definition
of L2

E(U,X; γ) one infers that the operators ∆I
ν are well-defined for all ν ∈ F .

Let us recall a setting from [43] of linear fully discrete polynomial interpolation of functions
in the Bochner space L2(U,X2; γ), with the approximation error measured by the norm of the
Bochner space L2(U,X1; γ) for separable Hilbert spaces X1 and X2. To construct linear fully
discrete methods of polynomial interpolation, besides weighted `2-summabilities with respect to X1

and X2 we need an approximation property on the spaces X1 and X2 combined in the following
assumption.

Assumption 7.16. For the Hilbert spaces X1 and X2 and v ∈ L2
E(U,X

2; γ) represented by the
series

v =
∑
ν∈F

vνHν , vν ∈ X2, (7.52)
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there holds the following.

(i) X2 is a linear subspace of X1 and ‖ · ‖X1 ≤ C ‖ · ‖X2.

(ii) For i = 1, 2, there exist numbers qi with 0 < q1 ≤ q2 <∞ and q1 < 2, and families (σi;ν)ν∈F
of numbers strictly larger than 1 such that σi;ej′ ≤ σi;ej if j′ < j, and∑

ν∈F
(σi;ν‖vν‖Xi)2 ≤Mi <∞ and

(
pν(τ, λ)σ−1

i;ν

)
ν∈F
∈ `qi(F)

for every τ > 17
6 and λ ≥ 0, where we recall that (ej)j∈N is the standard basis of `2(N).

(iii) There are a sequence (Vn)n∈N0 of subspaces Vn ⊂ X1 of dimension ≤ n, and a sequence
(Pn)n∈N0 of linear operators from X1 into Vn, and a number α > 0 such that

‖Pn(v)‖X1 ≤ C‖v‖X1 , ‖v − Pn(v)‖X1 ≤ Cn−α‖v‖X2 , ∀n ∈ N0, ∀v ∈ X2. (7.53)

Let Assumption 7.16 hold for Hilbert spaces X1 and X2 and v ∈ L2
E(U,X

2; γ). Then we are
able to construct a linear fully discrete polynomial interpolation approximation. We introduce the
interpolation operator

IG : L2
E(U,X

2; γ)→ V(G)

for a given finite set G ⊂ N0 ×F by

IGv :=
∑

(k,ν)∈G

δk∆
I
ν(v),

where V(G) denotes the subspace in L2(U,X1; γ) of all functions v of the form

v =
∑

(k,ν)∈G

vkHν , vk ∈ V2k .

Notice that interpolation v 7→ IGv is a linear method of fully discrete polynomial interpolation
approximation, which is the sum taken over the (finite) index set G, of mixed tensor products of
dyadic scale successive differences of “spatial” approximations to v, and of successive differences of
their parametric Lagrange interpolation polynomials.

Define for ξ > 0

G(ξ) :=

{{
(k,ν) ∈ N0 ×F : 2kσq22;ν ≤ ξ

}
if α ≤ 1/q2 − 1/2;{

(k,ν) ∈ N0 ×F : σq11;ν ≤ ξ, 2(α+1/2)kσ2;ν ≤ ξϑ
}

if α > 1/q2 − 1/2,
(7.54)

where

ϑ :=
1

q1
+

1

2α

(
1

q1
− 1

q2

)
. (7.55)

For any ξ > 1 we have that G(ξ) ⊂ F (ξ) where

F (ξ) := {(k,ν) ∈ N0 ×F : k ≤ log ξ, ν ∈ Λ(ξ)}
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and

Λ(ξ) :=

{{
ν ∈ F : σq22;ν ≤ ξ

}
if α ≤ 1/q2 − 1/2;{

ν ∈ F : σq11;ν ≤ ξ
}

if α > 1/q2 − 1/2.

From [46, Lemma 3.3] it follows that⋃
ν∈Λ(ξ)

supp(ν) ⊂ {1, ..., bCξc} (7.56)

for some positive constant C that is independent of ξ > 1. Denote by Γν and Γ(Λ), the set of
interpolation points in the operators ∆I

ν and IΛ, respectively. We have that

Γν = {yν−e;m : e ∈ Eν ; mj = 0, . . . , sj − ej , j ∈ N},

and
Γ(Λ) =

⋃
ν∈Λ

Γν ,

where Eν is the subset in F of all e such that ej is 1 or 0 if νj > 0, and ej is 0 if νj = 0, and
yν;m := (yνj ;mj )j∈N. Hence, by (7.56)

Γ(Λ(ξ)) ⊂ RbCξc ⊂ U,

and therefore, the operator IG(ξ) is well-defined for any v ∈ L2
E(U,X

2; γ) since v is continuous on

RbCξc.

Theorem 7.17. Let Assumption 7.16 hold for Hilbert spaces X1 and X2 and v ∈ L2
E(U,X

2; γ).
Then for each n ∈ N, there exists a number ξn such that for the interpolation operator

IG(ξn) : L2
E(U,X

2; γ)→ V(G(ξn)),

we have dimV(G(ξn)) ≤ n and

‖v − IG(ξn)v‖L2(U,X1;γ) ≤ Cn−min(α,β). (7.57)

The rate α is as in (7.53) and the rate β is given by

β :=

(
1

q1
− 1

2

)
α

α+ δ
, δ :=

1

q1
− 1

q2
. (7.58)

The constant C in (7.57) is independent of v and n.

Remark 7.18. Observe that the operator IG(ξn) can be represented in the form of a multilevel
Smolyak sparse-grid interpolation with kn levels:

IG(ξn) =

kn∑
k=0

δkIΛk(ξn),

where kn := blog2 ξnc, the operator IΛ is defined as in (6.5), and for k ∈ N0 and ξ > 1,

Λk(ξ) :=

{{
s ∈ F : σq22;s ≤ 2−kξ

}
if α ≤ 1/q2 − 1/2;{

s ∈ F : σq11;s ≤ ξ, σ2;s ≤ 2−(α+1/2)kξϑ
}

if α > 1/q2 − 1/2.
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In Theorem 7.17, the multilevel polynomial interpolation of v ∈ L2
E(U,X

2; γ) by operators IG(ξn)

is a collocation method. It is based on the finite point-wise information in y, more precisely,
on |Γ(Λ0(ξn))| = O(n) of particular values of v at the interpolation points y ∈ Γ(Λ0(ξn)) and
the approximations of v(y), y ∈ Γ(Λ0(ξn)), by P2kv(y) for k = 0, . . . , blog2 ξnc with blog2 ξnc =
O(log2 n).

7.7.2 Multilevel Smolyak sparse-grid quadrature rates

In this section, we recall results of [43] (see also [45]) on linear methods for numerical integration of
functions from Bochner spaces as well as their linear functionals. We define the univariate operator
∆Q
m for even m ∈ N0 by

∆Q
m := Qm −Qm−2,

with the convention Q−2 := 0. We make use of the notation:

Fev := {ν ∈ F : νj even, j ∈ N}.

For a function v ∈ L2
E(U,X; γ), we introduce the operator ∆Q

ν defined for ν ∈ Fev by

∆Q
ν (v) :=

⊗
j∈N

∆Q
νj (v),

where the univariate operator ∆Q
νj is applied to the univariate function

⊗j−1
j′=1 ∆Q

νj′ (v) by considering

this function as a univariate function of yj , with all other variables held fixed. As ∆I
ν , the operators

∆Q
ν are well-defined for all ν ∈ Fev.

Letting Assumption 7.16 hold for Hilbert spaces X1 and X2, we can construct linear fully
discrete quadrature operators. For a finite set G ⊂ N0×Fev, we introduce the quadrature operator
QG which is defined for v by

QGv :=
∑

(k,ν)∈G

δk∆
Q
ν (v). (7.59)

If φ ∈ (X1)′ is a bounded linear functional on X1, for a finite set G ⊂ N0×Fev, the quadrature
formula QGv generates the quadrature formula QG〈φ, v〉 for integration of 〈φ, v〉 by

QG〈φ, v〉 := 〈φ,QGv〉.

Define for ξ > 0,

Gev(ξ) :=

{{
(k,ν) ∈ N0 ×Fev : 2kσq22;ν ≤ ξ

}
if α ≤ 1/q2 − 1/2;{

(k,ν) ∈ N0 ×Fev : σq11;ν ≤ ξ, 2(α+1/2)kσ2;ν ≤ ξϑ
}

if α > 1/q2 − 1/2,
(7.60)

where ϑ is as in (7.55).

Theorem 7.19. Let the hypothesis of Theorem 7.17 hold. Then we have the following.

(i) For each n ∈ N there exists a number ξn such that dimV(Gev(ξn)) ≤ n and∥∥∥∥∫
U
v(y) dγ(y)−QGev(ξn)v

∥∥∥∥
X1

≤ Cn−min(α,β). (7.61)
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(ii) Let φ ∈ (X1)′ be a bounded linear functional on X1. Then for each n ∈ N there exists a
number ξn such that dimV(Gev(ξn)) ≤ n and∣∣∣∣∫

U
〈φ, v(y)〉 dγ(y)−QGev(ξn)〈φ, v〉

∣∣∣∣ ≤ C‖φ‖(X1)′n
−min(α,β). (7.62)

The rate α is as in (7.53) and the rate β is given by (7.58). The constants C in (7.61) and
(7.62) are independent of v and n.

The proof Theorem 7.19 are related to approximations in the norm of L1(U,X; γ) by special
polynomial interpolation operators which generate the corresponding quadrature operators. Let us
briefly describe this connection, for details see [43, 45].

Remark 7.20. We define the univariate interpolation operator ∆I∗
m for even m ∈ N0 by

∆I∗
m := Im − Im−2,

with the convention I−2 = 0. The interpolation operators ∆I∗
ν for ν ∈ Fev, I∗Λ for a finite set

Λ ⊂ Fev, and I∗G for a finite set G ⊂ N0 × Fev, are defined in a similar way as the corresponding

quadrature operators ∆Q
ν , QΛ and QG by replacing ∆Q

νj with ∆I∗
νj , j ∈ N.

From the definitions it follows the equalities expressing the relationship between the interpola-
tion and quadrature operators

QΛv =

∫
U
I∗Λv(y) dγ(y), QΛ〈φ, v〉 =

∫
U
〈φ, I∗Λv(y)〉 dγ(y),

and

QGv =

∫
U
I∗Gv(y) dγ(y), QG〈φ, v〉 =

∫
U
〈φ, I∗Gv(y)〉 dγ(y).

Remark 7.21. Similarly to IG(ξn), the operator QGev(ξn) can be represented in the form of a
multilevel Smolyak sparse-grid quadrature with kn levels:

QGev(ξn) =

kn∑
k=0

δkQΛev,k(ξn),

where kn := blog2 ξnc,
QΛ :=

∑
ν∈Λ

∆I
ν , Λ ⊂ Fev, (7.63)

and for k ∈ N0 and ξ > 0,

Λev,k(ξ) :=

{{
s ∈ Fev : σq22;s ≤ 2−kξ

}
if α ≤ 1/q2 − 1/2;{

s ∈ Fev : σq11;s ≤ ξ, σ2;s ≤ 2−(α+1/2)kξϑ
}

if α > 1/q2 − 1/2.

Remark 7.22. The convergence rates in Theorems 7.17 and 7.19 and in Theorems 7.5 and 7.6 are
proven with respect to different parameters n as the dimension of the approximation space and the
work (7.5), respectively. However, we could define the work of the operators IG(ξn) and QGev(ξn)

similarly as
kn∑
k=0

2k|Γ(Λk(ξn))|,
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and
kn∑
k=0

2k|Γ(Λev,k(ξn))|,

respectively, and prove the same convergence rates with respect to this work measure as in Theorems
7.17 and 7.19.

7.7.3 Applications to parametric divergence-form elliptic PDEs

In this section, we apply the results in Sections 7.7.1 and 7.7.2 to parametric divergence-form elliptic
PDEs (3.17). The spaces V and W are as in Section 3.9.

Assumption 7.23. There are a sequence (Vn)n∈N0 of subspaces Vn ⊂ V of dimension ≤ m, and a
sequence (Pn)n∈N0 of linear operators from V into Vn, and a number α > 0 such that

‖Pn(v)‖V ≤ C‖v‖V , ‖v − Pn(v)‖V ≤ Cn−α‖v‖W , ∀n ∈ N0, ∀v ∈W. (7.64)

If Assumption 7.23 and the assumptions of Theorem 3.38 hold for the spaces W 1 = V and
W 2 = W with some 0 < q1 ≤ q2 < ∞, then Assumption 7.16 holds for the spaces Xi = W i,
i = 1, 2, and the solution u ∈ L2(U,X2; γ) to (3.17)–(3.18). Hence we obtain the following results
on multilevel (fully discrete) approximations.

Theorem 7.24. Let Assumption 7.23 hold. Let the hypothesis of Theorem 3.38 hold for the spaces
W 1 = V and W 2 = W with some 0 < q1 ≤ q2 < ∞ and q1 < 2. For ξ > 0, let G(ξ) be the set
defined by (7.54) for σi;ν as in (3.59), i = 1, 2. Let α be as in (7.64). Then for every n ∈ N there
exists a number ξn such that dimV(G(ξn)) ≤ n and

‖u− IG(ξn)u‖L2(U,V ;γ) ≤ Cn−min(α,β), (7.65)

where β is given by (7.58). The constant C in (7.65) is independent of u and n.

Theorem 7.25. Let Assumption 7.23 hold. Let the assumptions of Theorem 3.38 hold for the
spaces W 1 = V and W 2 = W for some 0 < q1 ≤ q2 <∞ with q1 < 4. Let α be the rate as given by
(7.64). For ξ > 0, let Gev(ξ) be the set defined by (7.60) for σi;ν as in (3.59), i = 1, 2. Then we
have the following.

(i) For each n ∈ N there exists a number ξn such that dimV(Gev(ξn)) ≤ n and∥∥∥∥∫
U
v(y) dγ(y)−QGev(ξn)v

∥∥∥∥
V

≤ Cn−min(α,β). (7.66)

(ii) Let φ ∈ V ′ be a bounded linear functional on V . Then for each n ∈ N there exists a number
ξn such that dimV(Gev(ξn)) ≤ n and∣∣∣∣∫

U
〈φ, v(y)〉 dγ(y)−QGev(ξn)〈φ, v〉

∣∣∣∣ ≤ C‖φ‖V ′n−min(α,β). (7.67)

The rate β is given by

β :=

(
2

q1
− 1

2

)
α

α+ δ
, δ :=

2

q1
− 2

q2
.

The constants C in (7.66) and (7.67) are independent of u and n.
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Proof. From Theorem 3.38, Lemma 3.39 and Assumption 7.23 we can see that the assumptions of
Theorem 7.17 hold for X1 = V and X2 = W with 0 < q1/2 ≤ q2/2 <∞ and q1/2 < 2. Hence, by
applying Theorem 7.19 we prove the theorem.

7.7.4 Applications to holomorphic functions

As noticed, the proof of the weighted `2-summability result formulated in Theorem 3.38 employs
bootstrap arguments and induction on the differentiation order of derivatives with respect to the
parametric variables, for details see [8, 9]. In the log-Gaussian case, this approach and technique
are too complicated and difficult for extension to more general parametric PDE problems, in par-
ticular, of higher regularity. As it has been seen in the previous sections, the approach to a unified
summability analysis of Wiener-Hermite PC expansions of various scales of function spaces based
on parametric holomorphy, covers a wide range of parametric PDE problems. In this section, we
apply the results in Sections 7.7.1 and 7.7.2 on linear approximations and integration in Bochner
spaces to approximation and numerical integration of parametric holomorphic functions based on
weighted `2-summabilities of the coefficient sequences of the Wiener-Hermite PC expansion.

The following theorem on weighted `2-summability for (b, ξ, δ,X)-holomorphic functions can be
derived from Theorem 4.9 and Lemma 3.39.

Theorem 7.26. Let v be (b, ξ, δ,X)-holomorphic for some b ∈ `p(N) with 0 < p < 1. Let s = 1, 2
and τ, λ ≥ 0. Let further the sequence % = (%j)j∈N be defined by

%j := bp−1
j

ξ

4
√
r!
‖b‖`p .

Then, for any r > 2s(τ+1)
q ,∑

ν∈Fs

(σν‖vν‖X)2 ≤M <∞ and
(
pν(τ, λ)σ−1

ν

)
ν∈Fs ∈ `

q/s(Fs),

where q := p
1−p , M := δ2C(b) and (σν)ν∈F with σν := βν(r,%)1/2.

To treat multilevel approximations and integration of parametric, holomorphic functions, it is
appropriate to replace Assumption 7.16 by its modification.

Assumption 7.27. Assumption 7.16 holds with item (ii) replaced with item

(ii’) For i = 1, 2, v is (bi, ξ, δ,X
i)-holomorphic for some bi ∈ `pi(N) with 0 < p1 ≤ p2 < 1.

Assumption 7.27 is a condition for fully discrete approximation of (b, ξ, δ,X)-holomorphic func-
tions. This is formalized in the following corollary of Theorem 7.26.

Corollary 7.28. Assumption 7.27 implies Assumption 7.16 for qi := pi
1−pi and (σi;ν)ν∈F , i = 1, 2,

where

σi;ν := βi;ν(r,%i)
1/2, %i;j := bpi−1

i;j

ξ

4
√
r!
‖bi‖`pi .

We formulate results on multilevel quadrature of parametric holomorphic functions as conse-
quences of Corollary 7.28 and Theorems 7.17 and 7.19.
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Theorem 7.29. Let Assumption 7.27 hold for the Hilbert spaces X1 and X2 with p1 < 2/3, and
v ∈ L2(U,X2; γ). For ξ > 0, let G(ξ) be the set defined by (7.54) for σi;ν , i = 1, 2 as given in
Corollary 7.28. Then for every n ∈ N there exists a number ξn such that dimV(G(ξn)) ≤ n and

‖v − IG(ξn)v‖L2(U,X1;γ) ≤ Cn−R, (7.68)

where R is given by the formula (7.19) and the constant C in(7.68) is independent of v and n.

Theorem 7.30. Let Assumption 7.27 hold for the Hilbert spaces X1 and X2 with p1 < 4/5, and
v ∈ L2(U,X2; γ). For ξ > 0, let Gev(ξ) be the set defined by (7.60) for σi;ν , i = 1, 2, as given in
Corollary 7.28. Then we have the following.

(i) For each n ∈ N there exists a number ξn such that dimV(Gev(ξn)) ≤ n and∥∥∥∥∫
U
v(y) dγ(y)−QGev(ξn)v

∥∥∥∥
X1

≤ Cn−R. (7.69)

(ii) Let φ ∈ (X1)′ be a bounded linear functional on X1. Then for each n ∈ N there exists a
number ξn such that dimV(Gev(ξn)) ≤ n and∣∣∣∣∫

U
〈φ, v(y)〉 dγ(y)−QGev(ξn)〈φ, v〉

∣∣∣∣ ≤ C‖φ‖(X1)′n
−R, (7.70)

where the convergence rate R is given by the formula (7.26) and the constants C in (7.69) and
(7.70) are independent of v and n.

Remark 7.31. We comment on the relation of the results of Theorems 7.5 and 7.6 to the results
of [43] which are presented in Theorems 7.24 and 7.25, on multilevel approximation of solutions to
parametric divergence-form elliptic PDEs with log-Gaussian inputs.

Specifically, in [43], by combining spatial and parametric approximability in the spatial domain
and weighted `2-summability of the V := H1

0 (D) and W norms of Wiener-Hermite PC expansion
coefficients obtained in [9, 8], the author constructed linear non-adaptive methods of fully discrete
approximation by truncated Wiener-Hermite PC expansion and polynomial interpolation approx-
imation as well as fully discrete weighted quadrature for parametric and stochastic elliptic PDEs
with log-Gaussian inputs, and proved the convergence rates of approximation by them. The results
in [43] are based on Assumption 7.23 that requires the existence of a sequence (Pn)n∈N0 of linear
operators independent of y, from H1

0 (D) into n-dimensional subspaces Vn ⊂ H1
0 (D) such that

‖Pn(v)‖H1
0
≤ C1‖v‖H1

0
and ‖v − Pn(v)‖H1

0
≤ C2n

−α‖v‖W

for all n ∈ N0 and for all v ∈W , where the constants C1, C2 are independent of n. The assumption
of Pn being independent of y is however typically not satisfied if Pn(u(y)) = un(y) is a numerical
approximation to u(y) (such as, e.g., a Finite-Element or a Finite-Difference discretization).

In contrast, the present approximation rate analysis is based on quantified, parametric holo-
morphy of the discrete approximations ul to u as in Assumption 7.2. For example, assume that
u : U → H1

0 (D) is the solution of the parametric PDE

−div(a(y)∇u(y)) = f
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for some f ∈ L2(D) and a parametric diffusion coefficient a(y) ∈ L∞(D) such that

ess inf
x∈D

a(y,x) > 0 ∀y ∈ U.

Then ul : U → H1
0 (D) could be a numerical approximation to u, such as the FEM solution: for

every l ∈ N there is a finite dimensional discretization space Xl ⊆ H1
0 (D), and∫

D
∇ul(y)>a(y)∇v dx =

∫
D
fv dx

for every v ∈ Xl and for every y ∈ U . Hence ul(y) is the orthogonal projection of u(y) onto Xl

w.r.t. the inner product

〈v, w〉a(y) :=

∫
D
∇v>a(y)∇w dx

on H1
0 (D). We may write this as ul(y) = Pl(y)u(y), for a y-dependent projector

Pl(y) : H1
0 (D)→ Xl.

This situation is covered by Assumption 7.2.
The preceding comments can be extended to the results on multilevel approximation of holo-

morphic functions in Theorems 7.5 and 7.6 to the results in Theorems 7.29 and 7.30. On the other
hand, as noticed above, the convergence rates in Theorems 7.29 and 7.30 are slightly better than
those obtained in Theorems 7.5 and 7.6.
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8 Conclusions

We established holomorphy of parameter-to-solution maps

E 3 a 7→ u = U(a) ∈ X

for linear, elliptic, parabolic, and other PDEs in various scales of function spaces E and X, in-
cluding in particular standard and corner-weighted Sobolev spaces. Our discussion focused on
non-compact parameter domains which arise from uncertain inputs from function spaces expressed
in a suitable basis with Gaussian distributed coefficients. We introduced and used a form of quan-
tified, parametric holomorphy in products of strips to show that this implies summability results of
coefficients of the Wiener-Hermite PC expansion of such infinite parametric functions. Specifically,
we proved weighted `2-summability and `p-summability results for Wiener-Hermite PC expansions
of certain parametric, deterministic solution families {u(y) : y ∈ U} ⊂ X, for a given “log-affine”
parametrization (3.18) of admissible random input data a ∈ E.

We introduced and analyzed constructive, deterministic, sparse-grid (“stochastic collocation”)
algorithms based on univariate Gauss-Hermite points, to efficiently sample the parametric, deter-
ministic solutions in the possibly infinite-dimensional parameter domain U = R∞. The sparsity
of the coefficients of Wiener-Hermite PC expansion was shown to entail corresponding conver-
gence rates of the presently developed sparse-grid sampling schemes. In combination with suitable
Finite Element discretizations in the physical, space(-time) domain (which include proper mesh-
refinements to account for singularities in the physical domain) we proved convergence rates for
abstract, multilevel algorithms which employ different combinations of sparse-grid interpolants in
the parametric domain with space(-time) discretizations at different levels of accuracy in the phys-
ical domain.

The presently developed, holomorphic setting was also shown to apply to the corresponding
Bayesian inverse problems subject to PDE constraints: here, the density of the Bayesian posterior
with respect to a Gaussian random field prior was shown to generically inherit quantified holomor-
phy from the parametric forward problem, thereby facilitating the use of the developed sparse-grid
collocation and integration algorithms also for the efficient deterministic computation of Bayesian
estimates of PDEs with uncertain inputs, subject to noisy observation data.

Our approximation rate bounds are free from the curse-of-dimensionality and only limited by
the PC coefficient summability. They will therefore also be relevant for convergence rate analyses
of other approximation schemes, such as Gaussian process emulators or neural networks (see, e.g.,
[104, 46, 44, 99] and references there).
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[34] Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math.
Soc. 99 (1961), 403–413.

[35] G. Cleanthous, A. G. Georgiadis, A. Lang, and E. Porcu, Regularity, continuity and ap-
proximation of isotropic Gaussian random fields on compact two-point homogeneous spaces,
Stochastic Process. Appl. 130 (2020), no. 8, 4873–4891.

[36] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods
and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci. 14 (2011), no. 1,
3–15. MR 2835612

[37] A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Numer.
24 (2015), 1–159.

[38] A. Cohen, R. Devore, and Ch. Schwab, Convergence rates of best N -term Galerkin approxi-
mations for a class of elliptic sPDEs, Found. Comput. Math. 10 (2010), no. 6, 615–646.

[39] , Analytic regularity and polynomial approximation of parametric and stochastic ellip-
tic PDE’s, Anal. Appl. (Singap.) 9 (2011), no. 1, 11–47.

[40] A. Cohen, Ch. Schwab, and J. Zech, Shape holomorphy of the stationary Navier-Stokes Equa-
tions, SIAM J. Math. Anal. 50 (2018), no. 2, 1720–1752.

[41] R. R. Coifman and M. Maggioni, Diffusion wavelets for multiscale analysis on graphs and
manifolds, Wavelets and splines: Athens 2005, Mod. Methods Math., Nashboro Press, Brent-
wood, TN, 2006, pp. 164–188.
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[62] B. Q. Guo and I. Babuška, On the regularity of elasticity problems with piecewise analytic
data, Adv. in Appl. Math. 14 (1993), no. 3, 307–347.

[63] H. Harbrecht, M. Peters, and M. Siebenmorgen, Multilevel accelerated quadrature for PDEs
with log-normally distributed diffusion coefficient, SIAM-ASA J. Uncertain. Quantif. 4 (2016),
no. 1, 520–551.

[64] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314–317.

[65] Ch. Heil, A Basis Theory Primer, expanded ed., Applied and Numerical Harmonic Analysis,
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Cs(D) Space of s-Hölder continuous functions on D

∆ Laplace operator

div Divergence operator

D Domain in Rd

∂D Boundary of the domain D

ej The multiindex (δij)j∈N ∈ N∞0
γ Gaussian measure

γd Gaussian measure on Rd

∇ Gradient operator

H(γ) Cameron-Martin space of the Gaussian measure γ

Hk kth normalized probabilistic Hermite polynomial

Hs(D) W s,2(D)

H1
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Hs
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0 (D)

H−1(D) Dual space of H1
0 (D)

IΛ Smolyak interpolation operator

IML
l Multilevel Smolyak interpolation operator

=(z) Imaginary part of the complex number z

Ksκ(D) Space of functions u : D → C such that r
|α|−κ
D Dαu ∈ L2(D) for all |α| ≤ s

λd Lebesgue measure on Rd

Λ Set of multiindices

µ̂ Fourier transform of the measure µ

Lp(Ω) Space of Lebesgue measurable, p-integrable functions on Ω

Lp(Ω, µ) Space of µ-measurable, p-integrable functions on Ω

Lp(Ω, X;µ) Space of functions u : Ω→ X such that ‖u‖X ∈ Lp(Ω, µ)

L∞(Ω) Space of Lebesgue measurable, essentially bounded functions on Ω

`p(I) Space of sequences (yj)j∈I such that (
∑

j∈I |yj |p)1/p <∞
‖f‖X Norm of f in the space X

QΛ Smolyak quadrature operator

QML
l Multilevel Smolyak quadrature operator

rD Smooth function D → R+ which equals |x− c| in the vicinity of each corner of D

<(z) Real part of the complex number z

U R∞

W s,q(D) Sobolev spaces of integer order s and integrability q on D

Ws
∞(D) Space of functions u : D → C such that r

|α|
D Dαu ∈ L∞(D) for all |α| ≤ s
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BIP Bayesian inverse problems

BV P boundary value problem

FE finite element
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GM Gaussian measure

GRF Gaussian random fields

IBV P initial boundary value problem
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MC Monte-Carlo

ONB orthonormal basis

PC polynomial chaos

PDE partial differential equations

QMC quasi-Monte Carlo

RKHS reproducing kernel Hilbert space

RV random variable

UQ uncertainty quantification
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Index

Bayes’ theorem, 91
Bayesian inverse problem, 91
Brownian bridge, 27, 28

coefficient
affine ∼, 63
log-Gaussian ∼, 40

Elliptic systems, 90
expansion

Brownian bridge, 28
Karhunen-Loève ∼, 25
Wiener-Hermite PC ∼, 44, 67

finite element approximation, 33
function

Hermite ∼, 16
holomorphic ∼, 66

Gaussian
measure, 13, 14
product measures, 22
random field, 18
random variable, 14
series, 23

Hermite polynomial, 15
normalized ∼, 16

normalized probabilistic ∼, 15

interpolation
multilevel ∼, 121
Smolyak ∼, 97

Lagrange interpolation, 97
Linear elastostatics, 86

Maxwell equation, 89

Parseval frame, 24
PDE

linear ∼, 35
linear elliptic ∼, 77, 128
linear parabolic ∼, 79

quadrature
multilevel ∼, 116, 146

space
s-Hölder continuous ∼, 18
Bochner ∼, 41
Cameron-Martin ∼, 21
Kondrat’ev ∼, 33, 58
Sobolev ∼, 32, 52

Transmission problem, 90
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