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Abstract. We completely determine the asymptotic depth, equivalently, the asymptotic
projective dimension of a chain of edge ideals that is invariant under the action of the
monoid Inc of increasing functions on the positive integers. Our results and their proofs also
reveal surprising combinatorial and topological properties of corresponding graphs and their
independence complexes. In particular, we are able to determine the asymptotic behavior
of all reduced homology groups of these independence complexes.

1. Introduction

For n ≥ 1 let Rn = k[x1, . . . , xn] be the polynomial ring in n variables over a field k. A vibrant
area of research at the crossroads of algebraic geometry, combinatorics, commutative algebra,
group theory, representation theory, and statistics concerning chains of ideals I = (In)n≥1

with In ⊆ Rn for n ≥ 1 that are invariant under the actions of the infinite general linear
group, the infinite symmetric group, or more generally, the monoid Inc of strictly increasing
functions; see, e.g. [1–9, 14, 24, 26, 33, 34, 38, 39]. See also [17, 20, 25, 27, 28] for related
directions in discrete geometry, convex optimization, and machine learning.

It follows from a celebrated result of Cohen [3] that any Inc-invariant chain I = (In)n≥1

stabilizes (see Section 3 for more details). That is, from some index r on, any ideal In
with n ≥ r is completely determined by Ir up to the Inc-action. One might therefore hope
that invariants related to these ideals are well-behaved. In [21, 22], it is conjectured that
the regularity and projective dimension of In are eventually linear functions in n. See [32]
for extensions of these conjectures to OI-modules. Although significant evidence for the
conjectures has been obtained [11, 23, 30, 31, 37, 40], they remain wide open.

Recently, the regularity conjecture [21] has been verified for chains of edge ideals in [15].
It is shown that the regularity of an ideal in such a chain is eventually a constant, that,
somewhat surprisingly, can only be 2 or 3. Proving this result requires a deep understanding
of the chain of graphs corresponding to the chain of edge ideals. It turns out, for instance,
that eventually such a graph can only have an induced matching number of at most 2.

As a continuation of [15], this paper explores further properties of Inc-invariant chains of
edge ideals. Our main goal is to verify the projective dimension conjecture [22] for those
chains. More specifically, we are interested in the following stronger problem.

Problem 1.1. Let I = (In)n≥1 be an Inc-invariant chain of edge ideals. Compute explicitly
depth(Rn/In) for large n, in combinatorial terms.
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The main result of the paper resolves this problem, providing an explicit and simple formula
for depth(Rn/In) when n ≫ 0. In particular, it shows that depth(Rn/In) is eventually a
constant. This implies, via the Auslander–Buchsbaum formula, that the projective dimension
of In is eventually a linear function in n. Below, the support of a monomial ideal is the set
of variables that divide at least one minimal monomial generator of that ideal.

Theorem 1.2. Let I = (In)n≥1 be an Inc-invariant chain of (eventually non-zero) edge
ideals with the stability index ind(I) = r. Assume that x1 and xr belong to the support of Ir.
Denote jq = max{j | 1 ≤ j ≤ r, x1xj ∈ Ir} and sp(I) = min{j−i | 1 ≤ i ≤ j ≤ r, xixj ∈ Ir}.
Then the following hold for all n ≥ 3r.

(i) If jq = r, then depth(Rn/In) = sp(I).
(ii) If jq < r, then depth(Rn/In) = min{sp(I), 2}.

It should be noted that the assumption that x1 and xr belong to the support of Ir in the
previous theorem is not restrictive, as the general case can always be reduced to this case
by simple index shifts (see Lemma 3.2). Note also that the index jq and the invariant sp(I),
which we call the sparsity index of the chain I, play a crucial role in this result.

Theorem 1.2 exhibits a dichotomy for depth(Rn/In) when n≫ 0. This is very similar to the
dichotomy for reg(In) mentioned above. It would be interesting to have some explanation
for this similarity.

Our proof of Theorem 1.2 makes use of Takayama’s formula, which allows us to interpret the
problem of computing depth(Rn/In) as the problem of computing certain reduced homology
groups of the independence complex IN(Gn) of the graph Gn corresponding to the ideal In.
This approach, therefore, inspires the following problem.

Problem 1.3. Determine all reduced homology groups of IN(Gn) for n≫ 0.

In the present paper, we also obtain a complete solution to this problem. As in Theorem 1.2,
the index jq as well as the sparsity index sp(I) are essential for the statement of our result.

Theorem 1.4. Keep the assumptions of Theorem 1.2. Denote by H̃i(IN(Gn)) the i-th reduced
homology group of IN(Gn) over the field k. Then there exist two nonnegative integers α, β
depending only on the chain I such that the following hold for all n≫ 0.

(i) H̃i(IN(Gn)) = 0 for i ̸= 0, 1.

(ii) H̃0(IN(Gn)) ∼=

{
kn−α if sp(I) = 1,

0 if sp(I) ≥ 2.

(iii) H̃1(IN(Gn)) ∼= kβ. Furthermore, if sp(I) ≥ 2, then β =

{
0 if jq = r,

1 if jq < r.

Theorem 1.4 is an unexpected outcome of our approach to Problem 1.1. On the other
hand, the proof of Item (ii) (which is the harder part) of Theorem 1.2 depends crucially on
Theorem 1.4(iii) (see Proposition 6.2). It is worth mentioning that in the situation where
sp(I) ≥ 2 and jq < r, Theorem 1.4 provides the remarkable information that IN(Gn) has
the same reduced homology as the sphere S1 for all n≫ 0.
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This paper marks the first successful application of Takayama’s formula to problems on
Inc-invariant chains of monomial ideals. We believe that many of our results and proofs,
for example those in Section 4 and parts of Sections 5 and 6, are amenable to more general
situations beyond edge ideals of graphs. Moreover, as an extention of Problem 1.3, the theme
of asymptotic homology stability of simplicial complexes associated to Inc-invariant chains
of monomial ideals is worthy of further investigation.

Let us now describe the structure of the paper. Section 2 provides graph terminology and
some basic properties of monomial ideals. In Section 3, we review Inc-invariant chains of edge
ideals and present some auxiliary results that reveal interesting structures of corresponding
graphs. Upper and lower bounds for the asymptotic depth of an Inc-invariant chain of edge
ideals are given in Section 4. The next two sections show that the asymptotic depth of
any Inc-invariant chain of edge ideals always attains one of the two bounds established in
Section 4, thus proving Theorem 1.2. Section 7 is devoted to the proof of Theorem 1.4.
Lastly, the Appendix proves a technical result from Section 6 that is decisive to the proof of
Theorem 1.2(ii).

2. Preliminaries

We collect here necessary notions and results concerning graphs and monomial ideals. For
unexplained terminology, the reader is referred to [13, 43]. Throughout the section, let
S = k[x1, . . . , xn] be a standard graded polynomial ring over a field k and m = ⟨x1, . . . , xn⟩
its graded maximal ideal.

2.1. Depth, projective dimension, and regularity. Let M be a finitely generated
graded S-module. The projective dimension and the (Castelnuovo-Mumford) regularity of
M are defined as

pd(M) := max{i | TorSi (M,k) ̸= 0},
reg(M) := max{j − i | TorSi (M,k)j ̸= 0}.

In particular, for any nonzero homogeneous ideal I ⊆ S we have

pd(S/I) = pd(I) + 1 and reg(S/I) = reg(I)− 1.

The depth ofM is related to its projective dimension via the Auslander–Buchsbaum formula:

pd(M) + depth(M) = n.

In this paper, we will mainly use the following interpretations of depth and regularity in
terms of local cohomology modules

depth(M) = min{i | H i
m(M) ̸= 0},

reg(M) = max{i+ j | H i
m(M)j ̸= 0},

where H i
m(M) denotes the ith local cohomology module of M with respect to m.
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2.2. Takayama’s formula. For any monomial ideal I ⊆ S, there is a Zn
≥0-grading on

S/I that is inherited from the natural Zn
≥0-grading of S. This induces a Zn-grading on

the local cohomology module H i
m(S/I). The dimensions of the Zn-graded components of

H i
m(S/I) are described by Takayama’s formula, which we now recall. For brevity, we write

[n] = {1, . . . , n}. Let a = (a1, . . . , an) ∈ Zn be an integral vector. Set xa = xa11 · · ·xann . Also,
denote

supp(a) = {i ∈ [n] | ai ̸= 0} and Ga = {i ∈ [n] | ai < 0}.
For F ⊆ [n], let S(F ) = S[x−1

i | i ∈ F ]. The degree complex of I with respect to a is defined
as

∆a(I) = {F \Ga | Ga ⊆ F ⊆ [n], xa /∈ IS(F )}.
Then Takayama’s formula [41, Theorem 1] (see also [29, Section 1]) states that

dimkH
i
m(S/I)a = dimk H̃i−|Ga|−1(∆a(I)) for all i ∈ Z and all a ∈ Zn,

where H̃i(∆a(I)) denotes the i-th reduced homology of ∆a(I) over k.
Takayama’s formula is useful for studying depth(S/I). We gather here two simple results
in this direction. For F ⊆ [n], let SF = k[xi | i /∈ F ] and IF = IS(F ) ∩ SF . Then IF is the
monomial ideal in SF obtained from I by setting xi = 1 for all i ∈ F . When F = {j} for
some j ∈ [n], we simply write Sj and Ij instead of S{j} and I{j}, respectively.

The following criterion for the vanishing of H1
m(S/I) from [42, Proposition 1.6] can be used

to give a lower bound for depth(S/I).

Proposition 2.1. Let I ⊆ S be a monomial ideal. The following are equivalent:

(i) H1
m(S/I) = 0;

(ii) ∆a(I) is connected for all a ∈ Zn
≥0 and depth(Sj/Ij) ≥ 1 for all j ∈ [n].

The next result provides an upper bound for depth(S/I).

Proposition 2.2. Let I ⊆ S be a monomial ideal. Then

depth(S/I) ≤ min{|F | | F ⊆ [n], depth(SF/IF ) = 0}.

In order to prove this proposition, we need the following lemma, which is an easy consequence
of [42, Corollary 1.4].

Lemma 2.3. Let I ⊆ S be a monomial ideal and F a subset of [n]. For any a ∈ Zn, let a+

be the vector obtained from a by replacing each negative entry with zero. Then the following
are equivalent:

(i) H̃−1(∆a(I)) = 0 for all a ∈ Zn with Ga = F ;
(ii) ∆a(I) ̸= {∅} for all a ∈ Zn with Ga = F ;
(iii) depth(SF/IF ) ≥ 1.

Proof. (i) ⇔ (ii) is clear, since H̃−1(∆a(I)) = 0 if and only if ∆a(I) ̸= {∅}.

(iii)⇒ (ii): Let ĨF =
⋃

k≥1(IF : mk
F ) be the saturation of IF , where mF = ⟨xi | i /∈ F ⟩ denotes

the graded maximal ideal of SF . Then it is well-known that H0
m(SF/IF ) = ĨF/IF . Since
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depth(SF/IF ) ≥ 1, we have H0
m(SF/IF ) = 0, and hence ĨF = IF . It follows that x

a+ ̸∈ ĨF \IF
for all a ∈ Zn with Ga = F . By [42, Corollary 1.4], this means that ∆a(I) ̸= {∅} for all
such a.

(ii)⇒ (iii): Assume, to the contrary, that depth(SF/IF ) = 0. ThenH0
m(SF/IF ) = ĨF/IF ̸= 0.

So there exists b ∈ Zn
≥0 such that supp(b) ⊆ [n] \ F and xb ∈ ĨF \ IF . Let e1, . . . , en be the

standard unit vectors of Zn. Setting a = b −
∑

i∈F ei, we get Ga = F and a+ = b. Hence

xa+ ∈ ĨF \ IF , which by [42, Corollary 1.4] implies that ∆a(I) = {∅}. This contradiction
shows that depth(SF/IF ) ≥ 1, as desired. □

Let us now prove Proposition 2.2.

Proof of Proposition 2.2. It suffices to show that if there exists F ⊆ [n] with |F | = i
and depth(SF/IF ) = 0, then H i

m(S/I) ̸= 0. Equivalently, this amounts to showing that
if H i

m(S/I) = 0, then for any F ⊆ [n] with |F | = i one has depth(SF/IF ) ≥ 1. Indeed, let
a ∈ Zn be any vector with Ga = F . Then by Takayama’s formula

dimk H̃−1(∆a(I)) = dimkH
i
m(S/I)a = 0.

Hence H̃−1(∆a(I)) = 0, and therefore depth(SF/IF ) ≥ 1 by virtue of Lemma 2.3. □

2.3. Graphs and edge ideals. Let G be a simple graph with vertex set V (G) and edge set
E(G). A subgraph of G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). If, moreover,

E(H) = E(G) ∩
(
V (H)

2

)
, then H is called an induced subgraph of G. The complement Gc of

G is the graph on V (G) with edge set
(
V (G)
2

)
\E(G). For an integer m ≥ 3, a cycle of length

m is a graph Cm with V (Cm) = {v1, . . . , vm} and E(Cm) = {{v1, v2}, {v2, v3}, . . . , {vm, v1}} .
The graph G is called weakly chordal (or weakly triangulated) if neither G nor Gc contains
an induced cycle of length at least 5.

A subset U ⊆ V (G) is called independent if the vertices in U are pairwise non-adjacent. The
independence complex of G, denote by IN(G), is the simplicial complex whose faces are the
independent sets of G. It is evident that the 1-skeleton of IN(G) is exactly Gc. This yields
the following fact that should be well-known.

Lemma 2.4. Let G be a graph with at least one vertex. Then H̃0(IN(G)) ∼= kc(Gc)−1, where

c(Gc) denotes the number of connected components of Gc. In particular, H̃0(IN(G)) = 0 if
and only if Gc is connected.

For a vertex v ∈ V (G), its open neighborhood N(v) is the set of vertices u ̸= v that are
adjacent to v, and its closed neighborhood is N [v] := N(v) ∪ {v}. More generally, for a
subset U ⊆ V (G), we define N [U ] :=

⋃
v∈U N [v]. Let G \ U denote the graph obtained from

G by deleting all vertices in U and all edges adjacent to those vertices. Observe that G \ U
is an induced subgraph of G. The following result, which is essentially a consequence of the
Mayer–Vietoris long exact sequence, can be found in [16, Theorem 3.5.1] or [18, Section 2.1].

Lemma 2.5. Let G be a graph and v a vertex of G. Then there is a long exact sequence

· · · → H̃i(IN(G \N [v])) → H̃i(IN(G \ v)) → H̃i(IN(G)) → H̃i−1(IN(G \N [v])) → · · · .
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From now on, assume that V (G) = [n]. The edge ideal of G is defined as

I(G) = ⟨xixj | {i, j} ∈ E(G)⟩ ⊆ S.

Evidently, I(G) is the Stanley–Reisner ideal of the independence complex IN(G). Thus, in
particular, dim(S/I(G)) = dim IN(G) + 1.

Next, let us recall some notions that are useful for studying the projective dimension of
I(G). A matching in G is a subset of E(G) that consists of pairwise disjoint edges. If a
matching forms the edge set of an induced subgraph of G, it is called an induced matching.
The induced matching number im(G) of G is the largest cardinality of an induced matching
in G. A strongly disjoint family of complete bipartite subgraphs of G, as introduced in [19],
is a collection B1, . . . ,Bg of subgraphs of G satisfying the following conditions:

(i) each Bi is a complete bipartite subgraph of G;
(ii) V (Bi) ∩ V (Bj) = ∅ for all 1 ≤ i < j ≤ g;
(iii) there exists an induced matching {e1, . . . , eg} in G with ei ∈ E(Bi) for i = 1, . . . , g.

The following formula for pd(S/I(G)) follows from [36, Theorem 7.7].

Proposition 2.6. Let G be a weakly chordal graph with at least one edge. Then

pd(S/I(G)) = max

{
g∑

i=1

|V (Bi)| − g

}
,

where the maximum is taken over all 1 ≤ g ≤ im(G) and all strongly disjoint family of
complete bipartite subgraphs B1, . . . ,Bg of G.

We now describe a relationship between degree complexes of I(G) and the independence
complex IN(G), which, together with Takayama’s formula, allows us to study depth(S/I(G))
via IN(G). For a simplicial complex ∆, let F(∆) denote the set of its facets.

Lemma 2.7. Let G be a graph on [n] with edge ideal I = I(G). Then for any a ∈ Zn,

F(∆a(I)) = {F \Ga | supp(a) ⊆ F ⊆ [n], F ∈ F(IN(G))}.
In particular, the following hold.

(i) ∆0(I(G)) = IN(G), where 0 denotes the zero vector of Zn.
(ii) If b ∈ Zn such that supp(b) = supp(a) and Gb = Ga, then ∆b(I) = ∆a(I).
(iii) If supp(a) ̸∈ IN(G), then ∆a(I) = ∅.
(iv) If Ga ⊊ supp(a) and supp(a) ∈ IN(G), then ∆a(I) is a cone.
(v) ∆a(I) = {∅} if and only if supp(a) = Ga ∈ F(IN(G)).

The proof of this result requires the following special case of [35, Proposition 1.6].

Proposition 2.8. Let G be a graph on [n] with edge ideal I = I(G). For a ∈ Zn, denote by
a+ the vector obtained from a by setting every negative entry to zero. Let F ⊆ [n] be such
that Ga ⊆ F . Then the following are equivalent:

(i) F \Ga ∈ F(∆a(I));
(ii) F ∈ F(IN(G)) and xa+ ̸∈ mF , where mF = ⟨xi | i /∈ F ⟩.
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Proof of Lemma 2.7. From Proposition 2.8 it follows that

F \Ga ∈ F(∆a(I)) ⇐⇒ F ∈ F(IN(G)) and xa+ /∈ mF

⇐⇒ F ∈ F(IN(G)) and supp(a+) ∩ ([n] \ F ) = ∅
⇐⇒ F ∈ F(IN(G)) and supp(a+) ⊆ F

⇐⇒ F ∈ F(IN(G)) and supp(a) ⊆ F (as Ga ⊆ F ).

This proves the given description of F(∆a(I)). The remaining assertions follow readily. □

As a consequence of Propositions 2.1 and 2.8, we obtain the following.

Corollary 2.9. Let G be a graph on [n] with edge ideal I = I(G). Then the following are
equivalent:

(i) depth(S/I) ≥ 2;
(ii) H1

m(S/I) = 0;
(iii) The complement Gc of G is connected.

Proof. Since I is a squarefree non-maxiamal ideal, H0
m(S/I) = 0, and thus (i) ⇔ (ii).

(ii) ⇒ (iii): By Proposition 2.1 and Lemma 2.7, ∆0(I) = IN(G) is connected. Since the
1-skeleton of IN(G) is precisely Gc, we deduce that Gc is connected.

(iii) ⇒ (ii): By Proposition 2.1, we have to check the following:

(a) ∆a(I) is connected for every a ∈ Zn
≥0;

(b) depth(Sj/Ij) ≥ 1 for every j ∈ [n].

For (a), take a ∈ Zn
≥0. If a = 0, then by Lemma 2.7, ∆a(I) = IN(G), which is connected as

its 1-skeleton is nothing but Gc. If a ∈ Zn
≥0 \{0}, then Ga = ∅ ⊊ supp(a). So it follows from

Lemma 2.7 that either ∆a(I) is a cone or ∆a(I) = ∅, depending on whether supp(a) ∈ IN(G)
or not. In any case, ∆a(I) is connected. Thus (a) is true.

For (b), assume the contrary that depth(Sj/Ij) = 0 for some j ∈ [n]. Then being a squarefree
monomial ideal, necessarily Ij = ⟨xi | i ∈ [n] \ j⟩, so j is an isolated vertex of Gc. This
contradicts the connectedness of Gc. Hence (b) is also true, and the proof is complete. □

3. Invariant chains of ideals

In this section we fix notation and provide auxiliary results on invariant chains of edge ideals.
Let us begin by recalling the notion of invariant chains of ideals.

3.1. Invariant chains of ideals. Let N denote the set of positive integers. As before, for
each n ∈ N, let Rn = k[x1, . . . , xn] be the polynomial ring in n variables over a field k. Via
the natural embedding we may regard Rn as a subring of Rm when m ≥ n, and thus obtain
a chain of increasing polynomial rings R1 ⊂ R2 ⊂ · · · . Let R :=

⋃
n≥1Rn denote limit of this

chain. Then R = k[xi | i ∈ N] is a polynomial ring in infinitely many variables. Of interest
are ideals in R that are invariant under the action of the monoid of strictly increasing maps
on N:

Inc = {π : N → N | π(n) < π(n+ 1) for all n ≥ 1}.
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This monoid acts on R by means of ring endomorphisms via

π · xi = xπ(i) for any π ∈ Inc and i ≥ 1.

An ideal I ⊆ R is called Inc-invariant if π(f) ∈ I for any π ∈ Inc and f ∈ I. Although the
ring R is not Noetherian, a classical result of Cohen [3] (later rediscovered by Aschenbrenner
and Hillar [1]; see also Hillar and Sullivant [14]) says that this ring is Inc-Noetherian, meaning
that any Inc-invariant ideal I ⊆ R is generated by finitely many Inc-orbits of polynomials.

Cohen’s result has an interesting implication for chains of ideals I = (In)n≥1, where In is an
ideal in Rn for n ≥ 1. Such a chain is called Inc-invariant if

(3.1) ⟨Incm,n(Im)⟩Rn ⊆ In for all n ≥ m ≥ 1,

where Incm,n denotes the following subset of Inc:

Incm,n = {π ∈ Inc | π(m) ≤ n}

and ⟨Incm,n(Im)⟩Rn is the ideal in Rn generated by Incm,n(Im). When the chain I is Inc-
invariant, we say that it stabilizes if there exists r ≥ 1 such that the inclusion in (3.1) becomes
an equality for all n ≥ m ≥ r. The smallest such number r is called the stability index of I
and is denoted by ind(I). A consequence of Cohen’s result is that every Inc-invariant chain
of ideals I = (In)n≥1 always stabilizes (see [14, 17]).

The stabilization of the chain I = (In)n≥1 implies that In+1 can be interpreted in terms of
In for all n ≥ ind(I). Let us make this interpretation more explicit. For each integer k ≥ 0,
let σk : N → N be the strictly increasing map given by

(3.2) σk(i) =

{
i, if 1 ≤ i ≤ k,

i+ 1, if i ≥ k + 1.

It is evident that σk ∈ Incn,n+1 for all k ≥ 0 and n ≥ 1. Denote σk(In) = ⟨σk(f) | f ∈ In⟩Rn+1 .

Then one can easily check that In+1 =
n∑

k=0

σk(In) for all n ≥ ind(I). The next result provides

a more concise representation of In+1.

Proposition 3.1. Let I = (In)n≥1 be an Inc-invariant chain of ideals with ind(I) = r. Then
for any subset Λ ⊆ {0, 1, . . . , n} with |Λ| = r + 1, it holds that

In+1 =
∑
k∈Λ

σk(In) for all n ≥ r.

Proof. We proceed by induction on n. The case n = r is clearly true since Ir+1 =
∑r

k=0 σk(Ir).
Suppose that the assertion has been shown for some n ≥ r. Let Λ be an arbitrary subset of
{0, 1, . . . , n+ 1} with |Λ| = r + 1. Since In+2 =

∑n+1
k=0 σk(In+1), it suffices to check that

σl(In+1) ⊆
∑
k∈Λ

σk(In+1) for any l ∈ {0, 1, . . . , n+ 1} \ Λ.

We fix an l ∈ {0, 1, . . . , n+ 1} \ Λ. Set

Λ1 = {k ∈ Λ | k > l}, Λ2 = Λ \ Λ1, and Λ′
1 = {k − 1 | k ∈ Λ1}.
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It is evident that k ≥ l for all k ∈ Λ′
1 and Λ′ := Λ′

1 ∪ Λ2 is a subset of {0, 1, . . . , n} with
|Λ′| = r + 1. Thus In+1 =

∑
k∈Λ′ σk(In) by induction hypothesis. From [33, Corollary 4.2]

we know that σj ◦ σi = σi ◦ σj−1 whenever j > i ≥ 0. This yields

σl ◦ σk =

{
σk ◦ σl−1 if k ∈ Λ2,

σk+1 ◦ σl if k ∈ Λ′
1.

Therefore,

σl(In+1) = σl

(∑
k∈Λ′

σk(In)
)
=

∑
k∈Λ′

1

σl ◦ σk(In) +
∑
k∈Λ2

σl ◦ σk(In)

=
∑
k∈Λ′

1

σk+1 ◦ σl(In) +
∑
k∈Λ2

σk ◦ σl−1(In)

⊆
∑
k∈Λ1

σk(In+1) +
∑
k∈Λ2

σk(In+1) =
∑
k∈Λ

σk(In+1).

The proof is complete. □

Given an Inc-invariant chain I = (In)n≥1, it can happen that the ideal In is generated by a
proper subset of the set of variables of Rn for n ≫ 0, and the “superfluous variables” may
cause unnecessary complications. One can remove these variables by merely shifting indices.
To describe this trick, let us restrict to the case of monomial ideals for simplicity.

Let I = (In)n≥1 be an Inc-invariant chain of monomial ideals with ind(I) = r. Denote by
G(Ir) the minimal set of monomial generators of Ir. We define

msupp(Ir) = min{i | xi divides u for some u ∈ G(Ir)},
Msupp(Ir) = max{i | xi divides u for some u ∈ G(Ir)}.

Then 1 ≤ msupp(Ir) ≤ Msupp(Ir) ≤ r and no element of G(Ir) involves variables with
indices in {1, . . . , r} \ {msupp(Ir), . . . ,Msupp(Ir)}. As the next lemma indicates, we may
always reduce to the case where msupp(Ir) = 1 and Msupp(Ir) = r by simple index shifts.
The proof of the lemma is straightforward and is therefore left to the interested reader.

Lemma 3.2. Let I = (In)n≥1 be an Inc-invariant chain of monomial ideals with ind(I) = r.

Denote i1 = msupp(Ir), p = Msupp(Ir), and r̃ = p− i1 +1. Consider the chain Ĩ = (Ĩn)n≥1

obtained from I by shifting the variables by i1 − 1 and shifting the index of In by r − r̃, i.e.

Ĩn = 0 for n < r̃ and

Ĩn = ⟨ρ(In−r̃+r)⟩Rn−r̃+r
∩Rn for n ≥ r̃,

where ρ : R → R is the k-endomorphism of R induced by ρ(xn) = 0 for n < i1 and
ρ(xn) = xn−i1+1 for n ≥ i1. Then the following hold.

(i) Ĩ is an Inc-invariant chain with ind(Ĩ) = r̃, msupp(Ĩr̃) = 1 and Msupp(Ĩr̃) = r̃.

(ii) depth(Rn/In) = r − r̃ + depth(Rn+r̃−r/Ĩn+r̃−r) for all n ≥ r.

Example 3.3. Consider the chain I = (In)n≥1 with In = 0 for n < 10,

I10 = ⟨x2x5, x2x7, x3x5, x3x9, x7x9⟩
is the edge ideal of a 5-cycle (see Figure 1), and In = ⟨Inc10,n(I10)⟩ for n ≥ 11.
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Then r = ind(I) = 10, msupp(I10) = 2, Msupp(I10) = 9, and r̃ = 8. So the chain Ĩ = (Ĩn)n≥1

is given by Ĩn = 0 for n < 8, Ĩ8 = ⟨x1x4, x1x6, x2x4, x2x8, x6x8⟩, and Ĩn = ⟨Inc8,n(Ĩ8)⟩ for

n ≥ 9. Evidently, ind(Ĩ) = 8 = Msupp(Ĩ8) and msupp(Ĩ8) = 1. Moreover, x1, xn is a regular

sequence on Rn/In and one has depth(Rn/In) = depth(Rn−2/Ĩn−2) + 2 for all n ≥ 10.

2

7

9

5

3

Figure 1. An indexed 5-cycle

3.2. Invariant chains of edge ideals. From now on, we focus on chains I = (In)n≥1, where
each In is an edge ideal. For convenience, the following notation will be fixed throughout
the remaining part of the paper.

Notation 3.4.

(i) Let I = (In)n≥1 be an Inc-invariant chain of eventually nonzero edge ideals with
stability index r = ind(I). For n ≥ 1 let Gn be the graph corresponding to In.
We always assume that E(Gr) = {{i1, j1}, . . . , {is, js}} with it < jt, i1 ≤ · · · ≤ is,
and moreover if it = it+1 then jt < jt+1. Thus, in particular, msupp(Ir) = i1 and
Msupp(Ir) = max{j1, . . . , js}. Set

jq = max{jt | it = i1, 1 ≤ t ≤ s},
p = Msupp(Ir) = max{j1, . . . , js},
b = min{it | jt = Msupp(Ir)} = min{it | jt = p},
B = max{it | jt = Msupp(Ir)} = max{it | jt = p},
r̃ = Msupp(Ir)−msupp(Ir) + 1 = p− i1 + 1.

Moreover, we write (i, j) ∈ E(Gn) if {i, j} ∈ E(Gn) and i < j.
(ii) For (i, j) ∈ N2 and an integer m ≥ 0, denote by ∆((i, j),m) the isosceles right

triangle with the vertices (i, j), (i, j+m), (i+m, j+m), whose legs are of length m.

Example 3.5. For the chain I in Example 3.3, it is already known that r = 10 and r̃ = 8.
As E(G10) = {(2, 5), (2, 7), (3, 5), (3, 9), (7, 9)}, we see that

i1 = 2, jq = 7, p = 9, b = 3, B = 7.

We provide here some useful asymptotic properties of the graphs Gn. Let us first recall a
simple observation from [15, Lemma 3.3] that is crucial for testing membership in In.
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Lemma 3.6. Let 1 ≤ i < j ≤ r and n ≥ r be positive integers. Then for integers k < l, the
following are equivalent:

(i) xkxl ∈ Incr,n(xixj);
(ii) It holds that 0 ≤ k − i ≤ l − j ≤ n− r;
(iii) (k, l) ∈ ∆((i, j), n− r).

The following result shows a density property of Gn for n≫ 0: If (k, l) ∈ E(Gn) is identified
with the point (k, l) ∈ R2, then moving this point in all four cardinal directions by small
integral steps still yields edges of Gn (see Figure 2).

Lemma 3.7. Let n ≥ r be an integer. Using Notation 3.4, the following hold.

(i) (Short east and short south moves) Assume that n ≥ 3r. Let k ≤ k′ ≤ r and
n− r ≤ l′ ≤ l be integers. If (k, l) is an edge of Gn, then so are (k, l′) and (k′, l).

(ii) (Short west moves) Let r ≤ k′′ ≤ k < l be integers. If (k, l) is an edge of Gn, then
so is (k′′, l).

(iii) (Short north moves) Let k < l ≤ l′′ ≤ n − r be integers. If (k, l) is an edge of Gn,
then so is (k, l′′).

(k, l) (k′, l)

(k, l′)

(i, j)

(i, j + n− r) (i+ n− r, j + n− r)

(k′′, l)

(k, l′′)

Figure 2. Short moves in the four cardinal directions

Proof. (i) As n ≥ 3r, we deduce that

k ≤ k′ ≤ r < n− r ≤ l′ ≤ l.

Since (k, l) ∈ E(Gn), it follows from Lemma 3.6 that (k, l) ∈ ∆((i, j), n − r) for some
(i, j) ∈ E(Gr) with 1 ≤ i < j ≤ r. In other words,

(3.3) 0 ≤ k − i ≤ l − j ≤ n− r.

We only prove that (k, l′) ∈ E(Gn); similar arguments work for (k′, l) as well. By Lemma 3.6,
it suffices to show that (k, l′) ∈ ∆((i, j), n− r), or equivalently,

0 ≤ k − i ≤ l′ − j ≤ n− r.

11



The first and third inequalities follow immediately from (3.3) and the fact that l′ ≤ l. Also,
the second inequality holds since n ≥ 3r and

k − i+ j ≤ r − 1 + r ≤ n− r ≤ l′.

(ii) Similarly to (i), if (k, l) ∈ ∆((i, j), n − r) for some (i, j) ∈ E(Gr), then we also have
(k′′, l) ∈ ∆((i, j), n− r), since 0 ≤ r − i ≤ k′′ − i.

The proof of (iii) is similar and is left to the attentive reader. □

Our next goal is to show that Gn does not contain long induced cycles for n ≫ 0. For this,
we need the following consequence of [15, Lemma 3.6].

Lemma 3.8. Use Notation 3.4. Let n ≥ 3r and (u1, v1), (u2, v2) ∈ E(Gn). If (u1, v1), (u2, v2)
form an induced matching of Gn, then [u1, v1] ∩ [u2, v2] = ∅.

Proof. By Lemma 3.6, there exists (ik, jk) ∈ E(Gr) such that (uk, vk) ∈ ∆((ik, jk), n− r) for
k = 1, 2. Since n ≥ 3r, we have n − r ≥ 2r ≥ 2max{j1, j2}. Moreover, none of the pairs
{u1, u2}, {u1, v2}, {u2, v1}, {v1, v2} is an edge of Gn since (u1, v1), (u2, v2) form an induced
matching of Gn. So if we assume without loss of generality that u1 < u2, then it follows from
[15, Lemma 3.6] that

v1 < i2 < n− r + j1 < u2.

Hence, [u1, v1] ∩ [u2, v2] = ∅, as desired. □

We are now ready to prove the following.

Lemma 3.9. Use Notation 3.4. Then for n ≥ 3r, Gn has no induced cycle Cm with m ≥ 6.

Proof. Assume on the contrary that for some n ≥ 3r, Gn contains an induced cycle Cm with
m ≥ 6. Label the vertices of Cm as u1, . . . , um such that u1 = min{u1, . . . , um}. For two
real numbers x, y, let (x, y)≤ be the ordered pair (min{x, y},max{x, y}) ∈ R2, and [x, y]≤ be
the closed interval [min{x, y},max{x, y}] ⊆ R. Since m ≥ 6, {(u1, u2), (um−2, um−1)

≤} is an
induced matching of Gn. Thus, [u1, u2] ∩ [um−2, um−1]

≤ = ∅ by Lemma 3.8. It follows that

u1 < u2 < min{um−2, um−1}.

Analogously, u1 < um < min{u3, u4} as {(u1, um), (u3, u4)≤} is an induced matching of Gn.
So if u2 < um, then u2 < um < u3. Otherwise, if um < u2, then um < u2 < um−1. In either
case, it always holds that [u2, u3]

≤ ∩ [um−1, um]
≤ ̸= ∅. Thus, {(u2, u3)≤, (um−1, um)

≤} is not
an induced matching of Gn by Lemma 3.8. This contradiction concludes the proof. □

For the graph Gn \N [n], which arises from the ideal In : xn, a stronger result holds true.

Lemma 3.10. Using Notation 3.4, assume that p = r. Then the following statements hold
for all n ≥ 2r + 1.

(i) V (Gn \N [n]) = {1 . . . , b− 1} ∪ {n− r +B + 1, . . . , n− 1}.
(ii) The graphs Gn \N [n] and Gn+1 \N [n+ 1] are isomorphic.
(iii) Gn \N [n] is weakly chordal.
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Proof. (i) Since 2r + 1 ≥ r +B − b, it suffices to show that

N(n) = {b, b+ 1, . . . , n− r +B} for n ≥ r +B − b.

Let k ∈ N(n). Then (k, n) ∈ E(Gn). By Lemma 3.6, there exists (i, j) ∈ E(Gr) such that
(k, n) ∈ ∆((i, j), n− r), i.e.

0 ≤ k − i ≤ n− j ≤ n− r.

This implies i ≤ k ≤ n− j + i and j ≥ r. Since j ≤ r, we get j = r and thus (i, r) ∈ E(Gr).
Note that p = r. So the definition of b and B in Notation 3.4 gives b ≤ i ≤ B. Hence,
b ≤ i ≤ k ≤ n− r + i ≤ n− r +B and therefore k ∈ {b, b+ 1, . . . , n− r +B}.
Conversely, if b ≤ k ≤ n − r + B, we see that (k, n) ∈ ∆((b, r), n − r) if b ≤ k ≤ n − r + b
and (k, n) ∈ ∆((B, r), n− r) if B ≤ k ≤ n− r+B. As n ≥ r+B − b, we deduce k ∈ N(n),
as desired.

(ii) Denote Fn = Gn \N [n]. For n ≥ 2r + 1, it follows from (i) that

(3.4) In : xn = ⟨xb, xb+1, . . . , xn−r+B⟩+ Ln,

where Ln ⊆ Rn is an edge ideal supported on V (Fn). Moreover, Ln is exactly the edge ideal
of Fn if it is viewed as an ideal in the ring k[xi | i ∈ V (Fn)]. Recall the map σk defined in
(3.2). It is apparent that σb induces a bijective map from V (Fn) to V (Fn+1). We show that
this map is a graph isomorphism between Fn and Fn+1 for all n ≥ 2r + 1. In other words,
we need to prove that Ln+1 = σb(Ln), or equivalently,

In+1 : xn+1 = ⟨xb, xb+1, . . . , xn−r+B+1⟩+ σb(Ln) for all n ≥ 2r + 1.

Indeed, it follows from [23, Lemma 4.7] that the chain (In : xn)n≥1 is Inc-invariant with
stability index at most r + 1. So by Proposition 3.1,

(3.5) In+1 : xn+1 =
∑
k∈Λ

σk(In : xn) for all n ≥ r + 1,

where Λ is any subset of {0, 1, . . . , n+ 1} with |Λ| = r + 2. Choose

Λ = {b, b+ 1, . . . , b+ r + 1}.
Then Λ ⊆ {b, b+1, . . . , n− r+B} for all n ≥ 2r+1. Take any xuxv ∈ Ln with u < v. Since
u, v ∈ V (Fn), only the following cases can occur.

Case 1 : u < v < b. In this case, σk(xuxv) = xuxv for all k ∈ Λ.

Case 2 : u < b < n− r +B < v. In this case, σk(xuxv) = xuxv+1 for all k ∈ Λ.

Case 3 : n− r +B < u < v. In this case, σk(xuxv) = xu+1xv+1 for all k ∈ Λ.

It follows that σk(Ln) = σb(Ln) for all k ∈ Λ. Thus from (3.4) and (3.5) we get

In+1 : xn+1 =
b+r+1∑
k=b

σk
(
⟨xb, xb+1, . . . , xn−r+B⟩+ Ln

)
= ⟨xb, xb+1, . . . , xn−r+B+1⟩+

b+r+1∑
i=b

σi(Ln)

= ⟨xb, xb+1, . . . , xn−r+B+1⟩+ σb(Ln)

for all n ≥ 2r + 1, as wanted. The desired assertion follows.
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(iii) In view of (ii), it is enough to show that Fn is weakly chordal for some n ≫ 0. Let
n ≥ max{5r, r(r − B + b − 2)}. Since Fn is an induced subgraph of Gn, it follows from
Lemma 3.9 that Fn contains no induced cycle Cm for m ≥ 6. By [15, Proposition 4.1], the
complement F c

n also contains no induced cycle Cm for 5 ≤ m ≤ n/r. As
n

r
≥ r −B + b− 2 = |V (Fn)| = |V (F c

n)|,

F c
n has no induced cycle Cm for all m ≥ 5. This implies that Fn also has no induced C5 since
Cc

5 = C5. Therefore, Fn is weakly chordal. The proof is complete. □

Remark 3.11. By index shift, Lemma 3.10 is valid even without the assumption that p = r.
In this case, the graph Gn \N [n] would have to be replaced by Gn \N [n− r + p] and some
indices in the result would have to be modified accordingly. The details are left to the reader.

We conclude this section with a strengthened version of [15, Proposition 7.4], in which the
index of regularity stability is slightly reduced.

Lemma 3.12. Use Notation 3.4. If jq = p, i.e. xi1xp ∈ Ir, then

reg In = 2 for all n ≥ 3r − 3.

Proof. The result actually follows implicitly from the proof of [15, Proposition 7.4]. We just
need to tighten an inequality in that proof. Indeed, by Fröberg’s theorem [10, Theorem 1],
we have to show that Gn+r is cochordal (i.e. Gc

n+r is chordal) for all n ≥ 2r − 3. If Gn+r is
not cochordal for some n ≥ 2r− 3, then it is shown in the proof of [15, Proposition 7.4] that
there exists some k ∈ [s] such that

n < r + jq − iq − jk,

which yields n < 2r − 3 since jq ≤ r, iq ≥ 1 and jk > ik ≥ 1. This contradiction concludes
the proof. □

4. Sparsity index and bounds for the asymptotic depth

This section can be seen as the starting point for the proof of Theorem 1.2, which will be
completed in Sections 5 and 6. We provide here upper and lower bounds for depth(Rn/In)
when n≫ 0. As we will see in the subsequent sections, depth(Rn/In) always attains one of
these bounds for n≫ 0. Throughout the section, we continue to use Notation 3.4.

Let us first introduce the following crucial notion.

Definition 4.1. We call

sp(Ir) = min{j − i | (i, j) ∈ E(Gr)} = min{jt − it | 1 ≤ t ≤ s}
the sparsity index of Ir.

The Inc-invariance of the chain I = (In)n≥1 implies that sp(In) = sp(Ir) for all n ≥ r. We
can therefore set

sp(I) := sp(Ir)

and call this number the sparsity index of I. The nomenclature is justified by the observation
that the bigger sp(I) is, the fewer edges each graph Gn may have:
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Remark 4.2. Let n ≥ r and 1 ≤ i < j ≤ n be integers. If (i, j) ∈ E(Gn), then it is evident
that j − i ≥ sp(In) = sp(I). Thus, i and j are not adjacent in Gn whenever j − i < sp(I).
Example 4.3. The chain I in Example 3.3 has sp(I) = 2.

The next result gives an upper bound for depth(Rn/In) when n≫ 0. Recall that

r̃ = Msupp(Ir)−msupp(Ir) + 1 = p− i1 + 1

is the stability index of the chain Ĩ considered in Lemma 3.2.

Theorem 4.4. For all n ≥ r + 2r̃, it holds that

depth(Rn/In) ≤ r − r̃ + sp(I).

Proof. Define the chain Ĩ as in Lemma 3.2. Observe that sp(I) = sp(Ĩ). So passing to the

chain Ĩ we may assume i1 = 1, p = r, and in this case, what we need to show becomes

depth(Rn/In) ≤ sp(I) for all n ≥ 3r.

Put m = sp(I). By Proposition 2.2, it suffices to provide a subset F ⊆ [n] with |F | = m
such that depth((Rn)F/(In)F ) = 0. Since (In)F is squarefree, the last condition is equivalent
to (In)F = mF , where mF is the graded maximal ideal of (Rn)F . From the assumption that
i1 = 1, p = r and m = sp(I), we deduce that E(Gr) contains (not necessarily distinct) edges
of the forms (1, a), (v −m, v), (b, r), where m+ 1 ≤ a, v ≤ r and 1 ≤ b ≤ r −m. Let

F = {α, α− 1, . . . , α−m+ 1} with α = max{a+ v, b} ≤ 2r.

We show that F has the desired property for all n ≥ 3r. Obviously, |F | = m. So it remains
to prove that (In)F = mF . This is done through the following claims.

Claim 4.4.1. (In)F ⊊ (Rn)F .

Indeed, if (In)F = (Rn)F , then Gn must have an edge of the form (k, l), where k < l are both
in F . But then l − k ≤ m− 1, contradicting Remark 4.2.

Claim 4.4.2. (In)F ⊇ mF , i.e. each vertex k ∈ [n] \ F is adjacent to a vertex l ∈ F in Gn.

In fact, we have [n] \ F = {1, . . . , α −m} ∪ {α + 1, . . . , n}. Using Lemma 3.6, it suffices to
show that for each k ∈ [n] \ F , there exists l ∈ F such that either (k, l) or (l, k) belongs to
one of the triangles ∆((1, a), n− r), ∆((v−m, v), n− r) and ∆((b, r), n− r). We distinguish
the following cases.

Case 1 : 1 ≤ k ≤ v −m. Then it is clear that

0 ≤ k − 1 ≤ α− a ≤ n− r

since v ≤ α− a and α ≤ 2r ≤ n− r. Hence, (k, α) ∈ ∆((1, a), n− r).

Case 2 : α + r − b ≤ k ≤ n. In this case, (α, k) ∈ ∆((b, r), n− r) since

0 ≤ α− b ≤ k − r ≤ n− r.

Case 3 : v −m < k ≤ α−m or α + 1 ≤ k < α + r − b. Set

l =

{
k −m if α + 1 ≤ k ≤ α +m,

α otherwise.
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Then l ∈ F . Similarly to the previous cases, one can show that either (k, l) (when k < l) or
(l, k) (when k > l) belongs to ∆((v −m, v), n− r). The details are left to the reader. □

Let us now provide a lower bound for depth(Rn/In) when n≫ 0.

Theorem 4.5. For all n ≥ r, the following inequality holds

depth(Rn/In) ≥ r − r̃ +min{sp(I), 2}.

Proof. Using Lemma 3.2, we may assume that i1 = 1 and p = r. In this case, we need to
show that

depth(Rn/In) ≥ min{sp(I), 2} for all n ≥ r.

Since In is a squarefree non-maximal ideal of Rn, it always holds that depth(Rn/In) ≥ 1.
Hence, it suffices to prove that depth(Rn/In) ≥ 2 when sp(I) ≥ 2, which we will assume
from now. By Corollary 2.9, we need to show that Gc

n is connected for each n ≥ r. Indeed,
take two arbitrary vertices k, l of Gc

n with k < l. These vertices are joined by the edges
(k, k + 1), (k + 1, k + 2), . . . , (l − 1, l), which all belong to Gc

n since sp(I) ≥ 2. Hence, Gc
n is

connected, as desired. □

As a direct consequence of Theorems 4.4 and 4.5 we obtain the following.

Corollary 4.6. Assume that sp(I) ≤ 2. Then for all n ≥ r + 2r̃, it holds that

depth(Rn/In) = r − r̃ + sp(I).

5. Maximal asymptotic depth

In this section we show that the upper bound given in Theorem 4.4 is attained when jq = p,
where we use Notation 3.4 throughout as usual. The following result covers Theorem 1.2(i).

Theorem 5.1. Assume that jq = p. Then for all n ≥ r + 2r̃, one has

depth(Rn/In) = r − r̃ + sp(I).

To prove this theorem, we need some auxiliary results. We first give a lower bound for the
size of a maximal independent set of the graph Gn when n≫ 0.

Lemma 5.2. Assume that jq = p. Then for all n ≥ r + 2r̃, every maximal independent set
of Gn has size at least sp(I).

Proof. Set m = sp(I). Using Lemma 3.2 we may assume that i1 = 1 and jq = r. In this
case, it is enough to show that every maximal independent set of Gn has size at least m for
all n ≥ 3r. Suppose to the contrary that Gn has a maximal independent set U of size at
most m− 1. Denote α = minU and β = maxU . To derive a contradiction, let us prove the
following claims.

Claim 5.2.1. α ≤ r − 1.
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Indeed, consider the following sets of size m:

V1 = {1, 2, . . . ,m},
V2 = {β −m+ 1, β −m+ 2, . . . , β},
V3 = {α, α + 1, . . . , α +m− 1}.

By Remark 4.2, V1 is an independent set of Gn. Since |U | < |V1|, it follows from the
maximality of U that U ⊈ V1. This yields β ≥ m + 1 and thus V2 ⊆ [n]. Again by
Remark 4.2, V2 is an independent set of Gn. Hence, U ⊈ V2 due to the maximality of U .
It follows that α ≤ β − m, and consequently, α + m ≤ β ≤ n. Thus, V3 ⊆ [n]. Since
|U | < |V3|, there exists i ∈ [m − 1] such that α + i /∈ U . The maximality of U implies
that U ∪ {α + i} is a dependent set of Gn. Therefore, {α + i, u} ∈ E(Gn) for some u ∈ U .
Note that |u − (α + i)| ≥ m by Remark 4.2. Since α ≤ u and i ≤ m − 1, we must have
α+ i < u. Now if α ≥ r, then moving west from (α+ i, u) to (α, u) using Lemma 3.7, we get
(α, u) ∈ E(Gn). This contradicts the independence of U . Hence, α ≤ r − 1, as claimed.

Claim 5.2.2. β ≥ n− r + 1.

We argue similarly as above. Since U ⊈ V2, there exists j ∈ [m−1] such that U ∪{β−j} is a
dependent set of Gn. Thus, {β − j, v} ∈ E(Gn) for some v ∈ U . Using Remark 4.2 together
with the fact that v ≤ β and j ≤ m− 1, we also deduce that v < β − j. If β ≤ n− r, then
moving north from (v, β − j) to (v, β) using Lemma 3.7, we get (v, β) ∈ E(Gn). This again
contradicts the independence of U . Hence, β ≥ n− r + 1.

Claim 5.2.3. (α, β) ∈ E(Gn).

The assumption that i1 = 1 and jq = r implies (1, r) ∈ E(Gr). So by Lemma 3.6, it suffices
to show that (α, β) ∈ ∆((1, r), n− r). Indeed, this follows from

0 ≤ α− 1 ≤ r − 2 ≤ n− 2r + 1 ≤ β − r ≤ n− r,

where the third inequality holds since n ≥ 3r.

Claim 5.2.3 contradicts the independence of U and thus completes the proof. □

The following technical lemma also plays a role in the proof of Theorem 5.1.

Lemma 5.3. Assume that jq = p and sp(I) ≥ 2. Let U be an independent set of Gn of size
at most sp(I)− 2. Then the complement of Gn \N [U ] is connected for all n ≥ r + 2r̃.

Proof. Using Lemma 3.2 we may assume that i1 = 1 and jq = r. In this case, we need to
show that the graph Fn := (Gn \N [U ])c = Gc

n \N [U ] is connected for all n ≥ 3r. Suppose
to the contrary that Fn is not connected for some n ≥ 3r. Let i < j be vertices of Fn that
are not joined by a path in Fn with j − i being minimal. Then in particular, (i, j) ∈ E(Gn)
since (i, j) ̸∈ E(Gc

n). Moreover, any k ∈ [n] with i < k < j is not a vertex of Fn due to the
minimality of j − i. Thus,

(5.1) {i+ 1, . . . , j − 1} ⊆ N [U ].

Denote m = sp(I), d = |U |, α = minU , and β = maxU . Then it is clear that β−α ≥ d−1.
Also, j − i ≥ m as (i, j) ∈ E(Gn). We distinguish two cases.

Case 1 : i > α. A contradiction will be derived from the following claims.
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Claim 5.3.1. α ≤ r − 1 and j ≤ n− r.

If α ≥ r, then moving west from (i, j) to (α, j) using Lemma 3.7, we get (α, j) ∈ E(Gn),
contradicting the fact that j /∈ N [U ]. Hence, α ≤ r − 1. By assumption, (1, r) ∈ E(Gr). So
Lemma 3.6 yields (α, j) /∈ ∆((1, r), n− r), i.e. at least one of the inequalities

0 ≤ α− 1 ≤ j − r ≤ n− r

is not true. We see that the middle inequality must be false. Thus

j < α− 1 + r ≤ 2r − 2 ≤ n− r,

where the last inequality follows from n ≥ 3r.

Claim 5.3.2. β < j.

Suppose that j < β. If β ≤ n− r, then moving north from (i, j) to (i, β) using Lemma 3.7,
we deduce (i, β) ∈ E(Gn). This contradicts the fact that i /∈ N [U ]. On the other hand, if
β ≥ n− r + 1, then the hypothesis n ≥ 3r and the inequality α ≤ r − 1 from Claim 1 give

0 ≤ α− 1 ≤ r − 2 < n− 2r + 1 ≤ β − r ≤ n− r.

This implies (α, β) ∈ ∆((1, r), n− r), contradicting the independence of U .

Claim 5.3.3. (u, j − h) ∈ E(Gn) for some u ∈ U and h ∈ [d+ 1].

As |U | = d, there exists h ∈ [d + 1] such that j − h /∈ U . Since d + 1 ≤ m − 1 ≤ j − i − 1,
it is easily seen from (5.1) that j − h ∈ N [U ]. Thus, {u, j − h} ∈ E(Gn) for some u ∈ U .
This implies |(j − h)− u| ≥ m. Since u ≤ β < j and h ≤ d+ 1 ≤ m− 1, it must hold that
u < j − h. Therefore, (u, j − h) ∈ E(Gn).

Let us now derive a contradiction. Since j ≤ n − r and (u, j − h) ∈ E(Gn), it follows from
Lemma 3.7(iii) that (u, j) ∈ E(Gn). This contradicts the fact that j /∈ N [U ], as wanted.

Case 2 : i < α. Let us first prove the following claims.

Claim 5.3.4. (i+ h, u) ∈ E(Gn) for some u ∈ U and h ∈ [d+ 1].

We argue analogously to the proof of Claim 5.3.3. By (5.1) and the fact that d+1 ≤ j−i−1,
we may choose h ∈ [d+1] such that i+h ∈ N [U ]\U. This implies {i+h, u} ∈ E(Gn) for some
u ∈ U . We must have i+ h < u since |(i+ h)− u| ≥ m, i < α ≤ u and h ≤ d+ 1 ≤ m− 1.
Hence, (i+ h, u) ∈ E(Gn).

Claim 5.3.5. If α + d+ 1 < j, then (α + k, v) ∈ E(Gn) for some v ∈ U and k ∈ [d+ 1].

From the assumption α+ d+1 < j it follows that α+ k ∈ N [U ] for all k ∈ [d+1]. The rest
of the argument is the same as in the proof of Claim 5.3.4 and is omitted.

Claim 5.3.6. If β < j, then (w, j − l) ∈ E(Gn) for some w ∈ U and l ∈ [d+ 1].

The argument is the same as in the proof of Claim 5.3.3 and is omitted.
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Let us now derive a contradiction. If i ≥ r, then using Claim 5.3.4 and Lemma 3.7(ii) we
infer that (i, u) ∈ E(Gn). This contradicts the fact that i /∈ N [U ]. Hence, i ≤ r − 1. Notice
that (i, β) /∈ ∆((1, r), n− r) by Lemma 3.6. So arguing as in the proof of Claim 5.3.1 yields

β < i+ r − 1 ≤ 2r − 2 ≤ n− r.

If j < β, then moving north from (i, j) to (i, β) using Lemma 3.7, we get the contradiction
that (i, β) ∈ E(Gn). Thus, β < j. If j ≤ n−r, then Claim 5.3.6 together with Lemma 3.7(iii)
implies that (w, j) ∈ E(Gn), again a contradiction. Hence, j ≥ n−r+1. As (α, j) /∈ E(Gn),
also (α, j) /∈ ∆((1, r), n− r), and it follows that α > j − r + 1 ≥ n− 2r + 2 > r. Moreover,
α + d+ 1 < j since

α + d− 1 ≤ β < 2r − 2 ≤ (n− r + 1)− 3 ≤ j − 3.

So using Claim 5.3.5 and Lemma 3.7(ii) we deduce that (α, v) ∈ E(Gn). This contradiction
concludes the proof. □

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Corollary 4.6, it suffices to consider the case m := sp(I) ≥ 3.
Moreover, using Lemma 3.2 we may assume that i1 = 1 and jq = p = r. In this case, by
Theorem 4.4, it is enough to show that

depth(Rn/In) ≥ m for all n ≥ 3r.

Using Takayama’s formula, this is equivalent to proving that

H̃i−|Ga|−1(∆a(In)) = 0 for all n ≥ 3r, all i ≤ m− 1 and all a ∈ Zn.

By Lemma 2.7(ii), we may assume that a ∈ {−1, 0, 1}n. Moreover, it suffices to examine the
case supp(a) = Ga ∈ IN(Gn) by virtue of Lemma 2.7(iii)–(iv). In this case, a ∈ {−1, 0}n.
As jq = p = r, we know from Lemma 3.12 that reg(Rn/In) = 1 for all n ≥ 3r. Thus, if
i+

∑n
i=1 ai = i− |Ga| ≥ 2, then Takayama’s formula gives

H̃i−|Ga|−1(∆a(In)) ∼= H i
m(Rn/In)a = 0.

Therefore, we may assume that |Ga| ≥ i − 1. If |Ga| ≥ i + 1, then H̃i−|Ga|−1(∆a(In)) = 0
since i− |Ga| − 1 ≤ −2. So there are only two cases left:

Case 1 : |Ga| = i. Since i ≤ m − 1, it follows from Lemma 5.2 that Ga is not a maximal
independent set of Gn. Hence, ∆a(In) ̸= {∅} by Lemma 2.7(v). This implies

H̃i−|Ga|−1(∆a(In)) = H̃−1(∆a(In)) = 0.

Case 2 : |Ga| = i− 1. Recall from Lemma 2.7 that

F(∆a(In)) = {F \Ga | Ga ⊆ F ⊆ [n], F ∈ F(IN(Gn))}.

Thus, the 1-skeleton of ∆a(In) is exactly the graph (Gn\N [Ga])
c. Since |Ga| = i−1 ≤ m−2,

Lemma 5.3 says that (Gn \N [Ga])
c is connected. Hence,

H̃i−|Ga|−1(∆a(In)) = H̃0(∆a(In)) = 0,

as desired. □
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We conclude this section with an example illustrating that the lower bound for the stability
index of depth(Rn/In) given in Theorem 5.1 could be close to optimal.

Example 5.4. Consider the chain I = (In)n≥1 with stability index r ≥ 6 and

E(Gr) = {(1, r), (2, 4), (3, 5)}.
This chain satisfies i1 = 1 and jq = p = r. Computations with Macaulay2 [12] suggest that

depth(Rn/In) =


2 if n = 2r − 5,

3 if 2r − 4 ≤ n ≤ 3r − 10,

2 if n ≥ 3r − 9.

Assuming the above result, we see that the lower bound n ≥ 3r given in Theorem 5.1 for
the stability index of depth(Rn/In) cannot be improved to n ≥ 3r − 10 in general.

6. Minimal asymptotic depth

Our goal in this section is to complete the proof of Theorem 1.2 and thereby provide a
comprehensive picture of the asymptotic behavior of depth(Rn/In): we prove the following
slight generalization of Theorem 1.2(ii), showing that the lower bound given in Theorem 4.5
is attained when jq < p. As always, Notation 3.4 is used throughout the section.

Theorem 6.1. Assume that jq < p. Then

depth(Rn/In) = r − r̃ +min{2, sp(I)}
for all n ≥ r + 2r̃.

The proof of this theorem is mainly based on the following nonvanishing result for the first
reduced homology group of the independence complex IN(Gn) of the graph Gn. A complete
description of all reduced homology groups of IN(Gn) can be found in Section 7.

Proposition 6.2. Assume that i1 = 1 and p = r. If jq < r and sp(I) ≥ 2, then

H̃1(IN(Gn)) ∼= k for all n ≥ 3r.

The main idea to prove Proposition 6.2 is to proceed by induction on r − jq using the
long exact sequence in Lemma 2.5. Let us begin by showing (non)vanishing results for the
zeroth and first reduced homology groups of the independence complexes IN(Gn \ n) and
IN(Gn \N [n]).

Lemma 6.3. Assume that i1 = 1 and p = r. If sp(I) ≥ 2, then

H̃0(IN(Gn \ n)) = 0 for all n ≥ r.

Proof. Obviously, the graphGn\n contains at least one vertex for all n ≥ r. So by Lemma 2.4,
it suffices to verify the connectedness of the complementary graph (Gn \ n)c. But this is
clear, because any two vertices i, j of (Gn \ n)c with i < j are connected by the edges
(i, i+ 1), (i+ 1, i+ 2), . . . , (j − 1, j), all of which belong to (Gn \ n)c since sp(I) ≥ 2. □

Lemma 6.4. Assume that i1 = 1 and p = r. If jq = r − 1, then

H̃1(IN(Gn \ n)) = 0 for all n ≥ 3r.
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Proof. Observe that the edge ideal of Gn \ n is the ideal of Rn−1 generated by monomials in
In that are not divisible by xn, i.e. the ideal ⟨In ∩ Rn−1⟩Rn−1 . Thus, if we define the chain
J = (Jn)n≥1 as follows

Jn =

{
0 if n ≤ r − 1

⟨In+1 ∩Rn⟩Rn if n ≥ r,

then Jn−1 is the edge ideal of Gn \n for n ≥ r+1. By [23, Lemma 4.7], J is an Inc-invariant
chain with stability index ind(J ) = ind(I) = r. (Note that the ideal Jn in the current proof
is denoted by Jn+1 in [23, Lemma 4.7], hence the difference in the stability indices.) A useful
property of the chain J is that the index jq for this chain increases by 1. Indeed, we have
x1xjq ∈ Ir since i1 = 1. It follows that x1xjq+1 ∈ Ir+1, and hence x1xjq+1 ∈ Jr, as claimed.
Now the assumption that jq = r − 1 gives x1xr ∈ Jr. So by Lemma 3.12, it holds that
reg(Rn−1/Jn−1) = 1 for all n ≥ 3r (in fact, it suffices to take n ≥ 3r − 2). This combined
with Lemma 2.7(i) and Takayama’s formula yields

H̃1(IN(Gn \ n)) = H̃1(∆0(Jn−1)) ∼= H2
mn−1

(Rn−1/Jn−1)0 = 0,

where mn−1 denotes the graded maximal ideal of Rn−1. □

Lemma 6.5. Assume that i1 = 1, p = r, jq < r, and sp(I) ≥ 2. Then for n ≥ 2r + 1,

H̃0(IN(Gn \N [n])) ∼=

{
k if jq = r − 1,

0 if jq ≤ r − 2.

Proof. Set G := Gn \N [n]. Then for all n ≥ 2r + 1, we know from Lemma 3.10 that G has
the vertex set V (G) = V1 ∪ V2, where

V1 = {1, . . . , b− 1} and V2 = {n− r +B + 1, . . . , n− 1}.
Denote by Γ1 and Γ2 the induced subgraphs of Gc on V1 and V2, respectively. We show that
Γ1 and Γ2 are connected. Indeed, note that G

c = Gc
n \N [n] is the induced subgraph of Gc

n on
V (G) = V1∪V2. Hence, Γ1 and Γ2 are also the induced subgraphs of Gc

n on V1 and V2. From
the assumption sp(I) ≥ 2 it follows that (i, i+ 1) ∈ E(Gc

n) for all i ∈ [n− 1]. Therefore, Γ1

and Γ2 are connected, as desired.

Let us first consider the case jq = r − 1, i.e. (1, r − 1) ∈ E(Gr). By Lemma 2.4, it suffices
to show that Gc has exactly two connected components. We claim that Γ1 and Γ2 are
the connected components of Gc. Indeed, this means that (u, v) /∈ E(Gc), or equivalently,
(u, v) ∈ E(G) for every u ∈ V1 and v ∈ V2. As n ≥ 2r + 1, we have

v − u ≥ (n− r +B + 1)− (b− 1) = n− r +B − b+ 2 ≥ r − 2.

Moreover, v − (r − 1) ≤ n− r since v ≤ n− 1. It follows that

0 ≤ u− 1 ≤ v − (r − 1) ≤ n− r,

which yields (u, v) ∈ ∆((1, r − 1), n− r). Hence, (u, v) ∈ E(Gn) by Lemma 3.6. Since G is
the induced subgraph of Gn on V (G), this implies that (u, v) ∈ E(G), as claimed.

Now assume that jq ≤ r − 2. Again by Lemma 2.4, we need to show in this case that
Gc is a connected graph. Since Γ1 and Γ2 are connected, it suffices to find an edge of Gc

connecting them. We claim that (1, n − 1) is such an edge. Suppose to the contrary that
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(1, n − 1) /∈ E(Gc), i.e. (1, n − 1) ∈ E(G). This means that (1, n − 1) ∈ E(Gn) since G is
an induced subgraph of Gn. Thus, (1, n − 1) ∈ ∆((i, j), n − r) for some (i, j) ∈ E(Gr) by
Lemma 3.6. It follows that

0 ≤ 1− i ≤ n− 1− j ≤ n− r.

Hence, i = 1 and j ≥ r− 1. But this contradicts the assumption that jq ≤ r− 2. Therefore,
(1, n− 1) ∈ E(Gc), as desired. □

Lemma 6.6. Assume that i1 = 1, p = r, and sp(I) ≥ 2. Then

H̃1(IN(Gn \N [n])) = 0 for all n ≥ 3r.

The proof of this lemma is rather technical and lengthy. So we postpone it to the Appendix.
Let us present here the proof of Proposition 6.2.

Proof of Proposition 6.2. Let n ≥ 3r. The long exact sequence in Lemma 2.5, applied to the

graph Gn and its vertex n, together with the fact that H̃0(IN(Gn \n)) = 0 (Lemma 6.3) and

H̃1(IN(Gn \N [n])) = 0 (Lemma 6.6), yields the following short exact sequence

(6.1) 0 −→ H̃1(IN(Gn \ n)) −→ H̃1(IN(Gn)) −→ H̃0(IN(Gn \N [n])) −→ 0.

Let us show that H̃1(IN(Gn)) ∼= k by induction on r− jq ≥ 1. If r− jq = 1, then Lemma 6.4

gives H̃1(IN(Gn \ n)) = 0. It thus follows from (6.1) and Lemma 6.5 that

H̃1(IN(Gn)) ∼= H̃0(IN(Gn \N [n])) ∼= k.

Now assume that r− jq > 1. In this case, H̃0(IN(Gn \N [n])) = 0 by Lemma 6.5. The short

exact sequence (6.1) then implies that H̃1(IN(Gn)) ∼= H̃1(IN(Gn \n)). So it remains to show

that H̃1(IN(Gn \ n)) ∼= k. Consider the chain J = (Jn)n≥1 as in the proof of Lemma 6.4. It
is easy to verify that this chain satisfies all the assumptions of Proposition 6.2. Moreover,
we know from the proof of Lemma 6.4 that x1xjq+1 ∈ Jr. Thus we may apply the induction

hypothesis to the chain J and obtain H̃1(IN(Gn \ n)) ∼= k. This concludes the proof. □

The following example, which is somewhat similar to Example 5.4, suggests that the lower

bound for the index of stability of H̃1(IN(Gn)) in Proposition 6.2 could be close to optimal.

Example 6.7. Consider the chain I = (In)n≥1 with stability index r ≥ 6 and

E(Gr) = {(1, 3), (2, r), (r − 2, r)},
which satisfies all the assumptions of Proposition 6.2. Computations with Macaulay2 [12]
suggest that

dimk H̃1(IN(Gn)) =


0, if n ≤ 2r − 5,

2, if 2r − 4 ≤ n ≤ 3r − 10,

1, if n ≥ 3r − 9.

That is, H̃1(IN(Gn)) could be stable from n = 3r − 9.

We are now ready to prove Theorem 6.1.
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Proof of Theorem 6.1. In view of Corollary 4.6, it suffices to consider the case sp(I) ≥ 3.
Moreover, using Lemma 3.2 we may furthermore assume that i1 = 1, p = r and thus reduce
the statement we want to prove to

depth(Rn/In) = 2 for all n ≥ 3r.

Let n ≥ 3r. Combining Proposition 6.2 with Lemma 2.7(i) and Takayama’s formula we get

k ∼= H̃1(IN(Gn)) = H̃1(∆0(In)) ∼= H2
m(Rn/In)0.

It follows that depth(Rn/In) ≤ 2. Consequently, depth(Rn/In) = 2 by Theorem 4.5. The
proof is complete. □

The lower bound for the index of depth stability in Theorem 6.1 is also close to optimal, as
illustrated by the next example.

Example 6.8. Consider the chain I = (In)n≥1 with stability index r ≥ 6 and

E(Gr) = {(1, r − 1), (2, 3), (2, r)},

which satisfies all the assumptions of Theorem 6.1. We show that depth(Rn/In) ≥ 2 for
n = 3r − 8 and depth(Rn/In) = 1 for n ≥ 3r − 7.

1 3r − 8

2r − 4

2r − 3

3r − 9

r − 1

r

2r − 5

2

3

r − 3

r − 2

3r − 10

Figure 3. A spanning tree of Gc
3r−8

To show depth(R3r−8/I3r−8) ≥ 2, thanks to Corollary 2.9, is equivalent to proving that Gc
3r−8

is connected. This holds because Gc
3r−8 has a spanning tree as in Figure 3.

Next, to show depth(Rn/In) = 1 for n ≥ 3r − 7, we observe that Gc
n is not connected for

all such n, as it admits r − 1 as an isolated vertex. Therefore, for each r ≥ 6, the index of
depth stability of the chain I is 3r − 7.

Remark 6.9. As a summary of Theorems 5.1 and 6.1 and [15, Theorem 7.1], Table 1
provides a complete picture of the asymptotic depth and regularity of Inc-invariant chains
of (eventually non-zero) edge ideals. It would be interesting to have similar tables for more
general chains, e.g. chains of (squarefree) monomial ideals.
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Table 1. Asymptotic depth and regularity of Inc-invariant chains of edge ideals

Invariant Value Condition

lim
n→∞

depth(Rn/In)
r − r̃ + sp(I) either jq = p, or sp(I) ≤ 2

r − r̃ + 2 jq < p and sp(I) ≥ 2

lim
n→∞

reg(Rn/In)
1 either jq = p, or (sp(I) = 1 and im(G3r) = 1)

2 jq < p and (sp(I) ≥ 2 or im(G3r) = 2)

7. Asymptotic homology of independence complexes

In view of Proposition 6.2, one may wonder whether all reduced homology groups of the
independence complex IN(Gn) can be determined asymptotically. The main result of the
present section provides a complete answer to this question. As before, we keep using
Notation 3.4 throughout the section.

Theorem 7.1. Assume that i1 = 1 and p = r. Then there exist two nonnegative integers
α, β depending only on the chain I such that the following hold for all n≫ 0:

(i) H̃i(IN(Gn)) = 0 for i ̸= 0, 1.

(ii) H̃0(IN(Gn)) ∼=

{
kn−α if sp(I) = 1,

0 if sp(I) ≥ 2.

(iii) H̃1(IN(Gn)) ∼= kβ. Furthermore, if sp(I) ≥ 2, then β =

{
0 if jq = r,

1 if jq < r.

Notice that only the case i1 = 1 and p = r considered in the preceding theorem is nontrivial,
because otherwise, Gn contains isolated vertices for all n ≥ r, which means that IN(Gn) is a

cone and thus H̃i(IN(Gn)) = 0 for every i. It is also worth noting that all reduced homology

groups of IN(Gn), except for H̃0(IN(Gn)) in the case sp(I) = 1, are of bounded dimension.

To prove Theorem 7.1, let us begin with its first statement.

Lemma 7.2. For all n ≥ 4r and all i ̸= 0, 1, it holds that H̃i(IN(Gn)) = 0.

Proof. Obviously, IN(Gn) ̸= {∅} for all n ≥ r. Hence, H̃i(IN(Gn)) = 0 for all i < 0. Recall
from [15, Theorem 6.1] that reg(Rn/In) ≤ 2 for all n ≥ 4r. Thus combining Lemma 2.7(i)
and Takayama’s formula we get

H̃i(IN(Gn)) = H̃i(∆0(In)) ∼= H i+1
m (Rn/In)0 = 0

for all n ≥ 4r and all i ≥ 2. The desired conclusion follows. □

For the proof of the remaining part of Theorem 7.1, note that the case sp(I) ≥ 2 has

essentially been treated in Proposition 6.2 (for H̃1) and in the proof of Theorem 4.5 (for H̃0).
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To deal with the case sp(I) = 1, we need some more auxiliary results. In what follows, when
n ≥ 4r, we denote

(7.1) Un = {2r, 2r + 1, . . . , n− 2r}.

Lemma 7.3. Assume that i1 = 1, p = r and sp(I) = 1. Then Un consists of isolated vertices
of Gc

n for all n ≥ 4r.

Proof. It follows from the assumption that E(Gr) contains edges of the forms (1, a), (v−1, v),
(b, r), where 2 ≤ a, v ≤ r and 1 ≤ b ≤ r − 1. Take any k ∈ Un. We need to prove that
{k, l} ∈ E(Gn) for every l ∈ [n] \ {k}. By Lemma 3.6, it suffices to show that either (k, l) or
(l, k) belongs to one of the triangles ∆((1, a), n− r), ∆((v− 1, v), n− r) and ∆((b, r), n− r).
We distinguish two cases.

Case 1 : l < k. In this case, one can easily check that

(l, k) ∈

{
∆((1, a), n− r) if 1 ≤ l ≤ k − a+ 1,

∆((v − 1, v), n− r) if k − a+ 2 ≤ l ≤ k − 1.

Case 2 : l > k. It is readily seen that

(k, l) ∈

{
∆((v − 1, v), n− r) if k + 1 ≤ l ≤ n− r + v,

∆((b, r), n− r) if n− r + v < l ≤ n.

Thus we always have {k, l} ∈ E(Gn), as desired. □

The next result determines the asymptotic dimension of H̃0(IN(Gn)) when sp(I) = 1. As
before, the number of connected components of a graph G is denoted by c(G) .

Lemma 7.4. Assume that i1 = 1, p = r and sp(I) = 1. For n ≥ 4r, let Γn = Gc
n \Un be the

induced subgraph of Gc
n on the vertex set

V (Γn) = [n] \ Un = {1, . . . , 2r − 1} ∪ {n− 2r + 1, . . . , n}.

Then the following hold for all n≫ 0.

(i) c(Gc
n) = c(Γn) + n− 4r + 1.

(ii) The graphs Γn and Γn+1 are isomorphic. In particular, c(Γn+1) = c(Γn) and one can
define c(I) := c(Γn) for n≫ 0.

(iii) dimk H̃0(IN(Gn)) = n− α, where α = 4r − c(I) ≥ 1.

Proof. (i) Since Un consists of isolated vertices of Gc
n by Lemma 7.3, we have

c(Gc
n) = c(Γn) + |Un| = c(Γn) + n− 4r + 1.

(ii) It suffices to prove the first assertion. Consider the map σ2r as defined in (3.2). Recall
that σ2r ∈ Incn,n+1 for all n ≥ 1. Let ϕn : V (Γn) → V (Γn+1) be the restriction of σ2r
on V (Γn). We show that ϕn is a graph isomorphism between Γn and Γn+1 for all n ≫ 0.
Evidently, ϕn is a bijection between V (Γn) and V (Γn+1). Denote by ψn : V (Γn+1) → V (Γn)
the inverse map of ϕn. We claim that ψn(E(Γn+1)) ⊆ E(Γn). Equivalently, we need to
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show that if {i, j} /∈ E(Γn), then {ϕn(i), ϕn(j)} /∈ E(Γn+1). Indeed, if {i, j} /∈ E(Γn), then
{i, j} ∈ E(Gn), i.e. xixj ∈ In. Since σ2r ∈ Incn,n+1, this implies that

xϕn(i)xϕn(j) = xσ2r(i)xσ2r(j) = σ2r(xixj) ∈ In+1.

Hence, {ϕn(i), ϕn(j)} ∈ E(Gn+1), and thus {ϕn(i), ϕn(j)} /∈ E(Γn+1), as desired. So ψn is a
graph morphism from Γn+1 to Γn, which is a bijection on the vertex sets. Consequently, it
yields an injective map E(Γn+1) → E(Γn). In particular, |E(Γn)| ≥ |E(Γn+1)| for all n ≥ 4r.
It follows that |E(Γn)| = |E(Γn+1)| for n ≫ 0. In other words, for all n ≫ 0, ψn is a graph
isomorphism, and hence so is its inverse ϕn.

(iii) The formula for the dimension of H̃0(IN(Gn)) results from combining (i) and Lemma 2.4.
We have α ≥ 1 since c(I) ≤ |V (Γn)| = 4r − 1. □

It remains to determine the asymptotic dimension of H̃1(IN(Gn)) when sp(I) = 1. Given
Lemmas 7.2 and 7.4, this can be done by using the Euler characteristic of IN(Gn):

χ(IN(Gn)) =
dn∑
i=0

(−1)ifi(IN(Gn)) = 1 +
dn∑

i=−1

(−1)i dimk H̃i(IN(Gn)),

where dn = dim IN(Gn) and (fi(IN(Gn)))
dn
i=0 is the f -vector of IN(Gn). The following result

describes the asymptotic behavior of the f -vector and the Euler characteristic of IN(Gn).

Proposition 7.5. Assume that i1 = 1, p = r and sp(I) = 1. Then the following statements
hold for all n≫ 0.

(i) f0(IN(Gn+1)) = f0(IN(Gn)) + 1 and fi(IN(Gn+1)) = fi(IN(Gn)) for all i ≥ 1.
(ii) χ(IN(Gn+1)) = χ(IN(Gn)) + 1.

Proof. It is apparent that (ii) follows from (i), so we only need to prove (i). Observe that if
v is an isolated vertex of Gc

n, then it is also an isolated vertex of IN(Gn) and this gives

(7.2) f0(IN(Gn)) = f0(IN(Gn \ v)) + 1 and fi(IN(Gn)) = fi(IN(Gn \ v)) for all i ≥ 1.

For n ≥ 4r consider the set Un given in (7.1). Recall from Lemma 7.3 that Un consists of
isolated vertices of Gc

n. Hence, applying (7.2) repeatedly we obtain

(7.3)
f0(IN(Gn)) = f0(IN(Gn \ Un)) + |Un| = f0(IN(Gn \ Un)) + n− 4r + 1,

fi(IN(Gn)) = fi(IN(Gn \ Un)) for all i ≥ 1.

Note that Gn \ Un = Γc
n, where Γn = Gc

n \ Un. By Lemma 7.4, the graphs Γn and Γn+1 are
isomorphic for n≫ 0. This implies that the graphs Gn \Un and Gn+1 \Un+1 are isomorphic
for n≫ 0. Consequently, the simplicial complexes IN(Gn \Un) and IN(Gn+1 \Un+1) are also
isomorphic for n≫ 0. The desired conclusion now follows readily from (7.3). □

Remark 7.6. Proposition 7.5(i) implies that dim IN(Gn) is a constant for n≫ 0. This also
follows from [21, Theorem 3.8] and the fact that In is the Stanley–Reisner ideal of IN(Gn).

We are now in a position to prove Theorem 7.1.
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Proof of Theorem 7.1. The first statement follows from Lemma 7.2. To prove the second
and third statements, we distinguish two cases.

Case 1 : sp(I) ≥ 2. From the proof of Theorem 4.5 we know that the graph Gc
n is connected

for all n ≥ r. Hence, H̃0(IN(Gn)) = 0 for all n ≥ r by Lemma 2.4. Let us now prove the

formula for H̃1(IN(Gn)). In view of Proposition 6.2, we only need to consider the case jq = r.
In this case, reg(Rn/In) = 1 for all n ≥ 3r − 3 by Lemma 3.12. So using Lemma 2.7(i) and
Takayama’s formula, we get

H̃1(IN(Gn)) = H̃1(∆0(In)) ∼= H2
m(Rn/In)0 = 0 for all n ≥ 3r − 3.

Case 2 : sp(I) = 1. According to Lemma 7.4(iii), there exists a constant α ≥ 1 such that

dimk H̃0(IN(Gn)) = n − α for n ≫ 0. It remains to prove that dimk H̃1(IN(Gn)) = β for
some constant β when n≫ 0. Indeed, it follows from Proposition 7.5(ii) that there exists a
constant γ such that

χ(IN(Gn)) = n− γ for n≫ 0.

Note that χ(IN(Gn)) = 1 + dimk H̃0(IN(Gn))− dimk H̃1(IN(Gn)) for n ≫ 0 by Lemma 7.2.
Therefore,

n− γ = 1 + (n− α)− dimk H̃1(IN(Gn)),

and hence dimk H̃1(IN(Gn)) = γ − α + 1 for n≫ 0, as desired. □

Proposition 6.2 and the proof of Theorem 7.1 provide lower bounds for the stability indices

of H̃0(IN(Gn)) and H̃1(IN(Gn)) when sp(I) ≥ 2, namely, r and 3r, respectively. It would
therefore be interesting to have similar bounds in the case sp(I) = 1. In this case, it would
also be interesting to determine the constants α and β in Theorem 7.1 explicitly. While α
is always positive by Lemma 7.4, the following examples indicate that β can be zero or not.

Example 7.7. Let r = 2 and E(G2) = {(1, 2)}. Then Gn is the complete graph Kn for all

n ≥ 2. Thus, H̃0(IN(Gn)) ∼= kn−1 and H̃1(IN(Gn)) = 0 for all n ≥ 2.

Example 7.8. Let r = 4 and E(G4) = {(1, 2), (3, 4)}. We claim that for all n ≥ 5,

H̃0(IN(Gn)) ∼= kn−4 and H̃1(IN(Gn)) ∼= k.
In fact, it is not hard to show that for all n ≥ 5, the facets of IN(Gn) are precisely

{1, n− 1}, {2, n− 1}, {1, n}, {2, n}, {3}, {4}, . . . , {n− 2}.
The desired conclusion follows.

8. Appendix

Here, as promised, we provide the proof of Lemma 6.6. It is more convenient to prove the
following slightly stronger result, which specializes to Lemma 6.6 when a = b and A = B.

Proposition 8.1. Assume that i1 = 1, p = r and sp(I) ≥ 2. Let a and A be integers with
1 ≤ a ≤ b and B ≤ A ≤ r− 1. Denote by Gn(a,A) the induced subgraph of Gn on the vertex
set V (Gn(a,A)) = V1 ∪ V2, where V1 = {1, . . . , a− 1} and V2 = {n− r + A+ 1, . . . , n− 1}.
Then

H̃1(IN(Gn(a,A))) = 0 for all n ≥ 3r.
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The proof of this result is mainly based on Proposition 2.6. In order to apply Proposition 2.6,
some preparations are needed.

Lemma 8.2. Under the assumptions of Proposition 8.1, the following statements hold.

(i) Gn(a,A) is weakly chordal for all n ≥ 2r + 1.
(ii) im(Gn(a,A)) ≤ 2 for all n ≥ 3r.
(iii) Let n ≥ 3r and (u1, v1), (u2, v2) ∈ E(Gn(a,A)). If (u1, v1), (u2, v2) with u1 < u2 form

an induced matching of Gn(a,A), then

1 ≤ u1 < v1 ≤ a− 1,

n− r + A+ 1 ≤ u2 < v2 ≤ n− 1,

a ≥ 3 and r − A ≥ 3.

Proof. (i) By Lemma 3.10, Gn(b, B) = Gn \N [n] is weakly chordal for all n ≥ 2r + 1. Since
Gn(a,A) is an induced subgraph of Gn(b, B), we deduce that Gn(a,A) is also weakly chordal.

(ii) The graph Gn(a,A) is an induced subgraph of Gn. So by [15, Theorem 3.1],

im(Gn(a,A)) ≤ im(Gn) ≤ 2 for all n ≥ 3r.

(iii) Assume that (ui, vi) ∈ ∆((ki, li), n − r), where (ki, li) ∈ E(Gr) for i = 1, 2. Since
Gn(a,A) is an induced subgraph of Gn, {(u1, v1), (u2, v2)} is also an induced matching of Gn.
From the proof of Lemma 3.8 we know that

v1 < k2 < n− r + l1 < u2.

As V (Gn(a,A)) = {1, . . . , a−1}∪{n− r+A+1, . . . , n−1} and max{a−1, k2} < r < n− r,
it follows that

1 ≤ u1 < v1 ≤ a− 1 and n− r + A+ 1 ≤ u2 < v2 ≤ n− 1.

In particular, these inequalities yield a ≥ 3 and r − A ≥ 3. □

Lemma 8.3. Keep the assumptions of Proposition 8.1. Assume further that B is a complete
bipartite subgraph of Gn(a,A) with partition V (B) = W1 ∪ W2, where W1,W2 ̸= ∅. If
U ⊆ V (B) consists of consecutive integers, then either U ⊆ W1 or U ⊆ W2.

Proof. It suffices to prove that U ⊆ W1 if U∩W1 ̸= ∅. Indeed, take k ∈ U∩W1. Let l = k−1
or l = k+1. Then {k, l} /∈ E(B) since sp(I) ≥ 2. Hence, l ∈ W1 whenever l ∈ V (B). Since
U consists of consecutive integers, it follows easily by induction that U ⊆ W1. □

Lemma 8.4. Keep the assumptions of Proposition 8.1. Then for all n ≥ 3r, Gn(a,A) does
not contain a strongly disjoint family of two complete bipartite subgraphs B1,B2 such that
V (B1) ∪ V (B2) = V (Gn(a,A)).

Proof. Assume the contrary that there exists a strongly disjoint family of two complete
bipartite subgraphs B1,B2 of Gn(a,A) with V (B1)∪V (B2) = V (Gn(a,A)) for some n ≥ 3r.
Then Gn(a,A) has an induced matching (u1, v1), (u2, v2), where (ui, vi) ∈ E(Bi) for i = 1, 2.
We may assume that u1 < u2. Then Lemma 8.2(iii) yields

1 ≤ u1 < v1 ≤ a− 1 and n− r + A+ 1 ≤ u2 < v2 ≤ n− 1.
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Let V (B1) = W1 ∪W2 be the vertex partition of B1. We first show that k /∈ V (B1) for
some k < v1. In fact, if [v1] ⊆ V (B1), then it follows from Lemma 8.3 that either [v1] ⊆ W1

or [v1] ⊆ W2. But this contradicts the fact that (u1, v1) ∈ E(B1). Hence, there must exist
k < v1 such that k /∈ V (B1).

As k < v1 ≤ a − 1, we have k ∈ V (Gn(a,A)) = V (B1) ∪ V (B2), and thus k ∈ V (B2).
Since B2 is complete bipartite and (u2, v2) ∈ E(B2), we deduce that either (k, u2) or (k, v2)
belongs to E(B2) ⊆ E(Gn). Consider the case (k, u2) ∈ E(Gn); the case (k, v2) ∈ E(Gn)
being similar. Since k < v1 ≤ r and n − r < u2, moving east from (k, u2) to (v1, u2) using
Lemma 3.7(i), we get (v1, u2) ∈ E(Gn). Consequently, (v1, u2) ∈ E(Gn(a,A)), as Gn(a,A)
is an induced subgraph of Gn. But this is impossible because (u1, v1), (u2, v2) is an induced
matching of Gn(a,A). The desired conclusion follows. □

Lemma 8.5. Keep the assumptions of Proposition 8.1. Assume also that im(Gn(a,A)) = 2
and that Gn(a,A) has a complete bipartite subgraph B with |V (B)| ≥ |V (Gn(a,A))| − 1 and

E(B) ̸= ∅ for some n ≥ 3r. If H̃1(IN(Gn(a − 1, A))) = H̃1(IN(Gn(a,A + 1))) = 0, then

H̃1(IN(Gn(a,A))) = 0.

Proof. Let {(u1, v1), (u2, v2)} with u1 < u2 be an induced matching of Gn(a,A). Then we
know from Lemma 8.2(iii) that

1 ≤ u1 < v1 ≤ a− 1 and n− r + A+ 1 ≤ u2 < v2 ≤ n− 1.

Let V (B) = W1 ∪ W2 be the vertex partition of B. Then W1,W2 ̸= ∅ since E(B) ̸= ∅.
Recall that V (Gn(a,A)) = V1 ∪ V2, where both V1 and V2 consist of consecutive integers.
Since |V (B)| ≥ |V (Gn(a,A))|− 1, either V1 or V2 is contained in V (B). So by reindexing (if
needed), it follows from Lemma 8.3 that either V1 ⊆ W2 or V2 ⊆ W2. We consider only the
case V2 ⊆ W2; the other case can be treated similarly. In this case, u2, v2 ∈ V2 ⊆ W2. Since
(u1, v1), (u2, v2) form an induced matching of Gn(a,A), we infer that

(8.1) neither u1 nor v1 belongs to W1.

Hence, either u1 or v1 belongs toW2 because |V (B)| ≥ |V (Gn(a,A))|−1. Thus V1∩W2 ̸= ∅.
This together with Lemma 8.3 and the fact that W1 ̸= ∅ yields V1 ⊈ V (B). The assumption
|V (B)| ≥ |V (Gn(a,A))| − 1 now imples that

V (B) = (V1 \ {k}) ∪ V2
for some k ∈ V1. Note that k ≥ 2, since otherwise, V1 \ {1} ⊆ V (B). So Lemma 8.3 yields
V1 \ {1} ⊆ W1 or V1 \ {1} ⊆ W2. As W1 ̸= ∅, we deduce that V1 \ {1} ⊆ W1. But then either
u1 or v1 belongs to W1, contradicting (8.1).

Claim 8.5.1. It holds that

W1 = {k + 1, . . . , a− 1} and W2 = {1, . . . , k − 1} ∪ V2.

Indeed, we have 1 ∈ V (B) because k ≥ 2. If 1 ∈ W1, then (1, u2) ∈ E(B) ⊆ E(Gn) since
u2 ∈ W2. Recall that 1 ≤ u1 ≤ r and n − r < u2. So according to Lemma 3.7(i), it holds
that (u1, u2) ∈ E(Gn), whence (u1, u2) ∈ E(Gn(a,A)). But this contradicts the fact that
{(u1, v1), (u2, v2)} is an induced matching of Gn(a,A). Thus we must have 1 ∈ W2. This
together with Lemma 8.3 implies [k−1] ⊆ W2. Hence, [k−1]∪V2 ⊆ W2. Now since W1 ̸= ∅,
the desired claim follows easily from Lemma 8.3.
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Claim 8.5.2. The closed neighborhood of a− 1 in Gn(a,A) is

N [a− 1] = {1, . . . , a− 3, a− 1} ∪ V2 = V (Gn(a,A)) \ {a− 2}.

Since sp(I) ≥ 2, we have a− 2 /∈ N [a− 1], hence N [a− 1] ⊆ V (Gn(a,A)) \ {a− 2}. On the
other hand, Claim 8.5.1 gives W2 ⊆ N [a− 1]. Thus it remains to show that

(8.2) {k, k + 1, . . . , a− 3} ⊆ N(a− 1).

From Claim 8.5.1 we know that (k − 1, k + 1) ∈ E(B) ⊆ E(Gn). By Lemma 3.6 and the
assumption that sp(I) ≥ 2, this implies that (k − 1, k + 1) ∈ ∆((l, l + 2), n − r) for some
(l, l+2) ∈ E(Gr). In particular, one has l ≤ k−1. Now using Lemma 3.6, it is easy to check
that (i, a− 1) ∈ ∆((l, l + 2), n− r) for any k ≤ i ≤ a− 3. Hence, (8.2) is true, as required.

Claim 8.5.2 implies that Gn(a,A) \N [a− 1] ∼= K1, where K1 is the complete graph on one
vertex. Moreover, it is clear that Gn(a,A) \ {a− 1} = Gn(a− 1, A). So applying Lemma 2.5

to Gn(a,A) and its vertex a− 1, and using the fact that H̃0(IN(K1)) = H̃1(IN(K1)) = 0, we
obtain

H̃1(IN(Gn(a,A))) ∼= H̃1(IN(Gn(a− 1, A))) = 0.

The proof is complete. □

We are now prepared to give the proof of Proposition 8.1.

Proof of Proposition 8.1. Fix an n ≥ 3r. We show that H̃1(IN(Gn(a,A))) = 0 by a double
induction on a ∈ [b] and on r − A ∈ [r − B]. Let S = k[xi | i ∈ V (Gn(a,A))] and denote by
L(a,A) ⊆ S the edge ideal of Gn(a,A). Recall that the graph Gn(a,A) is weakly chordal by
Lemma 8.2(i). So [44, Theorem 14] yields

reg(S/L(a,A)) = im(Gn(a,A)).

According to Lemma 8.2(ii), we have im(Gn(a,A)) ≤ 2. Let us first consider the case
im(Gn(a,A)) ≤ 1. Notice that this case covers the case that either a ≤ 2 or r − A ≤ 2
by virtue of Lemma 8.2(iii). Since reg(S/L(a,A)) = im(Gn(a,A)) ≤ 1, it follows from
Takayama’s formula and Lemma 2.7(i) that

H̃1(IN(Gn(a,A))) ∼= H2
m(S/L(a,A))0 = 0,

where m denotes the graded maximal ideal of S.

Now assume that im(Gn(a,A)) = 2. In this case, a ≥ 3 and r − A ≥ 3 by Lemma 8.2(iii).
Since Gn(a,A) is weakly chordal, Proposition 2.6 implies that there exists a strongly disjoint
family of complete bipartite subgraphs B1, . . . ,Bg of Gn(a,A) with 1 ≤ g ≤ im(Gn(a,A))
such that

pd(S/L(a,A)) =

g∑
i=1

|V (Bi)| − g.

Since im(Gn(a,A)) = 2, there are only two cases to consider.

Case 1 : g = 2. By Lemma 8.4, V (B1) ∪ V (B2) ⊊ V (Gn(a,A)). It follows that

pd(S/L(a,A)) = |V (B1)|+ |V (B2)| − 2 ≤ |V (Gn(a,A))| − 1− 2 = dim(S)− 3.

30



Hence, depth(S/L(a,A)) ≥ 3 by the Auslander–Buchsbaum formula. This together with
Takayama’s formula and Lemma 2.7(i) implies that

H̃1(IN(Gn(a,A))) ∼= H2
m(S/L(a,A))0 = 0.

Case 2 : g = 1. If |V (B1)| ≤ |V (Gn(a,A))| − 2, then again

pd(S/L(a,A)) = |V (B1)| − 1 ≤ |V (Gn(a,A))| − 2− 1 = dim(S)− 3,

and we reach the desired conclusion with the same argument as in the previous case. Now
suppose that |V (B1)| ≥ |V (Gn(a,A))| − 1. From the induction hypothesis we know that

H̃1(IN(Gn(a− 1, A))) = H̃1(IN(Gn(a,A+ 1))) = 0.

So by Lemma 8.5, H̃1(IN(Gn(a,A))) = 0. This completes the proof. □
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