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Abstract. We define the resurgence and asymptotic resurgence numbers associated to a pair of
graded families of ideals in a Noetherian ring. These notions generalize the well-studied resurgence
and asymptotic resurgence of an ideal in a polynomial ring. We examine when these invariant
are finite and rational. We investigate situations where these invariant can be computed via Rees
valuations or realized as actual limits of well-defined sequences. We study how the asymptotic
resurgence changes when a family is replaced by its integral closure. Many examples are given to
illustrate that whether or not known properties of resurgence and asymptotic resurgence of an ideal
would extend to that of a pair of graded families of ideals generally depends on the Noetherian
property and finite generation of the Rees algebras of these families.
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1. Introduction

The Ideal Containment Problem, which investigates when symbolic powers of an ideal are con-
tained in its ordinary powers, originated from pioneer work of Ein, Lazarsfeld and Smith [15] and
of Hochster and Huneke [25], and has evolved to be an active research area during the last two
decades (cf. [1, 2, 4, 5, 7, 12, 14, 18, 23, 24, 36] and references therein and thereafter). In this re-
search program, resurgence and asymptotic resurgence numbers were introduced as measures for the
non-containment between symbolic powers and ordinary powers of an ideal. These invariant have
attracted much attention and been studied by many authors (cf. [1, 5, 6, 9, 13, 19, 21, 27, 29, 30]).

In this paper, we generalize these notions to measure the non-containment between members of
arbitrary graded families of ideals. Let S be a Noetherian commutative ring, and let a• = {ai}i≥1

and b• = {bi}i≥1 be graded families of ideals in S. We define the resurgence and asymptotic
resurgence numbers of the ordered pair (a•, b•) to be:

ρ(a•, b•) = sup
{s
r

∣∣∣ s, r ∈ N, as ̸⊆ br

}
, and

ρ̂(a•, b•) = sup
{s
r

∣∣∣ s, r ∈ N, ast ̸⊆ brt for t≫ 1
}
.
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Obviously, if a• = {I(i)}i≥1 and b• = {Ii}i≥1 are families of symbolic and ordinary powers of
an ideal I ⊆ S, then we recover the usual resurgence and asymptotic resurgence numbers of
I, which were defined by Bocci and Harbourne [5] and by Guardo, Harbourne and Van Tuyl
[21], respectively. Furthermore, investigating the resurgence and asymptotic resurgence numbers
associated to a pair of graded families of ideals allows us to look at the containment problem
from a much more general context. For instance, this would include the notion of integral closure
resurgence, which was introduced by Harbourne, Kettinger and Zimmitti [22], and the resurgence
and asymptotic resurgence of a filtration associated to a covering polyhedron relative to another
filtration of ideals, which was recently studied by Grisalde, Seceleanu and Villarreal [20]. This
approach would also allow us to consider containment between a graded family of ideals and a
filtration of tight closures of powers of another ideal in positive characteristics.

A priori, from their definitions, it is difficult to compute the resurgence and asymptotic resurgence
numbers. In fact, to the best of our knowledge, algorithms to compute the resurgence number of
an ideal in general are not available. On the other hand, DiPasquale, Francisco, Mermin and
Schweig [9] showed that, when S is a polynomial ring over a field, the asymptotic resurgence
number ρ̂(I) of an ideal I ⊆ S can be computed by considering Rees valuations of I, and that

ρ̂(I) = ρ̂
(
I(•), I•

)
= ρ

(
I(•), I•

)
, where I• denotes the filtration {In}n≥1 of integral closures of

powers of I. We shall illustrate by many examples that this is not the case for arbitrary pairs
(a•, b•) of graded families of ideals. The failure appears to lie at the non-Noetherian property of
the Rees algebra R(b•) of b• and the non-finitely generation of R(b•) over R(b•). Here, the Rees
algebra R(b•), which plays a prominent role in this paper, is defined by

R(b•) = S ⊕ b1t⊕ b2t
2 ⊕ · · · ⊆ S[t],

and b• = {bi}i≥1 is the graded family of integral closures of b•.
Our goal is to see for which graded families a• and b• of ideals in a Noetherian commutative ring

S, the asymptotic resurgence ρ̂(a•, b•) can still be computed by Rees valuations, and the equality
ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) remains to hold. In addition, we will define new sequences whose
limits realize the asymptotic resurgence numbers ρ̂(a•, b•) and ρ̂(a•, b•). We shall further discuss
when resurgence and asymptotic resurgence numbers are finite and are rational numbers.

We will now describe main results of the paper. We start by assuming that S is a domain and
letting K denote its quotient field. For a valuation v of the K, set

v(I) = min{v(x)
∣∣ x ∈ I \ {0}}.

It can be seen that for any graded family a• of ideals in S, {v(ai)}i≥1 is a sub-additive sequence.

Thus, by Fekete’s Lemma, the limit lim
n→∞

v(an)

n
exists and is equal to inf

n∈N

v(an)

n
. Following [9], we

define the skew Waldschmidt constant of a• with respect to v to be

v̂(a•) = lim
n→∞

v(an)

n
= inf

n∈N

v(an)

n
.

Our first result generalizes [5, Theorem 1.2.1] from the Waldschmidt constant of an ideal to the
skew Waldschmidt constant of a graded family of ideals in S with respect to any valuation of K.

Theorem 2.6. Let a• and b• be graded families of nonzero ideals in S. Let v be a valuation of K,
that is supported on S, such that v̂(b•) > 0. Then,

v̂(b•)

v̂(a•)
≤ ρ̂(a•, b•).

Moreover, if v̂(a•) = 0 then ρ̂(a•, b•) =∞.
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It is known (cf. [35]) that for any ideal I ⊆ S, there are finitely many Rees valuations associated
to I. Let RV(I) denote this finite set of Rees valuations of I. Our next result generalizes [9,
Proposition 4.2 and Theorem 4.10].

Theorem 2.12 and Corollary 3.9. Let a• and b• be graded families of nonzero ideals in S.

(1) Suppose that the Veronese subring R[k](b•) of the Rees algebra R(b•) is a standard graded
S-algebra for some k ∈ N. Then,

ρ̂(a•, b•) = max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
= sup

v(bk)>0

{
v̂(b•)

v̂(a•)

}
.

Particularly, if R[ℓ](a•) is a standard graded S-algebra for some ℓ, then ρ̂(a•, b•) is either a
positive rational number or infinite.

(2) Suppose that a• and b• are filtration and that R(b•) is a finitely generated R(b•)-module.
Then,

ρ̂(a•, b•) = ρ̂(a•, b•).

Examples exist to show that the conclusions of Theorem 2.12 and Corollary 3.9 are not necessarily
true without the stated hypotheses (see Examples 2.14, 2.15 and 4.9). Examples also exist to
illustrate that even when ρ̂(a•, b•) = ρ̂(a•, b•) and the Rees algebra R(b•) is Noetherian, this value
is not necessarily equal to ρ(a•, b•) (see Example 4.10).

Our next result addresses the question of when the value ρ̂(a•, b•) = ρ̂(a•, b•) is equal to ρ(a•, b•);
that is, when replacing the graded family b• by the family of its integral closures b• implies the
equality between the resurgence and asymptotic resurgence numbers. We call a graded family b•
of ideals a b-equivalent family, for some ideal b, if there exists a positive integer k such that, for all
i ≥ 1,

bi+k ⊆ bi ⊆ bi.

Examples of b-equivalent families include that of ordinary powers or their integral closures of a
given ideal in an analytically unramified ring. We generalize [9, Corollary 4.14] to the following
statement.

Theorem 4.8. Let S be a domain that belongs to one of the following types:

(1) complete local Noetherian ring,
(2) finitely generated over a field or over Z,
(3) or, more generally, finitely generated over a Noetherian integrally closed domain R satisfying

the property that every finitely generated R-algebra has a module-finite integral closure.

Let a• be a filtration and let b• be a graded family of nonzero ideals in S. Suppose that b• is
b-equivalent for some ideal b ⊆ S. Then,

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•).

When the resurgence and asymptotic resurgence numbers cannot be computed explicitly, it
is desirable to know whether these numbers can be realized as actual limits of well-constructed
sequences. To answer this question, we define the following sequences. For s ≥ 1 and a valuation
v of K = QF(S), when S is a domain, set

βs(a•, b•) := inf{d | as ̸⊆ bd} and βv
s (a•, b•) := inf{d | v(as) < v(bd)}.

Also, for n ≥ 1, define

ρn(a•, b•) := sup

{
s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ n

}
.

We prove the following theorems.
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Theorem 5.12. Let S be a domain, let a• be a graded family of ideals, and let b• be a filtration
of ideals in S. For n ≥ 1, set βn = βn(a•, b•), βn = βn(a•, b•), and for any valuation v of K,

set βv
n = βv

n(a•, b•). Suppose that R[k](b•) is a standard graded S-algebra and R(b•k) is a finitely
generated R(b•k)-module, for some k ∈ N. Then, there exists a valuation v0 (which can be chosen
as a Rees valuation of bk) such that

1

ρ̂(a•, b•)
= lim

n→∞

βn
n

= lim
n→∞

βn
n

= lim
n→∞

βv0
n

n
.

Theorem 5.18. Let S be a domain as in Theorem 4.8. Let a• be filtration of nonzero ideals in S,
and b• be a b-equivalent graded family, for some ideal b ⊆ S. Then,

ρ̂(a•, b•) = lim
n→∞

ρn(a•, b•) = ρ̂(a•, b•) = lim
n→∞

ρn(a•, b•).

To characterize pairs of graded families (a•, b•) of ideals for which ρ(a•, b•) < ∞, when S is
an arbitrary Noetherian ring, we make use of the topology that a filtration of ideals defines. The
topology τa given by a filtration a• is said to be linearly finer than the topology τb given by a
filtration b• if there exists a linear function f ∈ Z≥0[x] such that for every i ≥ 1, af(i) ⊆ bi. Our
next result is stated as follows.

Theorem 6.7. Let a• and b• be filtration of ideals in S. Then, τa is linearly finer than τb if and
only if ρ(a•, b•) <∞.

The rationality of resurgence and asymptotic resurgence numbers have also been addressed by
many authors. We generalize [10, Theorem 3.7] and prove the following results.

Corollaries 3.11 and 6.11. Let a• and b• be filtration of nonzero ideals in S.

(1) Suppose that R[k](a•) and R[ℓ](b•) are standard graded S-algebras for some k and ℓ, and
thatR(b•) is a finitely generatedR(b•)-module. Then, ρ̂(a•, b•) = ρ̂(a•, b•) is either infinity
or a rational number.

(2) Suppose, in addition, that S is an analytically unramified local ring and b• is b-equivalent,
for some ideal b ⊆ S. Then, ρ(a•, b•) is either infinity or a rational number.

Finally, we obtain various criteria for the rationality of the resurgence number, any of those
generalizes [10, Theorem 2.2], see Theorems 4.3, 4.4, 6.12 for more details. The following result
also offers another criterion.

Corollary 6.13. Let S, a• and b• be as in Theorem 4.8 and suppose that b• is b-equivalent for
some ideal b ⊆ S. If ρ̂(a•, b•) ̸= ρ(a•, b•) then ρ(a•, b•) is a rational number.

The paper is outlined as follows. In the next section, we provide a lower bound for the asymptotic
resurgence ρ̂(a•, b•) and look at the question of when this number can be computed via Rees
valuations of certain member of the family b•. Section 3 examines under which conditions the
equality ρ̂(a•, b•) = ρ̂(a•, b•) holds. Section 4 is devoted to the case when b• is b-equivalent for
an ideal b ⊆ S. We show that, in this case, the equality ρ̂(a•, b•) = ρ̂(a•, b•) holds and this
common value is also equal to ρ(a•, b•). Particularly, replacing b• by its integral closure results
in the equality between resurgence and asymptotic resurgence numbers. In Section 5, we define
new sequences whose limits realize the asymptotic resurgence ρ̂(a•, b•). We also consider basic
properties of another version of the resurgence, namely, ρlim(a•, b•). Section 6 investigates the
finiteness of rationality of the resurgence and asymptotic resurgence numbers.

We refer the reader to [35] for unexplained terminology. Throughout the paper, S will denote a
Noetherian commutative ring.
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A collection a• = {ai}i≥1 of ideals in S is called a graded family if apaq ⊆ ap+q for all p, q ≥ 1.
A graded family a• is called a filtration if ap ⊇ ap+1 for all p ≥ 1. Typical examples of filtration
of ideals are those of symbolic powers, the integral closures of powers, and ordinary powers of
an ideal I ⊆ S. For simplicity of notations, we shall use I(•), I• and I• to denote the filtration

{I(i)}i≥1, {Ii}i≥1 and {Ii}i≥1, respectively. We sometimes consider a family a• = {ai}i≥0, with the
convention that a0 = S.
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2. Resurgence numbers via Rees valuations

The aim of this section is to investigate the asymptotic resurgence number of the pair (a•, b•),
where b• = {bi}i≥1. In [9, Theorem 4.10], it was shown that, for an ideal I ⊆ S, the asymptotic

resurgence number ρ̂(I(•), I•) of the families of symbolic and ordinary powers of I can be computed
via Rees valuations of I. As we shall see, this is no longer the case for the asymptotic resurgence
of an arbitrary pair (a•, b•) of graded families of ideals in S.

We will show that the asymptotic resurgence ρ̂(a•, b•) can be computed via Rees valuations if
R(b•) is Noetherian; see Theorem 2.12. Coupled with results in Section 3, this shall imply that the
asymptotic resurgence ρ̂(a•, b•) can be computed via Rees valuations when R(b•) is Noetherian
and R(b•) is a finitely generated module over R(b•). Furthermore, we shall give a lower bound for
ρ̂(a•, b•) in terms of skew Waldschmidt constants of a• and b• with respect to a valuation of the
quotient field of S; see Theorem 2.6.

We will begin by recalling two omnipresent constructions of the Rees algebra and its Veronese
subalgebras.

Definition 2.1. Let a• = {ai}i≥1 be a graded family of ideals in S (with the convention that
a0 = S).

(1) The Rees algebra of a• is defined to be

R(a•) =
⊕
n≥0

ant
n ⊆ S[t].

(2) For k ∈ N, the k-th Veronese subalgebra of R(a•) is given by

R[k](a•) =
⊕
n≥0

aknt
kn ⊆ S[t].

In the general, the Rees algebra of a graded family of ideals is not necessarily Noetherian, even
when the graded family is that of symbolic powers of an ideal in S (cf. [8, 26, 32]). It is a folklore
result that a graded ring R =

⊕
n≥0Rn is Noetherian if and only if R0 is a Noetherian ring and R

is a finitely generated algebra over R0. We shall also say that the graded family a• is Noetherian if
its Rees algebra is. It is well know that, see [31, Remark 2.4] and [33, Proposition 2.1], that if a•
is Noetherian graded family, then R[k](a•) is a standard graded S-algebra for some k.

For graded families a• = {ai}i≥1 and b• = {bi}i≥1 of ideals in S, we write a• ≤ b• if ai ⊆ bi for
all i ≥ 1. The following lemma follows directly from the definition.
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Lemma 2.2. Let a•, b•, a
′
• and b′• be graded families of ideals in S.

(1) If b• ≤ b′•, then

ρ(a•, b•) ≥ ρ(a•, b
′
•) and ρ̂(a•, b•) ≥ ρ̂(a•, b

′
•).

(2) If a• ≤ a′•, then

ρ(a•, b•) ≤ ρ(a′•, b•) and ρ̂(a•, b•) ≤ ρ̂(a′•, b•).

As an immediate consequence of Lemma 2.2, we obtain the following result.

Corollary 2.3. Let a• and b• be graded families of ideals in S. Then,

(1) ρ(a•, b•) ≥ ρ(a•, b•) and ρ̂(a•, b•) ≥ ρ̂(a•, b•);
(2) ρ(a•, b•) ≤ ρ(a•, b•) and ρ̂(a•, b•) ≤ ρ̂(a•, b•).

Throughout this section, S is assumed to be a Noetherian domain. Let K denote the quotient
field of S.

Definition 2.4. A (discrete) valuation of K is a function v : K \ {0} → Z satisfying the following
properties for all x, y ∈ K \ {0}:

(i) v(xy) = v(x) + v(y), and
(ii) v(x+ y) ≥ min{v(x), v(y)}.

We shall omit the word “discrete” from “discrete valuation” in this paper, as no confusion will
be resulted. A valuation v of K is said to be supported on S if v(x) ≥ 0 for all x ∈ S \ {0}.

Recall that for a valuation v of K and an ideal I ⊆ S, v(I) denotes min{v(x)
∣∣ x ∈ I \ {0}}. For

a graded family a• of ideals in S, the skew Waldschmidt constant of a• associated to v is

v̂(a•) = lim
n→∞

v(an)

n
= inf

n∈N

v(an)

n
.

Before stating our first result, we recall the definition of Rees valuations following [35].

Definition 2.5 ([35, Definition 10.1.1]). Let I ⊆ S be an ideal. There exist finitely many valuation
rings V1, . . . , Vr of K satisfying the following properties:

(a) for each i = 1, . . . , r, S ⊆ Vi ⊆ K;
(b) let ϕi : S → Vi be the natural ring homomorphism;
(c) for all n ∈ N, In =

⋂r
i=1 ϕ

−1
i (ϕi(I

n)Vi); and
(d) the set {V1, . . . , Vr} satisfying (c) is minimal possible.

The valuation rings V1, . . . , Vr are called the Rees valuation rings of I, and their corresponding
valuations are called the Rees valuations of I. We denote the set of Rees valuations of I by RV(I).
It is known that RV(I) is a finite set.

Our first main result is a simple bound for the asymptotic resurgence ρ̂(a•, b•), which generalizes
[5, Theorem 1.2.1] from Waldschmidt constant to the skew Waldschmidt constant associated to any
valuation of K that is supported on S.

Theorem 2.6. Let a• and b• be graded families of nonzero ideals in S. Let v be a valuation of K,
that is supported on S, such that v̂(b•) > 0. Then,

v̂(b•)

v̂(a•)
≤ ρ̂(a•, b•).

Moreover, if v̂(a•) = 0, then ρ̂(a•, b•) =∞.
6



Proof. Consider arbitrary s, r ∈ N with v̂(a•) < v̂(b•)
r

s
. Choose ϵ > 0 such that v̂(a•)+ ϵ < v̂(b•)

r

s
.

Note that

{
v(ast)

st

}
t≥1

is a subsequence of

{
v(an)

n

}
n≥1

. Therefore, limt→∞
v(ast)

st
= v̂(a•). Thus,

there exists t0 ∈ N such that for all t ≥ t0,

v(ast)

st
≤ v̂(a•) + ϵ < v̂(b•)

r

s
.

Therefore, for t ≥ t0, we have

v(ast) < rtv̂(b•) ≤ rt
v(brt)

rt
= v(brt).

It follows from [35, Theorem 6.8.3] that ast ̸⊆ brt for all t ≥ t0. It follows that{s
r

∣∣∣ s, r ∈ N and v̂(a•) < v̂(b•)
r

s

}
is a subset of {s

r

∣∣∣ s, r ∈ N and ast ̸⊆ brt for t≫ 1
}
,

and hence,
v̂(b•)

v̂(a•)
≤ ρ̂(a•, b•). The second assertion follows from the fact that if v̂(a•) = 0, then

N ⊆
{s
r

∣∣∣ s, r ∈ N and ast ̸⊆ brt for t≫ 1
}
. This completes the theorem. □

The bound for ρ̂(a•, b•) in Theorem 2.6 is sharp, as seen in the following example.

Example 2.7. Let a• be a filtration of nonzero proper ideals in S and let b be an ideal of S. Take
bi = bi for all i ≥ 1. We first claim that v̂(a•) > 0 for all v ∈ RV(b) if and only if ρ(a•, b•) < ∞.

Suppose that ρ(a•, b•) < ∞. Then, there exists a positive integer n such that ani ⊆ bi for all

i. Therefore, for any v ∈ RV(b) and for all i, v(ani) ≥ iv(b) which implies that
v(ani)

ni
≥ v(b)

n
.

Consequently, v̂(a•) > 0 for all v ∈ RV(b).
Conversely, we assume that v̂(a•) > 0 for all v ∈ RV(b). For each v ∈ RV(b), choose nv ∈ N such

that v̂(a•) ≥
v(b)

nv
. Take n = max{nv | v ∈ RV(b)}. Thus, for all v ∈ RV(b), v̂(a•) ≥

v(b)

n
which

implies that
v(ani)

ni
≥ v̂(a•) ≥

v(b)

n
. Consequently, v(ani) ≥ v(bi) for all i and for all v ∈ RV(b).

Now, by [35, Theorem 6.8.3], we get ani ⊆ bi for all i. Hence, ρ(a•, b•) <∞. The claim follows.

To continue, let s, r ∈ N be such that
s

r
≥ max

v∈RV(b)

{
v(b)

v̂(a•)

}
. Then for all v ∈ RV(b), we

have v(as) ≥ sv̂(a•) ≥ v(br). This and [35, Theorem 6.8.3] imply that as ⊆ br. Therefore,

ρ(a•, b•) ≤ max
v∈RV(b)

{
v(b)

v̂(a•)

}
and, hence,

ρ̂(a•, b•) = ρ(a•, b•) = max
v∈RV(b)

{
v(b)

v̂(a•)

}
.

Furthermore, if b is normal ideal, i.e., bi = bi for all i, then ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) =
ρ(a•, b•).

Corollary 2.8. Let a• and b• be graded families of nonzero ideals in S. Then,

ρ̂(a•, b•) ≥ sup
v̂(b•)>0

{
v̂(b•)

v̂(a•)

}
,

where the supremum is taken over all valuations v of K supported on S for which v̂(b•) > 0.
7



Proof. The assertion follows immediately from Theorem 2.6. □

Note that the Waldschmidt constant of a graded family of homogeneous ideals in a graded ring
is a special case of the skew Waldschmidt constant when the valuation of an element is given by
the degree of that element. As an immediate consequence of Theorem 2.6, we obtain the following
generalization of [5, Theorem 1.2.1].

Corollary 2.9 (See [5, Theorem 1.2.1]). Let S be a polynomial ring, and let a• and b• be graded
families of nonzero homogeneous ideals in S. Suppose that α̂(b•) > 0. Then,

α̂(b•)

α̂(a•)
≤ ρ̂(a•, b•) ≤ ρ̂(a•, b•).

Moreover, if α̂(a•) = 0, then ρ̂(a•, b•) = ρ̂(a•, b•) =∞.

Theorem 2.6 and Corollary 2.9 are not necessarily true without the condition that v̂(b•) > 0, as
illustrated in the following example.

Example 2.10. Let I be a nonzero proper normal ideal in S, and let v be a valuation of K that
is supported on S and v(I) > 0.

(1) Consider the filtration a• and b• with

ai = Ii and bi = I for all i ≥ 1.

Clearly, v̂(a•) = v(I) and v̂(b•) = 0. It can be seen that, in this example,

ρ(a•, b•) = ρ̂(a•, b•) = ρ̂(a•, b•) = sup∅ = −∞ <
v̂(b•)

v̂(a•)
.

(2) Consider slightly modified families a• and b• with ai = Ii and

bi =

{
I if i ̸= 2
I2 if i = 2.

Then, v̂(a•) = v(I) and v̂(b•) = 0. It can be seen that, in this example,

ρ(a•, b•) =
1

2
and ρ̂(a•, b•) = ρ̂(a•, b•) = −∞ <

v̂(b•)

v̂(a•)
.

(3) Consider the filtration a• and b• with

ai = Ii and bi = I⌈
√
i⌉ for all i ≥ 1.

Observe that v(bi) = ⌈
√
i⌉v(I) for all i ≥ 1. Therefore, v̂(a•) = v(I) and v̂(b•) = 0.

We claim that

ρ(a•, b•) =
1

2
and ρ̂(a•, b•) = ρ̂(a•, b•) = −∞ <

v̂(b•)

v̂(a•)
.

Indeed, let s, r be positive integers such that r < 2s. Then, s2 ≥ r which implies that

s ≥ ⌈
√
r⌉. This implies that as ⊆ br, and so, ρ(a•, b•) ≤

1

2
. Furthermore, since a1 = I ̸⊆

I2 = b2, we have ρ(a•, b•) =
1

2
.

Also, if there exist positive integers s, r such that ast ̸⊆ brt for t ≫ 1, then st < ⌈
√
rt⌉

for t ≫ 1. Replacing t by rt2, we get st < 1 for t ≫ 1, which is a contradiction. Hence,
ρ̂(a•, b•) = −∞.
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(4) Consider the filtration a• and b• with

ai = bi = I⌈
√
i⌉ for all i ≥ 1.

Observe that v(ai) = v(bi) = ⌈
√
i⌉v(I) for all i ≥ 1. Therefore, v̂(a•) = v̂(b•) = 0. We

claim that

ρ(a•, b•) = ρ̂(a•, b•) = ρ̂(a•, b•) = 1.

Indeed, let s, r be positive integers such that s ≥ r. Then, ⌈
√
s⌉ ≥ ⌈

√
r⌉, which implies

that as ⊆ br, and so, ρ(a•, b•) ≤ 1. Also, observe that for any s, ⌈
√
st⌉ > ⌈

√
(s− 1)t⌉ for

t≫ 1. Therefore, for any s, a(s−1)t ̸⊆ bst for t≫ 1. This implies that
s− 1

s
≤ ρ̂(a•, b•) for

all s. Hence, ρ̂(a•, b•) = ρ(a•, b•) = 1.

The next lemma examines the condition that v̂(b•) > 0 in Theorem 2.6.

Lemma 2.11. Let b• be a graded family of ideals in S such that R[k](b•) is a standard graded

S-algebra. Then, v̂(b•) =
v(bk)

k
for any valuation v of K. In particular, v̂(b•) > 0 if and only if

v(bk) > 0.

Proof. Since R[k](b•) is a standard graded S-algebra, bks = bsk for all s ≥ 1. Therefore, v(bks) =

sv(bk) for all s ∈ N. Since
{
v(bks)

ks

}
is a subsequence of

{
v(bs)

s

}
, v̂(b•) = lim

s→∞

v(bks)

ks
=

v(bk)

k
. □

We are now ready to present our next main result of this section, which generalizes [9, Theorem
4.10]. Observe that following [35, Chapter 10], for any ideal I ⊆ S and any Rees valuation v ∈ RV(I)
of I, we have that v(I) > 0.

Theorem 2.12. Let a• and b• be graded families of nonzero ideals in S, and let k ∈ N. Suppose
that R[k](b•) is a standard graded S-algebra. Then,

ρ̂(a•, b•) = max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
= sup

v(bk)>0

{
v̂(b•)

v̂(a•)

}
,

where the supremum is taken over all valuations of K supported on S that take positive values in
bk. Particularly, if R[ℓ](a•) is a standard graded S-algebra for some ℓ, then ρ̂(a•, b•) is either a
positive rational number or infinite.

Proof. Since R[k](b•) is a standard graded S-algebra, bkt = btk for all t ≥ 1. By Lemma 2.11, for
any valuation v of K supported on S, v̂(b•) > 0 if and only if v(bk) > 0. Consider any valuation
v ∈ RV(bk). As remarked above, v(bk) > 0. By Theorem 2.6, we then get

max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
≤ sup

v(bk)>0

{
v̂(b•)

v̂(a•)

}
≤ ρ̂(a•, b•).

Thus, it suffices to prove that

ρ̂(a•, b•) ≤ max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
.

If for some v ∈ RV(bk), v̂(a•) = 0, then by Theorem 2.6, ρ̂(a•, b•) =∞ = max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
. So,

we assume that v̂(a•) > 0 for all v ∈ RV(bk). Suppose, by contradiction, that

ρ̂(a•, b•) > max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
.
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By definition, there exist s, r ∈ N such that ρ̂(a•, b•) ≥
s

r
> max

v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
, and ast ̸⊆ brt for

t≫ 1. Since

{
v(bkt)

kt

}
is a subsequence of

{
v(bn)

n

}
, we get v̂(b•) = lim

t→∞

v(bkt)

kt
=

v(bk)

k
=

v(bkt)

kt
for all t ≥ 1. Furthermore, RV(bkt) = RV(bk) for any t ≥ 1 (cf. [35, Exercise 10.1]). Now, for
p ≫ 1, we have askp ̸⊆ brkp . This, by [35, Theorem 6.8.3 and Chapter 10], implies that for some
w ∈ RV(brkp) = RV(bk) (w depends on p), we have w(askp) < w(brkp). Therefore,

s

r
>

ŵ(b•)

ŵ(a•)
=

w(brkp)

rkpŵ(a•)
≥ w(brkp)

rkp
w(askp)

skp

=
s

r

w(brkp)

w(askp)
>

s

r
,

which is a contradiction. Thus, ρ̂(a•, b•) ≤ max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
. Hence, the first assertion follows.

Since R[ℓ](a•) and R[k](b•) are standard graded S-algebras, by Lemma 2.11, v̂(a•) is a non-
negative rational number and v̂(b•) is a positive rational numbers for any v ∈ RV(bk). The last
statement follows from the fact that there are finitely many Rees valuations for any ideal bk. □

As an immediate consequence of Theorem 2.12, we obtain the following result.

Corollary 2.13. Let a• and b• be graded families of nonzero ideals in S. Suppose that the Rees
algebra R(b•) is Noetherian. Then, there exists an integer k such that

ρ̂(a•, b•) = max
v∈RV(bk)

{
v̂(b•)

v̂(a•)

}
= sup

v(bk)>0

{
v̂(b•)

v̂(a•)

}
,

where the supremum is taken over all valuations of K supported on S that take positive values in
bk. Particularly, if R[ℓ](a•) is a standard graded S-algebra for some ℓ, then ρ̂(a•, b•) is either a
positive rational number or infinite.

Without the condition that the k-th Veronese subring R[k](b•) is a standard graded S-algebra,
the conclusion of Theorem 2.12 may not hold and the asymptotic resurgence number ρ̂(a•, b•) could
be an irrational number, as demonstrated in the next two examples.

Example 2.14. Let I be a nonzero proper ideal in S. Fix α, β ∈ R>0. Consider the families
a• = {ai}i≥1 and b• = {bi}i≥1 given by

ai = I⌈αi⌉ and bi = I⌈βi⌉.

It is easy to verify that a• and b• are filtration of ideals in S.
Let v ∈ RV(I) be any Rees valuation of I. It can be seen that v̂(a•) = αv(I) and v̂(b•) = βv(I).

Therefore, by Theorem 2.6, ρ̂(a•, b•) ≥
v̂(b•)

v̂(a•)
=

β

α
.

On the other hand, for any s, r ∈ N such that
s

r
≥ β

α
, we have αs ≥ βr. This implies that

⌈αs⌉ ≥ ⌈βr⌉. It then follows that as ⊆ br. Therefore, ρ(a•, b•) ≤
β

α
. Hence,

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) = ρ(a•, b•) =
β

α
.

It follows from [33, Proposition 2.1] that, in this example, R[k](a•) is a standard graded S-
algebra only if α is rational. Particularly, if we choose α or β to be irrational then the hypothesis
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of Theorem 2.12 is not satisfied, and the resurgence and asymptotic resurgence numbers are both
irrational.

Example 2.15. Let R be a Noetherian domain and let S = R[x]. Let I be a nonzero proper ideal
of R. Let a• and b• be graded families given by

ai = xIi and bi = x2Ii for all i ≥ 1.

Direct computation shows that bi = x2Ii for all i ≥ 1.
We claim that ρ̂(a•, b•) = ∞. Indeed, for any s, r, t ∈ N, it can be seen that ast = xIst ̸⊆

brt = x2Irt which implies that
s

r
≤ ρ̂(a•, b•). This inequality holds for any s, r ∈ N, so we have

ρ̂(a•, b•) =∞.
Let v be a valuation of K supported on S. Then v(ai) = v(x) + v(Ii) = v(x) + iv(I) and

v(bi) = 2v(x) + iv(I) for all i ≥ 1. Therefore, v̂(a•) = v̂(b•) = v(I). Thus, we have

sup
v̂(b•)>0

{
v̂(b•)

v̂(a•)

}
= 1 < ρ̂(a•, b•).

Remark 2.16. Let a• and b• be graded families of nonzero ideals in S.

(1) Suppose that R[k](b•) is a standard graded S-algebra. Then, ρ̂(a•, b•) < ∞ if and only if
v̂(a•) > 0 for all v ∈ RV(bk). This follows directly from Theorem 2.12 and the fact that
RV(bk) is a finite set.

(2) Suppose that ρ̂(a•, b•) = −∞. Then, by Theorem 2.6, for any valuation v ofK supported on

S, v̂(b•) = 0. Therefore, the conclusion of Theorem 2.12 is still valid as sup
v̂(b•)>0

{
v̂(b•)

v̂(a•)

}
=

−∞ in this case. We shall see this scenario in the following example.

Example 2.17. Let I be a nonzero proper normal ideal in S. Consider a• and b• with

ai = Ii and bi = I⌈
√
i⌉ for all i ≥ 1.

As, we have seen in Example 2.10.(3) that for any valuation v of K supported on S, v̂(a•) = v(I)
and v̂(b•) = 0. Particularly,

sup
v̂(b•)>0

{
v̂(b•)

v̂(a•)

}
= −∞.

Also, ρ̂(a•, b•) = −∞. Hence, ρ̂(a•, b•) = sup
v̂(b•)>0

{
v̂(b•)

v̂(a•)

}
.

If we assume that b• is a filtration and R[k](b•) is a standard graded S-algebra for some k,
then the conclusion of Theorem 2.12 can be slightly modified to consider the supremum over those
valuations which takes positive values on b1 (instead of bk).

Corollary 2.18. Let a• be a graded family and let b• be a filtration of nonzero ideals in S. Suppose
that R[k](b•) is a standard graded S-algebra. Then,

ρ̂(a•, b•) = sup
v(b1)>0

{
v̂(b•)

v̂(a•)

}
,

where the supremum is taken over valuations of K supported on S that take positive values in b1.

Proof. Since b• is a filtration of ideals in S, we have bk1 ⊆ bk ⊆ b1. Therefore, for any valuation v
of K, we have v(b1) ≤ v(bk) ≤ kv(b1). This implies that v(b1) > 0 if and only if v(bk) > 0. Now,
the assertion follows from Theorem 2.12. □
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Question 2.19. For which graded families a• and b• of ideals, does the following equality hold

ρ̂(a•, b•) = max
v∈RV(b1)

{
v̂(b•)

v̂(a•)

}
?

Remark 2.20. With the same line of arguments, one may obtain some similar results, but not all,
when (a•, b•) is replaced by (a•, b•). We leave this to the interested reader.

3. Resurgence numbers and integral closures

This section is devoted to the study of how asymptotic resurgence numbers behave when the
family b• = {bi}i≥1 is replaced by b• = {bi}i≥1. In [9, Proposition 4.2 and Corollary 4.14], it was
shown that for an ideal I in a polynomial ring S,

ρ̂(I(•), I•) = ρ̂(I(•), I•) = ρ(I(•), I•).

The situation for resurgence and asymptotic resurgence numbers of pairs of graded families of ideals
quickly gets a lot more complicated. We shall give criteria for similar equality to hold for pairs of
filtration of ideals, and exhibit examples in which these equality are not necessarily true. The main
result of this section is highlighted in Theorem 3.2 and Corollary 3.9.

The next lemma is a direct generalization of [9, Lemma 4.1]. We include the proof for complete-
ness.

Lemma 3.1 (See [9, Lemma 4.1]). Let a• and b• be filtration of ideals in S. Suppose that {sn}n∈N
and {rn}n∈N are sequences of positive integers such that lim

n→∞
sn = lim

n→∞
rn = ∞, asn ⊆ brn for all

n, and lim
n→∞

sn
rn

= h for some h ∈ R≥0. Then, ρ̂(a•, b•) ≤ h.

Proof. Suppose, by contradiction, that ρ̂(a•, b•) > h. Then, there exist s, r ∈ N such that h < s
r <

ρ̂(a•, b•) and ast ̸⊆ brt for all t≫ 1. Let t0 ∈ N be such that ast ̸⊆ brt for all t ≥ t0.
Set ϵ = s

r − h. Observe that there exists n0 ∈ N such that sn
rn

< h + ϵ = s
r for all n ≥ n0.

That is, srn − rsn > 0 for all n ≥ n0. Since lim
n→∞

srn−rsn
rrn

= s
r − h = ϵ and lim

n→∞
rrn = ∞, it

follows that lim
n→∞

(srn − rsn) =∞. Particularly, this implies that for n≫ 1, we have rn ≥ rt0 and

srn − rsn > rs.
Consider the smallest n such that rn ≥ rt0 and srn − rsn > rs, and the largest t such that,

with this value of n, we have rn ≥ rt. Note that, with these choices of n and t, we have t ≥ t0
and rn < r(t+ 1). Therefore, srn < srt+ sr which implies that rsn + rs < srn < srt+ sr. Thus,
sn < st. As a consequence, we get that ast ⊆ asn ⊆ brn ⊆ brt, which is a contradiction as t ≥ t0.
Hence, ρ̂(a•, b•) ≤ h. □

The following general, yet simple, observation is the starting point to consider b• in place of b•.

Theorem 3.2. Let a•, b• and b′• be filtration of ideals in S. Suppose that b• ≤ b′• and R(b′•) is a
finitely generated R(b•)-module. Then,

ρ̂(a•, b
′
•) = ρ̂(a•, b•).

Proof. Since bi ⊆ b′i for all i, ρ̂(a•, b
′
•) ≤ ρ̂(a•, b•) by Lemma 2.2. If ρ̂(a•, b

′
•) = ∞, then we are

done. Thus, we may assume that ρ̂(a•, b
′
•) <∞.

Consider any s, r ∈ N with h =
s

r
> ρ̂(a•, b

′
•). We claim that ρ̂(a•, b•) ≤ h. This particularly

shows that ρ̂(a•, b•) ≤ ρ̂(a•, b
′
•) and establishes the assertion.

Indeed, since R(b′•) is a finitely generated R(b•)-module, there exists a homogeneous set of
generators {u1, . . . , um} of R(b′•) as an R(b•)-module. Let k = max{deg(ui)

∣∣ 1 ≤ i ≤ m}. Then,
12



for n ≥ k, we have

b′n =
m∑
i=1

bn−deg(ui)b
′
deg(ui)

⊆ bn−k.

Since
s

r
> ρ̂(a•, b

′
•), ast ⊆ b′rt for infinitely many values of t. Let {tn}n∈N be an increasing sequence

of positive integers such that t1 ≥ k and astn ⊆ b′rtn for all n ∈ N. It can be seen that astn ⊆ b′rtn ⊆
brtn−k for all n ∈ N. Now, let sn = stn and rn = rtn − k for all n. Then lim

n→∞
sn = lim

n→∞
rn = ∞,

asn ⊆ brn for all n and lim
n→∞

sn
rn

=
s

r
. Thus, by Lemma 3.1, ρ̂(a•, b•) ≤

s

r
= h. The result is

proved. □

With essentially the same proof, the hypothesis of Theorem 3.2 can be made slightly weaker as
follows.

Corollary 3.3. Let a• and b• be filtration of ideals in S. Let b′• be a graded family such that
b• ≤ b′•. Suppose that there exists k ∈ N, such that b′i+k ⊆ bi for all i ∈ N. Then,

ρ̂(a•, b
′
•) = ρ̂(a•, b•).

The conclusion of Theorem 3.2 is not necessarily true without the hypothesis that a•, b• and b′•
are filtration, as demonstrated in the following example.

Example 3.4. Let k be a field, S = k[x, y], and set

a1 = b1 = (x3, y3), b2 = (x4, x3y, xy3, y4), a2 = (x, y)4.

With the convention that bi = (0) for i < 0 and b0 = S, consider collections a•, b• and b′• of ideals
in S given as follows:

bn =


b1, if n ≡ 1 (modulo 3)

b2, if n ≡ 2 (modulo 3)

b1b2, if n ≡ 0 (modulo 3),

an =


b1, if n ≡ 1 (modulo 3)

a2, if n ≡ 2 (modulo 3)

b1a2, if n ≡ 0 (modulo 3),

b′n = bn + bn−2a2, for n ≥ 1.

We shall show that b•, a•, b
′
• are graded families, b• ≤ b′•, and R(b′•) is a finitely generated R(b•)-

module. Nevertheless, ρ̂(a, b′) = −∞ < ρ̂(a, b) =∞, contradicting the conclusion of Theorem 3.2.
We shall start with the observation that the following relations hold:

(i) b21 ⊆ b2 ⊆ b1;
(ii) b1 = a1, b2 ⊆ a2;
(iii) x5y2 ∈ b1a2 \ b1b2;
(iv) a22 = b2a2 = (x, y)8;
(v) a21 ⊆ a2, a

2
2 ⊆ a1 = b1.

Indeed, (i), (ii) and (iv) follow by direction verification. To see (iii), it suffices to note that
b1b2 = (x7, x6y, x4y3, x3y4, xy6, y7) and x5y2 = x3(x2y2) ∈ b1a2. In order to prove (v), we observe
that, from (i),

a21 = b21 ⊆ b2 ⊆ a2.

Thus, it follows from (iv) that

a22 = a2b2 ⊆ b2 ⊆ b1 = a1,
13



which establishes (v).
We continue by claiming the following statements:

(1) b•, a• are graded families; in fact, bmbn ⊆ bm+n for all m,n ∈ Z;
(2) b′1 = b1, b2 ⊆ a2 = b′2;
(3) b′n = bn + bn−2a2 = bn + bn−2b

′
2 for all n ≥ 1;

(4) b′• is a graded family and b• ≤ b′•;
(5) R(b′•) is a finitely generated R(b•)-module;
(6) a3q = b1a2 = b′3n, b3q = b1b2 for all n, q ≥ 1;
(7) ρ̂(a, b′) = −∞; and,
(8) ρ̂(a, b) =∞.

Indeed, (2) can be verified directly, and (3) follows from (2). We begin with (1). Since b• is
periodic of period 3, to show that b• is a graded family it suffices to check that

b21 ⊆ b2, b
2
2 ⊆ b1, b1b2 ⊆ b3.

This is a consequence of (i) and the fact that b3 = b1b2. Similarly, to see that a• is a graded family,
it suffices to check that

a21 ⊆ a2, a
2
2 ⊆ a1, a1a2 ⊆ a3.

This follows from (v) and the fact that a1 = b1 and a3 = b1a2. The remaining assertion of (1) is
clear using bi = (0) for i < 0 and b0 = S.

For (4), it is clear from the definition that b• ≤ b′•. Thus, it remains to check that b′• is a graded
family. For m,n ≥ 1, we have

b′mb′n = (bm + bm−2a2)(bn + bn−2a2)

= bmbn + (bmbn−2 + bm−2bn)a2 + bm−2bn−2a
2
2

⊆ bm+n + bm+n−2a2 + bm−2bn−2a
2
2 (using (1))

= b′m+n + bm−2bn−2b2a2 (by definition of b′• and (iv))

⊆ b′m+n + bm+n−2a2 (using (1))

= b′m+n (using the definition of b′•).

This is the desired containment.
To see (5), observe that by (3) we have b′n = bn + bn−2b

′
2 for all n ≥ 1. Therefore, R(b′) =

R(b) +R(b)b′2t2, which is a finitely generated R(b)-module.
To prove (6), we remark that a3q = b1a2 and b3n = b1b2 by definition. Also,

b′3n = b3n + b3n−2a2

= b1b2 + b1a2 (by definition of b•).

= b1a2 (as b2 ⊆ a2).

To establish (7), we claim that there is no pair of positive integers (s, r) such that asn ̸⊆ b′rn for
all n≫ 0. Indeed, for any n ≥ 1, by (6), we have

a3sn = b1a2 = b′3rn.

Hence, ρ̂(a•, b
′
•) = −∞. On the other hand, for all q ≥ 1, by (6) and (iii), we get

x5y2 ∈ a3qn \ b3n for all n ≥ 1.

Therefore, ρ̂(a•, b•) ≥ (3q)/3 = q, for all q ≥ 1. This yields (8) and the desired computation.

As a corollary to Theorem 3.2, we extend [9, Proposition 4.2] to give a criterion when the
asymptotic resurgence number of (a•, b•) remains unchanged if we replace the family b• by b•.
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Before presenting this result, in Corollary 3.9, we remark that R(b•) is not necessarily a finitely
generated module over R(b•), even when R(b•) is Noetherian, as discussed below.

For a Noetherian ring B and an ideal n ⊆ B, let B̂n be the n-adic completion of B. We say that

a Noetherian local ring (S,m) is analytically unramified if Ŝm is a reduced ring, and analytically
ramified otherwise. The following example is a well-known construction (due to Nagata) of a one-
dimensional Noetherian local domain that is analytically ramified. Statement (4) of Example 3.5
also shows that R(b•) need not be a finitely generated R(b•)-module in general, even when S is a
one-dimensional Noetherian local domain, and b is a principal ideal.

Example 3.5 (Nagata). Let p be a prime number. Denote k = Fp(t1, t2, . . .), and denote by kp
the subfield of p-th powers in k. Let A = kp[[x]][k] ⊆ k[[x]], i.e. A is the subring of k[[x]] generated
by elements of kp[[x]] ∪ k. Since a power series

∑∞
i=0 aix

i ∈ k[[x]] belongs to A if and only if it is a
k-linear combination of finitely many elements in kp[[x]], we deduce that

(3.1) A =

{ ∞∑
i=0

aix
i ∈ k[[x]]

∣∣∣ [kp(a0, a1, a2 . . .) : kp] <∞} .

Let f =
∞∑
i=1

tix
i ∈ k[[x]] \ A. Set S = A[f ] ⊆ k[[x]] and let b = xS ⊆ S. We claim that the

following statements hold.

(1) (A, xA) is a discrete valuation ring and ÂxA = k[[x]].
(2) S is a one-dimensional Noetherian domain, and it is a finitely generated A-module.
(3) S is a local ring with the unique maximal ideal m = (x, f)S.

(4) For all n ≥ 1, we have f −
n−1∑
i=1

tix
i ∈ bn \ b. In particular, there does not exist an integer

c ≥ 1 such that bn ⊆ bn−c for all n ≥ c, and R(b•) is not a finitely generated R(b•)-module.
(5) There is an isomorphism S ∼= A[T ]/(T p − fp).

(6) There is an isomorphism Ŝm ∼=
k[[x]][T ]

((T − f)p)
. In particular, S is not analytically unramified.

We shall give a down-to-earth treatment of these facts, since this example is of importance in the
present manuscript. For all the statements, except (4), the experienced reader may follow the
sketch given by Nagata in [28, pp. 205–206].

Statement (1). Applying Lemma 3.6(1) for the integral extension A ⊆ B = k[[x]], we deduce
that (A, xB ∩ A) is a local domain. Using (3.1), we deduce that xB ∩ A = xA. Therefore, A is a
discrete valuation ring with the unique maximal ideal xA. Completing the injection A ⊆ B at xA,

we get a map ÂxA → B̂xA = B̂xB = k[[x]]. This map is clearly surjective as k ∪ {x} ⊆ A. Since

ÂxA and k[[x]] are both one dimensional regular local rings, the map is an isomorphism, giving

ÂxA = k[[x]].
Statement (2). The ring S = A[f ] is Noetherian by Hilbert’s Basis Theorem. Moreover, A →

S = A[f ] is an integral extension as fp ∈ xpA, so S has dimension 1 and it is a finitely generated
A-module.

Statement (3). This follows by applying Lemma 3.6(2) for the map A ⊆ S = A[f ], noting that
fp ∈ xpA.

Statement (4). We have (
f −

n−1∑
i=1

tix
i

)p

=
∞∑
j=n

tpjx
pj ∈ xpnS = bpn,
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so f −
n−1∑
i=1

tix
i ∈ bn. We shall show that f −

n−1∑
i=1

tix
i /∈ xS. Indeed, assume the contrary, then

f ∈ xS. Consider the finitely generated A-module xA+ fS ⊆ S. Since f ∈ xS and S = A+ fS,

xA+ fS ⊆ xA+ xS = xA+ x(A+ fS) = xA+ x(xA+ fS).

By Nakayama’s lemma over the ring (A, xA), we deduce that xA+ fS = xA. Hence, f ∈ xA. This

is a contradiction, exhibiting that f −
n−1∑
i=1

tix
i /∈ xS. The remaining assertions are immediate.

Statement (5). Let J be the kernel of the natural surjection A[T ] → S, T 7→ f . By (2) and the
fact that dimA[T ] = 2, we get J is a prime ideal of height 1. Since A is an UFD, so is A[T ]. Thus,
J is a principal ideal. Note that fp is not a p-th power in A, and so T p − fp ∈ A[T ] is irreducible.
This forces the containment (T p − fp) ⊆ J to be an equality, in other words, S ∼= A[T ]/(T p − fp).

Statement (6). Note that fp ∈ xS, so xS ⊆ m = (x, f) and mp ⊆ xS. Therefore, the adic

topologies defined by m and xS are the same. Hence Ŝm ∼= ŜxS . We have an exact sequence of
finitely generated A[T ]-modules:

0→ A[T ]
·(T p−fp)−−−−−−→ A[T ]→ S → 0.

Completing with respect to xA[T ] and noting that Â[T ]
xA[T ] ∼= (ÂxA)[T ] = k[[x]][T ] we get an

exact sequence

0→ k[[x]][T ] ·(T p−fp)−−−−−−→ k[[x]][T ]→ Ŝm → 0.

Hence, as chark = p,

Ŝm ∼= k[[x]][T ]/(T p − fp) = k[[x]][T ]/((T − f)p).

To complete the arguments in Example 3.5, we need to establish the following lemmas on the
transfer of locality along integral ring extensions, that are perhaps folklore results.

Lemma 3.6. Let A ⊆ B be an integral ring extension.

(1) Assume that B is a local ring with the maximal ideal n. Then, A is also a local ring with the
unique maximal ideal n ∩A.

(2) Assume that A is a local ring with the maximal ideal m, and B is generated over A by finitely

many elements f1, . . . , fn that belong to
√
mB. Then, B is also a local ring with the unique

maximal ideal mB + (f1, . . . , fn).

Proof. (1) Since A ⊆ B is integral and n is maximal ideal of B, n ∩A is a maximal ideal of A. By
lying over, for any maximal ideal m of A, there exists a prime ideal q of B such that m = q ∩ A.
Since the extension A/m = A/(q∩A)→ B/q remains integral, A/m is a field and B/q is a domain,
we deduce that B/q is a field. Hence q = n. Therefore (A, n ∩A) is a local ring.

(2) For any maximal ideal n of B, the integral extension A ⊆ B implies that n∩A is a maximal
ideal of A. Hence n ∩A = m, mB ⊆ n, and in particular,

mB ∩A = m.

This yields an integral ring extension A/m ⊆ B/mB. Since mB is contained in the Jacobson radical
of B, replacing A,B by A/m, B/mB respectively, we may assume that A = k is a field, m = 0.
Now B = k[f1, . . . , fn] and fi is nilpotent for each i, so B is an artinian local ring with the unique
maximal ideal (f1, . . . , fn), as desired. □

Remark 3.7. The ring S in Nagata’s Example 3.5 has characteristic p > 0, but the restriction to
positive characteristic turns out to be inessential. Using Kähler differentials, Ferrand and Raynaud
[17, Proposition 3.1] (see, e.g., [34, Section 109.16]) have constructed a Noetherian local domain of
dimension one containing Q that shares strikingly similar properties with Nagata’s example (e.g.
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that of being analytically ramified). In terms of exposition, a slight advantage of Nagata’s example
over Ferrand–Raynaud’s one is that it is more explicit and computationally simpler.

We have seen from Example 3.5 that R(b•) is not necessarily a finitely generated R(b•)-module,
even when R(b•) is Noetherian. On the other hand, if the ring S is nice enough and the Rees
algebra R(b•) is Noetherian, then R(b•) is a finitely generated R(b•)-module, as discussed in the
following remark.

Remark 3.8. Let S be a regular ring or, more generally, an analytically unramified semi-local
ring. Let b• be a filtration of ideals in S. Then, the integral closure of R(b•) in S[t] is a N-graded
ring, i.e., there exists a graded family of ideals c• in S such that

R(b•) =
⊕
i≥0

cit
i.

It should be noted that bi ⊆ ci for all i ≥ 1.
It follows from [16, 31] that, if b• is a Noetherian filtration then R(b•) is a finitely generated

R(b•)-module, and therefore, R(b•) is a finitely generated R(b•)-module.

Under the hypothesis that R(b•) is a finitely generated R(b•)-module, the following corollary of
Theorem 2.12 generalizes [9, Proposition 4.2].

Corollary 3.9. Let a• and b• be filtration of ideals in S. Suppose that R(b•) is a finitely generated
R(b•)-module. Then,

ρ̂(a•, b•) = ρ̂(a•, b•).

Proof. The assertion is a direct consequence of Theorem 3.2, by letting b′• = b•. □

Recall that if S is of prime characteristic, then for an ideal I ⊆ S, I∗ denotes its tight closure.
We obtain the following result for filtration of tight closures.

Corollary 3.10. Suppose that S is a Noetherian ring of prime characteristic p > 0. Let a•, b• be
filtration of ideals, and let b be a nonzero proper ideal in S.

(1) We have that ρ̂(a•, b•) = ρ̂(a•, (b
•)∗), where (b•)∗ = {(bn)∗}n≥0.

(2) If R(b•) is a finitely generated R(b•)-module, then ρ̂(a•, b•) = ρ̂(a•, b
∗
•) = ρ̂(a•, b•), where

b∗• = {b∗n}n≥0.

Proof. It is well know that for any ideal I ⊆ S, I ⊆ I∗ ⊆ I. Therefore, (b•)∗ ≤ b• and b• ≤ b∗• ≤ b•.
Now, the second assertion is a direct consequence of Theorem 3.2. Next, by [35, Theorem 13.2.1],
there exists a positive integer k such that bn+k ≤ (bn)∗ for all n. The first assertion now follows
from Corollary 3.3. □

As a consequence of Corollary 3.9, we obtain a generalization of [10, Theorem 3.7] on the ratio-
nality of the usual asymptotic resurgence number. The rationality of the usual resurgence number
in [10, Theorem 3.7] will be generalized in the last section.

Corollary 3.11. Let S be a Noetherian domain, and let a• and b• be filtration of nonzero ideals
in S. Suppose that R[k](a•) and R[ℓ](b•) are standard graded S-algebras for some k and ℓ, and
that R(b•) is a finitely generated R(b•)-module. Then, ρ̂(a•, b•) = ρ̂(a•, b•) is either infinity or a
rational number.

Proof. The assertion follows from Theorem 2.12 and Corollary 3.9. □

Question 3.12. Characterize when the equality ρ̂(a•, b•) = ρ̂(a•, b•) holds.
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4. b-equivalent families

In this section, we focus on the situation where the graded family b• is b-equivalent for some
ideal b in S. Familiar examples include the cases when b• is the family of ordinary powers or their
integral closures of a given ideal. We shall show that under this condition and a mild assumption
on the ring S, the following natural generalization of known equality between the resurgence and
asymptotic resurgence numbers of an ideal hold:

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•).

The main result of this section is Theorem 4.8; see also Theorem 4.15.
We begin with a technical lemma, which is similar to [9, Lemma 4.12].

Lemma 4.1 (Compare with [9, Lemma 4.12]). Let S be a Noetherian domain, and let a• and b•
be graded families of nonzero ideals in S.

(1) Assume that v̂(b•) = v(b1) for all v ∈ RV(b1). If as ̸⊆ br then
s

r
< ρ̂(a•, b•). In particular,

ρ(a•, b•) = ρ̂(a•, b•).

(2) Assume that R[k](b•) is a standard graded S-algebra for some k. If
s

r
< ρ̂(a•, b•), then

ast ̸⊆ brt for t≫ 1.

Proof. (1) If as ̸⊆ br then, as br1 ⊆ br, we have as ̸⊆ br1. It follows from [35, Theorem 6.8.3 and
Remark 10.1.4] that there exists a valuation v ∈ RV(b1) such that v(as) < v(br1). This, together
with Theorem 2.6, implies that

s

r
<

s

r

v(br1)

v(as)
=

s

r

rv(b1)

v(as)
=

v(b1)

v(as)/s
≤ v̂(b•)

v̂(a•)
≤ ρ̂(a•, b•).

The proof of (1) is completed.

(2) Suppose that
s

r
< ρ̂(a•, b•). Then, by Theorem 2.12, there exists v ∈ RV(bk) such that

s

r
<

v̂(b•)

v̂(a•)
. Therefore,

s

r
<

v̂(b•)

v(ast)/st
for t≫ 1. Thus, for t≫ 1, we have v(ast) < rtv̂(b•) ≤ v(brt).

Now, it follows from [35, Theorem 6.8.3] that ast ̸⊆ brt for t≫ 1. This establishes (2). □

The hypothesis of Lemma 4.1.(1) holds for a large class of graded families, those that are b-
equivalent, as defined below.

Definition 4.2. Let b ⊆ S be an ideal. We call a graded family b• = {bi}i≥1 of ideals in S a
b-equivalent family if there exists a positive integer k such that, for all i ≥ 1,

bi+k ⊆ bi ⊆ bi.

Note that if b• is a b-equivalent family then we necessarily have b1+k ⊆ b ⊆ b1 for some k ∈ N.
As a consequence of Lemma 4.1, we obtain the following theorems, which generalize [10, Theorem

2.2] and address the computation and rationality of resurgence and asymptotic resurgence numbers.

Theorem 4.3. Let S be a Noetherian domain and let a• and b• be graded families of nonzero ideals
in S such that the following conditions hold:

(1) ρ̂(a•, b•) < ρ(a•, b•);
(2) v̂(b•) = v(b1) for all v ∈ RV(b1);
(3) there exists a positive integer k so that bi+k ⊆ bi for all i ∈ N.

Then, there exist positive integers s0, r0 such that as0 ̸⊆ br0,
s0
r0

> ρ̂(a•, b•) and

ρ(a•, b•) = max
{s
r

∣∣∣ 1 ≤ r < N, 1 ≤ s < (r + k)ρ̂(a•, b•) and as ̸⊆ br

}
,
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where

N =
kρ̂(a•, b•)

s0
r0
− ρ̂(a•, b•)

.

Moreover, under these conditions, ρ(a•, b•) is a positive rational number.

Proof. Since ρ̂(a•, b•) < ρ(a•, b•), there exist positive integers s0, r0 such that as0 ̸⊆ br0 and
s0
r0

>

ρ̂(a•, b•).
Consider any s, r ∈ N such that as ̸⊆ br. Since br+k ⊆ br, we get that as ̸⊆ br+k. By Lemma 4.1,

we have
s

r + k
< ρ̂(a•, b•) which implies that

s

r
<

(
1 +

k

r

)
ρ̂(a•, b•). If r ≥ N , then we get that

s

r
<

(
1 +

k

r

)
ρ̂(a•, b•) ≤

s0
r0
≤ ρ(a•, b•).

Thus, to obtain ρ(a•, b•), it is enough to consider r < N. Since
s

r + k
< ρ̂(a•, b•), we have s <

(r + k)ρ̂(a•, b•). Hence, the assertion follows. □

Theorem 4.4. Let S be a Noetherian domain and let a• and b• be graded families of nonzero ideals
in S such that the following conditions hold:

(1) ρ̂(a•, b•) < ρ̂(a•, b•);
(2) v̂(b•) = v(b1) for all v ∈ RV(b1);
(3) there exists a positive integer k so that bi+k ⊆ bi for all i ∈ N.

Then, there exist positive integers s0, r0 such that as0t ̸⊆ br0t for t≫ 1,
s0
r0

> ρ̂(a•, b•) and

ρ̂(a•, b•) = max
{s
r

∣∣∣ 1 ≤ r < N, 1 ≤ s < (r + k)ρ̂(a•, b•) and ast ̸⊆ brt for t≫ 1
}
,

where

N =
kρ̂(a•, b•)

s0
r0
− ρ̂(a•, b•)

.

Moreover, under these conditions, ρ̂(a•, b•) is a positive rational number.

Proof. The proof goes along the same line of arguments as that of Theorem 4.3. We shall leave the
details to the interested readers. □

Theorem 4.4 as well as Corollary 3.11 provide sufficient conditions for which the asymptotic resur-
gence number ρ̂(a•, b•) is rational while Theorem 4.3 provide sufficient conditions for resurgence
number ρ(a•, b•). In the last section of the paper, we will continue to investigate this problem.

Remark 4.5. If S is a analytically unramified local ring, then the hypothesis (2) and (3) of
Theorems 4.3 and 4.4 holds for any b-equivalent filtration of ideals in S, where b is a nonzero
proper ideal in S. This is because of Lemma 4.6 below and [35, Theorem 9.2.1].

Lemma 4.6. Let S be a Noetherian domain, let b be an ideal, let b• be a graded family of ideals in
S, and let v a valuation of K supported on S. Suppose that b• is b-equivalent. Then v̂(b•) = v(b).

Proof. Since bi+k ⊆ bi ⊆ bi, we have v(bi) ≤ iv(b) = v(bi) ≤ v(bi+k) for all i ∈ N. Therefore,
i

i+ k
v(b) ≤ v(bi+k)

i+ k
.

This implies that v(b) ≤ v̂(b•). The assertion follows as v̂(b•) ≤ v(b1) ≤ v(b). □
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As a consequence of Corollary 3.9, Lemma 4.1 and Lemma 4.6, we obtain a generalization of [9,
Proposition 4.2 and Corollary 4.14].

Corollary 4.7. Let S be a domain that belongs to one of the following types:

(1) complete local Noetherian ring;
(2) finitely generated over a field or over Z;
(3) or, more generally, finitely generated over a Noetherian integrally closed domain R satisfying

the property that every finitely generated R-algebra has a module-finite integral closure.

Let a• be a filtration of nonzero ideals, and let b be a nonzero ideal in S. Then,

ρ̂(a•, b
•) = ρ̂(a•, b•) = ρ(a•, b•).

Proof. By [35, Proposition 5.3.4], we have that R(b•) is a finitely generated module over R(b•).
Thus, it follows from Corollary 3.9 that ρ̂(a•, b•) = ρ̂(a•, b

•). The second equality follows from
Lemma 4.1(1) and Lemma 4.6. □

We proceed to our next main results of this section, which give criteria for the equality in
Corollary 4.7 to hold when the filtration of ordinary powers b• is replaced by a more general graded
family b• of ideals.

Theorem 4.8. Let S be a domain as in Corollary 4.7. Let a• be a filtration and let b• be a graded
family of nonzero ideals in S. Suppose that b• is b-equivalent for some ideal b ⊆ S. Then,

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) = ρ̂(a•, b
•).

Proof. We first claim that ρ̂(a•, b•) = ρ̂(a•, b
•) and ρ̂(a•, b•) = ρ̂(a•, b•). Since b• is b-equivalent,

there exists a positive integer k such that bi+k ⊆ bi for all i ∈ N and b• ≤ b•. Therefore, by
Corollary 3.3, ρ̂(a•, b•) = ρ̂(a•, b

•). Next, by [35, Proposition 5.3.4], there exists a positive integer

l such that bi+l ⊆ bi for all i ∈ N. Thus, bi+l+k ⊆ bi+l ⊆ bi for all i ∈ N and b• ≤ b•. Again, by
Corollary 3.3, ρ̂(a•, b•) = ρ̂(a•, b

•).
Now, applying Corollary 4.7, we get

ρ̂(a•, b•) = ρ̂(a•, b
•) = ρ(a•, b•) = ρ̂(a•, b•) = ρ̂(a•, b•).

Moreover, since bn ⊆ bn for n ≥ 1, it follows from Lemma 2.2 again that ρ(a•, b•) ≤ ρ(a•, b•).
Particularly,

ρ̂(a•, b•) ≤ ρ(a•, b•) ≤ ρ(a•, b•) = ρ̂(a•, b•).

This proves the second desired equality. □

In general, we do not expect the equalities in Corollary 3.9, Corollary 4.7, and Theorem 4.8 to
hold even when S is a Noetherian local domain of dimension 1 and b• is the filtration of ordinary
powers of a principal ideal, as exhibited by the following example.

Example 4.9. Use the notations of Example 3.5. Let a•, b• be filtration given by an = bn and
bn = bn. We claim that ρ̂(a•, b•) =∞ > ρ̂(a•, b•) = 1.

Indeed, since b• is a filtration and by part (4) in Example 3.5, ant = bnt ̸⊆ bt for all n, t ≥ 1, we
get ρ̂(a•, b•) =∞. Note that a• = b•. We claim that an ⊆ am if and only if n ≥ m. The “if” part
is clear. Assume that n < m, we show that

f −
n−1∑
i=1

tix
i ∈ an \ am.
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By part (4) in Example 3.5, it remains to show that f −
n−1∑
i=1

tix
i /∈ bm = (xm)S. Assume the

contrary. Since S ⊆ B = k[[x]], (xm)S ⊆ (xm)B = (xm)B. Hence f −
n−1∑
i=1

tix
i ∈ (xm)B, a

contradiction. Hence an ⊆ am if and only if n ≥ m. It then follows that given s, r ≥ 1, we have
asn ̸⊆ arn for all n≫ 1 if and only if s < r. Thus ρ̂(a•, b•) = ρ̂(a•, a•) = 1.

As remarked in Example 4.9, we do not expect the equality ρ̂(a•, b•) = ρ̂(a•, b•) in general.
Furthermore, even if ρ̂(a•, b•) = ρ̂(a•, b•) holds, it is not necessarily the case that this value is equal
to ρ(a•, b•), as seen in the following example.

Example 4.10. Let S = k[x, y], and let an = (x, y)n for n ≥ 1. Clearly, a• is a filtration of ideals
in S and α̂(a•) = 1 = α̂(a•).

Let c = (x). Let b1 = c+ (y2) and more generally for each n ≥ 1, set

bn = c⌈n/2⌉ +

⌈n/2⌉∑
i=1

c⌈n/2⌉−iyi+1.

Thanks to the inequality ⌈m/2⌉ + ⌈n/2⌉ ≥ ⌈(m+ n)/2⌉, it can be seen that b• is a filtration of
ideals in S. Note that α(b2n−1) = α(b2n) = α(cn) = n for all n ∈ N. Since α(I) = α(I) for any

homogeneous ideal I, we conclude that α̂(b•) =
1

2
= α̂(b•).

For any integer s ≥ 1,

(4.1) as+1 = (x, y)s+1 =
s+1∑
i=0

cs+1−iyi ⊆ cs +
s+1∑
i=2

cs+1−iyi = b2s.

Observe also that as+1 ̸⊆ b2s+1 as ys+1 ∈ as+1 \ b2s+1. Moreover, a1 = (x, y) ̸⊆ b1 = b1. Therefore,
1 ≤ ρ(a•, b•) ≤ ρ(a•, b•) = 1. Specifically, we have

ρ(a•, b•) = ρ(a•, b•) = 1.

On the other hand, it follows from Corollary 2.9 and Lemma 2.2 that

1

2
≤ ρ̂(a•, b•) ≤ ρ̂(a•, b•).

Furthermore, using (4.1) and Lemma 3.1, we get

ρ̂(a•, b•) ≤ lim
s→∞

s+ 1

2s
=

1

2
.

Thus, ρ̂(a•, b•) = ρ̂(a•, b•) =
1

2
. Particularly, ρ̂(a•, b•) = ρ̂(a•, b•) ̸= ρ(a•, b•).

By putting Theorem 4.8 and results in Section 2 together, we obtain the following corollary,
which generalizes [9, Corollary 4.14].

Corollary 4.11. Let S be a domain as in Corollary 4.7. Let a• be a filtration of nonzero ideals
and let b• be a graded family of nonzero ideals in S. Suppose that b• is b-equivalent for some ideal
b ⊆ S. Then,

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) = max
v∈RV(b)

{
v(b)

v̂(a•)

}
= sup

v(b)>0

{
v(b)

v̂(a•)

}
,

where the last supremum is taken over all valuations of K supported on S that take positive values
in b.
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Proof. From Theorem 2.12 (noting that the Rees algebra of the ideal b is always standard graded),
we get

ρ̂(a•, b•) = max
v∈RV(b)

{
v(b)

v̂(a•)

}
= sup

v(b)>0

{
v(b)

v̂(a•)

}
.

Using Theorem 4.8, we get

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•) = ρ̂(a•, b
•) = ρ(a•, b•).

This gives the desired conclusion. □

In the remaining of this section, we shall present another instance where the conclusion of
Theorem 4.8 holds for families that are not necessarily b-equivalent. We shall need a couple of
auxiliary results.

Lemma 4.12. Let a• and b• be graded families of ideals in S. Suppose that R[k](b•) is a standard
graded S-algebra. Then, with b•k = {bik}i≥1, we have

ρ(a•, b
•
k) ≤ kρ(a•, b•) and ρ(a•, b•k) ≤ kρ(a•, b•).

Proof. We shall prove ρ(a•, b
•
k) ≤ kρ(a•, b•); the other inequality follows by a similar line of argu-

ments. Let s, r ∈ N be such that
s

r
> kρ(a•, b•). Then,

s

kr
> ρ(a•, b•), which implies that as ⊆ bkr.

Since bkr = brk, we get as ⊆ brk. Thus, kρ(a•, b•) is an upper bound of the set{s
r

∣∣∣ s, r ∈ N, and as ̸⊆ brk

}
.

Hence, ρ(a•, b
•
k) ≤ kρ(a•, b•). □

The inequality in Lemma 4.12 can be strict in general, as depicted in the following example.

Example 4.13. Let S be a Noetherian polynomial ring over the field k, and let m be its maximal
homogeneous ideal. Let I be a nonzero proper homogeneous ideal of S, and let n be an ideal of S
such that I2 ⊆ n ⊆ mI.

Consider graded families a• and b• of ideals in S, which are given by ai = Ii for i ≥ 1, and

bi =

{
Ii if i is even,

nIi, if i is odd.

Note that R(b•) is Noetherian and generated in degree 1 and 2, and that b2t = bt2 for all t ≥ 1.
We claim that ρ(a•, b•) = ρ(a•, b

•
2) = 2. Particularly,

ρ(a•, b
•
2) = 2 < 4 = 2ρ(a•, b•).

Indeed, for s ∈ N, set (with the convention that inf ∅ =∞)

βs(a•, b•) = inf{r
∣∣ as ̸⊆ br}.

Let NC(a•, b•) = {(s, βs(a•, b•))
∣∣ s ∈ N and βs(a•, b•) ̸=∞}. Clearly,

ρ(a•, b•) = sup
{s
r

∣∣∣ (s, r) ∈ NC(a•, b•)
}
.

We shall first show that

NC(a•, b
•
2) =

{(
s,

⌈
s+ 1

2

⌉) ∣∣∣ s ≥ 1

}
.

Take (s, r) ∈ NC(a•, b
•
2). Then, as = Is ̸⊆ br2 = I2r, and so, 2r ≥ s + 1, i.e., r ≥

⌈
s+1
2

⌉
. Since

as ⊆ bj2 = I2j for all 1 ≤ j ≤ r − 1, we deduce that r =
⌈
s+1
2

⌉
, as desired.
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We shall next check that (2, 1) ∈ NC(a•, b•). This holds since a2 = I2 ̸⊆ b1 = nI; otherwise,
using n ⊆ mI, we get I2 ⊆ nI ⊆ mI2, which is a contradiction. In fact, one can also easily show
that

NC(a•, b•) = {(s, s)
∣∣ s ≥ 1, s is odd}

⋃
{(s, s− 1)

∣∣ s ≥ 2, s is even}.

Now, we get

ρ(a•, b•) = max

{
sup

{s
s

∣∣ s ≥ 1, s is odd
}
, sup

{
s

s− 1

∣∣ s ≥ 1, s is even

}}
= 2,

and

ρ(a•, b
•
2) = sup

{
s⌈

s+1
2

⌉ ∣∣∣ s ≥ 1

}
= 2.

When the resurgence number ρ(•, •) is replaced by the asymptotic resurgence number ρ̂(•, •),
the inequality in Lemma 4.12 becomes an equality.

Lemma 4.14. Let a• and b• be graded families of ideals in S. Suppose that R[k](b•) is a standard
graded S-algebra. Then, with b•k = {bik}i≥1, we have

ρ̂(a•, b
•
k) = kρ̂(a•, b•) and ρ̂(a•, b•k) = kρ̂(a•, b•).

Proof. We shall prove ρ̂(a•, b
•
k) = kρ̂(a•, b•); the other equality follows by Theorem 2.12. Let

s, r ∈ N be such that
s

r
> kρ̂(a•, b•). Then,

s

kr
> ρ̂(a•, b•), which implies that ast ⊆ bkrt for

infinitely many values t. Since bkrt = brtk , we get that ast ⊆ brtk for infinitely many values t. Thus,
kρ̂(a•, b•) is an upper bound of the set{s

r

∣∣∣ s, r ∈ N, and ast ̸⊆ brtk for t≫ 1
}
.

Hence, ρ̂(a•, b
•
k) ≤ kρ̂(a•, b•).

Now, consider s, r ∈ N be such that
s

r
> ρ̂(a•, b

•
k). Then, ast ⊆ brtk = bkrt for infinitely many

values t, as bkrt = brtk . This implies that

inf
{ s

kr

∣∣∣ s, r ∈ N, and
s

r
> ρ̂(a•, b

•
k)
}

is an upper bound of the set {s
r

∣∣∣ s, r ∈ N, and ast ̸⊆ brt for t≫ 1
}
.

Note that

inf
{ s

kr

∣∣∣ s, r ∈ N, and
s

r
> ρ̂(a•, b

•
k)
}
=

1

k
inf
{s
r

∣∣∣ s, r ∈ N, and
s

r
> ρ̂(a•, b

•
k)
}
=

ρ̂(a•, b
•
k)

k
.

Thus, ρ̂(a•, b•) ≤
ρ̂(a•, b

•
k)

k
. Hence, the assertion follows. □

We now arrive at the next main result of this section.

Theorem 4.15. Let S be a domain as in Corollary 4.7. Let a• be a filtration and let b• be a
graded family of nonzero ideals in S. Suppose that R[k](b•) is a standard graded S-algebra, and
that ρ(a•, b•k) = kρ(a•, b•1). Then,

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•).
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Proof. By Lemma 2.2 and Lemma 4.12, we have

ρ(a•, b•k) ≤ kρ(a•, b•) ≤ kρ(a•, b•1) = ρ(a•, b•k).

Thus,

ρ(a•, b•) =
ρ(a•, b•k)

k
.

On the other hand, by Lemma 4.14, we have

ρ̂(a•, b•) =
ρ̂(a•, b

•
k)

k
and ρ̂(a•, b•) =

ρ̂(a•, b•k)

k
.

Thus, it is enough to prove that ρ(a•, b•k) = ρ̂(a•, b•k) = ρ̂(a•, b
•
k). This is indeed true, by Corol-

lary 4.7. The theorem is established. □

We end this section with the following broad question.

Question 4.16. Classify pairs (a•, b•) of graded families of ideals for which

ρ̂(a•, b•) = ρ̂(a•, b•) = ρ(a•, b•).

5. Resurgence numbers as limits

In this section, we construct sequences whose limits realize the asymptotic resurgence numbers
ρ̂(a•, b•) and ρ̂(a•, b•), avoiding the use of Rees valuations as in Section 2. Our construction is
inspired by a recent work of DiPasquale, the fourth author, and Seceleanu [11]. We also discuss
another version of the resurgence number, denoted by ρlim(a•, b•), and show that in many practical
situations,

ρ̂(a•, b•) = ρlim(a•, b•).

Our main results in this section are Theorems 5.8, 5.12, and 5.18.

Definition 5.1. A sequence of real numbers {αn}n≥n0 for some n0 ∈ N is called

• sub-additive if αi+j ≤ αi + αj for all i, j ≥ n0; and
• super-additive if αi+j ≥ αi + αj for all i, j ≥ n0.

Fekete’s Lemma guarantees the existence of the limit α̂ := limn→∞
αn
n for any sub-additive or

super-additive sequence of real numbers {αn}n≥n0 , where the limit may be ±∞. For a sub-additive
sequence {αn}n≥n0 , we have

α̂ = lim
n→∞

αn

n
= inf

n≥n0

αn

n
.

For a super-additive sequence {αn}n≥n0 , we have

α̂ = lim
n→∞

αn

n
= sup

n≥n0

αn

n
.

Definition 5.2 ([11, Definition 2.1]). Given two sequences {αn}n≥n0 and {βn}n≥m0 of real numbers,

we define two new sequences {←−α β
n}n≥m0 and {−→α β

n}n≥m0 , that are given by

←−α β
n = inf{d ≥ n0 | αd ≥ βn},

−→α β
n = sup{d ≥ n0 | αd ≤ βn}.

It is known that the sequences {αn}n≥n0 , {βn}n≥m0 , {←−α
β
n}n≥m0 , and {−→α

β
n}n≥m0 have the fol-

lowing relationship. We modify the statement to fit our purpose but the proof is the same as that
of [11, Theorem 2.5].

Theorem 5.3 ([11, Theorem 2.5]). Suppose that {αn}n≥n0 and {βn}n≥m0 are sub-additive and
super-additive sequences of positive real numbers, respectively.
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(1) Assume that, for n≫ 0, −→α β
n ∈ N. Then, the sequence {−→α β

n} is super-additive and −̂→α β = β̂
α̂ .

(2) Assume that, for n≫ 0,
←−
β α

n ∈ N. Then, the sequence {
←−
β α

n} is sub-additive and
←̂−
β α = α̂

β̂
.

Definition 5.4. Let S be a domain and let v be a valuation of K = QF(S). For n ∈ N, set
λn(a•, b•) := sup{d | ad ̸⊆ bn} and λv

n(a•, b•) := sup{d | v(ad) < v(bn)}.

Note that λv
n(a•, b•) and λn(a•, b•) in general can take infinite values. Before stating our first

main result of this section, we have the following useful proposition.

Proposition 5.5. Let S be a domain, and let a• and b• be graded families of nonzero ideals in S.
Suppose that R[k](b•) is a standard graded S-algebra, for some k ∈ N. For any valuation v of K
with v(bk) > 0 and v̂(a•) > 0, we have

(1) {λv
kn(a•, b•)} is a super-additive sequence.

(2) ̂λv
kn(a•, b•) = lim

n→∞

λv
kn(a•, b•)

n
=

v(bk)

v̂(a•)
.

Proof. We first give an alternate definition for λv
kn(a•, b•) by means of Definition 5.2. Set αn = v(an)

and δn = nv(bk) − 1 for all n. Note that {αn}n∈N is sub-additive with α̂ = v̂(a•) and {δn}n∈N is

super-additive with δ̂ = v(bk), by Lemma 2.11. By definition, one see that λv
kn(a•, b•) =

−→α δ
n for

every n ∈ N.
Also, as v̂(a•) > 0, we have v(a1) > 0. Since v(bk) > 0, there exists n0 ∈ N such that nv(bk) ≥

n0v(bk) > v(a1) for all n ≥ n0. Therefore, for n ≥ n0, the set {d | v(ad) < v(bkn)} is a nonempty
set. Also, for each n ≥ n0, the set {d | v(ad) < v(bkn)} is finite, as if v(ad) < v(bkn) for infinitely
many d, then v̂(a•) = 0. Hence, −→α δ

n ∈ N for n ≥ n0, and the result follows from Theorem 5.3. □

It would be desirable to know when the sequence {λv
n(a•, b•)/n}n∈N has a limit.

Question 5.6. For which graded families a•, b•, does lim
n→∞

λv
n(a•, b•)

n
exist?

The following example shows that, in general, the sequence {λv
n(a•, b•)/n}n∈N may have distinct

subsequences converging to different limits, even when a• = b• are graded filtration.

Example 5.7. Let S = k[x], m = (x), and let v be the m-adic valuation. Consider the sequence
a• = {an}n∈N of ideals in S, given by

an = m⌈log2(n+1)⌉.

It can be seen that a• is a filtration of ideals. This is because n 7→ ⌈log2(n+ 1)⌉ is a sub-additive
function. We shall show that

λv
n(a•, a•) = 2⌈log2(n+1)⌉−1 − 1.

Indeed, by definition, we have

λv
n(a•, a•) = sup{d | v(ad) < v(an)} = sup{d | ⌈log2(d+ 1)⌉ < ⌈log2(n+ 1)⌉}.

Set t = ⌈log2(n + 1)⌉. Then d = λv
n(a•, a•) is the largest integer satisfying ⌈log2(d + 1)⌉ < t; that

is, log2(d+ 1) ≤ t− 1 or, equivalently, d ≤ 2t−1 − 1. Therefore, λv
n(a•, a•) = 2t−1 − 1, as claimed.

For n = 2s − 1, where s ∈ Z>0, we have ⌈log2(n+ 1)⌉ = s. In this case,

λv
n(a•, a•)

n
=

2s−1 − 1

2s − 1

s→∞−−−→ 1

2
.

On the other hand, for n = 2s, where s ∈ Z>0, we have ⌈log2(n+ 1)⌉ = s+ 1. In this case,

λv
n(a•, a•)

n
=

2s − 1

2s
s→∞−−−→ 1.
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Hence, {λv
n(a•, a•)/n}n∈N has two subsequences with limits 1

2 and 1, respectively. Therefore,
lim
n→∞

λv
n(a•, a•)/n does not exist.

We proceed to our first main result of this section, which shows that in certain situation, ρ̂(a•, b•)
can be computed as limits of the (subsequence of) λn/n sequence.

Theorem 5.8. Let S be a domain, and let a• and b• be graded families of nonzero ideals in S.
Assume that R[k](b•) is a standard graded S-algebra, for some k ∈ N. For n ≥ 1, set λn =
λn(a•, b•), λn = λn(a•, b•), and for a valuation v of K, set λv

n = λv
n(a•, b•). If ρ̂(a•, b•) <∞, then

there exists a valuation v0 (which can be chosen as a Rees valuation of bk) such that

ρ̂(a•, b•) = lim
n→∞

λv0
kn

kn
.

Furthermore, if R(b•k) is a finitely generated R(b•k)-module, then

ρ̂(a•, b•) = lim
n→∞

λkn

kn
= lim

n→∞

λkn

kn
= lim

n→∞

λv0
kn

kn
.

Proof. By Lemma 4.14, with b•k = {bik}i≥1, we have ρ̂(a•, b•k) = kρ̂(a•, b•). Since ρ̂(a•, b•) is finite,

we have ρ̂(a•, b•k) <∞, and therefore, by Theorem 2.12 and Proposition 5.5, there exists a valuation
v0 ∈ RV(bk) such that v̂0(a•) > 0 and

kρ̂(a•, b•) = ρ̂(a•, b•k) = lim
n→∞

λv0
kn

n
.

For the latter claim, note that for any valuation v of K with v(bk) > 0 and for every n ≥ 1,

{d | v(ad) < v(bn)} ⊆ {d | ad ̸⊆ bn} ⊆ {d | ad ̸⊆ bn}.

Therefore, λv
n ≤ λn ≤ λn for every n. We shall show that the with the valuation v0 above, we have

lim
n→∞

λkn

n
= lim

n→∞

λkn

n
= lim

n→∞

λv0
kn

n
= ρ̂(a•, b•k).

Indeed, since R(b•k) is a finitely generated R(b•k)-module, there exists a positive integer m such

that bnk ⊆ bn−m
k for all n ≥ m. Therefore, aλkn

̸⊆ bkn = bnk implies that aλkn
̸⊆ bn+m

k for every

n ∈ N. By Lemma 4.1 (1), we have
λkn

n+m
< ρ̂(a•, b•k).

Thus,

ρ̂(a•, b•k) = lim inf
n→∞

λv0
kn

n+m
≤ lim inf

n→∞

λkn

n+m
≤ lim inf

n→∞

λkn

n+m

and

ρ̂(a•, b•k) = lim sup
n→∞

λv0
kn

n+m
≤ lim sup

n→∞

λkn

n+m
≤ lim sup

n→∞

λkn

n+m
.

The fact that
λkn

n+m
< ρ̂(a•, b•k) for every n ∈ N implies that lim sup

n→∞

λkn

n+m
≤ ρ̂(a•, b•k), which

shows that all limit supremum and limit infimum above exist and equal. Hence,

lim
n→∞

λkn

n
= lim

n→∞

λkn

n
= lim

n→∞

λv0
kn

n
= ρ̂(a•, b•k)

as desired. □
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Dual to {λn(a•, b•)}n∈N is the sequence {βn(a•, b•)}n∈N, which was already used in Example 4.13,
namely,

βn(a•, b•) := inf{d | an ̸⊆ bd}.
Also, for a valuation v of K, set

βv
n(a•, b•) := inf{d | v(an) < v(bd)}.

In the case where b• = b•, the following result is a dual version of Proposition 5.5.

Proposition 5.9. Let S be a domain and let a• be a graded family of nonzero ideals in S. Let
b ⊆ S be an ideal and, as usual, set b• = {bi}i≥1. For any valuation v of K with v(b) > 0, we have

(1) βv
n(a•, b

•) is a sub-additive sequence; and

(2) ̂βv
n(a•, b

•) = lim
n→∞

βv
n(a•, b

•)

n
= inf

n∈N

{
βv
n(a•, b

•)

n

}
=

v̂(a•)

v̂(b•)
=

v̂(a•)

v(b)
.

Proof. Set αn = v(an) and δn = nv(b) − 1 for all n ∈ N. Note that {αn}n∈N is sub-additive with

α̂ = v̂(a•) and {δn}n∈N is super-additive with δ̂ = v(b) = v̂(b•). By definition, it can be seen that

βv
n(a•, b•) =

←−
δ α

n for every n ∈ N.
Since v(b) > 0, the set {d | v(an) < v(bd)} is non-empty for all n ∈ N. Thus,

←−
δ α

n ∈ N for n ∈ N,
and the result follows from Theorem 5.3. □

Question 5.10. For which graded families a•, b•, does lim
n→∞

βv
n(a•, b•)

n
exist?

Example 5.7 also gives an instance where the sequence {βv
n(a•, b•)/n}n∈N may have distinct

subsequences converging to different limits.

Example 5.11. Let S and a• = {m⌈log2(n+1)⌉}n∈N be as in Example 5.7. As we have seen in
Example 5.7, a• is a graded filtration of ideals. Moreover, by a similar argument, it can also be
shown that

βv
n(a•, a•) = 2⌈log2(n+1)⌉.

Consider n = 2s − 1, where s ∈ Z>0. Then, ⌈log2(n+ 1)⌉ = s, and so

βv
n(a•, a•)

n
=

2s

2s − 1

s→∞−−−→ 1.

On the other hand, consider n = 2s, where s ∈ Z>0. Then, ⌈log2(n+ 1)⌉ = s+ 1, and so

βv
n(a•, a•)

n
=

2s+1

2s
= 2.

Hence, {βv
n(a•, b•)/n}n∈N has two subsequences converging to 1 and 2, respectively. Therefore,

lim
n→∞

βv
n(a•, a•)/n does not exist.

We are ready to prove our next main result, where ρ̂(a•, b•) can be realized as the reciprocal
of the limit of the βn(a•, b•)/n sequence. Using this βn sequence, we can also slightly improve
Theorem 5.8 by not having to require that ρ̂(a•, b•) <∞.

Theorem 5.12. Let S be a domain, let a• be a graded family of ideals, and let b• be a filtration
of ideals in S. For n ≥ 1, set βn = βn(a•, b•), βn = βn(a•, b•), and for any valuation v of K,

set βv
n = βv

n(a•, b•). Suppose that R[k](b•) is a standard graded S-algebra and R(b•k) is a finitely
generated R(b•k)-module, for some k ∈ N. Then, there exists a valuation v0 (which can be chosen
as a Rees valuation of bk) such that

1

ρ̂(a•, b•)
= lim

n→∞

βn
n

= lim
n→∞

βn
n

= lim
n→∞

βv0
n

n
.
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Proof. For any valuation v of K with v(bk) > 0 and for every n ∈ N, we have

{d | v(an) < v(bd)} ⊆ {d | an ̸⊆ bd} ⊆ {d | an ̸⊆ bd}.

This implies that βv
n ≥ βn ≥ βn for n ∈ N.

Since R(b•k) is a finitely generated R(b•k)-module, there exists a positive integer m such that

bnk ⊆ bn−m
k for all n ≥ m. By Theorem 2.12 and Proposition 5.9, there exists a Rees valuation v0

of bk such that

1

ρ̂(a•, b•k)
=

v̂0(a•)

v0(bk)
= lim

n→∞

βv0
n (a•, b

•
k)

n
= lim

n→∞

βv0
n (a•, b

•
k) +m

n
.

Therefore,

1

ρ̂(a•, b•k)
= lim inf

n→∞

βv0
n (a•, b

•
k) +m

n
≥ lim inf

n→∞

βn(a•, b
•
k) +m

n
≥ lim inf

n→∞

βn(a•, b
•
k) +m

n

and

1

ρ̂(a•, b•k)
= lim sup

n→∞

βv0
n (a•, b

•
k) +m

n
≥ lim sup

n→∞

βn(a•, b
•
k) +m

n
≥ lim sup

n→∞

βn(a•, b
•
k) +m

n
.

As an ̸⊆ b
βn(a•,b•k)
k , we have an ̸⊆ b

βn(a•,b•k)+m

k for all n ∈ N, and so,
n

βn(a•, b•k) +m
< ρ̂(a•, b•k)

by Lemma 4.1 (1). Consequently,
1

ρ̂(a•, b•k)
≤ lim inf

n→∞

βn(a•, b
•
k) +m

n
. It follows that

lim
n→∞

βn(a•, b
•
k)

n
= lim

n→∞

βn(a•, b
•
k)

n
= lim

n→∞

βv0
n (a•, b

•
k)

n
=

1

ρ̂(a•, b•k)
.

Next, we claim that for n ∈ N,

k (βv0
n (a•, b

•
k)− 1) ≤ βv0

n (a•, b•) ≤ kβv0
n (a•, b

•
k),(5.1)

k
(
βn(a•, b

•
k)− 1

)
≤ βn(a•, b•) ≤ kβn(a•, b

•
k),(5.2)

k (βn(a•, b
•
k)− 1) ≤ βn(a•, b•) ≤ kβn(a•, b

•
k).(5.3)

For each of the inequalities on the left of the last three chains, we need the hypothesis that b• is
a filtration. For clarity, we prove (5.2), similar arguments work for the remaining chains.

For the inequality on the left of (5.2), it is harmless to assume that βn(a•, b•) <∞. Per definition,
βn(a•, b•) = inf{d : an ̸⊆ bd} <∞, so as b• is a filtration, we get the finiteness of

βn(a•, b
•
k) = βn(a•, b•k) = inf{d : an ̸⊆ bdk} = inf{d : an ̸⊆ bkd}.

The last display yields

an ⊆ bk(βn(a•,b•k)−1).

Since b• is a filtration, an ⊆ bd for all d ≤ k(βn(a•, b
•
k)− 1). Hence k(βn(a•, b

•
k)− 1) < βn(a•, b•).

This proves the inequality on the left of (5.2).
For the inequality on the right, again it is harmless to assume that βn(a•, b

•
k) <∞. By definition,

an ̸⊆ b
βn(a•,b•k)
k = bkβn(a•,b•k)

. This yields βn(a•, b•) ≤ kβn(a•, b
•
k), as claimed.

Now, applying the Sandwich theorem for limits for (5.1) – (5.3), we get

lim
n→∞

βn
n

= lim
n→∞

βn
n

= lim
n→∞

βv0
n

n
=

k

ρ̂(a•, b•k)
=

1

ρ̂(a•, b•)
,

where the last equality holds by Lemma 4.14. Hence, the assertion follows. □
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In the remaining of this section, we will focus on yet another version of resurgence, whose
definition is motivated by [3, Theorem 2.1 and Lemma 2.2] and [22, Theorem 2.1]. This new
version of resurgence arises as an actual limit of a well-constructed sequence, and is equal to the
asymptotic resurgence number in practical situations; see Theorem 5.18.

Definition 5.13. Let a• and b• be graded families of ideals in S.

(1) Define a sequence {ρn(a•, b•)}n∈N as follows:

ρn(a•, b•) = sup

{
s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ n

}
.

(2) Set

ρlim(a•, b•) = lim
n→∞

ρn(a•, b•).

Note that, in general, ρn(a•, b•) can take infinite values. Clearly, {ρn(a•, b•)}n≥1 is a nonin-

creasing sequence, so it has a limit. That is, ρlim(a•, b•) is well-defined. Observe further that
ρlim(a•, b•) ≤ ρn(a•, b•) for all n ≥ 1 and, by definition,

ρ(a•, b•) = sup
s∈N

{
s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ∈ N
}

= sup
n∈N
{ρn(a•, b•)} .(5.4)

It is easy to see that ρ̂(a•, b•) ≤ ρn(a•, b•) ≤ ρ(a•, b•) for all n ≥ 1. Therefore,

ρ̂(a•, b•) ≤ ρlim(a•, b•) ≤ ρ(a•, b•).

In general, these inequalities can be strict as demonstrated in the following example.

Example 5.14. Let I be a nonzero proper normal ideal in a Noetherian domain S. Consider a•
and b• with

ai = Ii and bi = I⌈
√
i⌉ for all i ≥ 1.

As we have seen in Example 2.10.(3), ρ̂(a•, b•) = −∞ and ρ(a•, b•) =
1

2
.

We now compute ρlim(a•, b•). Observe that, if r < s2 + 1 then r ≤ s2, which implies that
⌈
√
r⌉ ≤ s, and so as ⊆ br. On the other hand, if r = s2 + 1, then ⌈

√
r⌉ = s + 1 and, therefore,

as ̸⊆ br. Thus, for all s ∈ N, βs(a•, b•) = s2 + 1.

It is easily seen that

{
s

s2 + 1

}
is a nonincreasing sequence. Thus, for every n ∈ N, ρn(a•, b•) =

n

n2 + 1
. Hence, ρlim(a•, b•) = 0. Particularly, ρ̂(a•, b•) < ρlim(a•, b•) < ρ(a•, b•).

The following results provide equalities involving ρlim and are also useful for investigating the
rationality of resurgence numbers as we will see in the last section.

Theorem 5.15. Let a•, b• and b′• be graded families of ideals in S. Suppose that b• ≤ b′• and for
some positive integer k, b′i+k ⊆ bi for all i ∈ N. Then,

ρlim(a•, b
′
•) = ρlim(a•, b•).

Proof. Since b• ≤ b′•, for every r, we have ρr(a•, b
′
•) ≤ ρr(a•, b•). Therefore, we have ρlim(a•, b

′
•) ≤

ρlim(a•, b•). If ρ
lim(a•, b

′
•) =∞, then we are done. So we assume that ρlim(a•, b

′
•) <∞. This implies

that for r ≫ 1, ρr(a•, b
′
•) <∞.

Since b• ≤ b′•, we have βs(a•, b•) ≤ βs(a•, b
′
•) for all s. Also, we have βs(a•, b

′
•) ≤ βs(a•, b•) + k

for all s as b′i+k ⊆ bi for all i ∈ N. Now, we have the following cases:
Case 1. Suppose that there is a positive integer r0 such that for all r ≥ r0,

ρr(a•, b•) ̸∈
{

s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ r

}
.
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We claim that ρr(a•, b
′
•) = ρr(a•, b•) for all r ≥ max{k, r0}. Suppose that ρr(a•, b•) = −∞, then

as ⊆ bt for all s ≥ r and t ∈ N. Therefore, as ⊆ b′t for all s ≥ r and t ∈ N, and hence, ρr(a•, b
′
•) =

−∞. So, assume that ρr(a•, b•) ≥ 0. Since ρr(a•, b•) = sup

{
s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ r

}
,

there exists a non-decreasing sequence sn of positive integers with s1 ≥ r and βsn(a•, b•) < ∞ for
all n such that

lim
n→∞

sn
βsn(a•, b•)

= ρr(a•, b•).

Consequently, we have

lim
n→∞

sn
βsn(a•, b•) + k

= ρr(a•, b•).

Consider

ρr(a•, b
′
•) = sup

{
s

βs(a•, b′•)

∣∣∣ βs(a•, b′•) <∞ and s ≥ r

}
≥ sup

{
s

βs(a•, b•) + k

∣∣∣ βs(a•, b•) <∞ and s ≥ r

}
≥ sup

{
sn

βsn(a•, b•) + k

∣∣∣ n ∈ N
}

= lim
n→∞

sn
βsn(a•, b•)

= ρr(a•, b•).

Therefore, ρlim(a•, b
′
•) = ρlim(a•, b•).

Case 2. Suppose that ρr(a•, b•) ∈
{

s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ r

}
for infinitely many r.

First note that if for some r, ρr(a•, b•) ∈
{

s

βs(a•, b•)

∣∣∣ βs(a•, b•) <∞ and s ≥ r

}
, then there exists

a positive integer s such that βs(a•, b•) <∞ and ρr(a•, b•) =
s

βs(a•, b•)
. Since {ρr(a•, b•)} is non-

increasing sequence of positive real numbers, we have ρk(a•, b•) =
s

βs(a•, b•)
for all r ≤ k ≤ s. In

particular, ρs(a•, b•) =
s

βs(a•, b•)
. Therefore, there is a non-decreasing sequence of positive integers

sn such that for each n, βsn(a•, b•) < ∞ and ρsn(a•, b•) =
sn

βsn(a•, b•)
. Now, since {ρr(a•, b•)} is

non-increasing sequence of positive real numbers and {ρsn(a•, b•)} is a non-increasing sub-sequence
of {ρr(a•, b•)}, we have

ρlim(a•, b•) = lim
r→∞

ρr(a•, b•) = lim
n→∞

ρsn(a•, b•) = lim
n→∞

sn
βsn(a•, b•) + k

≤ lim
n→∞

sn
βsn(a•, b

′
•)
.

Thus,

ρlim(a•, b•) ≤ lim
n→∞

sn
βsn(a•, b

′
•)
≤ lim

n→∞
ρsn(a•, b

′
•) = lim

r→∞
ρr(a•, b

′
•) = ρlim(a•, b

′
•).

Hence, in both cases, we have ρlim(a•, b
′
•) = ρlim(a•, b•). □

Corollary 5.16. Let a• be a graded family of ideals in S and b• be a filtration of ideals in S such
that R(b•) is a finitely generated R(b•)-module. Then,

ρlim(a•, b•) = ρlim(a•, b•).

Proof. Since R(b•) is a finitely generated R(b•)-module, it follows from the proof of Theorem 3.2
that there exists a positive integer k such that bi+k ⊆ bi for all i ∈ N. Also, b• ≤ b•. Hence, the
assertion follows from Theorem 5.15. □
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Corollary 5.17. Let a• and b• be graded families of ideals in S such that b• is b-equivalent, for
some ideal b ⊆ S. Then

ρlim(a•, b•) = ρlim(a•, b
•).

Proof. There is a positive integer k such that bi+k ⊆ bi ⊆ bi for all i ∈ N as b• is b-equivalent
graded family. The assertion now follows from Theorem 5.15. □

We now arrive at our next main result of this section.

Theorem 5.18. Let S be a domain as in Corollary 4.7. Let a• be filtration of nonzero ideals in S,
and b• be a b-equivalent graded family, for some ideal b ⊆ S. Then,

ρ̂(a•, b•) = ρlim(a•, b•) = ρ̂(a•, b•) = ρlim(a•, b•).

Proof. It follows from the definition that ρ̂(a•, b•) ≤ ρlim(a•, b•) ≤ ρ(a•, b•). Moreover, by Theo-
rem 4.8, we have ρ̂(a•, b•) = ρ(a•, b•). Thus, we must have

ρ̂(a•, b•) = ρlim(a•, b•) = ρ(a•, b•).

On the other hand, since b• is b-equivalent, there exists an integer k ∈ N such that, for all n ≥ N,
bn+k ⊆ bn, whence

bn+k ⊆ bn.

By [35, Proposition 5.3.4], there exists an integer k′ ∈ N such that, for all n > k′,

bn ⊆ bn−k′ .

Therefore, for all n,

bn+k+k′ ⊆ bn ⊆ bn ⊆ bn,

and hence, b• is also b-equivalent. Corollary 5.17 then implies that ρlim(a•, b•) = ρlim(a•, b
•) and

ρlim(a•, b•) = ρlim(a•, b
•). The assertion now follows from Theorem 4.8 as ρ̂(a•, b•) = ρ̂(a•, b•). □

Remark 5.19. Let a• and b• be graded families of ideals in S. For n ∈ N, set

ρn(a•, b•) := sup
{s
r

∣∣∣ as ̸⊆ br and s, r ≥ n
}
.

The following limit can be shown to exist and, thus, we can define

ρlim(a•, b•) := lim
n→∞

ρn(a•, b•).

The notion of ρlim is a direct generalization of similar constructions that were investigated in [3, 22].
Observe that ρlim(a•, b•) ≤ ρlim(a•, b•) and the equality holds when ρlim(a•, b•) <∞. Therefore,

a direct generalization of [3, Theorem 2.1 and Lemma 2.2] and [22, Theorem 2.1] in terms of
ρlim(a•, b•), that is similar to Theorem 5.18, can be obtained. We leave the details to the interested
reader.

Finally, as a direct consequence of Corollary 5.17, we recover another version of Theorem 5.18,
that is, when b• = b•, but without the filtration assumption on a•.

Corollary 5.20. Let S be a domain as in Corollary 4.7. Suppose that a• is a graded family and b
be a nonzero ideal in S. Then,

ρ̂(a•, b
•) = ρ̂(a•, b•) = ρlim(a•, b•) = ρlim(a•, b

•).

Proof. Note that b• is a b-equivalent family. Therefore, by Corollary 5.17, ρlim(a•, b•) = ρlim(a•, b
•).

Using Lemma 2.2, the discussion after Definition 5.13, and Lemma 4.1, we have ρ̂(a•, b•) ≤
ρ̂(a•, b

•) ≤ ρlim(a•, b
•) = ρlim(a•, b•) ≤ ρ(a•, b•) = ρ̂(a•, b•). Hence, the assertion follows. □
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6. Finiteness and rationality of resurgence numbers

In this section, we shall discuss situations where the resurgence and asymptotic resurgence num-
bers are finite and rational. Note that, by Example 2.14, any positive real number can be realized
as the resurgence or asymptotic resurgence of a pair of graded families of ideals in S. Main results
in this section are stated in Theorems 6.7 and 6.12; see also Corollary 6.13.

Observe that, for any graded families a• and b• of ideals in S, by Lemma 2.2, ρ(a•, b•) ≤ ρ(a•, b
•
1).

Thus, if ρ(a•, b
•
1) <∞, then ρ(a•, b•) <∞. We shall prove that when b• is a Noetherian filtration,

the converse also holds.

Theorem 6.1. Let a• be a graded family and let b• be a Noetherian filtration of ideals in S. Then
ρ(a•, b

•
1) <∞ if and only if ρ(a•, b•) <∞.

Proof. Assume that ρ(a•, b•) <∞. Since b• is a Noetherian filtration, by [33, Proposition 2.1], there

exists a positive integer k such that R[k](a•) is a standard graded S-algebra. Now, by Lemma 4.12,
ρ(a•, b

•
k) ≤ kρ(a•, b•). Therefore, ρ(a•, b

•
k) <∞. Let s, r be positive integers such that as ̸⊆ br1. As

bk ⊆ b1, we get that as ̸⊆ brk. Hence, by definition, ρ(a•, b
•
1) ≤ ρ(a•, b

•
k) <∞. □

The resurgence number takes −∞ value in a very special case, as seen in the next lemma.

Lemma 6.2. Let a• and b• be filtration of ideals in S. Then, ρ(a•, b•) = −∞ if and only if
a1 ⊆

⋂
i≥1 bi.

Proof. It can be seen that ρ(a•, b•) = −∞ if and only if as ⊆ br for all s, r ∈ N. This is the case if
and only if a1 ⊆

⋂
i≥1 bi. □

An example when the condition in Lemma 6.2 is satisfied is when bi = S for all i ≥ 0. The
following observations follow immediately from Lemma 6.2.

Remark 6.3. Let a• and b• be filtration of ideals in S.

(1) If
⋂

i≥1 bi = (0), then ρ(a•, b•) = −∞ if and only if ai = 0 for all i ≥ 1.

(2) If ρ(a•, b•) ̸= −∞, then 0 < ρ(a•, b•).
(3) If

⋂
i≥1 bi = (0) and a1 ̸= (0), then ρ(a•, b•) ̸= −∞, and hence, 0 < ρ(a•, b•).

Remark 6.4. Let a• and b• be filtration of ideals in S. If ρ(a•, b•) = −∞ and ρ(b•, a•) <∞, then
bj = ai = a1 for all i ≥ 1 and j ≫ 1.

Proof. Since ρ(a•, b•) = −∞, by Lemma 6.2, a1 ⊆
⋂

i≥1 bi. Let k ∈ N be smallest positive

integer such that k > ρ(b•, a•). We have bki ⊆ ai for every i ≥ 1. Therefore, for every i ≥ 1,
bki ⊆ ai ⊆ a1 ⊆ ∩j≥1bj ⊆ bki. This implies that bki = ai = a1 for all i ≥ 1. It further follows that
bj = ai = a1 for all i ≥ 1 and j ≥ k. □

In studying the finiteness of resurgence numbers, we shall make use of the topology defined by
a filtration of ideals.

Definition 6.5. A filtration a•, with a0 = S, defines a topology on the additive group (S,+), which
we shall denote by τa. Particularly, the open neighborhoods of any x ∈ S is given by {x+ ai}i≥0.
This makes (S,+) a topological group. We say that the topology τa is separated (or Hausdorff ) if⋂

i≥0 ai = (0). Equivalently, τa is separated if and only if
⋂

i≫1 ai = (0).

In general, a• defines a finer topology than b• does if, for all i ≥ 1, there exists a non-negative
integer fi such that afi ⊆ bi. We shall use a slightly stronger notion to compare the topology given
by a• and b•.

Definition 6.6. Let a• and b• be filtration of ideals in S.
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(1) The topology τa defined by a• is said to be linearly finer than the topology τb given by b•
if there exists a linear function f ∈ Z≥0[x] such that for all i ≥ 0, we have af(i) ⊆ bi. In
this case, we also say that the topology τb is linearly coarser than τa.

(2) The topology τa and τb are said to be linearly equivalent if τa is linearly finer than τb and
τb is also linearly finer than τa.

The following result characterizes pairs of filtration whose resurgence number is a finite number.

Theorem 6.7. Let a• and b• be filtration of ideals in S. Then, τa is linearly finer than τb if and
only if ρ(a•, b•) <∞.

Proof. Suppose first that τa is linearly finer than τb. Then, there exists a linear function f : N→ N,
say f(n) = an+b, such that af(i) ⊆ bi for every i ≥ 1. Let s, r ∈ N be such that

s

r
> a+ |b|. Clearly,

s > r(a+ |b|) ≥ ar + b = f(r), which implies that as ⊆ af(r) ⊆ br. Thus, ρ(a•, b•) ≤ a+ |b| <∞.
Conversely, suppose that ρ(a•, b•) <∞. If ρ(a•, b•) = −∞, then ai ⊆ bi for all i ≥ 1. Thus, τa is

linearly finer than τb. Assume that ρ(a•, b•) > 0. Define f : N→ N by f(n) = ⌈ρ(a•, b•)⌉n+ 1 for

all n ≥ 1. Then, for every i ≥ 1, af(i) = a⌈ρ(a•,b•)⌉i+1 ⊆ bi as
f(i)

i
> ρ(a•, b•). Hence, τa is linearly

finer than τb. □

As an immediate consequence of Theorem 6.7, we obtain the following result on the resurgence
number of pairs of filtration that define linearly equivalent topology.

Corollary 6.8. Let a• and b• be filtration of ideals in S. Then, the topology τa and τb are linearly
equivalent if and only if ρ(a•, b•) <∞ and ρ(b•, a•) <∞.

Proof. The conclusion follows from Theorem 6.7. □

Example 6.9. Let p be a prime ideal in S and I be a p-primary ideal. Let k be the smallest
positive integer such that pk ⊆ I and l be the largest positive integer such that I ⊆ pl. Consider
the graded families

a• = I• and b• = p•.

Since bki ⊆ ai and ai ⊆ bi for all i, we get that the topology τa and τb are linearly equivalent.
Therefore, by Corollary 6.8, ρ(a•, b•) <∞ and ρ(b•, a•) <∞.

We shall see that
1

l + 1
≤ ρ(a•, b•) ≤

1

l
and k − 1 ≤ ρ(b•, a•) ≤ k. Indeed, since I ̸⊆ pl+1 and

pk−1 ̸⊆ I, we have
1

l + 1
≤ ρ(a•, b•) and k − 1 ≤ ρ(b•, a•).

On the other hand, let s, r be positive integers such that r ≤ sl. Then, Is ⊆ pls ⊆ pr, i.e., as ⊆ br
if r ≤ sl. Thus, the upper bound for ρ(a•, b•) follows. Similarly, let s, r be positive integers such
that rk ≤ s. Then, ps ⊆ pkr ⊆ Ir, i.e., bs ⊆ ar if kr ≤ s. Thus, the upper bound for ρ(b•, a•) holds.

Remark 6.10. We will see, as a consequence of Corollary 6.13 below, that when S is a domain as
in Corollary 4.7, a• is a filtration and b• is a b-equivalent graded family, ρ̂(a•, b•) <∞ if and only
if ρ(a•, b•) <∞.

Corollary 6.11. Let S be an analytically unramified local ring. Let a• and b• be as in Corol-
lary 3.11. Suppose further that b• is b-equivalent, for some ideal b ⊆ S. Then, ρ(a•, b•) is either
infinity or a rational number.

Proof. If ρ̂(a•, b•) = ρ(a•, b•) then the assertion follows from Corollary 3.11. If ρ̂(a•, b•) < ρ(a•, b•)
then the assertion follows from Theorem 4.3 and Remark 4.5. □

We continue to our final results on the rationality of resurgence number with a condition in terms
of ρlim. This result is new even in the standard case of filtration of symbolic and ordinary powers.
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Theorem 6.12. Let a• and b• be graded families of ideals in S. If ρlim(a•, b•) ̸= ρ(a•, b•), then
ρ(a•, b•) is a rational number.

Proof. We first claim that ρlim(a•, b•) <∞ if and only if ρ(a•, b•) <∞. One implication is obvious.
Suppose that ρlim(a•, b•) <∞. Take any M ∈ R with ρlim(a•, b•) < M . By definition, there exists
a positive integer n0 such that ρn(a•, b•) < M for all n ≥ n0. Consider any s, r ∈ N such that

as ̸⊆ br. If s ≥ n0 then, by the definition of ρn0(a•, b•), we have
s

r
≤ ρn0(a•, b•) < M. On the other

hand, if s < n0 then
s

r
≤ n0. Thus,

ρ(a•, b•) ≤ max{n0,M} <∞.

Now, if ρlim(a•, b•) < ρ(a•, b•) then it follows from our claim that ρ(a•, b•) <∞. Set

θ = ρ(a•, b•)− ρlim(a•, b•) > 0.

Since lim
n→∞

ρn(a•, b•) = ρlim(a•, b•) = ρ(a•, b•) − θ, there exists n1 ∈ N such that, for all n ≥ n1,

ρn(a•, b•) < ρ(a•, b•)− θ
2 . This implies that, for s ≥ n1, if βs(a•, b•) <∞, then we have

s

βs(a•, b•)
< ρ(a•, b•)−

θ

2
.

Hence, together with Equation (5.4), it follows that

ρ(a•, b•) = max

{
s

βs(a•, b•)

∣∣∣ 1 ≤ s < n1 and βs(a•, b•) <∞
}
.

Particularly, ρ(a•, b•) is a rational number. □

As an immediate consequence of Theorem 6.12 and Theorem 5.18 we obtain the following results.

Corollary 6.13. Let S be a domain as in Corollary 4.7. Let a• be a filtration and let b• be a
graded family of nonzero ideals in S. Suppose that b• is b-equivalent for some ideal b ⊆ S. If
ρ̂(a•, b•) ̸= ρ(a•, b•), then ρ(a•, b•) is a rational number.

Corollary 6.14. Let S be as in Corollary 4.7 and let I ⊆ S be a nonzero proper ideal. Then,

(1) ρ(I•, I•) is a rational number.
(2) if ρ̂(I) ̸= ρ(I), then ρ(I) is a rational number.

Proof. The assertion is a direct consequence of Corollary 6.13, noticing that the family {Ii}i≥1 is
I-equivalent. □

We end the paper with the following general question.

Question 6.15. Characterize for which pairs of graded families (a•, b•), the resurgence and as-
ymptotic resurgence numbers, ρ(a•, b•) and ρ̂(a•, b•), are rational.
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of special point configurations in PN coming from hyperplane arrangements. J. Alg. 443 (2015), 383–394.
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