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Abstract. We investigate quotients by radical monomial ideals for which T 2, the second cotangent
cohomology module, vanishes. The dimension of the graded components of T 2, and thus their vanishing,
depends only on the combinatorics of the corresponding simplicial complex. We give both a complete
characterization and a full list of one dimensional complexes with T 2 = 0. We characterize the graded
components of T 2 when the simplicial complex is a uniform matroid. Finally, we show that T 2 vanishes
for all matroids of corank at most two and conjecture that all connected matroids with vanishing T 2

are of corank at most two.

1. Introduction

Let K be an arbitrary field, and let K[∆] denote the Stanley-Reisner ring of a simplicial complex
∆ on [n] := {1, 2, . . . , n}. The cotangent cohomology modules of K[∆] have the structure of a K-
vector space. The Zn-grading on K[∆] transfers to these modules, and the multigraded components are
finite-dimensional vector spaces. If one is interested in using cotangent cohomology to understand the
deformations of Stanley-Reisner schemes, then some caution is needed when choosing the field K. In this
paper, however, we are only interested in the vector space dimensions of the multigraded components of
T 2. These depend only on the combinatorics of ∆ [AC04] because basis elements are in bijection with
monomials related to ∆. For this reason, we will write simply T i(∆), without reference to the field, for
the cotangent cohomology of K[∆].

All obstructions for lifting first order deformations of Spec(K[∆]) are contained in T 2. For embed-
ded deformations of the associated projective scheme, these are located in T 2

0 , the (total) degree zero
component. While T 2 may be in general larger than the obstruction space, its vanishing has positive
consequences for the deformations of these combinatorially defined schemes. In particular, if T 2 vanishes,
then the corresponding point on the Hilbert scheme is smooth. For this reason, simplicial complexes
with vanishing T 2 are said to be unobstructed. Note, however, that being unobstructed is not equivalent
to T 2 = 0, but is only a consequence thereof.

Monomial ideals with vanishing T 2 have been studied by other authors as well. For instance, Chirsto-
phersen and Ilten used degenerations of Mukai varieties to find unobstructed Fano Stanley–Reisner
schemes and proved that the boundary complex of the dual polytope of the associahedron has trivial T 2

[CI14]. Ilten, Nájera Chávez, and Treffinger proved the vanishing of T 2 for Stanley-Reisner rings associ-
ated to cluster complexes [ICT21]. Nematbakhsh identified special classes of quadratic monomial ideals
with vanishing T 2 [Nem16], and Fløystad and Nematbakhsh studied letterplace ideals which are unob-
structed [FN18]. Our approach here is to systematically look at low dimensional simplicial complexes
with vanishing T 2, and to characterize matroids with vanishing T 2.

We start by introducing the minimally necessary terminology and background in Section 2. Most
notably, we recall the results of Altmann and Christophersen from [AC04], which we will use. The
two tools from that paper that will be most useful to us are the isomorphism between the multigraded
components of T i(∆) and those in purely non-positive multidegrees1 of links of faces of ∆ (see (2.1)) and
the isomorphism between such components and the relative cohomology of some combinatorially defined
topological spaces (see Theorem 2.5).

The main goal in Section 3 is to understand which one-dimensional complexes have a vanishing T 2.
For zero-dimensional complexes, T 2 = 0 is equivalent to having at most 3 vertices (see Lemma 3.1).
This gives us the first of three conditions which characterizes the vanishing of T 2 for one-dimensional
complexes: the local degree of each vertex is at most three. Two more necessary conditions follow
from the interpretation of relative cohomology (cf. Theorem 2.5). In Theorem 3.2 we show that the
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1 This means that all the entries of the multidegree b ∈ Zn are less than or equal to zero.
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three conditions we found are also sufficient for the vanishing of T 2, thus obtaining a full theoretical
characterization. In Subsection 3.2, we use this characterization to work out a complete list of the
one-dimensional simplicial complexes with vanishing T 2 (see Figure 2).

In the last sections of this paper, we study T 2(∆) when ∆ is a matroid, that is, when the faces
of ∆ satisfy the independence axioms of matroids. In Proposition 4.1, we fully determine the purely
non-positive multigraded components of T 2 for uniform matroids. Given that all links in a uniform
matroid are also uniform, this gives a full characterization of T 2 for uniform matroids. We will see that
non-vanishing non-positively graded components can only be found in total degree −2, and that uniform
matroids have a vanishing T 2 if and only if they are of corank at most two. In the final section, we prove
that one direction of this equivalence holds for arbitrary matroids: If a matroid M has corank at most
two, then T 2(M) = 0 (see Proposition 5.1).

If a simplicial complex is the join of two other complexes, then the cotangent cohomology modules that
appear are closely related (see (5.2)). In particular, T 2 of the join vanishes if and only if T 2 vanishes
for the two joined complexes. Matroids that are not the join (as simplicial complexes) of two other
matroids are called connected. We conjecture that every matroid with T 2 = 0 is the join of connected
matroids of corank at most two. In other words, if T 2(M) = 0 and M is connected, then corank(M) ⩽ 2
(Conjecture 1).
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2. Preliminaries

2.1. Combinatorics. Let E be a finite set. An abstract simplicial complex2 on the vertex set E is
a subset ∆ ⊆ 2E of the power set of E, satisfying the condition:

(I1) If I ∈ ∆ and J ⊆ I, then J ∈ ∆.

Unless otherwise stated, we assume that E = [n] = { 1, . . . , n } for some positive integer n. The subsets
of [n] which are elements of ∆ are called faces of ∆. The facets are the faces which are maximal under
inclusion. A subset C ⊆ [n] is a nonface of ∆ if C /∈ ∆; if all proper subsets of C are in ∆, then C is
called a minimal nonface. A loop is an element v ∈ [n] with { v } /∈ ∆; equivalently, v is not contained
in any face of ∆. A coloop is a vertex v ∈ [n] which is contained in every facet; alternatively, a coloop
is not contained in any minimal nonface. For every subset W ⊆ [n], the restriction of ∆ to W is the
simplicial complex on W given by

∆|W := { F ∈ ∆ : F ⊆ W } .
The deletion of W is the restriction to the complement of W in [n]:

∆ KW := ∆|[n] KW .

Given two simplicial complexes ∆ and Γ on disjoint sets E and E′, respectively, their join is the
simplicial on E ⊔ E′ given by

∆ ∗ Γ := { F ⊔G : F ∈ ∆ and G ∈ Γ } ,
where ⊔ stands for the disjoint union. The link3 of a face F ∈ ∆ is defined as

link∆ F := {A ∈ ∆ : A ∩ F = ∅ and A ∪ F ∈ ∆ } .
For every finite set F , the abstract simplex on F is 2F = {A ⊆ F }. The star of a face F ∈ ∆ is

star∆ F := 2F ∗ link∆ F = {G ∈ ∆ : F ∪G ∈ ∆ } .
A matroid is a nonempty4 simplicial complex M whose faces satisfy the extra axiom:

(I2) If I, J ∈ M and #J < #I, then there exists v ∈ I K J such that J ∪ { v } ∈ M.

2 We will usually drop the word abstract and just use simplicial complex.
3 This is a particular case of contraction, which can be defined for every subset [n], not just for faces. For our purposes

here, the link of a face will suffice.
4 This means that ∆ ̸= ∅. If a simplicial complex satisfies ∆ ̸= ∅, then by (I1) we have ∅ ∈ ∆. For matroids this last

condition is usually included as an axiom.
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We will use ∆ to denote simplicial complexes that are not necessarily matroids and reserve the notation
M for matroids. We will call the faces of a matroid independent sets and the facets of a matroid bases.
The minimal nonfaces of a matroid are called circuits. In accordance with the matroid terminology, we
will use the following notation for all simplicial complexes:

C∆ := { C ⊆ [n] : C is a minimal nonface of ∆ } ,
B∆ := {B ⊆ [n] : B is a facet of ∆ } .

Matroids have equivalent characterizations in terms of their circuits (cf. [Oxl11, Section 1.1]) or of their
bases (cf. [Oxl11, Section 1.2]).

2.2. Algebra. Recall that K denotes a fixed arbitrary field throughout this document. Fix n ∈ Z>0. We
denote by S = K[x1, . . . , xn] the polynomial ring in n variables with coefficients in K. To every simplicial
complex ∆ on [n], we associate a radical monomial ideal of S called its Stanley-Reisner ideal:

I∆ :=
〈 ∏

i∈F xi : F ∈ 2[n] K∆
〉
⊆ S.

This association is a one-to-one correspondence between simplicial complexes on [n] and radical monomial
ideals of S. The quotient ring K[∆] = S/I∆ is called the Stanley-Reisner ring of ∆ over the field K.

We will now introduce the first and the second cotangent cohomology modules for Stanley-Reisner
rings in the ad hoc way of [AC04]. For the general homological theory we refer to the books of André
[And74] and of Loday [Lod13], and for the connection to deformation theory we refer to Hartshorne’s
book [Har09] and Sernesi’s book [Ser07]. While some algebraic structures related to Stanley-Reisner
rings depend on the choice of field, the K-vector space dimensions of the cotangent cohomology modules
depend only on the combinatorics of the complex [ABHL16, Corollary 1.4]. Since our focus is solely on
these dimensions, we will, for simplicity, omit the phrase “over K” in the following definitions.

We define the S-module of the K-linear derivations of S by:

DerK(S, S) := { ∂ ∈ HomK(S, S) : ∂(fg) = f∂(g) + ∂(f)g, ∀ f, g ∈ S } .
For any ideal I ⊆ S, the first cotangent cohomology module T 1(S/I) is the cokernel of the natural
map DerK(S, S) −→ HomS(I, S/I). To define T 2(S/I), consider the first syzygy module of the monomial
ideal I, that is, the kernel of the map d, which takes the canonical basis of Sm to the unique set of minimal
monomial generators of the monomial ideal I:

0 Syz(I) Sm S S/I 0.d

Consider also the S-submodule Kosz(I) ⊆ Syz(I) generated by the Koszul relations:

Kosz(I) = ⟨d(f) · g − d(g) · f : f, g ∈ Sm⟩.
The quotient S-module Syz(I)/Kosz(I) has an S/I-module structure. The second cotangent coho-
mology module T 2(S/I) is the cokernel of the induced map

HomS(S
m, S/I) −→ HomS/I

(
Syz(I)

Kosz(I)
, S/I

)
.

2.3. Cotangent cohomology for simplicial complexes. With the field K fixed, we will denote simply
by T i(∆) the cotangent cohomology of S/I∆. As I∆ ⊆ S is a monomial ideal, the Stanley-Reisner ring
K[∆], its resolution, and all the modules defined above are Zn-graded. For c ∈ Zn and i = 1, 2, we
denote the Zn-graded components of the cotangent cohomology modules by

T i
c(S/I).

The support of a = (a1, . . . , an) ∈ Nn is defined as the set suppa = { i ∈ [n] : ai ̸= 0 } ⊆ [n]. Every
c ∈ Zn has a unique decomposition as

c = a− b with a,b ∈ Nn and suppa ∩ suppb = ∅.
We paraphrase the following result.

Lemma 2.1 ([AC04, Lemma 2]). The modules T i
a−b vanish unless 0 ̸= b ∈ {0, 1}n, suppa ∈ ∆ and

suppb ⊆ [link∆ suppa]5. With these conditions fulfilled, T i
a−b depends only on suppa and b.

Furthermore, in [AC04, Proposition 11] it is shown that a combinatorial interpretation for the case a = 0
is enough. In particular, if A = suppa, then we have for i = 1, 2 that

(2.1) T i
a−b(∆) = T i

−b(link∆ A).

5 Where [∆] = { v ∈ [n] : v ∈ ∆ } denotes the set of vertices appearing in ∆.
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Convention 2.2. Throughout this paper b will always denote a 0-1 vector, and we will use the same
notation for its support. So, according to context, we may have

b ∈ { 0, 1 }n or b ⊆ [n].

To present the combinatorial characterization of T i
−b(∆) from [AC04] we need to define two sets:

Definition 2.3. Let ∆ be a simplicial complex on [n] and b ⊆ [n]. We define

Nb(∆) := { F ∈ ∆ : F ∩ b = ∅ and F ∪ b /∈ ∆ } and

Ñb(∆) := { F ∈ Nb(∆) : ∃ b′ ⊊ b with F ∪ b′ /∈ ∆ } .

Remark 2.4. The above definition implies

Nb(∆) =

{
∆ K star∆ b if b ∈ ∆,

∆ Kb if b /∈ ∆.

For every nonempty set F ⊂ [n] one assigns the relatively open simplex ⟨F ⟩ ⊆ Rn as

⟨F ⟩ := { α : [n] −→ [0, 1] :
∑n

i=1 α(i) = 1 and (α(i) ̸= 0 ⇐⇒ i ∈ F ) } .

Each collection of subsets Γ ⊆ 2[n] thus determines a topological space in the following way:

⟨Γ⟩ =

{⋃
F∈Γ ⟨F ⟩ if ∅ /∈ Γ,

cone
(⋃

F∈Γ ⟨F ⟩
)

if ∅ ∈ Γ.

The “usual geometric representation” of a simplicial complex ∆ is ⟨∆ K { ∅ }⟩.
Many of our proofs rely on the following theorem of Altmann and Christophersen.

Theorem 2.5 ([AC04, Theorem 9]). Let ∆ be a simplicial complex on [n] and b ∈ { 0, 1 }n, which we
will identify with its support. If #b > 1, then T i

−b(∆) is given by the following relative cohomology
modules

T i
−b(∆) ≃ Hi−1(⟨Nb(∆)⟩ , ⟨Ñb(∆)⟩ ,K) for i = 1, 2.

If #b = 1, then the above formula holds if we use the reduced relative cohomology instead.

As a consequence, we can compute T 1
−b and T 2

−b for #b > 1 from the following long exact sequence:

(2.2) 0 T 1
−b(∆) H0(⟨Nb⟩) H0(⟨Ñb⟩) T 2

−b(∆) H1(⟨Nb⟩) H1(⟨Ñb⟩)

2.4. Remarks on T 2(∆). The following easy remarks will be used repeatedly, so it is convenient to
state and to prove them.

Remark 2.6. For every simplicial complex ∆ and each canonical basis vector ei, we have

T 2
−ei(∆) ≃ H1(⟨Nei⟩).

In particular, if { i } /∈ ∆, then ⟨Nei⟩ is a cone, thus T 2
−ei(∆) = 0.

Proof. When #b = 1, that is when b = ei for some i, we just need to replace cohomology with reduced
cohomology in (2.2). The remark follows, because the only proper subset of a one-element set is the
empty set, which implies Ñei = ∅. □

Remark 2.7. If b /∈ ∆ and b /∈ C∆, then T 2
−b(∆) = 0.

Proof. This is a direct consequence of Theorem 2.5 and the fact that Nb = Ñb in this case. □

Remark 2.8. If b ∈ C∆, then

(2.3) dimK T 2
−b(∆) = max

{
dimK H0(⟨Ñb⟩)− 1, 0

}
.

Proof. The case #b = 1 was covered in Remark 2.6, so we may assume #b ⩾ 2. From b ∈ C∆ we get
Nb = ∆ Kb (cf. Remark 2.4). In particular ∅ ∈ ∆, so by definition ⟨Nb⟩ is a cone. This means, that

H0(⟨Nb⟩) ≃

{
K if ∆ Kb ̸= ∅
0 if otherwise

and H1(⟨Nb⟩) = 0.

So, by (2.2), T 2
−b(∆) is the cokernel of the map from H0(⟨Nb⟩) to H0(⟨Ñb⟩). This map is the zero map

only when H0(⟨Ñb⟩) = 0. In other words, this map has maximal rank. So, from (2.2) we get the desired
formula for the dimension of T 2

−b(∆). □
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Remark 2.9. If T 2(∆) = 0 for a simplicial complex ∆ of dimension at least 1, then ∆ is either connected,
or it has two connected components, with one of them being an isolated vertex.

Proof. Assume there exist two simplicial complexes ∆1 and ∆2, each containing at least two vertices,
such that

∆ = ∆1 ∪∆2 and ∆1 ∩∆2 = { ∅ } .
In other words, no face of ∆ contains vertices both from ∆1 and also from ∆2. Choose one vertex from
each: v1 ∈ ∆1 and v2 ∈ ∆2. Our claim is that for b = { v1, v2 } we get T 2

−b(∆) ̸= 0.
Indeed, by Remark 2.8, we have to show that ⟨Ñb⟩ has two connected components. By ∆1∩∆2 = { ∅ } we
get that any nonempty face F ∈ Nb is either in ∆1 or in ∆2, and that F ∪ { v1 } /∈ ∆ or F ∪ { v2 } /∈ ∆.
Thus Ñb = Nb K { ∅ }, which means that ⟨Ñb⟩ is the geometric realization of ∆ Kb. The latter is
the disjoint union of the geometric realizations of the nonempty simplicial complexes ∆1 K { v1 } and
∆2 K { v2 }. We thus have dimK H0(⟨Ñb⟩) ⩾ 2. □

3. One-dimensional complexes with vanishing T 2

It follows from (2.1) that if T 2(∆) = 0, then T 2 vanishes for all links of ∆. For this reason, we begin
by characterizing the vanishing of T 2 for complexes of dimensions zero and one.

3.1. Characterization in dimensions zero and one. The first step is straightforward, as the follow-
ing lemma shows.

Lemma 3.1. If ∆ is a zero-dimensional simplicial complex on [n] with no loops6, then

dimK T 2
a−b(∆) =

{
max{n− 3, 0} if a = 0 and #b = 2,

0 if otherwise.

In particular, T 2(∆) = 0 if and only if n ⩽ 3.

Proof. By Lemma 2.1 it is enough to check all degrees a− b with suppa ∈ ∆ and b ∈ {0, 1}n.

If #supp a = 1, then link∆ suppa = {∅}, so T 2
a−b(∆) = 0 for all b. Assume from now that a = 0.

If #b = 1, then ⟨Nb⟩ is the usual geometric realization of ∆ Kb. By Remark 2.6 we get T 2
−b = 0.

If #b = 2, then b ∈ C∆. By Remark 2.8 we have to find the number of connected components of ⟨Ñb⟩,
which is a union of n− 2 distinct points. So by (2.3) we get

dimK T 2
−b(∆) = max { n− 3, 0 } .

If #b ⩾ 3, then b /∈ ∆ and b /∈ C∆, so T 2
−b(∆) = 0 by Remark 2.7. □

We recall the following definitions. The local degree of a vertex is the number of edges incident to it.
A vertex w ∈ [n] is a neighbour (in ∆) of the vertex v ∈ [n], if { v, w } ∈ ∆. We call the set of all
neighbors of v the neighborhood7 of v and denote it by ν(v). For a subset M of [n] we denote by ν(M)
the union of the neighborhoods of all its elements, and we say that M is dominating if

ν(M) :=
⋃

v∈M ν(v) = [n].

For b ⊆ [n], we denote the union of b with the set of common neighbours of its elements by

b̂ := b ∪
(⋂

v∈b ν(v)
)
.

A cycle in ∆ is a sequence of c distinct vertices (v1, . . . , vc), with c ⩾ 3, such that { vi, vi+1 } ∈ ∆ for
all i = 1, . . . , c, where vc+1 = v1.

Theorem 3.2. A one-dimensional simplicial complex ∆ on [n] satisfies T 2(∆) = 0 if and only if the
following three conditions hold:

(i) Every vertex in ∆ has local degree at most three.

(ii) Every cycle in ∆ is a dominating set.

(iii) For every minimal nonface b ∈ C∆ with #b = 2, the simplicial complex ∆ K b̂ is connected.

6 Recall that having no loops means {i} ∈ ∆ for all i ∈ [n].
7 Note that, by our definition, if v ∈ ∆, then v ∈ ν(v).
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Proof. Note that each of the first two conditions is equivalent to the vanishing of T 2 in some multidegree:
Because dim∆ = 1, we get from Lemma 3.1 that

(3.1) (i) ⇐⇒ T 2
a−b(∆) = 0 for all a ∈ Nn with #suppa = 1 and for all b ∈ Nn.

By Remark 2.6, T 2
−ei(∆) vanishes if and only if ∆ K ν(i) does not contain any cycles. This is equivalent

to every cycle must intersect ν(i). Requiring this for all i one gets:

(3.2) (ii) ⇐⇒ T 2
−ei(∆) = 0 for all i ∈ [n].

The vanishing of T 2
−b(∆) for all b ∈ C∆ is equivalent by Remark 2.8 to the following condition:

(iii’) For every b ∈ C∆, the space ⟨Ñb⟩ is connected.

This condition is not equivalent to condition (iii) from the statement of the theorem. A counterexample
can be easily found using the following equality of sets:

(3.3) Ñb ∪ { ∅ } = (∆ K b̂) ∪
{
F ∈ ∆ : F ∩

(⋂
v∈b ν(v)

)
̸= ∅

}
.

However, we have the following equivalence when dim∆ = 1.

Claim: The conditions (i), (ii), and (iii) together are equivalent to (i), (ii), and (iii’) together.

Proof of Claim: For the direct implication assume (i), (ii), and that ∆ K b̂ is connected for all b ∈ C∆

with #b = 2. Because dim∆ = 1, a circuit b ∈ C∆ has cardinality at most three.

If #b = 1, then Ñb is empty, so connected.

If #b = 2, then label it by b = { 1, 2 } and assume that ⟨Ñb⟩ is not connected. This means by (3.3)
that there exists at least one edge F ∈ ∆ with both ends in ν(1) ∩ ν(2). Let us call these ends v and w;
i.e. F = { v, w }. Thus we have the following edges in ∆:

{ v, 1 } , { v, 2 } , { w, 1 } , { w, 2 } , { v, w } .
By (i) there are no further edges incident to v or w, and at most one edge incident to each 1 and 2. Because
we assumed that ⟨Ñb⟩ is not connected, there must be at least one further vertex u ∈ ∆ K { 1, 2, v, w }.
By (ii) the cycles (1, v, w) and (2, v, w) must be dominating. Thus this vertex u must be connected to
both 1 and 2. But this implies that u ∈ b̂, and we get Ñb = { { v, w } }, which gives us a connected
space – a contradiction.

If #b = 3, then label it b = { 1, 2, 3 }. Because dim∆ = 1, we have

Ñb = (∆ Kb) K { ∅ } .

So ⟨Ñb⟩ is the usual geometric realization of ∆ Kb. Our goal is thus equivalent to proving that the
simplicial complex ∆ Kb is connected. We distinguish two cases: b ⊊ b̂ and b = b̂.

If b ⊊ b̂, then by (i) we have precisely one extra vertex in b̂, call it 4. So ∆|{ 1,2,3,4 } is the 1-skeleton of
the 3-simplex. Again, by (i), the vertices 1,2,3, and 4 cannot be connected to any other vertices of ∆.
But (ii) requires that every circuit is a dominating set, which means that ∆ has only these four vertices,
thus ∆ Kb = { ∅, { 4 } } is connected.

If b = b̂, assume that ∆ Kb is not connected. Since b is a minimal nonface of cardinality three, it is also
a cycle, thus by (ii) it must be a dominating set. Since by assumption (i) the local degree of each vertex
is at most three, there can be at most three more vertices in ∆. So ∆ Kb is a disconnected complex
on at most three vertices. This means, that there is one vertex v ∈ ∆ with local degree one. Without
loss of generality assume { v, 1 } to be the only edge incident to the vertex v. We may also assume that
the second vertex in ∆ Kb is called w and that { 2, w } ∈ ∆. The set { 1, w } ∈ C∆ then violates (iii),
because the vertices v and 3 get disconnected after { 1, w } and their only common neighbor, the vertex
2, have been removed.

For the reverse implication of the Claim, we prove something stronger, namely that (iii’) implies (iii).
To see this, notice that the second set on the right hand side of (3.3) consist only of edges which have at
least one endpoint in

⋂
v∈b ν(v). That is, these edges have at most one endpoint in ∆ K b̂. This means,

that adding these edges does not connect any components of ∆ K b̂. So

dimK H0(⟨Ñb⟩) ⩾ dimK H0(∆ K b̂),

and this shows the other implication of the Claim. ■

We can now turn to proving the equivalence in the theorem.
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⇒ If T 2(∆) = 0, then we have already seen, that it implies (i) and (ii). By Remark 2.8 we also have
(iii’). So the Claim that we proved implies (i), (ii), and (iii).

⇐ The Claim implies that (i), (ii), and (iii’) hold and we will use this to show that T 2
a−b(∆) = 0 for

all a and b for which this needs to be checked according to Lemma 2.1. We have the following.

Case 1: #supp a = 2. As dim∆ = 1, we get link∆ suppa = ∅ or { ∅ }, so T 2
a−b(∆) = 0 for all b.

Case 2: #supp a = 1 is given by (i), see (3.1).

Case 3: #supp a = 0. We split this case in two.

Case 3.1: b /∈ ∆. This case is covered by (iii’).

Case 3.2: b ∈ ∆. Because dim∆ = 1, there are only two subcases of this case and we are done.

Case 3.2.1: #b = 1. This case is covered by (ii).

Case 3.2.1: #b = 2. Label it b = { 1, 2 }. Because b ∈ ∆ is a facet, we have

Nb = (∆ Kb) K {∅} and Ñb =
(
(∆ Kb) K {∅}

)
K (ν(1) ∩ ν(2)) .

That means, that Ñb is obtained by removing some vertices from Nb. These vertices are precisely the
common neighbors of 1 and 2, and thus have local degree at least two. From (i) we get that their local
degree is at most three. Thus, if u ∈ Nb K Ñb, then u is either isolated in Nb, when its local degree is two,
or a leaf vertex in Nb, when its local degree is three. In both cases the map H0(⟨Nb⟩) −→ H0(⟨Ñb⟩)
in (2.2) is surjective, so the map H0(⟨Ñb⟩) −→ T 2

−b(∆) is the zero map. This implies that T 2
−b(∆) is

isomorphic to the kernel of the map H1(⟨Nb⟩) −→ H1(⟨Ñb⟩). As only leaf vertices or isolated vertices
get removed from ⟨Nb⟩, this map is an isomorphism and we conclude. □

3.2. Complete classification in dimension one. In the last part of this section we will classify all
one-dimensional complexes with vanishing T 2. We start by looking at trees, that is graphs without any
cycles. A leaf is a vertex of local degree one.

Remark 3.3. If ∆ is one-dimensional, T 2(∆) = 0, and ∆ contains a leaf v, then ∆ has at most five
vertices. Furthermore:

(a) If ∆ has five vertices, then ∆ is a square with a leaf attached.

(b) A tree has vanishing T 2 if and only if it has at most four vertices.

Proof. Let { v, w } be the only edge of ∆ containing v. If w is connected to all vertices of ∆, then, as
its local degree is at most three, ∆ has at most four vertices. So assume there exists u ∈ ∆ such that
b = { w, u } /∈ ∆. By Theorem 3.2 (iii) we must have ∆ K b̂ connected. As v is an isolated vertex of
∆ K b̂, we must have b̂ = [n] K { v }. As the local degree of w can be at most three and { w, v } ∈ ∆, w
can have at most two common neighbors with u. This means that #b̂ ⩽ 4, which implies that ∆ has at
most five vertices. If #b̂ = 4, then w and u must be opposite corners of a square, so ∆ is a square with
a leaf. A direct check shows the statement about trees. □

In the remaining part we assume complexes with vanishing T 2 are leafless, ensuring they contain at
least one cycle. Without loss of generality, we assume that γ = (1, 2, . . . , c) is a chordless cycle in the
one-dimensional simplicial complex ∆ on [n], where 3 ⩽ c ⩽ n. Here, chordless means that the only
edges in ∆|[c] are { 1, 2 } , . . . , { c, 1 }. In other words, there are no diagonals (chords) present. We will
need the following brief remarks.

Remark 3.4. The subset M ⊂ [n] dominates ∆ if and only if ν(M) ∩A = A for all A ⊆ [n].

Remark 3.5. If ∆ is a one-dimensional simplicial complex on [n], containing a cycle of length c, and
satisfying T 2(∆) = 0, then ∆ has at most 2c vertices.

In the next lemma, the bound c ⩾ 7 is shown to be sharp by the classification in Figure 2.

Lemma 3.6. If T 2(∆) = 0 and c ⩾ 7, then there exists no vertex v ∈ { c+ 1, . . . , n } with

{ i, v } , { v, j } ∈ ∆ for some 1 ⩽ i < j ⩽ c.

Proof. Assume there exists a vertex v with the above property. By Remark 3.5 ∆ contains no triangles,
so we may assume without loss of generality that i = 1 and 2 < j < c. The existence of v implies the
existence of two more cycles in ∆:

γ1 = (1, . . . , j, v) and γ2 = (j, . . . , c, 1, v).



8 A. CONSTANTINESCU, P. KLEIN, T.T.NGUYỄN, A.SINGH, AND L. VENTURELLO

According to Theorem 3.2, every cycle in ∆ must be a dominating set, and the local degree of any vertex
is at most three. So, besides 1 and j, there can be at most one more vertex u ∈ ∆ with { v, u } ∈ ∆. We
then have by Remark 3.4 that

γ2 = γ2 ∩ ν(γ1) ⊆ { c, 1, j, j + 1, v, u } and
γ1 = γ1 ∩ ν(γ2) ⊆ { j − 1, j, 1, 2, v, u } .

This implies, that { 1, . . . , c, v } = γ1 ∪ γ2 ⊆ { 1, 2, j − 1, j, j + 1, c, v, u }. Because c ⩾ 7, we have only
two possible combinations for c, j and u for which the above inclusion holds:

(c, j, u) = (7, 4, 6) or (c, j, u) = (7, 5, 3).

In the first case, the cycle (1, v, 6, 7) is not dominating because 3 /∈ ν(1, v, 6, 7). In the second case, the
cycle (1, v, 3, 2) is not dominating because 6 /∈ ν(1, v, 3, 2). Thus, by Theorem 3.2 (ii), T 2(∆) ̸= 0, a
contradiction. □

Proposition 3.7. If ∆ is a one-dimensional simplicial complex containing a chordless cycle of length
c ⩾ 7, then T 2(∆) ̸= 0.

Proof. Let us assume that T 2(∆) = 0 and that ∆ contains the chordless cycle γ = (1, 2, . . . , c). Because
c ⩾ 7, we can choose a vertex k ∈ { 4, . . . , c− 2 } and define b = { 1, k }. Because γ is chordless, we have
b ∈ C∆. By Lemma 3.6 and by the choice of k we have b = b̂. So, according to Theorem 3.2 (iii), we
have that

∆ \ b is connected.
This means there must be a connection between the connected sets

{ 2, . . . , k − 1 } and { k + 1, . . . , c } .
Again, because γ is chordless, this connection must involve vertices in [n] K [c]. According to Lemma 3.6,
there must be at least two such vertices on the connecting path. By Theorem 3.2 (ii), the cycle γ is
dominating, meaning there is a connecting path with exactly two vertices outside of [c]. Let us denote
these vertices as v and w. Therefore, we must have { v, w } ∈ ∆ and

∃ i ∈ { 2, . . . , k − 1 } with { i, v } ∈ ∆,

∃ j ∈ { k + 1, . . . , c } with { w, j } ∈ ∆.

The chordless assumption, coupled with Lemma 3.6, implies that there are no further edges in ∆|{ 1,...,c,v,w },
beyond those in γ and the three edges { i, v }, { v, w }, and { w, j }. However, two more cycles exist:

γ1 = (v, i, . . . , j, w) and γ2 = (w, j, . . . , c, 1, . . . , i, v),

which, by Theorem 3.2 (ii), must also be dominating. We have then by Remark 3.4:

γ2 = γ2 ∩ ν(γ1) = { i− 1, i, j, j + 1, v, w } and
γ1 = γ1 ∩ ν(γ2) = { i, i+ 1, j − 1, j, v, w } .

Then
{ 1, . . . , c, v, w } = γ1 ∪ γ2 = { i− 1, i, i+ 1, j − 1, j, j + 1, v, w } ,

while, by the assumption c ≥ 7,

# { 1, . . . , c, v, w } ≥ 9 > 8 ≥ # { i− 1, i, i+ 1, j − 1, j, j + 1, v, w } ,
a contradiction. □

From Theorem 3.2 (ii), Remark 3.3 and Proposition 3.7 we obtain that, if dim∆ = 1 and T 2(∆) = 0,
then ∆ has at most 12 vertices. We can improve this bound.

Proposition 3.8. A one-dimensional simplicial complex ∆ with T 2(∆) = 0 has at most eight vertices.

Proof. Let ∆ with T 2(∆) = 0 be a one-dimensional simplicial complex on [n]. According to the previous
comment, it suffices to prove that this leads to a contradiction when n ∈ { 9, 10, 11, 12 }. Remark 3.3
and n ⩾ 9 imply that ∆ does not have any leaves. By Theorem 3.2 (ii) and Proposition 3.7, the
chordless cycles in ∆ have to have length at least ⌈n

2 ⌉. This means that ∆ has only chordless hexagons
if n ∈ { 11, 12 }, and chordless pentagons or hexagons if n ∈ { 9, 10 }.
Claim. ∆ must contain a pentagon.

Proof of Claim. Assume ∆ contains no pentagon. Based on the above observations, this means that
all the cycles in ∆ must be of length 6. We may assume γ = (1, 2, 3, 4, 5, 6) is a chordless cycle in ∆.
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Because n ⩾ 9, we have [n] K [6] ̸= ∅. As γ is dominating, for every v ∈ [n] K [6] there exists iv ∈ [6] such
that { v, iv } ∈ ∆. Because ∆ does not contain pentagons, iv must be uniquely determined:

ν(v) ∩ [6] = { iv } .

As ∆ cannot contain any leaves, there must be some vertex w ∈ [n] K [6] with { v, w } ∈ ∆. Because ∆
does not contain any pentagons, the shortest path from iv to iw in γ must be of length at least three.
But γ is a hexagon, so there is only one such vertex. In other words, we showed that

∀ v ∈ [n] K [6], ∃!w ∈ [n] K [6] with { v, w } ∈ ∆.

This implies that condition (iii) from Theorem 3.2 fails for b = { iv, iw }, a contradiction. ■

The Claim shows that n ∈ { 11, 12 } leads to a contradiction. So we can assume that 9 ⩽ n ⩽ 10 and
that γ = (1, 2, 3, 4, 5) is a chordless cycle in ∆. Furthermore, as γ dominates ∆, we may assume that

{ 1, 6 } , { 2, 7 } , { 3, 8 } , { 4, 9 } ∈ ∆ and, if n = 10, { 5, 10 } ∈ ∆.

The only edges that avoid the formation of squares are

{ 6, 8 } , { 6, 9 } , { 7, 9 } and, if n = 10, { 7, 10 } , { 8, 10 } .

Because every cycle must dominate ∆, all of these edges have to be edges of ∆. For instance, if { 6, 8 } ∈
∆, then, as the cycle (1, 2, 3, 8, 6) dominates ∆, we must also have { 6, 9 } ∈ ∆. We have thus excluded
all but the two complexes depicted in Figure 1.

1

2 3

4

5

7 8

96 1

2 3

4

5

7 8
9

6 10

Figure 1. The only two surviving candidates on at least 9 vertices.

However, for both of these candidates, the cycle (2, 7, 9, 6, 8, 3) does not intersect the neighborhood of
the vertex 5. Thus, by Theorem 3.2, they are have nonvanishing T 2. □

Not many candidates are left for one-dimensional simplicial complexes with vanishing T 2. According
to Lemma 3.1, complete bipartite graphs Kr,s satisfy T 2(Kr,s) = 0 precisely when 1 ⩽ r, s ⩽ 3. This
follows because these complexes are joins of zero-dimensional complexes and because T i of a join is
obtained via tensor product from the T is of the joined complexes [CI14, Proposition 2.3] (see also (5.2)
below). Thus, T 2 of the join of two complexes vanishes if and only if T 2 vanishes for both joined
complexes.

However, there are more one-dimensional complexes with T 2 = 0 beyond these six. In fact, there are
precisely 26 such complexes, all illustrated in Figure 2. A quick verification using the Macaulay2 package
VersalDeformations [GS, Ilt12] confirms that T 2 = 0 for all these matroids. To establish that these
are the only one-dimensional complexes with vanishing T 2, first note that the cases where ∆ contains a
leaf are fully covered in Remark 3.3. In the absence of leaves, one has to start from the shortest cycle
contained in ∆. Using the minimality of this cycle and the fact that its vertices form a dominating
set for ∆, one obtains the list in Figure 2 following similar arguments as those used in the proof of
Proposition 3.8.
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Figure 2. The list of all one-dimensional simplicial complexes with vanishing T 2.

Remark 3.9. One may think that there is a connection between the three conditions of Theorem 3.2
and circulant graphs (cf. [Hos07]). At least in the absence of leaves this seemed plausible. However,
several leafless complexes in Figure 2 (e.g. the ones with 7 vertices and 9 edges) are not circulant graphs.

4. T 2 for uniform matroids

For every finite set E and every r ∈ Z⩾0, the uniform matroid of rank r on E is the collection of
all subsets of E of cardinality at most r:

Ur
E = { F ⊆ E : #F ⩽ r } .

The dimensions of the multigraded components of first cotangent cohomology of Ur
[n] were computed

in [BC23, Example 4.10]. We compute now these dimensions for T 2(Ur
[n]). By definition, for any face

A ∈ Ur
[n] we have

(4.1) linkUr
[n]

A = U
r−#A
[n] KA

.

Thus, according to (2.1), it will be enough to determine T 2(Ur
[n]) in purely negative multidegrees for all

n and r.

Proposition 4.1. For every n ∈ Z>0 and every r ∈ Z with 1 ⩽ r ⩽ n we have

dimK T 2
−b(U

r
[n]) =

{
0 if #b ̸= 2 or r ⩾ n− 1,

r
(
n−2
r

)
−

(
n−2
r−1

)
if #b = 2.

In particular, T 2(Ur
[n]) = 0 if and only if r ⩾ n− 2.

Proof. To simplify notation, we write U for Ur
[n] throughout this proof. By Definition 2.3 we have

Nb(U) = { F ⊆ [n] Kb : r −#b < #F ⩽ r } and

Ñb(U) = { F ⊆ [n] Kb : r −#b+ 1 < #F ⩽ r } .
By the symmetry of U, we may assume that b = { n− b+ 1, . . . , n }, so [n] Kb = [n − b] and #b = b.
This implies

Nb(U) = Ur
[n−b] KU

r−b
[n−b] and Ñb(U) = Ur

[n−b] KU
r−b+1
[n−b] .

As sets partially ordered by inclusion, Nb(U) and Ñb(U) are rank-selected subposets of the Boolean
poset of all subsets of [n − b]. Since Boolean posets are shellable, and by [Bjö80, Theorem 4.1] every
rank selected subposet of a shellable poset is again shellable, we have that both Nb(U) and Ñb(U)
are shellable posets. In particular, their order complexes, when non-empty, are homotopy equivalent
to a wedge of spheres of dimension one smaller than their rank: b and b − 1, respectively. Whenever
∅ /∈ Nb(U), the order complex Nb(U) is a barycentric subdivision of ⟨Nb(U)⟩. Hence, ⟨Nb(U)⟩ is
homotopy equivalent to wedge of (b− 1)-spheres and, if b > 1 holds, ⟨Ñb(U)⟩ is homotopy equivalent to
a wedge of (b− 2)-spheres. We recall for convenience (2.2):

(2.2) 0 T 1
−b(∆) H0(⟨Nb⟩) H0(⟨Ñb⟩) T 2

−b(∆) H1(⟨Nb⟩) H1(⟨Ñb⟩)



SIMPLICIAL COMPLEXES AND MATROIDS WITH VANISHING T 2 11

From this long exact sequence and the above observations, we deduce the following:

If b = 1, then H1(⟨Nb(U)⟩) = 0 and H0(⟨Ñb(U)⟩) = 0, thus T 2
−b(U) = 0.

If b > 2, then H1(⟨Nb(U)⟩) = 0 and H0(⟨Nb(U)⟩) ∼= H0(⟨Ñb(U)⟩) ∼= K, so, because the map from
H0(⟨Nb(U)⟩) to H0(⟨Ñb(U)⟩) has maximal rank, we also get T 2

−b(U) = 0.

If #b = 2 we have that the order complex of Ñb(U) is the 0-dimensional complex whose vertices are the
r-subsets of [n] Kb. This means

dimK H0(⟨Ñb(U)⟩) =
(
n−2
r

)
,

dimK H1(⟨Ñb(U)⟩) = 0.

The order complex of Nb(U) is the connected 1-dimensional simplicial complex whose vertices are all
r- and (r − 1)-subsets of [n] Kb, and whose edges are pairs of such subsets, one strictly contained in the
other. From an elementary count we obtain

dimK H0(⟨Nb(U)⟩) = 1,

dimK H1(⟨Nb(U)⟩) = r
(
n−2
r

)
−

((
n−2
r

)
+

(
n−2
r−1

))
+ 1.

From [BC23, Example 4.11] we get that T 1
−b(U) = 0. The alternating sum of dimensions in (2.2) being

equal to zero, we get

dimK T 2
−b(U) = dimK H1(⟨Nb(U)⟩) + dimK H0(⟨Ñb(U)⟩)− dimK H0(⟨Nb(U)⟩)

= r
(
n−2
r

)
−
(
n−2
r−1

)
.

The binomial coefficient
(
k
i

)
is defined as the number of i-subsets of a set with k elements. In particular,

it vanishes if i > k. Notice also that our proof works for any r. □

Corollary 4.2. The uniform matroid Ur
[n] has vanishing T 2 if and only if n− r ⩽ 2.

Proof. From Proposition 4.1 we have that T 2
−b(U

r
[n]) = 0 for all b if and only if n− r ⩽ 2. To conclude,

note that by (4.1) the difference between the number of elements and the rank stays constant when
taking links. □

5. Matroids with vanishing T 2

Before we state the main result of this section, we recall a few more notions from matroid theory. The
dual of a matroid M on [n] is denoted by M∗ and is determined by its set of bases:

BM∗ = {[n] KB : B ∈ BM}.
A proof that M is a matroid if and only if M∗ is a matroid can be found in [Oxl11, Theorem 2.1.1]. In
particular, if rankM = r, then rankM∗ = n− r. The later is called the corank of M.

Two elements v and w of a matroid M are called parallel if {v, w} /∈ M. It is easy to see that parallel
elements which are not loops have the same link in M. This implies that being parallel defines an
equivalence relation on the set of elements of M which are not loops. A parallel class of M is such
an equivalence class: a subset P ⊆ [n] containing no loops, such that if v, w ∈ P with v ̸= w, then
v ∥ w. The structure of rank two matroids is completely determined by the partition of [n] K {loops} into
parallel classes [CV15, Proposition 2.2]. Duality implies that isomorphism classes of coloop-free, corank
two matroids are in bijection with partitions of [n].

Recall that a hyperplane of a rank r matroid M is an inclusion-maximal subset H ⊆ [n] such that
rankM|H = r − 1. In other words, no basis is contained in H and H is maximal with respect to this
property. By [Oxl11, Proposition 2.1.6] C is a circuit of M precisely when [n] KC is a hyperplane of M∗.
This is particularly useful for corank two matroids without coloops because the hyperplanes of M∗ are
precisely the parallel classes in M∗. So, if M is a corank two matroid and if P1, . . . , Pm are the parallel
classes of M∗, then the circuits of M are the loops and unions of the form

(5.1) P1 ∪ · · · ∪ P̂k ∪ . . . Pm.

with k ∈ {1, . . . ,m}.
Finally, we recall the notion of cycle-atomic subset of [n] which was introduced in [BC23, Section 3] in
order to describe T 1 for matroids:

We call b ⊆ [n] cycle-atomic if b ∩ C ∈ {∅,b} for all C ∈ CM.
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In the next proof we will use some technical results from [BC23] on Nb and Ñb when b is cycle-atomic.
Given the above characterization of circuits in corank two matroids, we note that b is cycle-atomic for
a corank two matroid precisely when b ⊆ Pi for some parallel class Pi of M∗.

The following statement may follow from more general results on Cohen-Macaulay rings of codimension
2. We believe however that the combinatorial proof we present offers some insight that could serve as a
starting point for a proof of Conjecture 1.

Proposition 5.1. If M is a matroid of corank at most two, then T 2(M) = 0.

Proof. Notice first that by Lemma 3.1 the statement holds for rank one matroids. This will allow us to
use induction when M contains a coloop.

If the corank is zero or one, then K[M] is either a polynomial ring or the coordinate ring of a monomial
hypersurface. In both cases T 2 vanishes.

If the corank is two, then we first notice that linkM A has corank at most two for every A ⊂ M. Thus,
by (2.1), it is enough to prove that T 2

−b(M) = 0 for every corank two matroid on [r + 2] and every
b ⊆ [r + 2]. Denote by P1, . . . , Pm the parallel classes of M∗. This means, by the above observations,
that the circuits of M are precisely the sets from (5.1). We distinguish two cases.

Case 1: b contains no edge of M∗. This means that there exists an i ∈ {1, . . . ,m} such that b ⊆ Pi.
In other words, b is cycle-atomic. So by [BC23, Proposition 3.2], we have that Ñb = ∅. This implies
by (2.2) that T 2

−b(M) ≃ H1(⟨Nb⟩). By [BC23, Lemma 4.3] every connected component of Nb contains
a unique inclusion-minimal element. Thus each connected component of ⟨Nb⟩ can be contracted to a
point, and thus the first cohomology is trivial.

Case 2: b contains an edge e of M∗. The key observation in this case is that the complement of b is
contained in both Nb and Ñb:

[r + 2] Kb ∈ Nb ∩ Ñb.

On the one hand, [r + 2] Kb ⊆ [r + 2] K e ∈ BM, thus it is a face of M that is disjoint from b. On the
other hand, ([r + 2] Kb) ∪ b = [r + 2] /∈ M, and for every subset b′ ⊊ b of cardinality one less, we have

#(([r + 2] Kb) ∪ b′) = r + 1.

Because rankM = r, this set cannot be a face of M. Thus Nb and Ñb both have the same unique
maximal element: [r + 2] Kb. This implies that the associated topological spaces are connected and
contractible to a point, and we conclude by (2.2) that T 2

−b(M) = 0 also in this case. □

We conjecture that matroids of corank at most two are the building blocks for all matroids with
vanishing T 2.

Conjecture 1. A matroid M has T 2(M) = 0 if and only if M is the join of corank two matroids.

We provide here an easy argument for the backwards direction, which is a combination of Proposi-
tion 5.1 and the following general statement.

For any two simplicial complexes ∆ and Γ we have

K[∆ ∗ Γ] = K[∆]⊗K K[Γ].

By a general property of the cotangent modules [CI14, Proposition 2.3] we have for any two K-algebras
A and B that

(5.2) T 2(A⊗K B) ≃
(
T 2(A)⊗K B

)
⊕
(
A⊗K T 2(B)

)
.

This implies in particular that T 2(∆ ∗ Γ) = 0, precisely when T 2(∆) = T 2(Γ) = 0.

For matroids, the standard terminology is slightly different. The join operation is often called the direct
sum. In this context, a joint-irreducible matroid is called connected [Oxl11, Section 4.2].

Besides Proposition 5.1 and Corollary 4.2, we have some computational evidence in favor of Conjecture 1.
This was obtained using the Macaulay 2 package versalDeformations [GS, Ilt12] and the matroid
database of simple matroids on at most 9 elements [MR08].



SIMPLICIAL COMPLEXES AND MATROIDS WITH VANISHING T 2 13

References

[ABHL16] Klaus Altmann, Mina Bigdeli, Jürgen Herzog, and Dancheng Lu. Algebraically rigid simplicial
complexes and graphs. J. Pure Appl. Algebra, 220(8):2914–2935, 2016.

[AC04] Klaus Altmann and Jan Arthur Christophersen. Cotangent cohomology of Stanley-Reisner
rings. Manuscripta Math., 115(3):361–378, 2004.

[And74] Michel André. Homologie des algebres commutatives, volume 206. Springer, 1974.
[BC23] William Brehm and Alexandru Constantinescu. The first cotangent cohomology module for

matroids. Journal of Combinatorial Algebra, 7(3):327–345, 2023.
[Bjö80] Anders Björner. Shellable and Cohen-Macaulay partially ordered sets. Transactions of the

American Mathematical Society, 260(1):159–183, 1980.
[CI14] Jan Arthur Christophersen and Nathan Owen Ilten. Degenerations to unobstructed fano

stanley–reisner schemes. Mathematische Zeitschrift, 278:131–148, 2014.
[CV15] Alexandru Constantinescu and Matteo Varbaro. h-vectors of matroid complexes. Combina-

torial Methods in Topology and Algebra, pages 203–227, 2015.
[FN18] Gunnar Fløystad and Amin Nematbakhsh. Rigid ideals by deforming quadratic letterplace

ideals. Journal of Algebra, 510:413–457, 2018.
[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in

algebraic geometry. Available at http://www2.macaulay2.com.
[Har09] Robin Hartshorne. Deformation theory, volume 257. Springer Science & Business Media,

2009.
[Hos07] Richard Hoshino. Independence polynomials of circulant graphs. Dalhousie University, 2007.
[ICT21] Nathan Ilten, Alfredo Nájera Chávez, and Hipolito Treffinger. Deformation theory for finite

cluster complexes. arXiv preprint arXiv:2111.02566, 2021.
[Ilt12] Nathan Owen Ilten. Versal deformations and local hilbert schemes. Journal of Software for

Algebra and Geometry, 4(1):12––16, 2012.
[Lod13] Jean-Louis Loday. Cyclic homology, volume 301. Springer Science & Business Media, 2013.
[MR08] Dillon Mayhew and Gordon F Royle. Matroids with nine elements. Journal of Combinatorial

Theory, Series B, 98(2):415–431, 2008.
[Nem16] Amin NematbakhshNematbakhsh. Cotangent cohomology of quadratic monomial ideals,

2016.
[Oxl11] James Oxley. Matroid Theory, Second Edition. Oxford University Press, 2011.
[Ser07] Edoardo Sernesi. Deformations of algebraic schemes, volume 334. Springer Science & Business

Media, 2007.

(AC) Mathematics Institute, Freie Universität Berlin, Berlin, Germany
Email address: alexandru.constantinescu@fu-berlin.de

(PK) Department of Mathematics, Texas A&M University, College Station, TX, USA
Email address: pjklein@tamu.edu

(TTN) Department of Mathematics & Statistics, McMaster University, ON L8S 4K1, Canada and, Uni-
versity of Education, Hue University, 34 Le Loi St., Hue, Viet Nam

Email address: nguyt161@mcmaster.ca

(AS) Department of Mathematics, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, India
Email address: anurags@iitbhilai.ac.in

(LV) Department of Information Engineering and Mathematical Sciences, Università di Siena, Italy
Email address: lorenzo.venturello@unisi.it

http://www2.macaulay2.com

	1. Introduction
	Acknowledgements

	2. Preliminaries
	2.1. Combinatorics
	2.2. Algebra
	2.3. Cotangent cohomology for simplicial complexes
	2.4. Remarks on T2()

	3. One-dimensional complexes with vanishing T2
	3.1. Characterization in dimensions zero and one
	3.2. Complete classification in dimension one

	4. T2 for uniform matroids
	5. Matroids with vanishing T2
	References

