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Abstract

The Hierarchical Directed Capacitated Arc Routing Problems (HDCARP) is a variant of the
Capacitated Arc Routing Problems (CARPs), in which the arcs in a graph are partitioned into
clusters. However, unlike traditional CARPs that aim to minimise total time, the HDCARP
focuses on minimizing the maximum completion time of each priority class in a hierarchical
fashion. Practical applications of the HDCARP include snow plowing, salt spreading, street
cleaning, and waste collection. In this study, we explore two variants of the HDCARP. The
key difference between these variants lies in the consideration of precedence relations between
clusters within routes. We propose MILP formulations and matheuristics for both HDCARP
variants. The MILP formulations enable us to find optimal solutions for small-scale instances
and evaluate the quality of matheuristics. Our matheuristics are based on decomposing the
problem into multiple sub-problems, resulting in faster running time for large-scale instances.
We conduct extensive computational experiments to assess the performance of these approaches
and present our findings.

Keywords: Arc routing problem; Hierarchical objective; Mixed-integer linear programming,
Matheuristic.

1. Introduction

The well-known Chinese Postman Problems (CPPs) are a special kind of Arc Routing Prob-
lems (ARPs), in which all roads should be traversed at least once by a single vehicle, assuming
unlimited capacity. [17, 19, 22]. While the CPPs can be solved in polynomial time [6, 10, 18],
most ARPs of interest are NP-hard. The readers are referred to [14] for recent results on ARPs.
In the CPP, road segments are assigned equal priorities. However, in practice, to optimise route
scheduling or improve service efficiency, road are usually categorised into classes based on their
importance [9, 25, 30, 31, 33, 34, 35, 38]. For instance, in disaster relief operations, routing
problems are crucial for tasks like delivering medical aid, transporting supplies, and distributing
food. The affected areas are categorized based on damage intensity, urgency of needs, and road
conditions.

The Hierarchical Chinese Postman Problem (HCPP) is an NP-hard variant of the CPP,
where edges are grouped into priority classes and a precedence relationship determines their
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traversal order. The objective is to find the shortest route that starts and ends at a depot (see
[16]). The Hierarchical Rural Postman Problems (HRPPs) are the generalization of the HCPP
where only a subset of road segments require a service (see [4, 12, 13]). Typical applications of
HCPPs and HRPPs include flame cutting, street cleaning, garbage collection, salt spreading,
and snow plowing (e.g., [4, 8, 16, 21, 24, 25, 28]).

While the precedence relationship is commonly encountered in real-life scenarios, there are
only a limited number of studies that specifically address ARPs incorporating service hierarchy.
Moreover, most research efforts have focused on the HCPPs and HRPPs assuming unlimited
vehicle capacity, which is unrealistic for real-world scenarios. However, constraints on vehicle
capacity are typically critical in various applications. For example, in snow removal, routes
must be planned to ensure that the total amount of de-icing materials loaded on a vehicle does
not exceed its capacity (see [3]).

In this study, we examine the Hierarchical Directed Capacitated Arc Routing Problem (HD-
CARP), which extends the HRPPs by incorporating practical aspects such as one-way road
segments, multiple vehicles, and capacity constraints. To be specific, the HDCARP aims to
determine a set of routes for a fleet of identical vehicles, subject to the following conditions: (i)
each vehicle must start and end its route at the depot; (ii) each required road must be serviced
exactly once; (iii) the total demand on each route must not exceed the vehicle capacity, and (iv)
the order in which the roads are serviced on each route must respect the specified precedence
relation.

The objective of the HDCARP is to first minimise the maximum completion time of the
first priority class, followed by the second priority class, and so on. The maximum completion
time of a class is defined as the minimum time required for all vehicles to complete servicing all
roads within that class. This objective is referred to as the hierarchical objective, as described in
[8, 30]. The hierarchical objective is particularly suitable for practical applications where roads
are categorized based on their priority. It ensures that roads with higher priority are serviced
before proceeding to lower priority roads. Therefore, this objective aligns with the concept of
precedence constraints.

There are two variants of precedence constraints studied in the literature. The predominant
focus is on the linear precedence relations, which establish a unique lexicographical ordering
for all classes within a route [8, 13, 16, 26, 30]. This variant arises when roads belonging
to a class can only be serviced after all higher priority roads have been successfully serviced.
Another variant of precedence constraints that has been studied in the literature is the general
precedence relations [16, 30]. In this variant, all roads of high-priority class must be serviced
before those of low-priority class. However, medium-priority roads are allowed to be serviced
before or after certain high-priority and low-priority roads. There are several studies [30, 39] in
the literature that do not impose precedence constraints between any pair of classes. Instead,
the ordering of classes is determined solely by the hierarchical objective. This is referred to as
class upgrading possibility, which is beneficial for improving the service quality of low priority
classes and reducing the total completion time. The linear precedence and upgrading possibility
have received more attention in the literature, primarily due to their practical applications and
relevance [32, 33, 34]. Consequently, we consider these variants in this paper.

This paper has several contributions. First, we explore the HDCARP, a new problem that
generalizes both the HCPPs and the HRPPs. We study both linear precedence constraints
and the upgrading possibility, resulting in two HDCARP variants. Second, we provide Mixed
Integer Linear Programming (MILP) formulations for both variants. We point out a special
case that is not adequately addressed by existing formulations in the literature on ARPs with a
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hierarchical objective. Additionally, we propose a new approach for expressing the hierarchical
objective. Third, we improve the computational time by developing efficient matheuristics
for both variants that decompose the original problem into several sub-problems. Finally, we
present some extensive computational results on randomly created instances.

The rest of the paper is structured as follows. Section 2 contains a brief literature review.
Section 3 provides a formal description and mathematical formulation for each HDCARP vari-
ant. Section 4 presents MILP-based matheuristics and Section 5 presents the computational
results. Finally, some conclusions and future research directions are given in Section 6.

2. Literature review

In this section, we briefly review the relevant literature. We discuss the HCPPs in Subsection
2.1, the HRPPs in Subsection 2.2, and other ARPs with hierarchical services in Subsection 2.3.

2.1. Hierarchical chinese postman problems

To our knowledge, the first paper that formally addressed the HCPP was Dror et al. [16].
The authors showed that the HCPP is generally NP-hard. However, when all subgraphs induced
by the classes are connected and the precedence relations are linear, the HCPP can be solved
in polynomial time, via a matching problem and a series of shortest path problems. Improved
versions of this algorithm, suitable for large-scale instances, was given in [21, 25, 37]. More
recently, Afanasev et al. [1] proved that the HCPP with connected classes is generally NP-
hard. The authors proposed a 5/3-approximation algorithm in polynomial time for the HCPP
with linear precedence relations.

Several algorithms have been proposed for the HCPP with linear precedence relations in
general cases. Lemieux and Gampagna [26] proposed a simple heuristic based on Euler circuits
for the case of two priority classes. Cabral et al. [8] converted the HCPP to the equivalent RPP
and applied branch-and-cut procedures to solve it. Çodur & Yılmaz [11] formulated the HCPP
as a MILP and proposed two metaheuristics based on genetic algorithm and hybrid simulated
annealing for large-scale instances. Damodaran et al. [15] used the optimal solution to the CPP
as a lower bound for the HCPP. The authors also proposed a heuristic algorithm to enhance
this lower bound within a short computational time.

Regarding directed graphs, Alfa and Liu [4] addressed the Directed HCPPs (HDCPPs) with
general precedence relations. They introduced a new constraint, requiring the service of a
higher priority class to be started and completed before that of a lower priority class. They
proposed a three-phase heuristic approach to address this problem, which involved connecting
classes, balancing non-symmetric nodes, and identifying feasible routes. A dynamic program-
ming algorithm was later presented in [20] for HDCPPs with general precedence relations and
class connectivity.

Perrier et al. [30] addressed the problem of Mixed Multi-vehicle HCPPs (m-HMCPP) with
class upgrading possibilities. The m-HMCPP is the generalisation of the HCPP where both
edges and arcs can be present, and multiple vehicles with unlimited capacity are available.
They first performed a graph transformation and then formulated the m-HMCPP as a MILP
model. The model was adaptable to incorporate additional constraints and different situations.
Furthermore, the authors introduced two constructive heuristics based on decomposing the
problem into sub-problems. For a more on the HCPPs, see the surveys [33, 34].
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2.2. Hierarchical rural postman problems

Quirion-Blais et al. [36] proposed an adaptive large neighborhood search metaheuristic for
the multi-vehicle HRPP with general precedence relations. The metaheuristic is suitable for
large-scale instances and can be customized to accommodate operational constraints.

The concept of the Hierarchical Mixed RPP (HMRPP) was introduced by Perrier et al. [29]
in 2006 and further studied in 2017 [12, 13, 35]. Comlombi et al. [12] proposed a mathematical
programming formulation, a matheuristic, and a Tabu Search for the HMRPP with linear
precedence relations. The matheuristic solves a series of Mixed Rural Postman Problems for
each class. Comlombi et al. [13] provided polyhedral results and introduced facet-inducing
inequalities based on the formulation in [12]. Quirion-Blais et al. [35] focused on the multi-
vehicle version and developed an adaptive large neighborhood metaheuristic.

2.3. Other ARPs with hiearchy services

Recently, Ahabchane et al. [2] introduced the Hierarchical Mixed Capacitated General Rout-
ing Problem (HMCGRP). The HMCGRP is a generalisation of the HMRPP in which both nodes
and edges may require service. Notably, this work is the first and only one in the literature
to consider capacity constraint and demand uncertainty. In their approach, road hierarchies
are modelled with time-dependent costs. For small-scale instances, a robust formulation with
graph transformation was developed, while for large-scale instances, a two-phase metaheuristic
based on simulated annealing and ruin-and-recreate strategies was proposed.

Paper Lexicographic Precedence Upgrading Multiple Capacity Data Graph
Objective Relation Allowed Vehicles Constraint Type Type

Dror et al. [16] - X - - - Deterministic (Un)Directed

Cabral et al. [8] X X - - - Deterministic Undirected

Comlombi et al. [12, 13] - X - - - Deterministic Mixed

Perrier et al. [30] X X X X - Deterministic Directed

Quirion-Blais et al. [36] X - X X - Deterministic Mixed

Quirion-Blais et al. [35] X X - X - Deterministic Mixed

Ahabchane et al. [2] - - X X X Uncertain Mixed

This paper X X X X X Deterministic Directed

Table 1: Synthesis of studies related to routing problems with service hierarchy.

Table 1 situates our research problem within the context of studies on the service hierarchy
in the ARP literature. We extend the research direction of [8, 12, 13, 16] by considering multiple
vehicles and capacity constraints. Our main objective is to analyze and compare the results of
our proposed algorithms to understand the computational difficulty of solving these variants.
This study is the first to report such results for capacitated ARPs with service hierarchy.

3. Mathematical formulations

In this section, we present the problems and mathematical formulations. First, in Subsection
3.1, we formally describe two HDCARP variants, along with notations, terminology and graph
transformation. Then, in Subsections 3.2 and 3.3, we present the mathematical formulations
for both variants.

3.1. Problem definition and graph transformation

We are given a strongly connected directed graph G = (V,A), where V is the vertex set,
and A is the set of (directed) arcs. The vertices are denoted by v0, v1, · · · , vn, and vertex v0
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is called the depot. This graph represents a road network, in which road junctions and key
landmarks are represented by vertices, one-way road segments are represented by arcs, and
two-way road segments are represented by a pair of directed arcs, one in each direction. We
are also given a set Ar ⊆ A of required arcs. We call Anr = A \ Ar the set of non-required
arcs. The set of required arcs Ar is partitioned into p pairwise disjoint classes A1

r , A
2
r , · · · , A

p
r

(Ar = A1
r ∪A2

r ∪ ...∪A
p
r , and Ah

r ∩Ak
r = ∅ for h 6= k and h, k ∈ {1, 2, · · · , p}). For convenience,

we denote P = {1, 2, · · · , p}. Let V k
t be the set of tail vertices of arcs Ak

r for each k ∈ P . Let
Vt denote V 1

t ∪ V 2
t ∪ ... ∪ V

p
t .

Figure 1 illustrates the concept of classes and notations. Required and non-required arcs
are drawn by thick solid and dashed lines, respectively. The class numbers are indicated on
the required arcs. Nodes in Vt are represented by hollow circles. One can check that V 1

t =
{v0, v2, v3, v4}, V 2

t = {v1}, and V 3
t = {v3, v4}.

v3

v2 v4

v1

v5v0

1

1

1

1

3

3
2

Figure 1: Graph G with priority classes

Each arc ai ∈ A has a positive traversal time di. Each required arc ai ∈ AR is associated
with a positive demand qi, servicing time si, and priority level pi. A fleet of identical vehicles
M is located at the depot, each with positive capacity Q. Hence, the load of each vehicle must
not exceed Q at any time. In the HDCARP, a vehicle must depart from the depot, service some
required arcs while respecting the capacity constraint, the linear precedence relations between
classes, and must return to the depot. Each required arc must be serviced by exactly one
vehicle. Traversing an arc without servicing is called deadheading.

In this article, we consider both linear precedence relations and class upgrading possibility
resulting in two variants of the HDCARP, called the HDCARP-P and HDCARP-U, respectively.
(The ”-P” suffix recalls the original HDCARP with linear precedence relations, whereas the ”-U”
suffix is to remind us of class upgrading possibility). The only difference between two variants
is whether low priority arcs is allowed to be served before higher priority arcs. Specifically, in
the HDCARP-P, arcs in class k can only be traversed after completing the service of all arcs
in class k − 1. In contrast, in the HDCARP-U, vehicles can traverse arcs in class k before
completing the service of all arcs in class k − 1.
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We now consider the HDCARP instance shown in Figure 1. Assume that each arc has a
unit traversal time, each required arc has a unit servicing time and a unit demand, and two
identical vehicles are located at v0 with a capacity of Q = 4. Let’s examine a feasible solution
for the HDCARP-P shown in Figure 2(a). The first route serves three required arcs of class
1, while the second route sequentially serves remaining required arcs according to the linear
precedence relations. The completion time for class 1 is 4 on route 1 and 2 on route 2, resulting
in a maximum completion time of 4 for class 1. Similarly, one can check that the maximum
completion times for class 2 and 3 are 4, and 6, respectively. Note that this solution is also
feasible for the HDCARP-U. Figure 2(b) illustrates another feasible solution for the HDCARP-
U, where the required arc in class 2 is serviced before the one in class 1 in route 1. It can be
verified that the maximum completion times of class 1, 2, and 3 are 4, 3, and 5, respectively. If
upgrades are permitted, the solution shown in Figure 2(b) is considered better than the solution
in Figure 2(a) in terms of completing classes at the earliest possible time (and the total time).
However, the solution in Figure 2(b) is infeasible for the HDCARP-P.

This suggests that the HDCARP-U can improve the maximum completion time of each class
in the HDCARP-P’s solution, especially if the majority of time is spent deadheading. This is
further confirmed in Section 5. However, the main drawback of the HDCARP-U is the unknown
order in which classes are traversed on each route, making it more challenging to solve.

We consider the hierarchical objective for both HDCARP-P and HDCARP-U. A common
way to express this objective in the literature is the weighted sum of the maximum completion
times of each priority class [8, 13, 35, 36]. In other words, the weighted sum

∑p
k=1MkTk is

minimised, where Tk is the maximum completion time of the class k, andMk are coefficients such
that M1 �M2 � ...�Mp. It can be seen that handling the large constants Mk (k ∈ P ) in the
objective function can be difficult as often happening in integer programming. To get around
this issue, we use the lexicographic optimization approach to model the hierarchical objective.
Simply put, the approach starts with the minimization of the first objective, then among the
possible optima minimises the second objective and so on, until all p objective functions are
minimised. We call sequence (T1, · · · , Tp) the maximum completion time sequence. To compare
any two solutions, we use the lexicographic order to compare their maximum completion time
sequences. More precisely, the solution is considered better if the first different element in its
maximum completion time sequence is smaller.

When dealing with the HDCARPs, we observe special cases where a low priority class may
have a shorter maximum completion time than a higher priotiry class. These could happen in
both non-upgrade and upgrade variants. However, these cases are excluded in any formulation
for multiple-vehicle HCPPs or HRPPs in the literature. For example, the ones in [30, 35] defined
that T1 ≤ T2 ≤ · · · ≤ Tp.

These special cases are best illustrated through the following HDCARP instance shown in
Figure 1. Now consider a feasible solution of the HDCARP-P in Figure 3. One can check that
T1 = 4, T2 = 3 and T3 = 5. It is clear that T2 < T1 even though class 2 has a lower priority
than class 1. We would like to highlight that our MILP formulations and matheuristics are
capable of capturing and addressing such special cases.

For what follows, it is helpful to define an auxiliary directed multigraph, which we denote
by G′ = (V ′, A′). Our transformation is inspired by the one in [30] where a “dummy” vertex
is introduced to ensure connectivity between classes on each route. However, we propose a
slightly different way to transform graph G to the sparser multigraph and utilise the dummy
node to address the special cases, which will become clear.

The multigraph is constructed as follows: Initially, G′ = (V ′, A′) is a duplicate of G. Then,
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v0

v0

Route 2:

Route 1:

v2

v2 v3 v1 v0

v4 v3 v1 v4 v3 v1 v0

1 1 1

1 2 3 3

a, A feasible solution for the HDCARP-P

v0

v0

Route 2:

Route 1:

v2

v2 v3 v1 v0

v4 v3 v1 v4 v1 v0

1 1 1

1 3

2

3

b, A feasible solution for the HDCARP-U

Figure 2: Feasible solutions for the HDCARP instances in Figure 1a.

v0

v0

Route 2:

Route 1:

v2

v2 v4 v1 v0

v3 v1 v4 v3 v1 v0

1 1 1

1 332

Figure 3: A feasible solution for the HDCARP-P instances in Figure 1b.

we add a dummy node v′0 to the node set V ′ (V ′ = {v′0} ∪ V ). This dummy node serves as
an intermediate node when transitioning between different classes on each route. For instance,
when a vehicle completes the service of certain required arcs in class k ∈ P , it is required
to visit node v′0 before starting the service of required arcs in another class k′ ∈ P (k′ 6= k).
Moreover, the node visited immediately after v′0 must be the same as the node visited right
before v′0. Every vehicle must make a visit to v′0 both before departing from the depot and after
completing the service of the last required arcs on its assigned route.

Next, we construct two sets of dummy arcs Af and At. For each vertex v ∈ Vt ∪ {v0}, we
add the arcs {v, v′0} and {v′0, v} to At and Af , respectively. These arcs have zero traversal time.
Finally, for each arc a ∈ Af ∪At, we add arc a to A′. In other words, A′ = A ∪Af ∪At, which
means |A′| = |A|+ 2|Vt|+ 2.

Figure 4 represents how the above-mentioned transformation works for the graph G in
Figure 1, with dummy arcs represented as dotted lines. Furthermore, Figure 5(a) and 5(b)
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show the routes in G′ corresponding to the feasible solution of the HDCARP-P in Figure 2(a)
and the feasible solution of the HDCARP-U in Figure 2(b), respectively.

v3

v2 v4

v1

v5v0

v′0

Figure 4: Auxiliary directed multigraph G′ for the HDCARP instance in Figure 1

For convenience, we use some additional notations. Given a set S ⊆ V ′, A(S) denotes the
set of arcs with both end-nodes in S, and δ(S) denotes the set of arcs with exactly one end-node
in S. We denote δ+(S) and δ−(S) as the sets of arcs in G′ leaving and entering S, respectively.
Let’s denote Ar(S) as A(S) ∩ Ar, and similarly for δr(S), δ+r (S), and δ−r (S). For each class
k ∈ {1, 2, · · · , p}, we also let Ak

r (S) denote A(S) ∩ Ak
r , and similarly for δkr (S), δ+k

r (S) and
δ−kr (S). For simplicity, we sometimes write δ(v) instead of δ({v}). We also write δk(S), δ+k (S),
and δ−k (S) instead of δkr (S), δ+k

r (S), and δ−kr (S), respectively.

3.2. MILP model for the HDCARP-P

Our MILP model uses the following variables:

• Binary variables xma indicate whether vehicle m ∈M services arc a ∈ Ar.

• Integer variables ymak count the number of times vehicle m ∈ M deadheads through arc
a ∈ A′ in class k ∈ P in its chosen path.

• Non-negative real variables tmk represent the service completion time of class k ∈ P on
route m ∈M (assigned to vehicle m).

• Binary variables rmk indicate whether vehicle m ∈ M services any required arcs in class
k ∈ P .

• A non-negative real variable Tk represent the service completion time of class k ∈ P .

The MILP is then as follows:

lex-min
k=1,...,p

Tk (1)

subject to Tk ≥ tmk −N(1− rmk ) m ∈M ; k ∈ P (2)
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v0
Route 2:

Route 1:

v
′
0

v
′
0

v2

v0 v2

v4 v
′
0

v3

v4

v1

v3

v0

v1 v
′
0 v1

v
′
0

v4 v3 v
′
0

1 1 1

1 2 3 3

(a) The routes in G′ corresponding to the solution in Figure 2(a).

v0
Route 2:

Route 1:

v
′
0

v
′
0

v2

v0 v2

v4 v
′
0

v3

v4

v1

v3

v
′
0

v1 v4 v′0

v1 v0 v′0

1 1 2 1

1 3 3

(b) The routes in G′ corresponding to the solution in Figure 2(b).

Figure 5: An illustration of routes in G′

tmk = tmk−1 +
∑
a∈Ak

r

sax
m
a +

∑
a∈A

day
m
ak m ∈M ; k ∈ P (3)

tm0 = 0 m ∈M (4)∑
a∈Ak

r

xma ≤ |Akr |rmk m ∈M ; k ∈ P (5)

ym{v′0,v0}1 = 1 m ∈M (6)∑
a∈Af

ymak = 1 m ∈M ; k ∈ P (7)

ym{v′0,vi}k = ym{vi,v′0}k−1 m ∈M ; k ∈ P \ {1}; vi ∈
k−1⋃
h=1

V h
t ∪ {v0} (8)∑

m∈M

xma = 1 k ∈ P ; a ∈ Akr (9)

p∑
k=1

∑
a∈Ak

r

qax
m
a ≤ Q m ∈M (10)

∑
a∈δ+

k
(vi)

xma +
∑

a∈δ+(vi)

ymak =
∑

a∈δ−
k

(vi)

xma +
∑

a∈δ−(vi)

ymak m ∈M ; k ∈ P ; vi ∈ V ′ (11)

∑
a∈δ+

k
(S)

xma +
∑

a∈δ+(S)

ymak ≥ xmb m ∈M ; k ∈ P ;S ⊆ V \ {v0};∀b ∈ Akr (S) (12)

xma ∈ {0, 1} m ∈M ; k ∈ P ; a ∈ Akr (13)

ymak ∈ N m ∈M ; k ∈ P ; a ∈ A′ (14)

tmk ∈ R+ m ∈M ; k ∈ P (15)

rmk ∈ {0, 1} m ∈M ; k ∈ P (16)

Tk ∈ R+ k ∈ P (17)
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The objective function (1) represents the hierarchical objective, while constraints (2) ensure
that the maximum completion time of class k is greater than or equal to the completion time
of that class on any route. Here, N is a suitably large number. Constraints (3) and (4) are
time-conservation constraints, ensuring route connectivity. Constraints (5) limit the number of
arcs in class k that can be serviced on each route. Constraints (6), (7), and (8) define class
transitions on each route using node v′0. Constraints (9) and (10) guarantee that each required
arc is serviced exactly once and that vehicle capacity is not exceeded. Constraints (11) ensure
that the number of times a vehicle departs from a node is equal to the number of times it
arrives at that node for each class. Constraints (12) state that if route m services arc b, it must
traverse any arc cutset that separates b from the depot. The remaining constraints define the
domains of the variables.

3.3. MILP model for the HDCARP-U

In the HDCARP-U, where class upgrading is allowed, the specific order in which classes are
traversed within each route is unknown. To address this, we introduce the concept of hierarchy
level. The hierarchy level indicates the completion of a class’s service within each route. This
concept is illustrated in Figure 2(b). In route 1, three required arcs {v0, v2}, {v2, v3}, and
{v3, v1} are in hierarchy level 1, marking the service completion of class 2. The required arc
{v1, v0} is in hierarchy level 2, marking the service completion of class 1. Hierarchy level 3
does not have any required arcs. Similarly, in route 2, hierarchy levels 1 and 2 indicate the
completion of servicing classes 1 and 3, respectively, while hierarchy level 3 does not contain
any required arcs. It’s important to note that in each route, the number of hierarchy levels is
equal to the number of classes, including the possibility of empty sets. To represent transitions
between hierarchy levels, we use the dummy node v′0. To avoid confusion, we use the notation
h to represent the hierarchy level and k to represent the class.

The MILP model for the HDCARP-U, similar to HDCARP-P, makes use of five variable
types: x, r, y, t, and T . While the definitions of the last variable type remain unchanged, the
first four variable types have been redefined as follows:

• Binary variables xmah indicate whether vehicle m ∈M services the required arc a ∈ Ar in
hierarchy level h ∈ P .

• Integer variables ymah count the number of times vehicle m ∈ M deadheads through arc
a ∈ A′ in hierarchy level h ∈ P in its chosen path.

• Non-negative real variables tmh represent the time at which vehicle m ∈ M completes
servicing all required arcs in hierarchy level h ∈ P .

• Binary variables rmkh indicate whether hierarchy h ∈ P contains any required arcs in class
k on route m ∈M (assigned to vehicle m).

The MILP model for the HDCARP-U is described as follows:

lex-min
k=1,...,p

Tk (18)

subject to Tk ≥ tmh −N(1− rmkh) m ∈M ;h, k ∈ P (19)

tmh = tmh−1 +
∑
a∈Ar

sax
m
ah +

∑
a∈A

day
m
ah m ∈M ;h ∈ P (20)

tm0 = 0 m ∈M (21)
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∑
a∈Ak

r

xmah ≤ |Akr |rmkh m ∈M ;h, k ∈ P (22)

ym{v′0,v0}1 = 1 m ∈M (23)∑
a∈Af

ymah = 1 m ∈M ;h ∈ P (24)

ym{v′0,vi}h = ym{vi,v′0}h−1 m ∈M ;h ∈ P \ {1}; vi ∈ Vt ∪ {v0} (25)∑
m∈M

p∑
h=1

xmah = 1 a ∈ Ar (26)

p∑
h=1

∑
a∈Ar

qax
m
ah ≤ Q m ∈M (27)

∑
a∈δ+r (vi)

xmah +
∑

a∈δ+(vi)

ymah =
∑

a∈δ−r (vi)

xmah +
∑

a∈δ−(vi)

ymah m ∈M ;h ∈ P ; vi ∈ V ′ (28)

∑
a∈δ+r (S)

xmah +
∑

a∈δ+(S)

ymah ≥ xmbh m ∈M ;h ∈ P ;S ⊆ V \ {v0}; ∀b ∈ Ar(S) (29)

xmah ∈ {0, 1} m ∈M ;h ∈ P ; a ∈ Ar (30)

ymah ∈ N m ∈M ;h ∈ P ; a ∈ A′ (31)

tmh ∈ R+ m ∈M ;h ∈ P (32)

rmkh ∈ {0, 1} m ∈M ;h, k ∈ P (33)

Tk ∈ R+ k ∈ P (34)

Constraints (19) ensure that the maximum completion time of a class is greater than or
equal to the completion time of any hierarchy level on any route that includes at least one
required arc of that class. Constraints (20), (26), and (29) are analogous to constraints (3), (9),
and (12) of the HDCARP-P model, respectively, with the exception that required arcs can be
serviced at any hierarchy level. Constraints (22) limit the maximum number of required arcs of
class k that can be serviced in a single hierarchy level on each route. The remaining constraints
and objective function are straightforward and therefore we omit it for brevity.

Since the HDCARP-U is an upgraded version of HDCARP-P, any feasible solution for the
HDCARP-U is also feasible for the HDCARP-P. Therefore, the optimal maximum comple-
tion time sequence of the HDCARP-U is considered to be lexicographically better to that of
the HDCARP-P. However, solving the HDCARP-U model can be more challenging and time-
consuming due to the larger solution space.

3.4. Branch-and-cut algorithms

We develop branch-and-cut algorithms to solve the MILP formulations. In our algorithms,
the models are first solved without the connectivity constraints ((12) for the HDCARP-P and
(29 for the HDCARP-U). We proceed by searching for violated connectivity inequalities. Any
violated constraints are then included in the current MILP, which is subsequently reoptimised.
This process is repeated until all the connectivity constraints are satisfied. If there are frac-
tional variables, we branch to generate two new sub-problems. If all the variables are integer,
we explore another sub-problem. In order to identify violated connectivity inequalities, both
heuristic and exact procedures can be used. Though exact method can be done by solving
min-cut problems, it is quite time consuming as shown in [23]. Hence, a simple heuristic is
developed that first computes the connected components, then defines the connectivity con-
straints for each component. For more details about the approach to handle the connectivity
constraints, we refer the reader to [23].
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Our branch-and-cut algorithms are built around CPLEX 12.10 with the Concert Technology
library. We turn off all CPLEX solver’s cuts and set all the CPLEX parameters to their default
values.

4. MILP-based matheuristics

In this section, we propose matheuristics for both variants based on MILPs. These matheuris-
tics are specially tailored to provide good solutions within a reasonable time limit. The details
are outlined in Algorithm 1. The idea is to decompose the original problems into p sub-
problems, each focused on constructing partial routes for a subset of Ar. The kth sub-problem
(k ∈ {1, · · · , p}) keeps track of the flow of time tmk and the remaining capacity lmk for each
vehicle m ∈ M . These values are subsequently used in the (k + 1)th sub-problem. Each sub-
problem consists of two objective functions, prioritised as follows: (1) Minimise the maximum
duration of partial routes, and (2) Minimise the total duration of the partial routes. The second
objective is introduced with the aim of potentially decreasing the value of the primary objective
for the subsequent sub-problem.

This approach offers the advantage of reducing the problem size so that it can be tackled
more easily and quickly. The sub-problems and their MILP formulation are described in the
subsequent subsections.

Algorithm 1 MILP-based matheuristic

Set tm0 = lm0 = 0 for all m ∈M
for k = 1, · · · , p do

Set up the MILP the kth sub-problem
Solve the MILP with the branch-and-cut algorithm in Section 3.4
Update tmk and lmk for all m ∈M
Update Tk

end
output: Tk for all k ∈ P

4.1. Sub-problems for the HDCARP-P

The HDCARP-P is decomposed into p sub-problems, each aimed at finding a set of partial
routes for |M | vehicles to service each class. Specifically, let’s consider the scenario where k− 1
sub-problems have already been solved (1 ≤ k ≤ p), and |M | partial routes have been created
for |M | vehicles to service all required arcs in A1

r ∪ · · ·Ak−1
r . Assuming each partial route m

takes tk−1m units of time, vehicle m is currently at node vk−1m with a load of lk−1m . The goal of the
kth sub-problem is to identify a set of |M | new partial routes that service each required arc in
Ak

r exactly once, while satisfying the following conditions: (1) The partial route for vehicle m
must begin from node vk−1m , and (2) The total load of the partial route for vehicle m must not
exceed the maximum remaining load capacity, which is Q− lk−1m . These new partial routes are
then connected to the existing ones based on linear precedence relations. As mentioned earlier,
this sub-problem consists of two objective functions. The primary objective is to minimise the
service completion time Tk for class k, while the secondary objective is to minimise the total
travelling time of the partial routes (

∑
m∈M tkm).

Figure 6 shows the solutions for two sub-problems of the HDCARP instance in Figure 1.
Figure 6(a) illustrates one feasible solution for the first sub-problem. It consists of two partial
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routes assigned to two vehicles, servicing required arcs in class 1. The first vehicle is currently
located at node v4 after t11 = 2 units of time, carrying a load of l11 = 1 unit. The second
vehicle returns to node v0 after t21 = 4 units of time, carrying a load of l21 = 3 units. Figure
6(b) presents a solution after solving the first two sub-problems for class 1 and 2. The single
required arc in the second class is serviced by the first vehicle. After an additional two units of
time (t12 = 4), the first vehicle is currently located at node v1 and carries a demand of l12 = 2
units.

v0

v0

l11 = 1

l21 = 3

Route 1:

Route 2:

v2

v2 v3 v1

v11 ≡ v4

v21 ≡ v0

1 1 1

1

a, Two partial routes after solving 1st sub-problem for A1
r

v0

v0

l12 = 2

l22 = 3

Route 1:

Route 2:

v2 v3 v12 = v1

2

v2 v3 v1

v4

v22 ≡ v0
b, Two partial routes obtained after solving two sub-problems for A1

r ∪A2
r

Figure 6: An illustration of sub-problems for the HDCARP-P instance in Figure 1.

We will now present the MILP formulation for the kth sub-problem, using the same notation
as in the MILP model for the HDCARP-P described in Section 3.2 for consistency. However,
since in the kth sub-problem only arcs in Ak

r are required to be serviced, we will omit the ”class”
index from the variables y, t, and r for simplicity. Specifically, the MILP model for the kth
sub-problem uses the following variables:

• For a ∈ Ak
r and m ∈ M , let xma ∈ {0, 1} be a variable indicating whether vehicle m

services arc a.

• For a ∈ A′ and m ∈ M , let yma ∈ Z+ be a variable representing the number of times
vehicle m deadheads the arc a.

• For m ∈ M , let rm ∈ {0, 1} be a variable indicating whether vehicle m services any arc
in Ak

r .

• For m ∈M , let tmk ∈ R+ represent the partial route duration for vehicle m.

• Let Tk ∈ R+ be a variable representing the maximum completion time of class k.
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The MILP for the kth sub-problem is as follows:

lex-min Tk,
∑
m∈M

tmk (35)

subject to Tk ≥ tmk −N(1− rm) m ∈M (36)

tmk = tmk−1 +
∑
a∈Ak

r

sax
m
a +

∑
a∈A

day
m
a m ∈M (37)

∑
a∈Ak

r

xma ≤ |Akr |rm m ∈M (38)

ym{v′0,vkm},k+1 = 1 m ∈M (39)∑
a∈Af

yma = 1 m ∈M (40)

∑
m∈M

xma = 1 a ∈ Akr (41)

∑
a∈Ak

r

qax
m
a ≤ Q− lmk m ∈M (42)

∑
a∈δ+

k
(v)

xma +
∑

a∈δ+(v)

yma =
∑

a∈δ−
k

(v)

xma +
∑

a∈δ−(v)

yma m ∈M, v ∈ V ′ (43)

∑
a∈δ+

k
(S)

xma +
∑

a∈δ+(S)

yma ≥ xmb m ∈M,S ⊆ V \ {0}, b ∈ Akr (S) (44)

xma ∈ {0, 1} m ∈M,a ∈ Akr (45)

yma ∈ N m ∈M,a ∈ A′ (46)

tmk ∈ R+ m ∈M (47)

rm ∈ {0, 1} m ∈M (48)

Tk ∈ R+ (49)

The objective function (35) minimises the maximum completion time of class k and then
minimises the total duration of the partial routes. Constraints (36) and (37) define the max-
imum completion time of class k and the completion time of class k on route m. Constraints
(39-40) ensure that each vehicle continues its route from node vkm. Constraints (42) ensure that
the remaining capacity of the vehicles is not exceeded. The remaining constraints are trivial.

It can be observed that the MILP formulation for the kth subproblem contains only |M |(|Ak
r |+

|A| + 2|Vt| + p + 3) + 1 variables, while the MILP formulation for the HDCARP-P in Section

3.2 has nearly p times the number of variables, specifically |M |
(
|Ar| + p(|A| + 2|Vt| + 4)

)
+ p

variables. Moreover, the subproblem objective has 2 hierarchical levels, while the HDCARP-P
objective has k hierarchical levels. This suggests that the proposed matheuristic, denoted as
MB1, is expected to be faster than solving optimally the MILP formulation for the HDCARP-P,
especially when p is large.

It is worth noting that each sub-problem may have different optimal solutions, but due to
the time restriction, only one solution is used to generate the solution for the original problem.

4.2. Sub-problems for the HDCARP-U

Similarly, the HDCARP-U is decomposed into p sub-problems. However, unlike in the
HDCARP-P, we cannot treat each class separately in the HDCARP-U, as the order of classes
on each route is unknown. Therefore, we need to redefine p − 1 sub-problems, except for the
first one. The resulting matheuristic is denoted as MB2-U.
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Consider the scenario where k − 1 sub-problems have been solved (1 ≤ k ≤ p), and all |M |
vehicles have successfully completed servicing the required arcs from classes 1 to k− 1. At this
stage, we have detailed information about the assignment of required arcs to hierarchy levels
on each route. For each vehicle m ∈M and each hierarchy level 1 ≤ h ≤ k− 1, let Ahm

r denote
the set of required arcs serviced by vehicle m in hierarchy level h. Additionally, we also know
the completion time of hierarchy level h on route m (assigned to vehicle m), denoted as tmh ,
and the current load of each vehicle m at time tmh , denoted as lmh . We define the maximum
completion time of hierarchy level h across all routes as Ch, given by Ch = maxm∈M{tmh }.

The kth sub-problem aims to determine a set of |M | partial routes that serve classes from 1
to k. This is subject to several conditions. Firstly, the total load of each partial route must not
exceed the vehicle capacity. Secondly, the hierarchy levels and routes assigned to the required
arcs from classes 1 to k − 1 remain unchanged. Thirdly, for 1 ≤ h ≤ k − 1, the maximum
completion time of hierarchy level h on each route should not exceed Ch. The first condition is
straightforward. The second condition ensures that hierarchy level k marks the completion of
class k on every route, even though some required arcs in class k are allowed to be serviced at any
hierarchy level between 1 and k− 1. This restriction may increase the value of the hierarchical
objective, but it significantly reduces the solution space, thereby improving the running time
of MB2-U. Additionally, the third constraint is introduced to achieve the hierarchical objective
of the HDCARP-U.

It can be seen that the kth sub-problem not only assigns the required arcs in class k to
the existing partial routes but also provides flexibility in rearranging the order of required arcs
within each class on existing partial routes. Similar to the HDCARP-P, this sub-problem has
two objective functions. The primary objective is to minimise the maximum completion time
Tk for class k, while the secondary objective is to minimise the total travel time of the partial
routes.

Figure 7 shows the solutions for two sub-problems of the HDCARP instance in Figure 1.
Figure 7(a) presents one feasible solution after solving the second sub-problem. It contains two
partial routes servicing all required arcs in A1

r ∪ A2
r . The first partial route currently ends at

node v0 and carries a load of l12 = 3 after t11 = 4, while the second partial route ends at node
v1 and carries a load of l22 = 2 after t21 = 4. In this solution, the completion time for both
class 1 and class 2 is 4 or T1 = T2 = 4. Figure 7(b) illustrates one feasible solution for the
third sub-problem. By servicing the required arc v4, v3 of class 3 before class 2, the maximum
completion time of class 3 is only 5, while the maximum completion time of class 2 remains the
same.

Before presenting the formulation, let us introduce some variables.

• For h ∈ {1, · · · , k}, m ∈ M , and a ∈ A1
r ∪ · · · ∪ Ak

r , let xmah ∈ {0, 1} be a variable taking
value of 1 if and only if vehicle m serves the required arc a in hierarchy h.

• For h ∈ {1, · · · , k}, m ∈ M , and a ∈ A, let ymah be a variable representing the number of
times that vehicle m deadheads the arc a in hierarchy h.

• For m ∈ M and h ∈ {1, · · · , k}, let tmh be a variable representing the time at which the
vehicle m finishes servicing required arcs in hierarchy h.

• For m ∈ M , let rm ∈ {0, 1} be a variable indicating whether vehicle m services any arc
in class k.

The formulation of sub-problem k is then as follow:
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v0

v0

l12 = 3

l22 = 2

Route 1:

Route 2:

v2

v2 v4 v3 v1

v3 v1 v0

1

1 2

1 1

a, Two partial routes after solving the second sub-problem

v0

v0

l12 = 3

l22 = 4

Route 1:

Route 2:

v2

v2 v4 v3 v1 v4

v3 v1 v0

1

1 23 3

1 1

b, Two partial routes obtained after solving the third sub-problem

Figure 7: An illustration of sub-problems for the HDCARP-U instance in Figure 1.

lex-min T k,
∑
m∈M

tmk (50)

subject to
∑
a∈Ak

r

xmak ≤ |Akr |rm m ∈M (51)

T k ≥ tmk −N(1− rm) m ∈M (52)

Ch ≥ tmh m ∈M ;h = 1, ..., k − 1 (53)

xmah = 1 m ∈M ;h = 1, ..., k − 1; a ∈ Ahmr (54)

tmh+1 − tmh =
∑

a∈Ah+1,m
r

sa +
∑
a∈Ak

r

sax
m
a,h+1 +

∑
a∈A

day
m
a,h+1 m ∈M ;h = 1, ..., k − 1 (55)

ym(v′0v0)1 = 1 m ∈M (56)∑
a∈Af

ymah = 1 m ∈M ;h = 1, ..., k − 1 (57)

ym{v′0,vi},h+1 = ym{vi,v′0},h m ∈M ;h = 1, ..., k − 1; vi ∈ Vt ∪ {v0} (58)∑
m∈M

k∑
h=1

xmah = 1 a ∈ Akr (59)

k∑
h=1

∑
a∈Ak

r

qax
m
ah ≤ Q− lmk−1 m ∈M (60)

∑
a∈δ+r (v)

xmah +
∑

a∈δ+(v)

ymah =
∑

a∈δ−r (v)

xmah +
∑

a∈δ−(v)

ymah m ∈M ;h = 1, ..., k; v ∈ V ′ (61)

∑
a∈δ+r (S)

xmah +
∑

a∈δ+(S)

ymah ≥ xmbk m ∈M ;h = 1, ..., k;S ⊆ V \ {v0}; b ∈ Ar(S) (62)

xmah ∈ {0, 1} m ∈M ;h = 1, ..., k; a ∈ Ar (63)
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ymah ∈ N m ∈M ;h = 1, ..., k; a ∈ A′ (64)

tmh ∈ R+ m ∈M ;h = 1, ..., k (65)

rm ∈ {0, 1} m ∈M (66)

T k+1 ∈ R+ (67)

Constraints (51) indicate whether route m services any required arcs in class k. If this is
the case, constraints (52) define the maximum completion time of class k. Constraints (53) set
an upper bound on the servicing time of each vehicle for each hierarchy level from 1 to k − 1.
Constraints (54) guarantee that required arcs in Ahm

r must be serviced in hierarchy h by vehicle
m. Constraints (55) define the completion time of hierarchy level h+ 1 (1 ≤ h ≤ k− 1) on each

route, given that the set Ah+1,m
r could be extended by including some required arcs in Ak

r . The
objective function and the remaining constraints are trivial.

The MB2-U matheursitic can be adapted to the HDCARP-P by omitting the secondary
objective in each sub-problem. Due to the linear precedence relations in the HDCARP-P, we
do not allow the required arcs of class k to be serviced in any hierarchy h ≤ k−1. To do so, we
simply modify the range of hierarchy levels considered in constraints (55) and (59) in the MILP
formulations. Furthermore, after solving the k − 1 sub-problems, we only need to track which
required arcs of class k−1 were serviced on which routes, rather than all classes from 1 to k−1.
Subsequently, the kth sub-problem aims to assign required arcs of class k to existing partial
routes while allowing required arcs of class k − 1 to be rearranged. This approach reduces the
deadheading time connecting class k − 1 and class k, potentially resulting in a reduction in T k

while keeping T k−1 unchanged. The resulting methodology is referred to as MB2-R.

5. Computational Experiments

In this section, we present the results of some computational experiments. To fairly compare
the performance of the different approaches, we set the time limit of an hour for solving the
full MILP-U or MILP-R models in one pass, and 10 minutes for solving each sub-problem
in matheuristic MB1 or MB2 for every instances. For all of our computational experiments,
we used a laptop with an AMD Ryzen 7 3700X Processor at 3.6GHz with 32GB RAM. All
algorithms were implemented in C/C++.

5.1. Instance generation

Now, we explain how we created our artificial HDCARP instances to closely imitate real
road network structures. Note that road networks are often planar and, even if not, they could
be made planar by deleting a very small number of road segments. In most of planar road
networks, the average number of road segments incident to each node usually ranges from 1.5
to 3 [7, 6]. Moreover, distances in road network can be reasonably approximated by multiplying
Euclidean distances with a suitable constant [5].

Our procedure to construct the graph G = (V,A) is inspired by methods introduced in
[23, 27], as follows:

• We generate randomly n vertices inside a unit square, where n is a multiple of 10 between
10 and 100. We denote the set of these vertices by V . These vertices have known
coordinates. The first vertex is set to be the depot.

• Then, we construct the minimum Hamiltonian circuit passing through each node exactly
once. We add all arcs in the giant circuit to the set A according to the direction in which
they are traversed. The resulting graph G is now strongly connected.
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• Additional arcs are introduced randomly into the graph following these conditions: (1)
The total number of arcs is equal to nd (|A| = nd), where d ∈ {1.5, 2, 2.5, 3} represents
the average number of arcs incident on each node in graph G; (2) The length of the added
arcs are not excessively long; (3) None of the arcs intersect or cross each other.

• For each combination of n and d, five different version of graphs were generated.

• The arc set A is randomly divided into four separate sets: A1
r , A

2
r , A

3
r , and Anr. Each

of the first three sets contains
⌊
|A|
4

⌋
required arcs and corresponds to priority classes.

The last set, Anr, consists of non-required arcs. This means Ar = A1
r ∪ A2

r ∪ A3
r and

P = {1, 2, 3}.

• The cost of each arc a is calculated as the Euclidean distance multiplied by a constant
factor of 100. This cost is denoted as tCosta.

• The deadheading cost da of each arc a ∈ A is set as max 1, [tCosta + 0.5] to ensure it is
always at least 1, regardless of the value of tCosta.

each arc a ∈ Ar, its demand qa is calculated as bda × 0.5 + 0.5c, and its servicing cost sa
is set to twice its deadheading cost, i.e., sa = 2da.

• There are 3 homogeneous vehicles with capacity Q =
∑

a∈Ar qa/3 + 0.5, based at a depot.

We name the created instances in the form harp-n-m i, where n is the number of vertices,
m is the number of arcs, and i(= 1, ..., 5) is the instance’s version. For example, harp-50-75 2
shows the second instance with 50 vertices and 75 arcs. Detailed benchmark instances and
results of our experiments are available at http://orlab.com.vn/home/download.

5.2. Experimental results on the small instances

Instance MILP-R MB1 MB2-R
|V| |A| #opt Gap Time B E W Time B E W BMB1 EMB1 WMB1 Time

10 15 5 0.00 0.13 0 4 1 0.18 0 4 1 0 5 0 0.08
10 20 5 0.00 0.28 0 2 3 0.19 0 3 2 1 4 0 0.10
10 25 5 0.00 0.52 0 2 3 0.20 0 3 2 1 4 0 0.11
10 30 5 0.00 1.26 0 3 2 0.18 0 2 3 1 1 3 0.13
20 30 5 0.00 0.82 0 1 4 0.20 0 2 3 1 1 3 0.12
20 40 5 0.00 2.93 0 4 1 0.25 0 3 2 0 4 1 0.18
20 50 5 0.00 6.15 0 3 2 0.29 0 4 1 1 3 1 0.27
20 60 5 0.00 77.20 0 5 0 0.45 0 4 1 0 4 1 0.49
30 45 5 0.00 1.65 0 3 2 0.24 0 3 2 0 4 1 0.16
30 60 5 0.00 7.36 0 4 1 0.35 0 1 4 0 2 3 0.33
30 75 5 0.00 120.15 0 4 1 0.87 0 3 2 1 3 1 0.88
30 90 4 0.30 949.25 1 0 4 10.58 1 1 3 2 2 1 6.64
40 60 5 0.00 8.50 0 3 2 0.33 0 3 2 1 4 0 0.26
40 80 5 0.00 69.93 0 3 2 0.66 0 4 1 1 4 0 0.78
40 100 3 0.59 1943.27 0 5 0 7.52 0 4 1 0 4 1 5.38
40 120 1 2.89 3594.37 3 0 2 75.39 2 1 2 2 0 3 44.50
50 75 5 0.00 17.86 0 2 3 0.46 0 2 3 0 5 0 0.44
50 100 5 0.00 220.37 0 1 4 1.79 0 1 4 1 3 1 1.85
50 125 3 3.94 2761.86 2 2 1 11.98 2 2 1 1 2 2 10.28
50 150 1 6.22 2578.93 4 0 1 157.17 4 0 1 3 2 0 50.01

Table 2: HDCARP-P’s results on small instances
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This subsection starts with comparing the exact algorithm presented in Section 3 with two
metaheuristics, MB1 and MB2-R, for the HDCARP-P on 100 instances with up to 50 nodes.
The summarised results can be found in Table 2. The first two columns indicate the number of
vertices and arcs in the instances. For the exact algorithm, we show the number of instances
optimally solved (out of 5 versions) (opt), as well as the average percent gap (Gap) between
the upper and lower bounds obtained using our branch-and-cut algorithm. In the case of each
metaheuristic, we present the number of instances where it produces better (B), equal (E),
or worse (W) solutions compared to the exact algorithm. Furthermore, we are interested in
comparing the two metaheuristics. Hence, we show the number of instances in which MB2-R
performs better (BMB1), the same (EMB1), or worse (WMB1) than MB1. Finally, for each
approach, we provide the average running time (Time) in seconds.

The exact method solves optimally 87 out of 100 instances, including nearly all instances
with fewer than 100 arcs and 8 out of 10 instances with 100 arcs. For the remaining instances,
the optimal gap never exceeds 6.22%. It is worth noting that our MILP formulation successfully
captures a special case highlighted in Subsection 3.1. For instance, in the optimal solution of
the harp-10-15 5 instance, the maximum completion times for classes 1, 2, and 3 are 249, 444,
and 441, respectively.

The MB1 and MB2-R matheuristics have found solutions that are at least as good as the
exact algorithm for 61 and 59 instances, respectively. Closer inspection of the output showed
that the improved solutions obtained by the MB1 and MB2-R matheuristics were observed in
instances with a minimum of 90 arcs. Additionally, the running time of both matheuristics was
significantly shorter compared to the exact algorithm. These findings suggest that the MB1
and MB2-R matheuristics are especially promising for large-scale instances.

The MB2-R outperforms the MB1 in terms of solution quality for 17 instances. This confirms
that the MB2-R has succeeded in reducing deadheading time between consecutive classes on
each route. Additionally, the MB2-R runs faster than the MB1 in almost all instances. A
possible explanation for this is that the MB2-R has a single objective function in each sub-
problem, while the MB1 has a bi-objective function.

Next, we compare the exact algorithm and the matheuristic (MB2-U) for the HDCARP-U.
The results are summarised in Table 3. The exact algorithm has achieved optimal solutions for
67 instances, with most of them having fewer than 80 arcs. For instances that could not be
solved optimally, the MB2 matheuristic successfully produced feasible solutions within a short
running time.

In summary, the exact approaches can solve small-scale instances optimally with up to 90
arcs, but they consume significant computational time. On the other hand, the matheuris-
tics provide reasonably good solutions within a short computing time for all instances in this
experiment.

5.3. Comparing matheuristics on the large instances

We conducted experiments on larger instances using our matheuristics. These instances
range from 60 to 100 nodes. The results are presented in Tables 4 and 5. The first columns
of the tables show the name of each instance. The next four columns show the maximum
completion time of each class, denoted by T1, T2 and T3, and the running time (in seconds)
for MB1. For the MB2-R or MB2-U, we also show the gap in the maximum completion time
for each class, namely Gap1, Gap2 and Gap3, and the running time, measured in seconds. For
i ∈ {1, 2, 3}, the gap Gapi is calculated as 100 × (T ′i − Ti)/Ti, where T ′i and Ti represent
the maximum completion times of class i obtained by the MB1 and MB2 (MB2-R or MB2-
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Instance MILP-U MB2-U
|V| |A| #opt Gap Time B E W Time

10 15 5 0.00 9.90 0 4 1 0.20
10 20 5 0.00 40.57 0 4 1 0.23
10 25 5 0.00 63.07 0 1 4 0.26
10 30 5 0.00 62.59 0 1 4 0.23
20 30 5 0.00 123.43 0 0 5 0.29
20 40 5 0.00 319.64 0 3 2 0.46
20 50 5 0.00 480.07 0 3 2 0.64
20 60 4 0.00 1712.85 1 3 1 0.99
30 45 5 0.00 136.81 0 2 3 0.43
30 60 5 0.00 620.45 0 4 1 0.77
30 75 4 0.83 2591.48 0 5 0 1.77
30 90 1 0.00 1795.47 4 0 1 13.15
40 60 5 0.00 1559.93 0 4 1 0.83
40 80 4 0.00 1507.41 1 3 1 1.67
40 100 0 - - 5 0 0 11.37
40 120 0 - - 5 0 0 144.59
50 75 4 0.00 2016.94 1 2 2 1.21
50 100 0 45.89 3600.03 5 0 0 5.51
50 125 0 - - 5 0 0 26.21
50 150 0 - - 5 0 0 165.25

Table 3: HDCARP-U’s results on small instances
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U), respectively. A negative gap indicates improvement gained by using MB2 matheuristic,
while a positive gap indicates a deterioration in solution quality. A dash (-) indicates that the
solving process either did not terminate within the time limit or encountered memory problems.
Instances that can be improved by either MB2-R or MB2-U are highlighted in bold.

The performance of the MB1 and MB2-R matheuristics for the HDCARP-P problem is
comparable. The MB1 outperforms MB2-R for 23 instances, while MB2-R improves upon the
solutions found by MB1 for 26 instances.

Although MB2-U fails to find feasible solutions for 5 instances, it significantly improves
the hierarchical objective for 43 instances compared to the other two matheuristics. This
suggests that the HDCARP-U is effective in reducing the completion time of high priority
classes. Regarding running times, ther is no obvious pattern.

5.4. Total time comparison of the HDCARP-P and HDCARP-U

To provide a comprehensive analysis, we further investigated the total servicing time of all
routes for each HDCARP variant to examine the impact of class upgrading. To conduct this
experiment, we used the best solutions obtained from either MB1 or MB2-R for the HDCARP-P
and compared them with the solutions from MB2-U for the HDCARP-U.

Figure 8 compares the average total servicing time between both HDCARP variants for
different combinations of |V | and d. It can be seen that the HDCARP-U successfully reduces
the total servicing time, except for instances with |V | = 20, d = 2.5 and |V | = 40, d = 3.0.
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Figure 8: Total time on small instances

Figure 9 shows the same for larger instances. The HDCARP-U only improves the total
servicing time compared to the HDCARP-P for d = 1.5 and d = 2.0. This is because the
limitation on the hierarchy level of classes in each sub-problem in MB2-U restricts the solu-
tion space. Surprisingly, for d = 3 and |V | ≥ 80, the HDCARP-U performs worse than the
HDCARP-P. A possible explanation is that when |A| increases, each sub-problems in MB2-U
also increases in size, making it challenging to obtain good feasible solutions.
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Instance
MB1 MB2-R MB2-U

T1 T2 T3 Time Gap1 Gap2 Gap3 Time Gap1 Gap2 Gap3 Time

harp-60-90 1 455 891 1255 0.39 0 0 0 0.53 0 0.56 -0.48 1.25
harp-60-90 2 478 758 1079 0.48 0 0.40 0.28 0.47 0 0.26 1.48 2.18
harp-60-90 3 525 886 1277 0.52 0 0 0 0.45 0 0 0 1.62
harp-60-90 4 547 1066 1517 0.44 0 0 0 0.44 0 0 -5.14 2.90
harp-60-90 5 507 916 1296 0.62 0 0 0 0.63 0 0 0 1.56
harp-60-120 1 616 1065 1471 7.86 0 0 0 5.54 0 -1.03 -0.34 7.79
harp-60-120 2 466 1132 1750 5.69 0 0 0 5.07 0 0 -0.23 14.92
harp-60-120 3 596 1279 1702 5.58 0 0 0 5.10 0 -1.49 -1.01 14.27
harp-60-120 4 439 916 1322 11.28 0 0 0 8.17 0 -0.33 0.45 14.75
harp-60-120 5 478 870 1278 5.26 0 0 0 5.23 0 0.11 0.08 8.92
harp-60-150 1 579 1114 1584 605.38 0 0 0 607.12 0 0.54 -0.19 627.00
harp-60-150 2 556 1123 1595 10.02 0 0 0.06 11.14 0 0 -0.13 15.25
harp-60-150 3 548 1128 1714 76.02 0 0 0 25.17 0 0 0 148.57
harp-60-150 4 456 1090 1591 17.77 0 -0.09 -0.06 7.47 0 -0.09 -0.06 18.14
harp-60-150 5 621 1131 1714 42.53 0 0 0 25.66 0 0 0 47.08
harp-60-180 1 695 1310 1876 1800.43 0 3.05 0.59 1231.67 -0.43 0 -0.05 1216.37
harp-60-180 2 593 1186 1788 1103.22 0 0 0.34 1154.68 0 0 -0.56 675.48
harp-60-180 3 630 1219 1775 227.71 0 0 0 131.18 0 0 0 125.78
harp-60-180 4 593 1202 1689 241.14 0 0 -0.06 131.51 0 0 0 306.01
harp-60-180 5 573 1214 1833 1265.09 0 -1.65 -1.09 659.53 0 -1.65 -1.09 684.91
harp-70-105 1 531 998 1580 1.04 0 0 0 2.25 0 0 0 4.25
harp-70-105 2 547 1120 1555 0.75 0 0 0 0.57 0 -5.45 -3.92 2.12
harp-70-105 3 492 1018 1515 0.81 0 0.39 0.20 0.83 0 0.10 0.20 3.01
harp-70-105 4 525 946 1491 0.48 0 0 0 0.54 0 -0.21 -10.13 1.19
harp-70-105 5 537 966 1281 0.44 0 0 0.08 0.64 0 -1.76 1.56 1.99
harp-70-140 1 682 1223 1680 14.33 0 0 -0.42 8.96 0 0 -0.42 12.52
harp-70-140 2 425 831 1272 11.02 0 0 0 12.30 0 0 -0.08 22.88
harp-70-140 3 580 1162 1743 6.2 0 0 0 8.78 0 0 -0.98 10.68
harp-70-140 4 469 974 1460 3.03 0 8.01 6.23 10.67 0 0 -2.05 10.09
harp-70-140 5 522 980 1509 1.9 0 0 0 3.07 0 0 -0.13 6.76
harp-70-175 1 595 1151 1816 22.55 0 0 0 47.76 0 0 0 19.79
harp-70-175 2 527 1021 1568 12.37 0 0 0 35.22 0 0 0 23.37
harp-70-175 3 523 995 1601 194.68 0 0 0.06 213.13 0 -0.60 -0.37 128.73
harp-70-175 4 620 1233 1767 120 0 0 0 60.22 0 0.08 -1.98 121.02
harp-70-175 5 565 1092 1559 18.57 0 0 0 15.49 0 -2.93 -0.58 36.29
harp-70-210 1 691 1419 2332 612.82 0 0 0 612.27 0 0 1.07 628.24
harp-70-210 2 633 1242 1896 519.66 0 0 0 222.21 0 -0.16 -0.37 439.60
harp-70-210 3 639 1226 1792 661.27 0 0 0 639.36 -0.16 0 -0.50 746.29
harp-70-210 4 576 1147 1911 1214.75 0 -0.35 -4.66 1242.09 1.04 -0.70 -6.44 1233.83
harp-70-210 5 719 1355 2017 271.48 0 0 0.05 343.04 0 0 0.05 342.03
harp-80-120 1 692 1368 1768 2.78 0 0 0.85 2.70 0 0 -2.60 8.33
harp-80-120 2 649 1159 1592 4.48 0 0 0.06 4.81 0 -0.86 -4.27 3.43
harp-80-120 3 556 990 1467 4.08 0 0 0 4.05 0 0 0 18.63
harp-80-120 4 576 967 1450 1.17 0 0 -0.14 2.07 0 -1.14 -2.34 4.32
harp-80-120 5 520 1073 1574 2.81 0 0 0 5.08 0 0 0 7.48
harp-80-160 1 574 1067 1711 46.64 0 0 0 28.40 0 0 0 38.93
harp-80-160 2 644 1109 1686 3.81 0 -0.36 -0.18 3.71 0 -0.36 -2.43 7.12
harp-80-160 3 528 1032 1553 610.31 0 -0.10 -0.26 290.73 0 0 -0.06 613.60
harp-80-160 4 589 1061 1586 611.35 0 0 -0.13 379.28 0 0.19 -6.68 620.23
harp-80-160 5 575 1047 1513 32.92 0 0 0 28.39 0 -2.39 -1.65 34.90

Table 4: The results of matheuristics on large instances
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Instance
MB1 MB2-R MB2-U

T1 T2 T3 Time Gap1 Gap2 Gap3 Time Gap1 Gap2 Gap3 Time

harp-80-200 1 683 1360 1975 724.59 0 6.40 2.33 955.16 0 0.22 0.61 1140.40
harp-80-200 2 807 1391 2052 737.04 0 1.22 0.58 1293.48 - - - -
harp-80-200 3 634 1276 1874 29.89 0 0 0 33.05 0 0 -0.75 91.01
harp-80-200 4 624 1142 1652 209.45 0 0 0 159.57 0 0 0.06 244.39
harp-80-200 5 880 1483 2232 614.66 0 0 0 644.12 0 0.07 0.04 623.67
harp-80-240 1 651 1406 2006 1200.63 0 -0.36 -0.25 916.37 0 -0.36 0.55 915.60
harp-80-240 2 614 1222 1819 730.98 0 0 0.49 675.93 0 0 0.27 984.68
harp-80-240 3 713 1371 2122 1335.51 0 -1.31 0.42 1252.04 8.98 1.60 0.71 1804.57
harp-80-240 4 758 1360 2059 682.21 0 -1.84 -1.46 943.04 5.28 4.63 -2.96 1766
harp-80-240 5 675 1318 2094 641.22 0 0 0 137.72 0 -0.15 -0.05 654.93
harp-90-135 1 507 956 1325 1.62 0 -4.29 -3.85 2.21 0 -7.95 -7.02 10.81
harp-90-135 2 610 1160 1642 16.8 0 0 -0.30 17.64 0 0 -0.30 38.45
harp-90-135 3 655 1109 1570 600.97 0 0 0 605.97 0 0 -0.06 606.66
harp-90-135 4 571 1045 1548 2.81 0 0 0 3.04 0 -7.27 -3.62 10.69
harp-90-135 5 472 1062 1665 7.12 0 -7.06 -6.61 4.90 0 -1.13 -0.54 26.26
harp-90-180 1 666 1166 1800 119.42 0 0 -0.06 47.12 0 -3.09 -3.72 232.50
harp-90-180 2 631 1135 1705 615.07 0 0 0 612.30 0 0 0 628.46
harp-90-180 3 564 1109 1748 38.05 0 0 0 25.66 0 -2.52 -1.03 59.62
harp-90-180 4 608 1129 1612 12.21 0 0 0 14.82 0 -2.21 -0.87 22.19
harp-90-180 5 674 1299 1860 10.33 0 0 0 9.18 0 -0.31 -0.86 19.81
harp-90-225 1 615 1233 1837 639.10 0 0 0 732.47 -3.90 -7.38 -5.17 836.49
harp-90-225 2 663 1267 1925 112.32 0 0 0 31.19 0 0 0 89.87
harp-90-225 3 708 1454 2110 1573.62 0 -0.28 -2.09 1571.84 0 -0.41 -3.79 1067.52
harp-90-225 4 817 1461 2066 1801.67 0 -4.52 -5.18 1199.88 -3.30 -1.03 3.58 1800.60
harp-90-225 5 648 1449 2176 702.47 0 0 0.64 680.82 0 0 0 750.80
harp-90-270 1 717 1423 2374 1207.83 0 -0.14 -4.68 1239.75 2.79 0.42 -5.81 1802.97
harp-90-270 2 894 1610 2413 1472.61 0 -1.93 -2.86 892.05 - - - -
harp-90-270 3 728 1421 2073 1059.94 0 -0.28 -0.24 1218.06 0.41 -0.35 -0.43 992.00
harp-90-270 4 727 1443 2299 1802.06 0 26.96 24.88 1801.49 - - - -
harp-90-270 5 753 1471 2236 1218.44 0 0 1.92 1386.65 0 0 7.38 1409.45
harp-100-150 1 548 1146 1691 0.87 0 0 0.18 1.64 0 -0.09 -0.83 3.42
harp-100-150 2 593 1163 1677 12.93 0 0 0 12.35 0 0 0 11.57
harp-100-150 3 653 1543 1998 0.58 0 0 0 0.90 0 0 0 4.21
harp-100-150 4 644 1178 1857 439.12 0 0 0 724.60 0 0 -0.70 338.14
harp-100-150 5 645 1091 1686 2.04 0 0 0 3.40 0 -0.37 2.49 12.16
harp-100-200 1 770 1638 2555 1070.48 0 0.24 4.89 1202.26 0 -6.11 -3.41 1202.48
harp-100-200 2 671 1378 1956 685.72 0 0 0 672.551 0 0 0 644.87
harp-100-200 3 635 1200 1764 14.30 0 0 0 19.03 0 0 0 18.02
harp-100-200 4 623 1254 1840 640.72 0 -0.08 0.92 696.89 0 1.83 01.68 780.97
harp-100-200 5 675 1341 1990 50.77 0 0 0 39.35 0 0 0 77.39
harp-100-250 1 657 1223 1893 213.83 0 0 0.85 206.04 0 -0.65 0.37 404.87
harp-100-250 2 671 1245 1969 525.85 0 0 0 865.56 1.19 0.80 0.51 960.02
harp-100-250 3 693 1312 2088 980.74 0 0.08 1.01 866.94 0 -0.53 3.69 768.66
harp-100-250 4 742 1509 2187 1147.68 0 3.05 -2.79 1418.90 0 13.59 -5.08 1268.54
harp-100-250 5 740 1380 2102 655.52 0 0 -0.10 637.92 0 0 -0.14 688.47
harp-100-300 1 766 1551 2345 1642.50 0 0 2.17 1399.34 7.44 3.68 7.08 1615.73
harp-100-300 2 763 1578 2298 490.36 0 0 0 901.32 2.62 -0.51 0.78 1377.95
harp-100-300 3 842 1582 2446 1241.17 0 -1.33 0.29 1267.36 -0.24 -2.09 -0.61 1612.58
harp-100-300 4 863 1978 3002 1265.71 0 -4.65 -6.53 1801.09 - - - -
harp-100-300 5 832 1667 2466 1398.80 0 -0.06 -0.08 1328.52 - - - -

Table 5: The results of matheuristics on large instances (continued)
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Figure 9: Total time on large instances

6. Conclusions

In this paper, we have studied the Hierarchical Directed Capacitated Arc Routing Problem
(HDCARP) and its variants with and without class upgrading. We proposed the mathematical
models and matheuristics for both variants and conducted extensive computational experi-
ments. with and without class upgrading. The results indicate that the exact methods are only
suitable for small instances, while the proposed matheuristics work rather well in most cases.
Furthermore, a comparison between the two variants was performed to evaluate the impact
of class upgrading option. It was found that allowing class upgrading successfully improves
the completion time of high priority classes while slightly affecting the total servicing time in
certain cases.

Our approaches could be fairly easily adapted to other HDCARPs, such as HDCARPs with
multiple depots, heterogeneous vehicles or HDCARPs on mixed graphs.

We can think of three possible topics for future research. The first topic involves the
development of fast heuristics to efficiently handle real-world instances because matheuristics
proposed in this study are still time-consuming. The second is the development of a local search
heuristic to further improve the solutions. Finally, the third topic involves the development of
a matheuristic approach specifically designed for the HDCARP-U variant to improve the total
completion time without any restrictions.
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