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Abstract. In this paper, we present formulations and an exact method
to solve the Time Dependent Traveling Salesman Problem with Time
Window (TD-TSPTW) under a generic travel cost function where wait-
ing is allowed. A particular case in which the travel cost is a non-
decreasing function has been addressed recently. With that assumption,
because of both First-In-First-Out property of the travel time function
and the non-decreasing property of the travel cost function, we can ig-
nore the possibility of waiting. However, for generic travel cost functions,
waiting after visiting some locations can be part of optimal solutions. To
handle the general case, we introduce new lower-bound formulations that
allow us to ensure the existence of optimal solutions. We adapt the exist-
ing algorithm for TD-TSPTW with non-decreasing travel costs to solve
the TD-TSPTW with generic travel costs. In the experiment, we evaluate
the strength of the proposed lower bound formulations and algorithm by
applying them to solve the TD-TSPTW with the total travel time ob-
jective. The results indicate that the proposed algorithm is competitive
with and even outperforms the state-of-art solver in various benchmark
instances.

Keywords: time-dependent travel time · time-dependent travel cost ·
traveling salesman problem · dynamic discretization discovery

1 Problem Formulation

The TD-TSPTW is presented mathematically as follows. We let (N,A) denote
a directed graph, wherein the node set N = {0, 1, 2, ..., n} includes the depot
(node 0) as well as the set of locations (node 1, . . . , n) that must be visited.
Associated with each location i ∈ N is a time window [ei, li] during which the
location must be visited. A tourist must visit the city i within its time window.
Note that the tourist may arrive at city i ∈ N \ {0} before ei, in which case he
must wait until the time window opens. Because of waiting, he does not need to
depart immediately after his visit. The time window associated with the depot
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means that the tour departs the depot at the time of at least e0 and must return
to the depot no later than l0.

We define A ⊆ N ×N as the set of arcs that present travel between locations
in N. Associated with each arc (i, j) ∈ A and time, t, at which travel can begin
on the arc, is a travel time τij(t). The FIFO property implies that for each arc
(i, j) ∈ A and times t, t′ wherein t ≤ t′, we must have t + τij(t) ≤ t′ + τij(t

′).
Thus, formally, the vehicle departs from node 0 at time t ≥ e0, arrives at each
city j ∈ N exactly once within its time window [ej , lj ] by traveling on arcs in A,
and then returns to node 0 at time t′ ≤ l0.

We formulate this tour as an integer program defined on a time-expanded
network, D = (N ,A), with node set N and arc set A. This formulation is based
on the presumption that time may be discretized into a finite set of integer
time points. As such, for each node i ∈ N, t ∈ [ei, l0], N contains the node
(i, t). A contains travel arcs of the form ((i, t), (j, t′)) wherein i ̸= j, (i, j) ∈ A,
t ≥ ei, t

′ = max{ej , t + τij(t)} (the vehicle cannot visit early), and t′ ≤ lj (the
vehicle cannot arrive late). Note that, since waiting is allowed, we can depart
from i to j at a time later than the time windows [ei, li] of location i. Finally, A
contains arcs of the form ((i, t), (i, t+ 1)) presenting waiting at location i.

To formulate the integer program, for each arc a = ((i, t), (j, t′)) ∈ A, binary
variable xa represents whether the vehicle travels/waits along that arc. Let ca =
cij(t) be the non-negative travel cost associated with arc a. If i = j and t′ = t+1,
cii(t) represents the waiting cost for one unit of time period, from time period t to
time period t+1. Notations δ+(i, t) and δ−(i, t) present the set of incoming arcs
and the set of outgoing arcs at the node (i, t) ∈ N . The following formulation
solves the TD-TSPTW with a generic travel cost function:

z = minimize
∑
a∈A

caxa (1)

subject to ∑
a=((i,t)(j,t′))∈A|i ̸=j

xa = 1, ∀i ∈ N, (2)

∑
a∈δ+(i,t)

xa −
∑

a∈δ−(i,t)

xa = 0, ∀(i, t) ∈ N , i ̸= 0, (3)

xa ∈ {0, 1}, ∀a ∈ A. (4)

Constraints (2) ensure that the vehicle arrives at each node exactly one time
during its time window. Constraints (3) ensure that the vehicle departs every
node at which it arrives. Finally, constraints (4) define the decision variables and
their domains.

2 Literature Review

Due to the space, we refer [7] as a most recent review on TSP in general. Regard-
ing time-dependent TSPTW literature, [6] propose a branch-and-cut algorithm
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while [1] extend the ideas described in [5] by using a branch-and-bound algo-
rithm. [1] show that lower and upper bounds of time-dependent asymmetric
TSPTW can be obtained from the optimal solution of a well-defined asym-
metric TSPTW. [4] present the first application of the DDD method to solve
the static TSPTW problem. Based on that work, [9] propose the first DDD
method to solve the time-dependent TSPTW problem under the assumption of
a non-decreasing travel cost function. The experiment results showed that the
algorithm outperformed the state-of-art method for a particular problem of this
class, the make-span problem [6]. [10] extend the DDD approach for solving
TD-TSPTW to the Time-Dependent Minimum Tour Duration Problem and the
Time-Dependent Delivery Man Problem, which, unlike TSPTW, have a schedul-
ing element. Regarding how to refine the partial networks, [8] study path-based
refinement strategy and compare results of various refinement strategies applied
to TSPTW when using layer graph expansion. For a general discussion of Dy-
namic Discretization Discovery, readers can refer to [3] as a base source.

In this paper, we extend the ideas in [9,10] to solve the TD-TSPTW with
a generic travel cost function. As far as we know, it is the first research for
TD-TSPTW with generic travel costs. We propose lower-bound formulations,
and extend the DDD algorithms to find optimal solutions for this generalized
problem.

3 Partially Time-expanded Network Formulation and
Properties

To solve TD-TSPTW, we rely on the concept of the partially time-expanded
network [2,9]. A partially time-expanded network, DT = (NT ,AT ), is derived
from a given subset of the timed nodes, NT ⊆ N . Given NT , the arc set AT ⊆
NT × NT consists of travel arcs and waiting arcs. A travel arc ((i, t), (j, t′)),
wherein (i, t) ∈ NT , (j, t′) ∈ NT , i ̸= j, and (i, j) ∈ A, models travel between
locations i and j. We do not allow violations of time windows, so t′ ≤ max{ej , t+
τij(t)}. An arc is too short if t′ < max{ej , t+ τij(t)}. A waiting arc ((i, t)(i, t+
1)) is in AT if both nodes (i, t) and (i, t + 1) are in NT . For each arc a =
((i, t), (j, t′)) ∈ AT , we define cij(t) as the travel cost of arc a. We set these costs,
cij(t), in such a manner that they under-estimate how the cost of such travel
is presented in D. Specifically, cij(t) is defined as cij(t) = min{

∑h”−1
h=h′ cii(h) +

cij(h”)|t ≤ h′ ≤ h” ∧ h” + τij(h”) ≤ lj}. The underestimated cost cii(t) for a
waiting arc ((i, t)(i, t+1)) is 0 since the waiting cost is taken into account while
evaluating underestimated travel cost.

Given a partially time-expanded DT that meets Property 1-5, we establish
the formulation TD-TSPTW(DT ) defined by the objective function and con-
straints (5) - (8). We optimize this formulation with respect to the cost cij(t).

TD-TSPTW(DT ) : min
∑
a∈A

caxa (5)
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∑
a=((i,t)(j,t′))∈AT |i ̸=j

xa = 1,∀i ∈ N, (6)

∑
a∈δ−((i,t))

xa −
∑

a∈δ+((i,t))

xa = 0,∀(i, t) ∈ NT (7)

xa ∈ {0, 1},∀a ∈ AT . (8)

Property 1 ∀i ∈ N , both nodes (i, ei) and (i, li) are in NT .

Property 2 ∀(i, t) ∈ NT , ei ≤ t.

Property 3 If (i, t) ∈ NT and (i, t + 1) ∈ NT , the waiting arc ((i, t)(i, t + 1))
is in AT .

Property 4 Underestimate travel-time arc: ∀(i, t) ∈ NT and arc (i, j) ∈ A,
there is a travel arc of the form ((i, t)(j, t′)) ∈ AT if t+τij(t) ≤ lj. Furthermore,
every travel arc ((i, t), (j, t′)) ∈ AT must have either (1) t + τij(t) < ej and
t′ = ej, or (2) ej ≤ t′ ≤ t + τij(t). Finally, there is no (j, t′′) ∈ NT with
t′ < t′′ ≤ t+ τij(t).

Property 5 Underestimate travel cost of arc: ∀((i, t)(j, t′)) ∈ AT , i ̸= j, the
cost cij(t) = min{

∑h”−1
h=h′ cii(h) + cij(h”)|t ≤ h′ ≤ h” ∧ h” + τij(h”) ≤ lj}.

Underestimate waiting cost cii(t) takes value 0 for all i and t.

Property 1-5 ensure Lemma 1, 2 and 3. Since the non-decreasing property of
cij(t), the algorithm proposed in [9] will converge to an optimal solution to the
TD-TSPTW(D) but with the parameterized cost cij(t). Because cij(t) may be
not equal cij(t), we may not reach the optimal solution to TD-TSPTW(D). Also,
using the result of Lemma 2, if all optimal solutions to TD-TSPTW(D) with the
original cost have at least one waiting arc occurring after visiting some cities,
then the current lower bound formulation, TD-TSPTW(DT ), is not enough to
find optimal solutions of TD-TSPTW(D).

Lemma 1. cij(t) is a non-decreasing function of t.

Lemma 2. If TD-TSPTW(DT ) with the parameterized cost cij(t) is feasible, it
always has an optimal solution without waiting arcs.

Lemma 3. TD-TSPTW(DT ) with cost cij(t) is a lower bound of TD-TSPTW(D)
with cost cij(t).

As the first attempt to address the challenges, we extend the lower bound
formulation TD-TSPTW(DT ) (5) - (8) to take into account original travel cost
function c. Conditions to determine whether we can evaluate an arc with its
correct travel cost are presented. Then we introduce new algorithmic ideas and
show how to adapt the algorithmic framework presented in [9] to find optimal
solution to TD-TSPTW(D) using TD-TSPTW(DT ). Let us state the conditions
in which we can evaluate an arc with its correct travel cost.
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Property 6 An arc a = ((i, t)(j, t′)) ∈ DT can be evaluated with correct travel
cost if and only if two following conditions are met:

1. The node (i, t) can be reached by a sequence of correct travel time arcs and
waiting arcs from the depot (0, e0).

2. The waiting arc ((i, t)(i, t+ 1)) is in DT .

The first condition of Property 6 states that if an arc a = ((i, t)(j, t′)) can be
evaluated with the correct travel cost, then it must be reached from the depot
by a sequence of correct travel time arcs (including waiting arcs). With this
condition, t is the correct arrival time at the location i. The second condition
implies the possibility that we travel from location i at time t to another location
with the correct travel cost, or we can wait and travel from i at time at least
t + 1 with underestimate travel cost. It is used to maintain the non-decreasing
property of TD-TSPTW(DT ) when we update DT . Now, we present two new
formulations satisfying Property 1-6.

4 New Lower Bound Formulations and Algorithm

4.1 Path-arc-based formulation

We start with a path-arc-based formulation that allows us to evaluate arcs with
their correct travel costs by using additional path variables representing paths
with correct travel times. Let p = ((u0 = 0, t0 = e0) − (u1, t1) − (u2, t2) − ... −
(um, tm)) be a path departing from the depot with correct travel times. We
associate with p a binary variable xp and with cost cp =

∑m−1
i=0 cuiui+1(ti). Let

denote PT as a set of paths originated from the depot with correct travel times in
DT . We denote PT (i) ⊆ PT as a set of paths visiting the city i and δ+p (i, t) as a set
of paths ending at (i, t). Let δ+(i, t) = {((j, t′)(i, t)) ∈ AT |j ̸= i} denote of the set
of travel arcs ending at (i, t). Let δ+(i) = {((j, t′)(i, t)) ∈ AT |j ̸= i} denote of the
set of travel arcs ending at city (i). Let A=

T ⊆ AT be the set of arcs with correct
travel times, and let QT ⊆ PT ×A=

T such that if (p, a) ∈ QT then p⊕ a ∈ PT .
Here p⊕a = ((u0 = 0, t0 = e0)− (u1, t1)− (u2, t2)− ...− (um = i, tm = t), (j, t′)),
the path obtained by expanding the arc a to the end of p where p ∈ δ+p (i, t) and
a = ((i, t)(j, t′)) ∈ A=

T . The path-based formulation TD-TSPTW(DT ,PT ) is:

TD-TSPTW(DT ,PT ) : min
∑

a∈AT

caxa +
∑
p∈PT

cpxp (9)

xa +
∑

p∈PT |a∈p

xp ≤ 1, ∀a ∈ A=
T (10)

xp + xa ≤ 1, ∀(p, a) ∈ QT (11)

∑
a∈δ+(i)

xa +
∑

p∈PT (i)

xp = 1, ∀i ∈ N (12)
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∑
a∈δ+(i,t)

xa +
∑

p∈δ+p (i,t)

xp −
∑

a∈δ−(i,t)

xa = 0, ∀(i, t) ∈ NT (13)

∑
((i,t)(i,t+1))∈AT

x((i,t)(i,t+1)) = 0, (14)

xa, xp ∈ {0, 1}, ∀a ∈ AT , p ∈ PT . (15)

The objective function (9) estimates a lower bound of TD-TSPTW using
paths with correct travel times and travel costs plus arcs with under-estimated
travel costs. Suppose p′, p ∈ PT and p′ = p⊕a with some a ∈ A=

T then constraint
set (11) forces to use p′ instead of p and a to ensure that correct cost is used.
However, if p′ /∈ PT and if p and a are selected, we will create p′ and add p′ to
the formulation. Constraint set (12) ensures each city is visited exactly once (e.g.
by an arc ending at (i, t) or by a path p passing through node (i, t)). Constraint
set (13) ensures the balance of selected arcs at each node, either by arcs or
by paths. Mathematically, if xa = 1 for any a ∈ δ+(i, t) in equation (12), then∑

PT (i,t) xp = 0 and
∑

p∈δ+(i,t) xp = 0 in (13). So there is an arc a′ ∈ δ−(i, t) with
xa′ = 1, making the node (i, t) balanced. Otherwise, if xa = 0 for all a ∈ δ+(i, t),
then

∑
PT (i,t) xp = 1. If

∑
p∈δ+(i,t) xp = 1 then again there is an arc a′ ∈ δ−(i, t)

with xa′ = 1, implying the node (i, t) balanced. Otherwise,
∑

p∈δ+(i,t) xp = 0,
so there is p ∈ PT \δ+(i, t) such that xp = 1. Because p /∈ δ+(i, t), there are
exactly two arcs with correct travel time of form ((u, h)(i, t)) and ((i, t)(j, t′))
in p, making (i, t) balance. Constraint (14), which is used to strengthen the
formulation by Lemma 3.2, eliminate waiting arcs with underestimated cost
from the optimal solutions, in other words, waiting arcs (with correct travel
costs) can only appear in paths in PT . Finally, constraint (15) defines domains
of the variables x and p.

We have the following results, which say that TSPTW(DT ,PT ) is always a
lower bound of TD-TSPTW(D) and explains when we find an optimal solution
to TSPTW(D).

Lemma 4. TSPTW(DT ,PT ) is a lower bound of TSPTW(D).

Lemma 5. If an optimal solution to TSPTW(DT ,PT ) is a single tour pre-
scribed by a path (variable), it is an optimal solution to TSPTW(D).

4.2 Arc-based Formulation

As we can see, there are two major disadvantages of the path-arc-based formu-
lation TD-TSPTW(DT ,PT ) (9)-(15). First, the number of paths in PT can be
an exponential number in terms of the number of nodes and arcs in DT , making
it impossible to solve the TD-TSPTW(DT ,PT ) by MIP solver. Second, given a
sequence of correct travel time arcs in DT , we cannot evaluate those arcs with
correct travel costs unless there is a path including those arcs. We present an-
other modeling approach to solve the two above issues. We associate with each
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arc a ∈ AT a variable za indicating whether this arc can be evaluated with
correct travel cost or not. Let ∆a = ca − ca for ∀a ∈ AT .

The following defines a new relaxation of TD-TSPTW(D) that allows eval-
uating any sequence of arcs with correct travel time from the depot with their
correct travel cost when Property 1-6 are met. Let NW

T = {(i, t) ∈ NT |(i, t+1) ∈
NT } be the set of time nodes having waiting arcs, and NNW

T = NT \NW
T be the

set without this property. Let λ+
(i,t) be the set of correct travel time/correct

travel cost arcs arriving at the timed node (i, t), and λ+
i be the set of correct

travel time/correct travel cost arcs arriving at the node i.

TD-TSPTW(DT , ZAT ) : min
∑

a∈AT

xaca +
∑

a∈AT

za∆a (16)

subject to constraints (6), (7) and

za ≤ xa,∀a ∈ AT , (17)

za = xa,∀a ∈ δ−(0,e0) if (0, e0 + 1) ∈ NT , (18)

za = 0,∀(i, t) ∈ NNW
T ,∀a ∈ δ−(i,t), (19)

za ≥ xa +
∑

a′∈λ+
(i,t)

za′ − 1,∀(i, t) ∈ NW
T \(0, e0),∀a ∈ δ−(i,t), (20)

∑
a∈λ+

(i,t)

za ≥
∑

a∈δ−
(i,t)

za,∀(i, t) ∈ NT \(0, e0), (21)

∑
a∈λ+

(i,t)

za ≥ x((i,t)(i,t+1)),∀(i, t) ∈ NW
T \(0, e0) (22)

xa, za ∈ {0, 1},∀a ∈ AT . (23)

The objective function (16) ensures that if xa and za both take value 1
in a solution to TD-TSPTW(DT , ZAT ), the cost associated to this arc in the
objective function is exactly ca. We are going to prove that given a solution
{x̄, z̄} to TD-TSPTW(DT , ZAT ), for any a = ((i, t)(j, t′)) ∈ AT , z̄a takes the
value of 1 if and only if Property 6 is met.

Constraint set (17) ensures that an arc a is evaluated with its correct travel
cost only if this arc is selected in a solution to the formulation. Next, constraint
(18) implies that arcs representing departure from (0, e0) should be evaluated
with correct travel costs if waiting arc ((0, e0), (0, e0+1)) ∈ AT . Next, constraint
(19) enforces that if there is no waiting possibility at the node (i, t) in the cur-
rent DT , all arcs outgoing from this node cannot be evaluated with correct travel
costs. Otherwise, constraint set (20) says that if a = ((i, t)(j, t′)) ∈ AT is selected
and if we can reach the node (i, t) by an arc a′ ∈ A=

T which is also evaluated by
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its correct travel cost (
∑

a′∈λ+
(i,t)

za′ = 1 or z′a = 1 for some a′), this constraint
forces a to be evaluated by its correct travel cost, or za = 1. Constraint (21) says
that if we cannot reach (i, t) by a correct travel time and correct travel cost arc,
no outgoing arc of this node can be evaluated with the correct travel cost. Pre-
cisely, if

∑
a′∈λ+

(i,t)
za′ = 0, constraint (21) forces that any outgoing arc a ∈ δ−(i,t)

will be evaluated with its underestimate cost since za = 0 for all a ∈ δ−(i,t)). This
constraint also forces za = 0 for any arc a in a sub-tour ((u0, t0), (u1, t1) , ...,
(um, tm), (u0, t0)) where ui ̸= 0 for all i. W.r.t, we assume t0 ≤ tm. Because the
too short incoming arc ((um, tm), (u0, t0)) /∈ λ+

(u0,t0)
of the node (u0, t0) is se-

lected, then the left-hand side of constraint (21) takes the value 0, consequently,
za = 0 for all arcs a of the sub-tour ((u0, t0), (u1, t1), ..., (um, tm), (u0, t0)). Fi-
nally, constraint set (23) defines the domain of variables.

In conclusion, the set of constraints (17) - (23) ensures that if an arc is
evaluated with correct travel cost, this arc must belong to the path from the
depot node (0, e0) and all arcs in this path also must be evaluated with correct
travel costs.

Aggregation formulation of TD-TSPTW(DT , ZAT ) Aggregating constrain-
ts (18) - (21) gives us constraints (24) - (27). λ+

i and δ−i present the set of
correct-travel-time inbound arcs to city i and set of outbound arcs from city i.
The aggregated formulation TD-TSPTW-AGG(DT ,AT ) includes the objective
function (16), the constraints (6), (7), (17), (23) and the constraints∑

a∈δ−
(0,e0)

xa =
∑

a∈δ−
(0,e0)

za if (0, e0 + 1) ∈ NT , (24)

∑
(i,t)∈NNW

T

∑
a∈δ−

(i,t)

za = 0, (25)

∑
a∈δ−

(i,t)

za ≥
∑

a∈δ−
(i,t)

xa +
∑

a∈λ+
(i,t)

za − 1,∀(i, t) ∈ NW
T \{0, e0}, (26)

∑
a∈λ+

i

za ≥
∑
a∈δ−i

za,∀i ∈ N\0. (27)

Actually, while TD-TSPTW-AGG(DT , ZAT ) is the aggregated version of TD-
TSPTW(DT , ZAT ), we can prove that they are equivalent (see online Appendix
[11]). Similar to the results of the path-based formulation, we have:

Lemma 6. If DT satisfies Properties 1 - 5, then TD-TSPTW(DT , ZAT ) (or
TD-TSPTW-AGG(DT , ZAT ), respectively) is a relaxation of TD-TSPTW(D).

Lemma 7. An optimal solution to TD-TSPTW(DT ,AT ) (or TD-TSPTW-AGG
(DT , ZAT ), respectively) that has no too short arcs defines an optimal solution
to TD-TSPTW(D)
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Algorithm 1 DDD-TD-TSPTW
Require: TD-TSPTW instance (N,A), e, l, τ and c, and optimality tolerance ϵ
1: Perform preprocessing, updating A, e and l.
2: Create a partially time-expanded network DT .
3: Set PT ← ∅, (or A=

T ← the set of correct travel time arcs in AT )
4: Set S ← ∅
5: while not solved do
6: Set S̄ ← ∅
7: Solve primal heuristics, TD-TSPTW(D1

T ) and TD-TSPTW(D2
T ), with under-

estimate cost c, harvest integer solutions and add to S̄.
8: Solve TD-TSPTW(DT ), harvest integer solutions, S̄, and lower bound, z.
9: for s ∈ S̄ do

10: Let s′ be a copy of s without waiting arcs.
11: if s′ can be converted to a feasible solution to TD-TSPTW(D) then
12: Solve R-TD-TSPTW(D, s′) to find the best tour using travel arcs in s′.
13: Update S with the solution returned by R-TD-TSPTW(D, s′).
14: Add a cut to exclude all copies of s′ in TD-TSPTW(DT ).
15: else
16: Add cuts corresponding to sub-tours and infeasible paths in s′ to TD-

TSPTW(DT )
17: end if
18: Update DT , (and PT ), and TD-TSPTW(DT ) by lengthening arcs in s.
19: end for
20: Compute gap δ between the best solution in S and lower bound, z.
21: if δ ≤ ϵ then
22: Stop: best solution in S is ϵ−optimal for TSPTW.
23: end if
24: end while

4.3 Algorithm to solve TD-TSPTW(DT )

Algorithm 1 shows how we solve the TD-TSPTW(D) using proposed lower bound
formulations. Readers can refer to [4,9,10] for additional reference of the com-
ponents of the algorithm. In Algorithm 1, TD-TSPTW(DT ) refers to one of the
lower bound formulations presented in Section 4. While it shares the main steps
with the one mentioned in [9,10], there are differences. First, to check the feasibil-
ity of a solution s found by lower bound formulations, we check with the solution
s′ obtained from s excluding all waiting arcs (Line 10-11). It ensures that if s′ is
infeasible, s is always infeasible. If s′ is feasible, we solve R-TD-TSPTW(D, s′)
to find the best tour using only travel arcs in s′ (e.g. by adding waiting arcs to
s′, Line 12). R-TD-TSPTW(D, s′) is a restricted formulation of TD-TSPTW(D)
where only travel arcs in s′ can be selected. If R-TD-TSPTW(D, s′) is solved to
optimality, we add a cut to exclude all copies of s′ from TD-TSPTW(DT ). If
s′ is infeasible, we add cuts corresponding to sub-tours and infeasible paths ex-
tracted from s′ to TD-TSPTW(DT ). The two primal heuristics in [9,10] are used
to help find feasible solutions. We exclude all waiting arcs when solving those
two primal heuristics (Line 7). Arcs in those primal heuristics are evaluated with
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under-estimate cost cij(t) and with basic formulation (5)-(8). We add cuts to
exclude all tours corresponding to feasible solutions in S before solving those pri-
mal problems to force finding new feasible solutions. When updating DT (Line
18), given an arc ((i, t)(j, t′)) to lengthen, we also add the node (i, t+1) to DT to
introduce waiting opportunities at (i, t) if (i, t+1) /∈ DT . To maintain Property
1-5, when a new node (i, t) is added to DT , we also add arc ((i, t)(i, t + 1)) (or
((i, t−1)(i, t))) if node (i, t+1) (or (i, t−1)) existed in DT . When the path-arc-
based formulation is used, Algorithm Add-Paths (see online Appendix [11]) is
employed to update PT .

5 Experiments

The algorithm is implemented in C++ using Gurobi 8.0 as the MIP solver. All
experiments were run on a workstation with an Intel(R) Xeon (R) CPU E5-4610
v2 2.30GHz processor running Ubuntu 14.04.3. One of the stopping conditions
was a provable optimality gap of ϵ = 10−2. Two sets named "Set 1" and "Set
w100" from [9] are used. Each set has 960 instances from 15 to 40 nodes with up
to 73 travel time profiles. We set the cost cij(t) be τij(t), the travel time between
i and j at time point t. We assess two points:

1. We compare the path-arc-based formulation (Path), the arc-based formula-
tion (Z), and the aggregated arc-based formulation (Z-Agg) and the corre-
sponding algorithms based on the number of instances solved.

2. We compare the strongest algorithm and formulation and the state-of-the-
art solver, Gurobi, solving the problem with the full-time-expanded network
formulation.

First, Table 5 reports the number of solved instances using the Path, Z, and
Z-Agg formulation. In this experiment, we consider a setting in which waiting
at site i after visiting i is not allowed, so cii(t) = ∞, or a very high value. Maxi-
mum running time for this setting is 1 hour. This can happen for time-dependent
scheduling problems where all jobs (cities) are performed without stopping. As
we expect, the Z-Agg formulation is the most efficient and competitive formula-
tion, while the Path formulation is the worst one. Using the Z-Agg formulation,
we can solve 873 and 871 instances of Set 1 and Set w100 to optimality. It means
the proposed algorithm is able to solve this particular variant.

Table 1. Number of instances solved optimally by each formulation.

Set 1 Set w100
n Path Z Z-Agg Path Z Z-Agg
15 240 240 240 240 240 240
20 239 239 240 226 228 231
30 214 218 224 192 230 232
40 147 149 169 115 167 188
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Second, we consider the setting in which cii(t) = 0. This setting is harder
because of the larger solution space, so we let 2 hours of execution. We observe
that while Gurobi can efficiently solve instances of Set w100, it struggles to find
feasible solutions to instances of Set 1. Given two hours of computation time,
it can only find feasible solutions to 596 over 960 instances of Set 1 (Table 5),
while it is able to find feasible solutions to all instances of Set w100. Technically,
while having the same number of nodes, instances of Set 1 have wider time
windows, making the complete networks larger and harder to solve. The proposed
algorithm finds feasible solutions for all instances.

Table 2. Feasible solutions: Gurobi versus Z-Agg (Set 1)

n 15 20 30 40
Gurobi 239 228 115 14
Z-Agg 240 240 240 240

Finally, Table 3 compares the number of ϵ-optimal solutions that Gurobi and
the proposed algorithm find for instances of Set 1. Gurobi can prove optimal-
ity for 396 instances, while the proposed method with Z-Agg formulation can
solve 712 instances. The average gap of unsolved instances is 7.37% (Gurobi)
and 2.94% (the proposed algorithm). These preliminary results show that the
proposed algorithm and formulations are promising for solving time-dependent
TSPTW instances.

Table 3. Optimal solutions: Gurobi versus Z-Agg (Set 1)

n 15 20 30 40
Gurobi 218 145 29 4
Z-Agg 228 199 157 128

To conclude, the three lower bound formulations can be used to solve the
time-dependent TD-TSPTW in which the aggregated formulation TD-TSPTW-
AGG(DT ,AT ) is the most effective one. It has fewer constraints than TD-
TSPTW(DT ,AT ), and therefore, makes it easier to solve with mixed-integer
programming solvers. The proposed algorithm with the aggregated formulation
performs better than the solver over benchmark instances.

6 Conclusion

In this paper, we study a generalized version of the time-dependent traveling
salesman problem where travel cost is modeled as a generic function. We present



12 Vu et al.

three lower-bound formulations based on path and arc variables, and we intro-
duce iterative exact algorithms based on the dynamic discrete discovery approach
to solve the problems. The experiment results confirm the advantages of the pro-
posed method over the state-of-art solvers when solving small- and medium-sized
instances. Finally, our ongoing research shows that we can apply the proposed
method in this paper to solve variants of the TSPTW including those with soft
time windows. It confirms the strength and innovation of our proposed method.
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