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ABSTRACT
As climate change becomes more crucial, transporting products in urban areas by
bicycle gains popularity. More companies start using bicycles as an alternative trans-
portation mode and face challenges to efficiently satisfy the needs of their customers
and employees. While designing the bike routes for pick up and delivery, it is required
to take into account the energy needed by cyclists to move. The energy consumed
in a bike route has to be kept under a certain threshold for cyclists to be able to
pedal during the whole work shift. This leads to a new variant of the vehicle routing
problem called the bike routing problem which aims at tackling constraints arising
for bicycle deliveries. We propose a novel Mixed Integer Linear Programming model
to determine the bike routes for delivering goods in urban areas. An Evolutionary
Local Search algorithm is developed to efficiently solve the problem using new split
and local search procedures. Experimental results obtained on random and real in-
stances show the accuracy and stability of the proposed algorithms, as well as the
relevance of the new problem.

KEYWORDS
Vehicle Routing Problem, Bike Routing Problem, Energy Constraint, Mixed
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1. Introduction

Around 80 percent of European citizens live in urban areas (Allen, Browne, & Holguin-
Veras, 2010). Because of the high density of the population in those areas, large quan-
tities of goods have to be transported for commercial and domestic purposes. However,
transportation has several impacts on the environment, such as resource consumption,
noise, and greenhouse gas emissions (Delfani, Kazemi, SeyedHosseini, & Niaki, 2021;
Goodarzian, Shishebori, Bahrami, Abraham, & Appolloni, 2023; Rahman, Rahman,
& Tseng, 2022). Among these, gas emissions, in particular, CO2 emissions, are of
great concern as they have consequences on human health and contribute towards cli-
mate change. In several countries, transportation is one of the biggest causes of CO2

emissions. Thus, decision-makers are trying to reduce pollution in their countries or
cities (Koning & Conway, 2016). Bike use is promoted and encouraged in countries
like the Netherlands, Denmark, and Germany. While bicycles have even become the
standard over vehicles in cities like Amsterdam, some other cities (e.g., London) voted
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laws to get entry fees for vehicles. As a result, Supply Chain Management businesses
have become more concerned about environmental aspects and tried to tackle related
issues. Those growing concerns force to revise planning approaches for road transporta-
tion by for example changing last-mile deliveries. One adopted solution is to focus on
environment-friendly means such as bikes. Cycling is said to be one of the most energy-
efficient and healthy transport modes (Ehrgott, Wang, Raith, & Van Houtte, 2012).
Moreover, cargo-based push-bikes as shown in Figure 1 can transport much heavier
loads than traditional ones. However, carrying a heavy load on a long distance could
make the bikers so tired that they cannot complete the service. Therefore, we need to
take into account the human health condition when designing feasible bike routes in
practice.

Figure 1.: A cargo-based push-bike of our industry partner

Our purpose in this paper is to introduce a new variant of the Vehicle Routing
Problem (VRP), called the Bike Routing Problem (BRP). This problem is quite similar
to the typical VRP, except that an additional constraint related to the effort of bikers
is taken into account. More precisely, the energy required to move push-bikes with
cargo is calculated and checked so that it does not exceed a given power of the cyclist.
In the following, we call this requirement as the energy constraint. This new constraint
can make the BRP solution quite different from the typical VRP solution. In the VRP
solution, a route and its reverse can be considered to be similar. But this is not true for
the BRP solution. In fact, the more load accumulated in the beginning of the route,
the more tired the biker.

To the best of our knowledge, as shown in the following section, there is no work
that considers VRP-like problems using push-bikes with the constraint on the physical
limit of bikers. By studying the BRP, our research fills this gap of the literature. The
contributions of our paper are as follows. First, we introduce a new variant of the
VRP in which bikes are used as the transportation mode. A new constraint that takes
into account the health condition of bikers is introduced. This constraint relates to
the cumulative load of the bike route and is originally non-linear. Second, we propose
a linearization technique for the energy constraint to propose a mixed integer linear
programming model so that we can use powerful MILP solvers to solve the problem.
Third, an efficient metaheuristic based on Evolutionary Local Search (Prins, 2009) with
problem-tailored components is designed. More precisely, our metaheuristic includes a
new dynamic programming-based split procedure that optimally splits any given order
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of deliveries into a complete BRP solution. In addition, we propose additional data
structures that allow checking the feasibility of local search moves in O(1). Finally,
experiments carried out on random and real instances show the performance of our
methods and the relevance of the new problem.

The remainder of this paper is organised as follows. Section 2 gives a literature
review of different aspects of the problem while Section 3 presents the problem with
a mathematical model. An evolutionary algorithm is presented in Section 4. Section
5 contains computational results and analyses of the algorithm. Finally, Section 6
concludes the paper by explaining the contribution and presenting future research
directions.

2. Literature review

To tackle the pollution problem, researchers are trying to solve the green vehicle rout-
ing problem and its variants (Bektaş & Laporte, 2011; Erdoğan & Miller-Hooks, 2012;
Kara, Kara, & Yetis, 2007; Lin, Choy, Ho, Chung, & Lam, 2014; Wang, Peng, Zhou,
Mahmoudi, & Zhen, 2020). Green logistics is a concept aiming at delivering efficient
supply chain management while considering environment-related factors. The tradi-
tional objective of distribution management was upgraded to minimising system-wide
costs related to economic and environmental issues. In urban areas, trucks, on top
of the pollution they cause, have difficulty of achieving door-to-door deliveries. In
densely populated urban areas, bike-couriers or bike-messengers offer delivery advan-
tages as they are considered to be environmentally friendly. Although bikes are seen
as a good start towards green transportation (Tipagornwong & Figliozzi, 2014), very
few papers in the literature deal with the delivery of goods using push-bikes with
cargo. Instead, when it comes to optimisation models for bikes, researchers mainly fo-
cus on e-bikes (Caggiani, Colovic, Prencipe, & Ottomanelli, 2021; Elbert & Friedrich,
2020), the itinerary for cycling or bike-sharing re-balancing problems (Chemla, Me-
unier, & Wolfler Calvo, 2013; Li & Liu, 2021). Bike-sharing systems offer a mobility
service whereby public bicycles, located at different stations across an urban area,
are available for shared use. These systems contribute towards obtaining more sus-
tainable mobility and decreasing traffic and pollution caused by car transportation
(Dell’Amico, Hadjicostantinou, Iori, & Novellani, 2014).

In the literature of green vehicle routing problems, Kara et al. (2007) introduce the
so-called Energy-Minimising Vehicle Routing Problem. This problem is an extension
of the VRP where a weighted load function (load multiplied by distance), rather than
just the distance, is minimised. Bektaş and Laporte (2011) introduce the Pollution-
Routing Problem (PRP). The PRP is an extension of the classical VRP with a broader
and more comprehensive objective function. On top of the travel distance, a few other
constraints such as the amount of greenhouse emissions, fuel, travel times and their
costs are considered. The main difference with our paper is that we consider bikes with
no emission. Therefore, the calculation of the CO2 is not necessary. Also, Bektaş and
Laporte (2011) calculate the amount of CO2 generated by vehicles in the objective
function, while our problem requires the computation of the energy in constraints.
Moreover, in the BRP, the total load of a bike is considered and influences the energy
constraint which makes the problem more challenging. Bektaş and Laporte (2011)
conclude that a weighted load-minimising solution can have counter-intuitive results
on energy consumption due to a possible increase of distance travelled. The vehicle
routing problems with fuel consumption are studied in Karagul, Sahin, Aydemir, and
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Oral (2019); Xiao, Zhao, Kaku, and Xu (2012); J. Zhang, Zhao, Xue, and Li (2015);
Z. Zhang, Wei, and Lim (2015) where the energy consumed by the vehicles is minimized
in the objective function. Our model, however, only provides distance-minimising so-
lutions where the energy is checked in a constraint. Therefore, such results are not
obtained by our proposed problem model.

A significant number of papers deal with route choice models for cyclists. For exam-
ple, Ehrgott et al. (2012) study such a problem by considering a bi-objective variant. It
is said and acknowledged that cyclists choose their route differently to drivers of private
vehicles. They optimise routes for bikes by calculating a suitability score considering
safety and comfort such as motor traffic volume, motor traffic speed, road lane width,
presence of on-street parking, road gradient, percentage of heavy commercial vehicles,
presence of cycle facilities (cycle lanes or shared bus/cycle lanes), pavement condition,
etc. This score is then evaluated and considered alongside the route distance. It is also
argued that in contrast to car drivers, cyclists consider a significantly broader range
of factors while deciding on their routes. Hrnćır, Zilecky, Song, and Jakob (2015) and
Song, Zilecky, Jakob, and Hrnćır (2014) also consider the bicycle routing problem with
road characteristics. They emphasise the importance of slope, turn frequency, junction
control, noise, pollution, scenery, and traffic volumes in addition to travel time and
distance for cyclists. The paper from Silbernagl, Krismer, Malfertheiner, and Specht
(2016) is another example of cycling routing where the elevation is considered. How-
ever, just like the previously mentioned papers, their work does not consider delivery
purposes and therefore does not compute the energy required.

The problem of delivering goods using bikes is studied by Ghiani, Manni, Quaranta,
and Triki (2009). They solve a dynamic vehicle dispatching problem with pickups and
deliveries. Their model considers the use of bicycles for same-day courier services. This
problem is closer to the BRP than the aforementioned ones. However, they do not
take into account any cycling-related constraints. Another paper dealing with a deliv-
ery problem using bicycles is from Arango Serna, Adarme Jaimes, and Zapata Cortes
(2010). Their problem is in fact based on the VRP but they do not consider the energy
constraints that partly depend on the bike’s load and road characteristics. The paper
from Ćirović, Pamučar, and Božanić (2014) also solves the routing problem for light de-
livery vehicles while considering the environment. However, their model only accounts
for motorcycles and does not consider the bike-related energy constraint. Optimisa-
tion problems of using bike-messengers (Maes & Vanelslander, 2012) and bike-couriers
(Lee, Chae, & Kim, 2019) for delivery are also studied in the literature. However, un-
like push-bicycles, using electrical bikes for deliveries can neglect the energy required
by the driver to complete his/her route.

In di Prampero, Cortili, Mognoni, and Saibene (1979), an equation of motion
for cyclists is provided. This equation considers several metrics such as air resis-
tance/temperature, altitude, body size, etc. to provide the power required to move
the bicycle. Their aim is to predict the speed attained under a given set of conditions,
provided the metabolic power of the subject is known. Since this paper, literature has
also attempted to improve models including power (Barth & Boriboonsomsin, 2009;
Ross, 1997) via a similar formula. Martin, Milliken, Cobb, McFadden, and Coggan
(1998) derive a mathematical model of cycling power from the same formula and pro-
vide values for the model parameters. A bicycle-mounted power measurement system
is validated by comparison with a laboratory ergo-meter. They provide an analysis of
the parameter effect by altering their values. Their results demonstrate the accuracy of
the formula which emphasises that cycling power can be predicted by a mathematical
model.
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There are several papers dealing with the energy constraint for electric vehicles. In
Fontana (2013), the authors consider the problem that finds the shortest path sat-
isfying the energy constraint. This problem belongs to the class of the route choice
problems, not the vehicle routing problems as in our proposed model. Our studied
problem shares some characteristics with the Electric Vehicle Routing Problems in
Tahami, Rabadi, and Haouari (2020) (and also with some variants of the Green Ve-
hicle Routing Problems in Erdoğan and Miller-Hooks (2012); Leggieri and Haouari
(2017)), and they consider similar constraints named energy level constraints. How-
ever, the energy consumption of each arc in these problems is often simply calculated
by multiplying its distance with a fixed energy consumption rate, thus ignoring the
impact of vehicle load. Additionally, they allow vehicles to recharge its energy at some
charging stations which is not available for push-bikes. Pelletier, Jabali, and Laporte
(2019) introduce a new variant of the electric vehicle routing problem in which the
energy consumption of a vehicle depends on its load. However, the studied problem
belongs to the class of robust optimization problems. Using electric vehicles can lead
to the presence of strong uncertainties surrounding the energy consumption. Indeed,
Asamer, Graser, Heilmann, and Ruthmair (2016) show that several parameters in the
calculation of consumed energy for electric vehicle routing problems are difficult to
measure or depend on uncontrolable factors. In addition, environmental factors such
as wind speed and weather can significantly change the achievable range of electric
vehicles. Using bikes makes our model more deterministic. For example, a rolling re-
sistance coefficient, a wind resistance coefficient and an acceleration in the energy
consummation computation of bikes are relatively constant. In cases of bad weather
conditions (strong wind or heavy rain), the routing plans should be cancelled to en-
sure the safety of cyclists. Therefore, it is reasonable to consider the deterministic bike
routing problem as proposed in this paper.

3. Problem definition and formulation

3.1. Problem definition

Formally, the BRP is defined on a complete graph G = (N,A) with N = {0, 1, 2, ..., n}
as the set of nodes and A as the set of arcs defined between each pair of nodes. Node 0
is the depot where a homogeneous set of bikes K = {1, 2, ...,m} is located. Each bike
has a capacity of Q. The remaining nodes represent a set of customers N0 = N \ {0}.
Each customer i ∈ N0 has a positive demand qi representing the amount of product
that needs to be picked up and transported to the depot. The distance from node i
to node j is denoted by dij . Each cyclist k consumes a certain amount of energy ekij
to travel over an arc (i, j). This amount depends on a number of factors, such as bike
load, speed and slope. The BRP consists in findings at most m bike routes such that
the total travel distance is minimised and

• Each bike begins and ends at the depot;
• Each customer node is visited exactly once;
• The total load on each bike is less than its capacity Q;
• The total energy spent by each cyclist is less than a given value E.
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3.2. Computation of the energy

The power requirements of a vehicle to move along a road segment depend on not only
the dynamic parameters (e.g., speed and acceleration), but also the static ones such
as vehicle weight, aerodynamic drag, rolling resistance, and road grade, etc. We use
the formula proposed in Barth and Boriboonsomsin (2009) and Martin et al. (1998)
to compute the energy pkij(l) (in joule/second) generated by cyclist k ∈ K per unit of
time to travel from node i ∈ N to node j ∈ N with load l:

pkij(l) = (wk + l)av + (wk + l)gv sin(θij) + 0.5cwfρv
3 + (wk + l)gcr cos(θij)v (1)

This equation is also used in other studies on routing electric vehicles Wang et al.
(2023) and unmanned aerial vehicles (UAV) Nguyen and Hà (2023). The parameters
of this formula and their default values are provided as follows:

• cr: rolling resistance coefficient (cr = 0.005 for a typical bitumen road on clinch-
ers)
• cw: wind resistance coefficient (cw= 0.5 if there is no headwind nor tailwind)
• ρ: air density (ρ = 1.226 kg/m3 at sea level)
• g: gravitational constant ( g= 9.8 m/s2)
• wk: the total weight of bike and cyclist (wk= 100 kg)
• a: the acceleration (a = 0 m/s2 for simplicity)
• v: the speed of the bike on the road (v = 20 km/h or 5.56 m/s)
• f : the frontal area of the bike and rider (f = 1.5 m2)
• θij : the slope of the road from node i to node j (θij = 0 for simplicity).

For simplicity, we assume that the speed of bike is constant (a = 0). We also suppose
that the working area has a relatively flat terrain and the slope of all the roads can
be considered as zero (θij = 0 ∀i, j ∈ N). Therefore, the formula (1) can be rewritten
as follows:

pkij(l) = (wk + l)0v + (wk + l)gv sin(0) + 0.5cwfρv
3 + (wk + l)gcr cos(0)v

= 0.5cwfρv
3 + (wk + l)gcrv ∀k ∈ K ∀i, j ∈ N (2)

3.3. A mixed integer linear programming formulation

We now formulate the problem as a Mixed Integer Linear Programming (MILP). Our
formulation allows to define mathematically the problem and can be used to solve
small-size instances to optimality with MILP solvers. There are three types of variables
as follows:

• xkij : binary variables equal to 1 if bike k travels from i to j

• lki : real variables representing the load weight on bike k when it leaves node i
• ekij : real variables representing the energy spent on arc (i, j) by bike k.

The objective function is to minimise the total distance travelled by bikes:

Minimise
∑
k∈K

∑
i,j∈N

dijx
k
ij (3)

A feasible solution must satisfy the following constraints:
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• Each customer is visited by exactly one bike:∑
k∈K

∑
j∈N

xkij = 1 ∀i ∈ N0 (4)

• Flow conservation constraint: Each bike must continue its tour until the depot:∑
i∈N

xkij =
∑
i∈N

xkji ∀k ∈ K ∀j ∈ N (5)

• Each bike must depart from the depot at most once.∑
i∈N

xk0i ≤ 1 ∀k ∈ K (6)

• Capacity constraint: Each bike load must respect its capacity

lki ≤ Q ∀i ∈ N0 ∀k ∈ K (7)

• Relationship between lki and xkij : This constraint also removes sub-tours:

lkj ≥ lki + qj −M1(1− xkij) ∀k ∈ K ∀i ∈ N ∀j ∈ N0 (8)

lkj ≤ lki + qj +M1(1− xkij) ∀k ∈ K ∀i ∈ N ∀j ∈ N0 (9)

where M1 is a large number and can be estimated by Q.
• Load of bike k at the depot is null:

lk0 = 0 ∀k ∈ K (10)

• Energy constraint: The energy generated by a biker is limited to a given value:∑
i,j∈N

ekijx
k
ij ≤ E ∀k ∈ K (11)

where ekij is the amount of energy that cyclist k generates to move from i to j. By
taking into account the traveling time and the load weight when the bike leaves node
i, we have:

ekijx
k
ij = xkij

dij
v
pkij(l

k
i ) =

xkijdij

v

[
0.5cwfρv

3 + (lki + wk)gcrv
]

= xkijdij
[
0.5cwfρv

2 + (lki + wk)gcr
]

= xkijdijl
k
i gcr + xkijdij

(
0.5cwfρv

2 + wkgcr
)

∀k ∈ K ∀i, j ∈ N (12)

Equation (12) is non-linear and can be linearised by using an additional variable
ykij = xkijl

k
i . It equals 0 if xkij = 0 and equals lki if xkij = 1. We then can replace (12) by
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the following constraints:

xkije
k
ij = gcry

k
ijdij + xkijdij

(
0.5cwfρv

2 + wkgcr
)
∀k ∈ K ∀i, j ∈ N (13)

ykij ≤M2x
k
ij ∀k ∈ K ∀i, j ∈ N (14)

ykij ≤ lki ∀k ∈ K ∀i, j ∈ N (15)

ykij ≥ lki +M3(x
k
ij − 1) ∀k ∈ K ∀i, j ∈ N (16)

Constraints (13) express the relationship between the expression xkije
k
ij and variable

ykij . Constraints (14) ensure that if xkij = 0, the variable ykij must be set to zero. The

combination of constraints (15) and (16) requires that if xkij = 1, the variable ykij is set

to lki . Here, M2 and M3 are sufficiently large numbers and can be set to Q.

4. Metaheuristic

The formulation presented in the last section, as shown in the experimental section,
can help to solve only small-size instances to optimality. It cannot efficiently handle
medium and large instances of practical size. Therefore, in this section, we introduce a
metaheuristic that can provide good solutions for practical-size instances in reasonable
running time. One of its main components is a split procedure that converts a giant
tour encoded as a Traveling Salesman Problem (TSP) tour into a BRP solution. This
procedure is embedded in the framework of Evolutionary Local Search (ELS) proposed
in Prins (2009). We decide to select this metaheuristic because it is simple, fast and
has been used widely in the literature to successfully solve a variety of VRP variants
(e.g., Hà, Bostel, Langevin, and Rousseau (2013, 2014)). In the ELS method, a single
solution is mutated to obtain several children that are then improved by local search
operators. The next generation is the best solution among the parent and its children.

Algorithm 1: ELS algorithm

1 Input: problem data;
2 Output: best solution Sb found;
3 Sb ← init solution();

4 T ← concat(Sb);
5 for i from 1 to ni do

6 f ← cost(Sb);
7 for j from 1 to nc do
8 T ← mutate(T );
9 S ← split(T );

10 S ← local search(S);

11 if cost(S) < f then
12 Sc ← S;

13 f ← cost(S)

14 if cost(Sc) < cost(Sb) then
15 Sb ← Sc;

16 T ← concat(Sb);
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Algorithm 1 describes the overall ELS algorithm starting with an initial solution
generated by init solution() function. A solution S is converted to a giant tour T
via concat() function, which is then mutated to generate a new giant tour with some
modifications by mutate() function. A new solution is generated with split() function
and is improved via local search operators (lines 9-10). The current best solution Sb is
updated only when it is outperformed by the best child Sc (lines 14-16). Here, cost(S)
function is used to get the objective value of solution S. The solution Sb is then used
for the next ELS iteration. The algorithm iterates over ni times and in each iteration,
there are nc generated children.

We now describe in details the main components of our algorithm: initial solution,
concatenation, split, local search, and mutation procedures.

4.1. Initial solution and concatenation procedures

The well-known savings heuristic from Clarke and Wright (Clarke & Wright, 1964)
is used to initialise our ELS. The heuristic starts from a trivial solution with one
dedicated trip per customer. Each iteration evaluates all constraint-feasible mergers
(concatenations) of two trips and executes the one with the largest positive saving.
The process stops when no such merger can be found.

The concatenation procedure concat() simply concatenates BRP routes into a giant
tour T and is presented in Algorithm 2. The sequences of customers of bike trips are
combined and each copy of the depot node is then removed. Function insert(T, i) is
used to insert a node i at a given position in the constructing giant tour T .

Algorithm 2: Concatenation procedure

1 Input: a solution S with copies of the depot node;
2 Output: a giant tour (TSP tour) T ;
3 T ← ∅;
4 foreach i in S do
5 if i ̸= depot then
6 insert(T, i);

7 return T ;

4.2. Adapted split procedure

As described in Prins (2009), our algorithm alternates between solutions encoded as
TSP tours, called giant tours, and genuine BRP solutions. Given an order of nodes
defined by the giant tour, this procedure creates an optimal BRP solution. It adds the
depot copies as delimiters to construct a complete solution that satisfies the capacity
and energy constraints. The overall process is described as follows.

Given a giant tour of n customers T = (T1, T2, ..., Tn), the split procedure builds
a weighted directed graph H = (X,A). The nodes in X are indexed from 0 to n.
Node 0 is a dummy node while each node i ̸= 0 represents a customer Ti. Each sub-
sequence of customers (Ti, Ti+1, ..., Tj) of the giant tour is evaluated to see if the trip
(0, Ti, Ti+1, ..., Tj , 0) is feasible. This evaluation not only includes the bike capacity, but
also the total energy required for the trip. If the trip is feasible, it is modelled in the
arc-set A by an arc (i−1, j), with a weight equal to the trip cost. An optimal splitting
of T into feasible trips corresponds to a min-cost path from node 0 to node n in the
created graph. The Bellman algorithm is then used to solve the shortest path problem
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which indicates how to separate the giant tour. Each selected arc on the shortest path
represents a bike trip which is included in the returned solution.

Algorithm 3: Adapted split procedure

1 Input: a maximal number of bikes m, an order of n customer nodes;
2 Output: an optimal solution regarding the given order of customers;
3 for k from 0 to m+ 1 do
4 p[k][0]← 0;
5 for i from 1 to n do
6 p[k][i] =∞;

7 for i from 0 to n− 1 do
8 load← 0;
9 j ← i+ 1;

10 while j ≤ n do
11 if j = i+ 1 then
12 distance← d0,j ;
13 energy ← e0,j //computed by Eq. 1 with current load;

14 else
15 distance← distance+ dj−1,j ;
16 energy ← energy + ej−1,j //computed by Eq. 1 with current load;

17 load← load+ qj ;
18 if load ≤ Q and energy + ej,0 ≤ E then
19 for k from 0 to m do
20 if p[k][i] ̸=∞ and p[k][i] + distance+ dj0 < p[k + 1][j] then
21 p[k + 1][j]← p[k][i] + distance+ dj0;
22 pred[k + 1][j] = i;

23 j ← j + 1;

Algorithm 3 shows the detailed steps of our split procedure. The main difference
with the split procedure proposed for the VRP in Prins (2009) lies in the way to tackle
the energy constraints. To check if a trip is feasible w.r.t energy constraints in O(1),
we need to use an additional data structure energy to record the accumulative energy
generated along the trips. At the end of the procedure, array pred contains several
paths to reach the last node Tn in the graph H. Given a bike k and a node i, value
pred[k][i] represents the precedent node in the graph path. Therefore, reversely looping
on pred with a decreasing k gives us the last customer node of each bike trip bounded
by k trips. Because computing the energy required to complete any trip is done in
O(1), the complexity of our split procedure can be estimated by O(nb), the same as
in Prins (2009), where b is the maximum number of customers per trip. However, the
number of bikes in the BRP is limited to the fleet sizem, we need to compute a shortest
path with at most m arcs. Thus, the overall complexity of our split procedure can be
rewritten as O(nbm). Since graph H is directed acyclic by construction and presents
other characteristics as described in Vidal (2016), other faster algorithms could be
used.
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4.3. Local search

Algorithm 4: Local search procedure

1 Input: a solution S, string length λ;
2 Output: a better solution S;
3 while (i1 or i2 or i3 or i4 or i5) = true do
4 2-Opt(S, i1);
5 CrossoverMove(S, i2);
6 SwapTwoNodes(S, i3);
7 OrOptMove(S, λ, i4);
8 StringExchange(S, λ, i5);

9 return S;

As proposed in Prins (2004), the Local Search (LS) described in Algorithm 4 includes
five classical moves. Two-opt moves 2-Opt() take a sub-sequence of nodes in a solution
and invert its order. Crossover moves Crossover() replace two edges by two other
edges from two different trips. Swap moves SwapTwoNodes() exchange the location
of two nodes. Or-opt moves OrOptMove() change the position of a sub-sequence of
nodes. And finally, string exchange moves StringExchange() swap the location of two
sub-sequences of customers from two different trips. To limit the running time of the
procedure, the length of a string is restricted to λ ∈ {1, 2, 3}. We also use a technique
named Sequential Search that was presented in Irnich, Funke, and Grünert (2006)
to speed up the LS procedure. Our local search operators are executed in the best-
improvement fashion. After a best-improvement move is found, the procedure executes
it, which modifies S, and sets a Boolean flag (last argument) to true. Otherwise, the flag
is set to false. All neighbourhoods are searched again if at least one of them brings an
improvement. Every procedure is given a solution S encoded in a list including several
depots. The first and last nodes are depots while the others delimit the different trips.

To check a local search move is feasible in O(1), we adapt the efficient route eval-
uations from Vidal, Crainic, Gendreau, and Prins (2014). First, we reintroduce the
following formula for computing the energy generated on arc (i, j) of bike k based on
Equation (12):

ekij = dijl
k
i gcr + dijwk

(
0.5cwfρv

2 + gcr
)

(17)

In this equation, only the first term depends on the bike load. The remaining term
depends only on the arc length. For convenience, we can simplify the equation as
follows:

ekij = lki Aij +Bij (18)

in which Aij = dijgcr and Bij = dijwk(0.5cwfρv
2 + gcr).

In the following, we denote a subsequence σ as σ = [σ(1), σ(2), ..., σ(|σ|)] where σ(i)
represents the ith visit of the subsequence (a visit can be a depot or a customer in
a route). It can be observed that any described local search moves can be viewed as
a separation of routes into subsequences, which are then concatenated to create new
routes. For instance, let two routes r and r′ be represented by two visit sequences
σr = [σr(1), σr(2), .., σr(|σr|)] and σr′ = [σr′(1), σr′(2), .., σr′(|σr′ |)], respectively. A

11



Swap move applied on these two routes that exchanges the location of two visits σr(i)
and σr′(j) can be seen as the combination of two sequences φ = [σr(1), ..., σr(i− 1)]⊕
[σr′(j)] ⊕ [σr(i + 1), ..., σr(|σr|)] and φ′ = [σr′(1), ..., σr′(j − 1)] ⊕ [σr(i)] ⊕ [σr′(j +
1), ..., σr′(|σr′ |)]. More precisely, these generated sequences represent two new routes
obtained from the Swap move on r and r′. Each of them contains a concatenation of
three subsequences.

For each such subsequence σ, we compute the cumulative energy E(σ) =∑|σ|−1
i=1 e

veh(σ)
σ(i)σ(i+1)

(
veh(σ) denotes the bike used to serve the customers in σ

)
, load

Q(σ) =
∑|σ|

i=1 qσ(i), and cost C(σ) =
∑|σ|−1

i=1 dσ(i)σ(i+1). We also define A(σ) =∑|σ|−1
i=1 Aσ(i)σ(i+1) and B(σ) =

∑|σ|−1
i=1 Bσ(i)σ(i+1). This data can be computed directly

for a sequence σ0 involving a single vertex u, as E(σ0) = 0, Q(σ0) = qu, C(σ0) = 0,
A(σ0) = 0 and B(σ0) = 0. These following equations then enable to compute the same
data for a concatenation of two sequences:

C(σ ⊕ σ′) = C(σ) + C(σ′) + dσ(|σ|)σ′(1) (19)

Q(σ ⊕ σ′) = Q(σ) +Q(σ′) (20)

A(σ ⊕ σ′) = A(σ) +A(σ′) +Aσ(|σ|)σ′(1) (21)

B(σ ⊕ σ′) = B(σ) +B(σ′) +Bσ(|σ|)σ′(1) (22)

E(σ ⊕ σ′) = E(σ) + E(σ′) +Q(σ)[A(σ′) +Aσ(|σ|)σ′(1)] +Bσ(|σ|)σ′(1) (23)

Our proposed move evaluation procedure is based on equations above to first develop
data on relevant consecutive visit subsequences (and their reversal) in a preprocessing
phase, and then to evaluate the feasibility and cost of routes generated by the moves.
Hence, given the prepared data on subsequences, any move evaluation can be done in
constant time.

Note that, the processing will take O(n2) if all subsequences are computed. To
accelerate the procedure, it is sufficient to limit the preprocessing to either ‘prefix’
(respectively, ‘suffix’) subsequences containing the first (respectively, the last) node of
a route. This leads to the O(n) procedure but we can still access data of the remaining
subsequences by using the information of ‘prefix’ (‘suffix’) subsequences. For instance,
in equation (19), assuming that σ⊕σ′ is a ‘prefix’ subsequence, we can easily see that
σ is also a ‘prefix’ subsequence and C(σ′) can be computed via C(σ ⊕ σ′) and C(σ).

Equations (19)-(20) are frequently used in the VRP literature to calculate loads and
costs of subsequences (see for example (Vidal, Crainic, Gendreau, & Prins, 2013; Vidal
et al., 2014)). In the following, we prove Equation (23) that computes the energy of
concatenated subsequences. The energy of a visit sequence σ can be computed as:

E(σ) =

|σ|−1∑
i=1

e
veh(σ)
σ(i)σ(i+1)

=

|σ|−1∑
i=1

(l
veh(σ)
σ(i) Aσ(i)σ(i+1) +Bσ(i)σ(i+1)) (24)

=

|σ|−1∑
i=1

Bσ(i)σ(i+1) +

|σ|−1∑
i=1

(Aσ(i)σ(i+1)

i∑
j=1

qσ(j))
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Based on the equation (24), we can compute the cumulative energy of sequence σ⊕σ′

as follows:

E(σ ⊕ σ′) =

|σ|−1∑
i=1

ekσ(i)σ(i+1) + ekσ(|σ|)σ′(1) +

|σ′|−1∑
i=1

ekσ′(i)σ′(i+1)

(
k = veh(σ ⊕ σ′)

)

=

|σ|−1∑
i=1

Bσ(i)σ(i+1) +

|σ|−1∑
i=1

(Aσ(i)σ(i+1)

i∑
j=1

qσ(j))

+Aσ(|σ|)σ′(1)

|σ|∑
j=1

qσ(j) +Bσ(|σ|)σ′(1)

+

|σ′|−1∑
i=1

Bσ′(i)σ′(i+1) +

|σ′|−1∑
i=1

[
Aσ′(i)σ′(i+1)(

i∑
j=1

qσ′(j) +

|σ|∑
j=1

qσ(j))
]

= E(σ) +Q(σ)Aσ(|σ|)σ′(1) +Bσ(|σ|)σ′(1)

+Q(σ)

|σ′|−1∑
i=1

Aσ′(i)σ′(i+1) + (

|σ′|−1∑
i=1

Bσ′(i)σ′(i+1) +

|σ′|−1∑
i=1

Aσ′(i)σ′(i+1)

i∑
j=1

qσ′(j))

= E(σ) +Q(σ)Aσ(|σ|)σ′(1) +Bσ(|σ|)σ′(1) +Q(σ)A(σ′) + E(σ′)

= E(σ) + E(σ′) +Q(σ)[A(σ′) +Aσ(|σ|)σ′(1)] +Bσ(|σ|)σ′(1) □

4.4. Mutation

The objective of the mutation procedure is to diversify the search. Here, we do not
operate this procedure directly on a complete BRP solution, but indirectly on a giant
tour. Thus, neither capacity nor energy constraint needs to be considered. We use two
operators Move and Exchange which are randomly selected at each iteration. The first
one relocates a random node while the second one consists in swapping two different
nodes randomly selected in the giant tour. After an operator is selected, p successive
moves are executed. The value of p is modified during the search process. It is set to
a minimum value pmin at the beginning and each time a new best solution is found.
It is incremented whenever the mutation followed by local search returns a degraded
solution, but never exceeding a maximum value pmax.

5. Computational results

All the computational results are carried on a computer with an AMD Ryzen 7 3700X
8-Core Processors @ 3.6 GHz and 16.0 GB RAM under Window 10. The ELS algorithm
and MILP model are implemented in C++ and compiled with MSVC 14.27. CPLEX
12.10 is used for solving the MILP model.
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5.1. Data and Parameters

Two sets of BRP instances denoted by A1 and A2 are randomly generated to investi-
gate the performance of the methods. Each set contains instances with the number of
depots and customers n equal to 10, 20, and 100. For each value of n, three instances
are created. The location and request load of each customer are randomly generated
within certain boundaries. The latitude and longitude of customers are varied in range
0-15000 meters. The demand qi of customer i is a random integer from 1 kg to 5 kg.
The bike capacity is fixed to 50 kg. To ensure the feasibility of created instances, the
maximum number of bikes is set as in the initial solution found by our metaheuristic.

The selection of the maximum energy parameter E is based on the real-life scenarios.
By assuming that a biker can only go a certain distance represented by dmax = 40 km
without any load with the speed of 20 km/h, we then use equation (2) to calculate E,
that is equal to 764,501. Let A1 be the set of these instances. To observe the impact
of the energy constraint on the BRP solution, for each instance in set A1, we generate
a new instance in set A2 by increasing the value of E by a quarter, i.e., E = 955, 626.
We also relax the energy constraint to create the instance set A3 with E = +∞. The
instances are labeled as BRP-string-n-k, where string is the name of instance set (A1,
A2 or A3), n is the number of customers, and k (= 1, 2, 3) is the instance number.

ni nc pmin pmax λ Obj time
150 200 1 1 1 96116.50 2.87
150 200 1 1 2 96084.54 3.24
150 200 1 2 1 96082.87 2.57
150 200 1 2 2 96065.00 2.74
150 200 1 5 1 97360.54 3.12
150 200 1 5 2 97203.94 3.38

Table 1.: Comparison between different configurations of ELS

For ELS parameters, the values of ni and nc are first set to 150 and 200, respectively,
corresponding to 30,000 calls to the local search. We then find the suitable values
for other parameters (λ, pmin, pmax) by conducting preliminary experiments. We test
different combinations of these parameters on all instance sets and choose the best one.
Table 1 shows the results of these calibration tests. Column ‘Obj’ indicates the average
objective value of solutions obtained on all the instances; each of them is solved 10
runs by the algorithm. Column ‘time’ represents the average running time in seconds.
The selected values for the parameters are shown in the line in bold (λ, pmin, pmax) =
(2, 1, 2).

5.2. Comparison between MILP formulation and ELS

We now analyse the results obtained by MILP formulation and ELS. For each instance,
CPLEX is run only once with a time limit of 1 hour and ELS is run 10 times. Tables
2 and 3 show the results for two sets of instances A1 and A2. For the MILP-based
exact method, Columns ‘Obj’, ‘Gap’, ‘V eh’, and ‘Time’ report objective values, gaps
(in percentage), the number of vehicles of final solutions returned by CPLEX, and the
running time (in seconds), respectively. For the ELS metaheuristic, Column ‘Obj∗’
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CPLEX ELS

Instance m LB Obj V eh Gap T ime Obj∗ V eh∗ Obj T ime Gap

BRP-A1-10-1 2 47804.42 47804.42 2 optimal 1.07 47804.42 2 47804.42 0.25 0
BRP-A1-10-2 2 53886.39 53886.39 2 optimal 0.56 53886.39 2 53886.39 0.22 0
BRP-A1-10-3 2 46432.14 46432.14 2 optimal 0.27 46432.14 2 46432.14 0.29 0

BRP-A1-20-1 3 59192.2 88110.95 3 32.82 3600 75796.46 2 75796.46 0.69 0
BRP-A1-20-2 3 72496.28 88315.94 3 17.91 3600 87555.62 3 87555.62 0.39 0
BRP-A1-20-3 2 56979.47 70567.45 2 19.26 3600 64725.4 2 64725.4 0.18 0

BRP-A1-100-1 5 106880.54 - 164122 5 164368.6 3.15 0.15
BRP-A1-100-2 8 99512.24 OOM 254158.66 7 254192.4 5.08 0.01
BRP-A1-100-3 7 110949.8 - 205903.48 6 205907.4 5.71 0

Table 2.: Results for instance set A1

CPLEX ELS

Instance m LB Obj V eh Gap T ime Obj∗ V eh∗ Obj T ime Gap

BRP-A2-10-1 1 40635.77 40635.77 1 optimal 0.06 40635.77 1 40635.77 0.06 0.00
BRP-A2-10-2 1 44674.37 44674.37 1 optimal 0.08 44674.37 1 44674.37 0.05 0.00
BRP-A2-10-3 1 43207.77 43207.77 1 optimal 0.06 43207.77 1 43207.77 0.05 0.00

BRP-A2-20-1 2 63119.45 67910.12 2 7.05 3600.00 67858.16 2 67858.16 0.31 0.00
BRP-A2-20-2 2 72047.52 79101.77 2 8.92 3600.00 77283.25 2 77283.25 0.18 0.00
BRP-A2-20-3 2 59910.69 60953.15 2 1.71 3600.00 60953.15 2 60953.15 0.66 0.00

BRP-A2-100-1 5 109390.58 OOM 153266.06 5 153266.06 6.94 0.00
BRP-A2-100-2 5 113114.91 OOM 168561.45 4 168606.46 5.31 0.03
BRP-A2-100-3 4 111978.18 OOM 155983.73 4 156063.00 3.10 0.05

Table 3.: Results for instance set A2

15



gives the objective value of the best solutions found among 10 runs. The number
of vehicles used in the best solutions is reported in Column ‘V eh∗’. Columns ‘Obj’,
‘Time’ and ‘Gap’ provide the average measures over 10 runs of the objective value, the
computation time (in seconds), and the deviation in percentage from the best solution
Obj∗.

Column ‘Time’ can sometimes contain ‘OOM’ which stands for ‘Out Of Memory’
status of CPLEX and ‘-’ which implies that CPLEX cannot find a feasible solution in
the time limit. The blanks in the result tables indicate scenarios the data is unavailable.
As can be seen, CPLEX can solve all instances with 10 customers to optimality. It
cannot prove the optimality for instances with 20 customers but can provide feasible
solutions. On 100-customer instances, it fails to provide any feasible solution. The
results demonstrate the good performance of the ELS algorithm. It is able to find
all the optimal solutions found by CPLEX. On open instances, ones that CPLEX
cannot prove the optimality, ELS often finds better solutions. The average gap between
solution of each run and the best solution is less than 0.15%, partly indicating the good
stability of the ELS algorithm.

5.3. Comparison between ELS and a state-of-the-art metaheuristic

In this section, we compare the performance of ELS with the Hybrid Genetic Search
(HGS) (Vidal et al., 2014) on the BRP instances. HGS is a state-of-the-art method
for many important VRP variants such as Capacitated VRP (CVRP) (Vidal, 2022) or
VRP with time windows (VRPTW) (Kool et al., 2022). In general, the basis of HGS
is a genetic algorithm where each chromosome is represented by a giant tour (Section
4). Then a split procedure is applied to this giant tour to provide an explicit solution,
which is optimal with respect to the request order of the giant tour. In HGS, two
separate populations for feasible and infeasible solutions are created and evolved during
the search. The initial size of each population is denoted as µ. The initial solutions
are randomly generated by using the split algorithm on random customer orders. The
selection process in each iteration involves choosing two parents from either population
using a binary tournament and then merging them through an ordered crossover (OX)
(Oliver, Smith, & Holland, 1987) to create a new offspring solution. This new solution
is then intensified using local search and inserted into the appropriate population.
HGS keeps each population at a maximum size of µ+ λ. When this value is reached,
λ worst solutions in terms of diversity and quality are removed from the population.

We adapt HGS to deal with the BRP by making some modifications to its open-
source implementation for solving CVRP 1. We first replace the split and local search
parts with our designed ones for the BRP (Section 4). Because our split algorithm does
not feature a penalty mechanism allowing a solution to violate some constraints, HGS
maintains only one population which contains feasible solutions. Finally, we follow the
initialization phase of Pacheco, Martinelli, Subramanian, Toffolo, and Vidal (2023) for
the single-population version of HGS. It uses a random greedy insertion instead of
split for constructing solutions from randomly generated customer orders. The idea of
this procedure is to iteratively insert each customer into their best position with the
least increased cost. The values of µ and λ are set to 25 and 40, respectively, following
the default setting of the open-source version. Like ELS, we run HGS 10 times on each
instance. The number of iterations of HGS is set to 30,000, similarly to ELS. Tables
4 and 5 show the comparison results between the two methods. The metrics used in

1https://github.com/vidalt/HGS-CVRP
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these tables are described in the previous subsection.
From these tables, it is clear that HGS is significantly slower than ELS. In terms

of stability, the Gap values of ELS are always smaller than the ones of HGS on all
instances. Furthermore, the maximal value of Gap value in the case of ELS is only 0.15
% (BRP-A1-100-1) while this figure for HGS is up to 2.47 % (BRP-A1-100-3). The
best objective values and their associated number of vehicles found in ten runs of both
algorithms are identical in most instances except the 100-customer instances of set
A1. ELS produces slightly better Obj∗ values on BRP-A1-100-1 and BRP-A1-100-2
instances but fails to outperform HGS on the BRP-A1-100-1 instance. However, HGS
is nearly twice slower than ELS on this instance. The Gap value is 2.47% which is
very large compared to ELS (Gap = 0.00%). Overall, we still opt for ELS to conduct
experiments in the next subsections due to its good stability, fast running time, and
reasonable solution quality.

HGS ELS

Instance m Obj∗ V eh∗ Obj T ime Gap Obj∗ V eh∗ Obj T ime Gap

BRP-A1-10-1 2 47804.42 2 47804.42 1.22 0.00 47804.42 2 47804.42 0.25 0.00
BRP-A1-10-2 2 53886.39 2 53886.39 1.13 0.00 53886.39 2 53886.39 0.22 0.00
BRP-A1-10-3 2 46432.14 2 46432.14 1.13 0.00 46432.14 2 46432.14 0.29 0.00

BRP-A1-20-1 3 75796.46 2 75796.46 1.52 0.00 75796.46 2 75796.46 0.69 0.00
BRP-A1-20-2 3 87555.62 3 87555.62 1.83 0.00 87555.62 3 87555.62 0.39 0.00
BRP-A1-20-3 2 64725.40 2 64725.40 1.16 0.00 64725.40 2 64725.40 0.18 0.00

BRP-A1-100-1 5 164428.70 5 165103.76 6.28 0.41 164122.00 5 164368.60 3.15 0.15
BRP-A1-100-2 8 254496.04 7 254746.61 12.82 0.10 254158.66 7 254192.40 5.08 0.01
BRP-A1-100-3 7 189897.35 5 194701.15 12.31 2.47 205903.48 6 205907.40 5.71 0.00

Table 4.: Comparison results for instance set A1 between HGS and ELS

HGS ELS

Instance m Obj∗ V eh∗ Obj T ime Gap Obj∗ V eh∗ Obj T ime Gap

BRP-A2-10-1 1 40635.77 1 40635.77 0.87 0.00 40635.77 1 40635.77 0.06 0.00
BRP-A2-10-2 1 44674.37 1 44674.37 0.88 0.00 44674.37 1 44674.37 0.05 0.00
BRP-A2-10-3 1 43207.77 1 43207.77 0.82 0.00 43207.77 1 43207.77 0.05 0.00

BRP-A2-20-1 2 67858.16 2 67858.16 1.23 0.00 67858.16 2 67858.16 0.31 0.00
BRP-A2-20-2 2 77283.25 2 77283.25 1.10 0.00 77283.25 2 77283.25 0.18 0.00
BRP-A2-20-3 2 60953.15 2 60953.15 1.45 0.00 60953.15 2 60953.15 0.66 0.00

BRP-A2-100-1 5 153266.06 5 153274.24 9.22 0.01 153266.06 5 153266.06 6.94 0.00
BRP-A2-100-2 5 168561.45 4 169087.76 7.94 0.31 168561.45 4 168606.46 5.31 0.03
BRP-A2-100-3 4 155983.73 4 156135.58 5.66 0.10 155983.73 4 156063.00 3.10 0.05

Table 5.: Comparison results for instance set A2 between HGS and ELS

5.4. The impact of energy constraint

In this section, the importance of the energy constraint is discussed. We explain why
it is necessary to study the BRP by experiments. To achieve the goal, we only keep the
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capacity constraint and relax the energy constraint by setting the maximum energy
value E to +∞. All the settings of both exact and metaheuristic methods are kept
unchanged. The results for the instances without the energy constraint are shown in
Table 6 with the column headings similar to those mentioned in subsection 5.2.

CPLEX ELS

Instance m LB Obj V eh Gap T ime Obj∗ V eh∗ Obj T ime Gap

BRP-A3-10-1 1 40635.77 40635.77 1 optimal 0.05 40635.77 1 40635.77 0.25 0.00
BRP-A3-10-2 1 44674.37 44674.37 1 optimal 0.05 44674.37 1 44674.37 0.25 0.00
BRP-A3-10-3 1 43207.77 43207.77 1 optimal 0.06 43207.77 1 43207.77 0.25 0.00

BRP-A3-20-1 1 57597.17 57597.17 1 optimal 0.55 57597.17 1 57597.17 0.59 0.00
BRP-A3-20-2 1 69209.44 69209.44 1 optimal 0.41 69209.44 1 69209.44 0.58 0.00
BRP-A3-20-3 1 50798.45 50798.45 1 optimal 0.31 50798.45 1 50798.45 0.53 0.00

BRP-A3-100-1 5 108317.31 OOM 151811.37 5 151811.37 12.71 0.00
BRP-A3-100-2 4 112782.24 OOM 167025.31 4 167025.31 14.79 0.00
BRP-A3-100-3 4 111224.17 OOM 155578.43 4 155578.43 11.33 0.00

Table 6.: Results for instance set A3

From Table 6, it can be observed that when the energy constraint is ignored, the
instances tend to be easier for CPLEX but more difficult for ELS. The MILP-based
exact method can now solve successfully all instances with 20 customers but still can
not provide any feasible solutions for the 100-customer instances. The ELS algorithm
often requires more time to handle the instances without the energy constraints. We
believe the reason for this lies in the fact that the wider solution space makes the local
search operators of the algorithm to be called more frequent.

We now analyze further the obtained solutions when the energy constraint is relaxed.
Two characteristics of the best solutions found by all the methods are investigated: the
objective value and the energy consumed by the most tired biker. Table 7 illustrates
our obtained results.

set A1 set A2

Instance gapObj gapE gapObj gapE

10c1 15.00 5.53 0.00 -18.09
10c2 17.10 15.14 0.00 -6.08
10c3 6.94 11.61 0.00 -10.48

20c1 24.01 33.94 15.12 17.42
20c2 20.95 44.96 10.45 31.20
20c3 21.52 26.05 16.66 7.56

100c1 7.50 26.16 0.95 7.69
100c2 34.28 25.40 0.91 6.75
100c3 24.44 21.45 0.26 1.82

Table 7.: Impact of energy constraint on the BRP solution

In Table 7, Column ‘gapObj ’ represents the gap (in percentage) between the best
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solutions found by all the methods in two scenarios: with and without the energy con-
straint. Its value is calculated as gapObj = 100ObjE−ObjNoE

ObjE
, where ObjE and ObjNoE

are the objective values of the solutions with and without the energy constraint, re-
spectively. Column ‘gapE ’ reports the deviation from the maximal allowed energy E
of the energy Emax consumed by the most energy-consumed biker in case the en-
ergy constraint is not taken into account. The value of gapE is then measured as
gapE = 100Emax−E

Emax
. We note again that E is set to 764,501 in instance set A1 and

955,626 in instance set A2.
As expected, when the energy constraint is removed, less bikes are required and

less cost bike routes are found. The energy constraint makes the transportation cost
increase from 6.94% to 34.28% on set A1 and from 0% to 16.66% on set A2. However,
the maximum energy consumed by a biker always exceeds the allowed value E repre-
senting the physical fitness of bikers on set A1. The gaps in some cases can be up to
44.96%, which are relatively high. Even when the energy constraint is more relaxed
as in instance set A2, the value of gapE increases up to 31.2%. These demonstrate
the importance of the energy constraint in the BRP, without which the BRP solution
can be infeasible due to the limited physical condition of bikers. In the following, we
continue to analyse the impact of energy constraint in a real-world scenario.

5.5. Real-world case

The need for the BRP model is reinforced by our collaboration with Peloton, a com-
pany which delivers and picks up goods using bikes in Liverpool. In the collaboration
project, the company collects the food donated by restaurants to food banks which
are charities that provide food for people in need. As their customer identities and
locations are private, 50 restaurants in Liverpool were randomly selected to create a
real instance. The depot is Asda Breck Road Superstore. The bike number is bounded
to 5 and the bike capacity is 50 kg. The customer demand is still varied between 1 and
5. An OpenStreetMap API is used to get the coordinates (latitude, longitude) of the
customers. The real distances are also got from this API by requesting the shortest
path for each pair of customers.

Because the MILP model cannot handle efficiently the instance with 50 customers,
we use the ELS algorithm for this experiment. The ELS algorithm is run 10 times
and the best solution is recorded. Two settings are considered: with and without the
energy constraint. In case of using the energy constraint, the maximum energy level
E is set to 764,501 and 955,626, which is the same as in Section 5.1.

Table 8 presents the detailed solutions of this experiment. We report the distance,
consumed energy, and load of each mobilized bike route of the best solution found. As
can be seen, when E is set to 764,501, four bikes are mobilized while in two remain-
ing scenarios, only three bikes are required. The energy constraint makes the increase
of travel cost by 1.53% and 0.98% for E = 764,501 and 955,626, respectively. In the
solution obtained when the energy constraint is ignored, two bike routes violate the en-
ergy constraint with E = 764, 501 (the violations are 28.94% and 3.26%, respectively),
and one bike route violates the energy constraint with E = 955, 626 (the violation
is 11.18%). This again confirms the importance of the energy constraint in the BRP
problem. Finally, Figures 2, 3, and 4 visualize the obtained solutions for three different
scenarios. The different bike routes are represented by different color lines.
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Bike 1 Bike 2 Bike 3 Bike 4 Total

E = 764,501
distance 13992.78 31955.53 30368.90 33962.71 110279.93
energy 277720.58 647100.73 600640.21 673884.01 2199345.54
load 32 45 28 30 135

E = 955,626
distance 32779.03 31955.53 44934.14 0.00 109668.71
energy 671730.79 647100.73 912048.55 0.00 2230880.08
load 43 45 47 0 135

E =∞
distance 16379.48 53111.75 39116.99 0.00 108608.23
energy 325498.05 1075909.19 790293.88 0.00 2191701.14
load 35 50 50 0 135

Table 8.: Details of the bike trips for the real instance

Figure 2.: BRP solution for the real instance with the energy constraint E = 764,501
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Figure 3.: BRP solution for the real instance with the energy constraint E = 955,626

Figure 4.: BRP solution for the real instance without the energy constraint

Last but not least, we investigate the impact of different capacity settings on the
solutions of the real-world instance. Three values of the capacity Q ∈ {30, 50, 70} are
taken into account. Tables 9 and 10 show the results of the ELS algorithm for the two
maximum energy values as described in Section 5.1. When E = 764, 501, increasing
Q from 30 to 50 and 70 allows to reduce one bike. Two routes are also excluded if we
increase the value of Q from 30 in case of E = 955, 626. As expected, when reducing
the capacity Q, the objective value is increased in most cases. The only exception is
for E = 764, 501 where the solutions of Q = 50 and Q = 70 are identical. This can be
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due to the energy bound which makes the biker unable to service more requests when
increasing the capacity.

Bike 1 Bike 2 Bike 3 Bike 4 Bike 5 Total

Q = 30
distance 12442.67 19007.79 30368.9 33962.71 28960.68 124742.76
energy 244616.78 373649.99 600640.21 673884.01 572660.79 2465451.8
load 22 26 28 30 29 135

Q = 50
distance 13992.78 31955.53 30368.9 33962.71 0 110279.93
energy 277720.58 647100.73 600640.21 673884.01 0 2199345.54
load 32 45 28 30 0 135

Q = 70
distance 13992.78 31955.53 30368.9 33962.71 0 110279.93
energy 277720.58 647100.73 600640.21 673884.01 0 2199345.54
load 32 45 28 30 0 135

Table 9.: Details of the bike trips for different capacities with E = 764, 501

Bike 1 Bike 2 Bike 3 Bike 4 Bike 5 Total

Q = 30
distance 12442.67 19007.79 30368.9 33962.71 28960.68 124742.76
energy 244616.78 373649.99 600640.21 673884.01 572660.79 2465451.8
load 22 26 28 30 29 135

Q = 50
distance 32779.03 31955.53 44934.14 0 0 109668.71
energy 671730.79 647100.73 912048.55 0 0 2230880.08
load 43 45 47 0 0 135

Q = 70
distance 37461.97 38354.14 30368.9 0 0 106185.02
energy 765786.66 769008.99 601878.79 0 0 2136674.46
load 64 43 28 0 0 135

Table 10.: Details of the bike trips for different capacities with E = 955, 626

6. Conclusion

This paper introduced a bike routing problem and made several contributions. First, a
new MILP model was proposed to tackle the routing problem using push-bikes while
taking into account the energy required to move the bike as the load accumulates dur-
ing the trip. A linearization technique was applied to avoid using non-linear solvers.
Second, an adapted Evolutionary Local Search was introduced to solve large instances
in a reasonable amount of time. A new split procedure was designed to handle energy
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constraints. New data structures were proposed to accelerate the local search proce-
dures. The computational results demonstrated the efficiency of our method compared
to CPLEX. We also showed the importance of the new energy constraint considered in
the BRP problem. Moreover, an instance based on real-world customers was created
to better demonstrate the relevance of the method and the new problem.

Further research directions can be investigated. For the simplicity purpose, a number
of model parameters have been neglected in this research. Grappe, Candau, Belli,
and Rouillon (1997) study the power required from a cyclist to move given a certain
position. They conclude that an important part of the energy is due to the aerodynamic
drag of air. Due to the cargo-based bikes that are being used, the frontal surface area
is not negligible when facing significant winds. Therefore, studying the BRP while
considering the wind speed could lead to better itineraries. Another improvement
could be to consider real characteristics of the roads such as slope, different materials
for road construction, etc,. Two customers could be linked by several paths of different
elevation profiles which could require different energy from the cyclist. In that case,
the model could be extended to an arc routing problem for another type of delivery.
Another research direction could allow the variation of the bike speed on different
edges, leading to the more complex speed optimization problem.
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