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Abstract
A general class of nonlinear complementarity problems is studied that includes polyno-
mial complementarity problems as a subclass. In contrast to most existing methods for
nonlinear complementarity problems, our algorithm works under very general conditions.
Preliminary computational experiments on polynomial complementarity problems show
its practicability for problems with polynomial degree up to 41 and variable number up
to 8.
Keywords: Nonlinear complementarity problem; complementarity problem with d.m.
functions; polynomial complementarity problem; linear complementarity problem;
branch-reduce-and-bound algorithm.

1. Introduction

We are concerned with the following Monotonic Complementarity Problem

Find x ∈ Rn
+ satisfying g(x) ≥ 0, h(x) ≥ 0, ⟨g(x), h(x)⟩ = 0, (MCP)

where g, h : Rn → Rn, and gi, hi(i = 1, . . . , n) are continuous d.m. functions such that

D = {x ∈ Rn
+ | g(x) ≥ 0, h(x) ≥ 0} ̸= ∅. (1)

Recall from [24] that a d.m. function on Rn
+ is a function which can be represented as a

difference of two increasing functions on Rn
+, where by increasing function on Rn

+ we mean
a function u : Rn → R such that x′ ≥ x ≥ 0 implies u(x′) ≥ u(x). Outstanding examples
of d.m. functions on Rn

+ are polynomials (generalized polynomials, resp.) of the form∑
α cαx

α with α being natural numbers (α ∈ Rn
+, resp.), cα ∈ R+, and xα = xα1

1 . . . xαn
n .

To represent a polynomial (or generalized polynomial) as a difference of two increasing
functions on Rn

+, it suffices to group separately all terms with positive coefficients cα and
all terms with negative coefficients cα.

Polynomial and generalized polynomial complementarity problems, i.e. (MCP) involv-
ing polynomials or generalized polynomials, are encountered in diverse fields (see e.g. [4]).
When g(x) is an affine mapping and h(x) ≡ x, (MCP) is the classical linear complemen-
tarity problem [2] which has been extensively studied during the last five decades.

So far most numerical studies of nonlinear complementarity problems have been based
on nonlinear programming (e.g., [9], [14]), using sometimes merit functions satisfying
certain conditions (e.g. [18], [28]). A nonlinear complementarity problem more general
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than (MCP) has been considered in [20], where g, h are just assumed to be continuous and
the constraints are g(x) ∈ K, h(x) ∈ K◦ with K ⊂ Rn being a closed convex cone and K◦

its polar. In [20] it is shown that this general problem can be reduced to a differentiable
minimization problem, but no numerical result is provided.

The best known numerical algorithms for solving polynomial complementarity prob-
lems are the homotopy methods [6, 19], the interior-point methods [10], the nonsmooth-
equations approach [14], and the basic Newton method [17]. For a discussion of these
methods we refer the reader to [15] where a comprehensive treatment of the general com-
plementarity problem can also be found.

More recently, in [16] the reformulation-linearization technique (RLT) was used to for-
mulate the linear complementarity problem as an equivalent mixed integer linear program
which was solved by an implicit enumeration method that utilized Langrangian relaxation,
surrogate constraints, cutting planes and a heuristic to successfully exploit the resulting
linearization. The reported computational results were the best to date for unstructured
linear complementarity problems. The same approach can readily be extended to handle
polynomial complementarity problems.

However, to the best of our knowledge, so far no numerical algorithm has been devel-
oped for nonlinear complementarity problems of the general class (MCP). The purpose of
the present paper is to suggest an approach to (MCP) based on exploiting the monotonic
structure by using recently developed techniques of monotonic optimization [22, 24].

In contrast to the above mentioned methods, each of which can be applied to a re-
stricted subclass of (MCP), the algorithm to be proposed works under very general con-
ditions. All the development below is valid, in particular, when the functions gi(x), hi(x)
are arbitrary generalized polynomials. Also note that neither g nor h is assumed to be
a monotone mapping as defined in monotone complementarity problems in [13]. In ad-
dition, an important feature of the method to be proposed is that it actually applies to
complementarity problems with an additional box constraint of the form c ≤ x ≤ d, where
0 ≤ ci ≤ di ≤ +∞ for i = 1, . . . , n.

The paper is divided into several sections. First, in Section 2, we discuss a refor-
mulation of (MCP) as a monotonic optimization problem, in a format most suitable for
numerical study purpose. Based on this monotonic reformulation, a new branch-reduce-
and-bound algorithm for solving (MCP) is developed in Sections 3 through 6. Details on
the three basic operations involved in this algorithm: reducing, bounding, and branching
are discussed in Sections 3 and 4, then a formal description of the algorithm is given
in Section 5. In Section 6, an improved bounding method is described, while Section 7
discusses some specializations of (MCP). Finally, Section 8 closes the paper with some
illustrative numerical examples and preliminary computational results.

2. Reduction to monotonic optimization

Since gi, hi(i = 1, . . . , n) are assumed to be nonnegative d.m. functions on Rn
+, it can

easily be checked that the function

⟨g(x), h(x)⟩ =
n∑

i=1

gi(x)hi(x)

is also a d.m. function on Rn
+. Let us then associate with (MCP) the following d.m.

optimization problem

min{⟨g(x), h(x)⟩ | x ∈ Rn
+, g(x) ≥ 0, h(x) ≥ 0}. (P)
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The following proposition is obvious, where we write min (P) to denote the optimal value
of problem (P).

Proposition 1. (MCP) has a solution if and only if min (P) = 0.

Thus, solving (MCP) reduces to solving the d.m. programming problem (P), which can
be done by methods of monotonic optimization developed in [22, 23, 24] and especially, by
the SIT Algorithm discussed in [25]. Furthermore, when g(x), h(x) are affine, the problem
(P) belongs to a class of nonconvex quadratic optimization problems studied earlier in
[12] via multiplicative programming or in [8] and more recently in [27] via a monotonic
approach. As it turns out, without much effort the method in [8] can be extended to solve
(P) in the general case.

A peculiar feature of problem (P) which may require special treatment is that its
feasible set may be unbounded. Therefore, we first convert the problem to a form directly
amenable to standard techniques of monotonic optimization. For this we define

Φ(y, z) = min{⟨g(x), h(x)⟩ | y ≤ h(x) ≤ z, x ∈ D} (2)

with the usual convention min ∅ = +∞, and D is defined in (1). Since g(x) ≥ 0, h(x) ≥ 0
for all x ∈ D, we clearly have

Φ(y, z) ≥ 0 ∀y, z ≥ 0. (3)

As can easily be checked, we have

(i) 0 ≤ y ≤ y′ implies Φ(y, z) ≤ Φ(y′, z), i.e., with fixed z the function Φ(y, z) is
increasing with respect to y in Rn

+;

(ii) 0 ≤ z′ ≤ z implies Φ(y, z) ≤ Φ(y, z′), i.e., with fixed y the function Φ(y, z) is
decreasing with respect to z in Rn

+;

(iii) [y′, z′] ⊂ [y, z] ⊂ Rn
+ implies Φ(y′, z′) ≥ Φ(y, z), since Φ(y′, z′) ≥ Φ(y′, z) ≥ Φ(y, z).

Setting h(D) := {y ∈ Rn
+ | y = h(x), x ∈ D}. Obviously from the definition of the

function Φ(y, z), if x ∈ D is a solution of (MCP), then Φ(y, z) = 0 for all y, z ∈ Rn
+ such

that y ≤ h(x) ≤ z. Conversely, if Φ(y, z) = 0 for some 0 ≤ y ≤ z and h(D) ∩ [y, z] ̸= ∅,
then (MCP) has a solution x ∈ D such that h(x) ∈ [y, z].

Employing these properties of the function Φ(y, z), to find solution x ∈ D of (MCP)
we construct a sequence of boxes [y, z] ⊂ Rn

+ converging to h(x). We first find a lower
bound for the lower vertex of the initial box of such a sequence. To do that, let z be
sufficiently large and fixed. Consider the following problem:

min{Φ(y, z) | y ∈ h(D)}. (Q)

Proposition 2. If x is a solution of (MCP), then y = h(x) is an optimal solution of
the problem (Q) with Φ(y, z) = 0. Conversely, if y is an optimal solution of (Q) with
Φ(y, z) = 0, then every solution x ∈ D, if exists, of (2) corresponding to y and z is a
solution of (MCP) with y ≤ h(x) ≤ z.

Proof. If x is a solution of (MCP), i.e., x ∈ D and ⟨g(x), h(x)⟩ = 0, g(x) ≥ 0, h(x) ≥ 0,
then y = h(x) ∈ h(D) and by (2) we have

0 ≤ min{Φ(y, z) | y ∈ h(D)} ≤ Φ(y, z) ≤ ⟨g(x), h(x)⟩ = 0.
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So Φ(y, z) = 0 and y solves (Q).
Conversely, if y is an optimal solution of (Q) with Φ(y, z) = 0, while x ∈ D is a solution

of
Φ(y, z) = min{⟨g(x), h(x)⟩ | y ≤ h(x) ≤ z, x ∈ D} = 0,

then g(x) ≥ 0, h(x) ≥ 0, and ⟨g(x), h(x)⟩ = 0, so x is a solution of (MCP), moreover,
y ≤ h(x) ≤ z.

Note that (Q) is equivalent to a monotonic optimization problem. To prove this fact,
define H = h(D) + Rn

+ = {y ∈ Rn
+ | y ≥ h(x) for some x ∈ D}. Clearly y′ ≥ y ∈ H

implies y′ ∈ H, so H is a conormal set in Rn
+. Actually H is the conormal hull of h(D),

i.e. the smallest conormal set containing h(D). It can be easily seen that the problem (Q)
is equivalent to the following monotonic optimization problem

min{Φ(u, z) | u ∈ H}. (Q̃)

Indeed, if u solves (Q̃), then u ≥ y = h(x) for some x ∈ D and Φ(y, z) ≤ Φ(u, z) ≤ Φ(y, z)
for all y ∈ H, hence y solves (Q). Conversely, if y solves (Q), then y ∈ h(D) ⊂ H.
Furthermore, for any u ∈ H there exists ỹ ∈ h(D) such that u ≥ ỹ. We therefore have

Φ(u, z) ≥ Φ(ỹ, z) ≥ Φ(y, z) = min{Φ(y, z) | y ∈ h(D)},

so y solves (Q̃).
We have thus reduced (MCP) to solving the problem

min{Φ(y, z) | y ∈ h(D)} = 0. (Q0)

For any y ∈ Rn
+ let E(y) := {x ∈ D | ⟨g(x), h(x)⟩ = Φ(y, z)}. If y solves (Q0) and

E(y) ̸= ∅, then any x ∈ E(y) solves (MCP). Conversely, any solution x to (MCP) satisfies
x ∈ E(y) for some solution y of (Q0).

Problem (Q0) consists in checking whether the monotonic optimization problem (P)
has an optimal solution y with objective function value Φ(y, z) = 0. This can be done by
applying the SIT algorithm (Successive Incumbent Transcending Algorithm) developed in
[25, 26, 27] for transcending the value 0 in the monotonic optimization problem (P). The
following sections describe this algorithm adapted to solve (MCP).

3. Bounding operation

Given a nonempty closed set G ⊂ Rn
+, a point y ∈ G is called a lower boundary point

of G if there is no z ∈ G such that z ≤ y and z ̸= y, i.e., if {z ∈ Rn | G∩ (z−Rn
+)} = {z}.

Denote the set of all lower boundary points of G by ∂−G.

Proposition 3. (i) For any x ∈ G there exists σ(x) ∈ ∂−G such that σ(x) ≤ x.
(ii) If y ∈ h(D) is a solution of the problem (Q), then so is every u ∈ h(D)∩ (y−Rn

+).
In particular, σ(y) is also a solution of (Q).

Proof. (i) Given any x ∈ G, let σ(x) := zn, where zn is defined inductively by

z1 = argmin{y1 | y ∈ G, y ≤ x},
zi = argmin{yi | y ∈ G, y ≤ zi−1} for i = 2, . . . , n.

Then zn ∈ {x}−Rn
+, and there is no y ∈ G such that y ̸= zn, y ≤ zn, i.e., G∩ (zn−Rn

+) =
{zn}. Therefore σ(x) ∈ ∂−G.
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(ii) If u ∈ h(D) ∩ (y − Rn
+), then u ∈ h(D) and u ≤ y. The latter inequality implies

Φ(u, z) ≤ Φ(y, z) = min{Φ(y, z) | y ∈ h(D)}, because the function Φ(·, z) is increasing.
This fact, together with u ∈ h(D), implies that u is also a solution of the problem (Q).

As a corollary of Proposition 3(i), we have

argmin{Φ(y, z) | y ∈ ∂−G} ⊂ argmin{Φ(y, z) | y ∈ G}. (4)

As a consequence of (4) and Proposition 3(ii), to find a solution of (Q) we can restrict the
set of interest points to ∂−h(D).

Proposition 4. For each i = 1, . . . , n let

ai = inf{yi | y = h(x) for some x ∈ D},
θi = inf{θ | θ ≥ 0, a+ θei = h(x) for some x ∈ D},

in which ei is the i-th unit vector of Rn
+. Define

b = a+
n∑

i=1

θie
i.

Then ∂−h(D) ⊂ [a, b].

Proof. Let y ∈ ∂−h(D). If y ̸≥ a, i.e., yi < ai for some i ∈ {1, . . . , n}, then yi < zi for
all z ∈ h(D), hence y ̸∈ h(D). This contradicts our setting that y ∈ ∂−h(D). Therefore
y ≥ a. On the other hand, if y ̸≤ b, i.e., yi > bi = ai + θie

i for some i ∈ {1, . . . , n}, then
y ̸= a + θie

i ∈ h(D), while a + θie
i ≤ y. Thus y ̸∈ ∂−h(D), which again contradicts our

choice of y. Therefore y ≤ b. So every lower boundary point of h(D) must be contained
in [a, b].

Note that a ≥ 0, i.e., [a, b] ⊂ Rn
+. By Proposition 3(ii) and Proposition 4, if (MCP)

has a solution x ∈ D, the function Φ(·, z) must have a zero in [a, b] and h(x) ≥ a.
Now we come back to problem (2). To find a solution x ∈ D of (MCP) we can start

searching in an initial box with a defined in Proposition 4 being the lower vertex. Let
c be the upper vertex of the initial box, i.e. such that a ≤ h(x) ≤ c. The algorithm
to be proposed for solving (MCP) proceeds by successive partitioning of [a, c] according
to a branch and bound scheme. The partition sets in this algorithm are boxes of the
form M = [p, q] ⊂ Rn

+. At each iteration, for each box M = [p, q] a lower bound β(M)
is computed for Φ(p, q) and if β(M) > 0 then M is deleted, so that only partition sets
M with β(M) = 0 remain for consideration. A partition set M with β(M) = 0 is then
selected and further partitioned, generating a new collection of boxes for exploration at
the next iteration. The algorithm continues until occurrence of either of the following
events:

1) no partition set remains for exploration (then the problem is infeasible);

2) a solution of (MCP) is obtained.

VALID REDUCTION
A basic operation in this algorithm is bounding: for a given box M := [p, q] ⊂ Rn

+,
compute a lower bound β(M) for the optimal value of the subproblem

Φ(p, q) = min{⟨g(x), h(x)⟩ | p ≤ h(x) ≤ q, x ∈ D}. (QM )
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Since, naturally, we want a bound as tight as possible, before computing β(M) we should
try to replace the box M by a smaller one M ′ = [p′, q′] ⊂ M such that

Φ(p, q) = Φ(p′, q′). (5)

A box M ′ ⊂ M satisfying (5) will be referred as a valid reduction of M , written M ′ =
redM . In that spirit, let p′ ∈ Rn

+ be such that

p′i = min{yi | y = h(x) for some x ∈ D, p ≤ h(x) ≤ q} (i = 1, . . . , n).

Proposition 5. M ′ = [p′, q] is a valid reduction of M = [p, q].

Proof. Let xM be a solution of (QM ). Then yM := h(xM ) ∈ h(D) ∩ [p, q]. We need to
show that p′ ≤ yM . Indeed, if yM ̸≥ p′, i.e. yMi < p′i for some i ∈ {1, . . . , n}, then yMi < zi
for all z ∈ h(D) ∩ [p, q]. Hence yM ̸∈ h(D) ∩ [p, q], contradicts the construction of yM .
Therefore yM ≥ p′.

COMPUTATION OF BOUND

Proposition 6. Let redM = [p′, q′].
(i) A lower bound β(M) for the optimal value of (QM ) is

β(M) := min{⟨g(x), p′⟩ | p′ ≤ h(x) ≤ q′, x ∈ D}. (LQM )

(ii) If an optimal solution xM of (LQM ) satisfies h(xM ) = p′ and β(M) = 0, then xM

is a solution to (MCP).

Proof. (i) Since ⟨g(x), h(x)− p′⟩ ≥ 0 with h(x) ≥ p′, g(x) ≥ 0, we have

Φ(p, q) = Φ(p′, q′)

= min{⟨g(x), h(x)⟩ | x ∈ D, p′ ≤ h(x) ≤ q′}
≥ min{⟨g(x), p′⟩ | x ∈ D, p′ ≤ h(x) ≤ q′}
= β(M).

(ii) Obviously from xM ∈ D, β(M) = ⟨g(xM ), h(xM )⟩ = 0.
Despite its simplicity, the above bounding method can be combined with an adaptive

branching process to produce a convergent branch and bound algorithm for solving (MCP).
In fact, by using an adaptive rectangular subdivision rule (see [21]) starting from the
initial box M0 one can generate a nested sequence of boxes Mν = [pν , qν ] such that
β(Mν) = 0, xMν → x ∈ D, and pν − h(xMν ) → 0. Then g(xMν ) → g(x), h(xMν ) → h(x),
β(Mν) → ⟨g(x), h(x)⟩ = 0, so x is a solution to (MCP).

4. Branching process

Let M = [p, q] be a box with redM = [p′, q′] and such that β(M) = 0. If xM is an
optimal solution of the problem (LQM ), then p′ ≤ h(xM ) ≤ q′. If it so happens that
h(xM ) = p′, then by Proposition 6 we have

⟨g(xM ), p′⟩ = 0, xM ∈ D,

i.e., xM solves (MCP).
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Proposition 7. Let Mν = [pν , qν ] with ν ∈ Z+ be an infinite nested sequence of subboxes
of the initial box [a, c] such that for every ν we have

(i) β(Mν) = 0;
(ii) Mν+1 is a child of Mν in the subdivision via the hyperplane yiν = ην , where

ην := (pνiν + hiν (x
ν))/2;

(iii) xν := xMν is an optimal solution of (LQMν
) while iν ∈ argmaxi(hi(x

ν)− pνi ).
Then any cluster point x, if exists, of the sequence {xν} yields a solution of (MCP).

Proof. Since iν ∈ {1, . . . , n}, by passing to subsequences if necessary, we can assume
that iν = i0 for some i0 ∈ {1, . . . , n} and for all ν ∈ Z+. Then, condition (ii) gives us
ην = (pνi0 + hi0(x

ν))/2 for all ν ∈ Z+. Furthermore, since (Mν)ν∈Z+ is an infinite nested
sequence of subboxes of [a, c], by (iii) we have xν → x, hi0(x

ν) → hi0(x), pνi0 → pi0 .
Then we have ην = (pνi0 + hi0(x

ν))/2 → (pi0 + hi0(x))/2 =: η0. By the subdivision rule,
ην ∈ {pν+1

i0
, qν+1

i0
} and we have pν+1

i0
→ pi0 , q

ν+1
i0

→ qi0 (possibly qi0 = +∞). Therefore,
η0 ∈ {pi0 , qi0} if qi0 < +∞, or η0 = pi0 otherwise. Since pi0 ≤ hi0(x) ≤ qi0 while
η0 = (pi0 +hi0(x))/2, this implies that hi0(x) = pi0 , hence hi0(xν)−pνi0 → hi0(x)−pi0 = 0.
From the definition of i0, we then deduce that h(xν)−pν → 0, and consequently, h(xν) → p
as ν → +∞, i.e., h(x) = p. Since xν is an optimal solution of (LQMν

), it follows that x
is an optimal solution of (LQ[p,q]), and finally, as noted above, the fact h(x) = p implies
that x solves (MCP).

5. Branch and bound method

The above development leads to the following branch and bound method for solving
(MCP), in which branching is performed by rectangular subdivision of the initial box [a, c].

Algorithm 1
Step 0. Let M0 = [a, c] in which

ai = inf{yi | y = h(x) for some x ∈ D} for i = 1, . . . , n

and c be sufficiently large. Start with R0 = P1 = {M0}. Set k = 1.
Step 1. Replace each box M ∈ Pk with its valid reduction redM = [pM , qM ],
then compute the lower bound

β(M) = min{⟨g(x), pM ⟩ | x ∈ D, pM ≤ x ≤ qM} (6)

together with an optimal solution xM of (6). Let P ′
k = {M ∈ Pk | β(M) = 0}.

Step 2. If pM = h(xM ) for some M ∈ P ′
k, then terminate: xM is a solution of

(MCP). Otherwise continue.
Step 3. Let Rk = (Rk−1\{Mk−1}) ∪ P ′

k. If Rk = ∅, then terminate: (MCP) is
infeasible. Otherwise, select Mk ∈ Rk (the most recent partition set) and go
to Step 4.
Step 4. Let xk = xMk , yk = h(xk), pk = pMk . Choose ik ∈ argmaxi{yki − pki }
and divideMk into two subboxes via the hyperplane yik = (pkik+ykik)/2. Reduce
each subbox in the partition of Mk and let Pk+1 be the collection of these
reduced subboxes.
Step 5. Increment k and go back to Step 1.
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Theorem 1. Either the above algorithm terminates after finitely many iterations, yielding
a solution to (MCP) or an evidence that (MCP) is infeasible - or it generates an infinite
sequence {xk} every cluster point x of which is a solution to (MCP).

Proof. When finite, the algorithm terminates at either Step 2 or Step 3 of some iteration. In
the former case, the point xM at that step is a solution to (MCP). In the latter case,Rk = ∅
is an evidence for the infeasibility of (MCP). When infinite, the algorithm generates
a nested sequence of boxes Mkν = [pkν , qkν ] (ν = 1, 2, . . .) satisfying the conditions of
Proposition 7, hence the conclusion.

Remark 1. The type of subdivision described in Proposition 7 and used in Algorithm
1 is often referred to as an adaptive subdivision. The rationale behinds it is that it tends
to bring the distance ∥h(xk)− pk∥ to zero, thus forcing {xk} to converge to a solution of
(MCP).

Remark 2. Each subproblem (LQM ) for computing the lower bound β(M) is a d.m.
optimization problem and, in the most general case, can be solved by suitable methods of
d.m. optimization as developed in [27]. However, instead of solving (LQM ) for obtaining
a lower bound β(M) as indicated in Proposition 6 one may also compute a number

γ(M) ≤ min{⟨g(x), h(x)⟩ | p′ ≤ h(x) ≤ q′, g(x) ≥ 0},

i.e., a lower bound for the optimal value of the problem (2). Convergence will be ensured,
provided that for any nested sequence Mν = [pν , qν ] satisfying ∩νMν = {x} we have
γ(Mν) → ⟨g(x), h(x)⟩. For example, if g(x) = u(x) − v(x) with u(x), v(x) increasing in
Rn
+, then this requirement is satisfied by the number γ(M) = ⟨p′, u(p′) − v(q′) which is

the most easily computable underestimate of the optimal value of (2). When g(x), h(x)
are polynomials, it may also be advantageous to take γ(M) as the optimal value of a RLT
relaxation of the problem (2) (see e.g. [21]).

6. Specializations

6.1. Linear complementarity problems
In this subsection we specialize the above method to the linear complementarity prob-

lem:
Find x ∈ Rn satisfying x ≥ 0, C(x) ≥ 0, ⟨C(x), x⟩ = 0, (LCP)

where C : Rn → Rn is an affine mapping. Here g(x) = C(x), h(x) ≡ x, and the set
D = {x ∈ Rn | C(x) ≥ 0, x ≥ 0} is a polyhedron. This linear structure implies some
important properties. Since the polyhedron D is line free, it has at least one extreme
point, and at least one such extreme point is a solution of (LCP), if the latter is solvable.
This follows from the well known fact that (LCP) has a solution if and only if the concave
minimization problem

min{
n∑

i=1

min{xi, Cix | x ≥ 0, C(x) ≥ 0}}

has an optimal solution with objective value 0, and at least one optimal solution of this
concave minimization problem is an extreme point of D. Note that the convex hull of the
extreme points of D is a compact set, so we can concentrate the search for a solution of
(LCP) on a bounded initial box.
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6.2. Increasing complementarity problems
In this subsection we specialize the above method to the increasing complementarity

problem, i.e. (MCP) in which gi(x), hi(x) are increasing functions on Rn
+.

7. Numerical experiments

In this section we present some computational experiments to illustrate the behavior
of the proposed algorithm. The algorithm has been coded in MATLAB R2020a and run
on a PC Intel(R) Core(TM) i7-6700HQ CPU 2*2.60 GHz, RAM 16.0 GB.

Experiment 1. (Test problem 1 in Section 10.2 [5], taken from MCPLIB [3]).
g(x) = Ax+ q, h(x) = x in which q ∈ R16 with qi = −1 for all i = 1, . . . , 16 and

A =



1 2 2 . . . 2 2
0 1 2 . . . 2 2
0 0 1 . . . 2 2
· · · . . . · ·
0 0 0 . . . 1 2
0 0 0 . . . 0 1


is a matrix in R16×16 whose diagonal entries equal 1, lower-diagonal entries equal 0, upper-
diagonal entries equal 2.

Experiment 2. (Test problem 2 in Section 10.2 [5], taken from [2]).
g(x) = Ax+ q, h(x) = x in which q = (−1,−1)t and

A =

[
1 1
1 1

]
.

Experiment 3. (Test problem 3 in Section 10.2 [5], taken from [2]).
g(x) = Ax+ q, h(x) = x in which q = (−3, 6,−1)t and

A =

 0 −1 2
2 0 −2
−1 1 0

 .

Experiment 4. (Test problem 4 in Section 10.2 [5], taken from [2]).
g(x) = Ax+ q, h(x) = x in which q = (−1,−1,−1,−1)t and

A =


0 0 10 20
0 0 30 15
10 20 0 0
30 15 0 0

 .

Experiment 5. (Test problem 5 in Section 10.2 [5]).
Experiment 6. (Test problem 6 in Section 10.2 [5], taken from [2]).
g(x) = Ax+ q, h(x) = x in which q = (50, 50, λ,−6)t with λ ≥ 0 and

A =


11 0 10 −1
0 11 10 −1
10 10 21 −1
1 1 1 1

 .
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Experiment 7. (Test problem 1 in Section 10.3 [5], taken from [2]).
g(x) = arctan(x− 10), h(x) = x.
Experiment 8. (Test problem 2 in Section 10.3 [5], taken from [2]).

g(x) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x22 + x1 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3


and h(x) = x ∈ R4.

Experiment 9. (Test problem 3 in Section 10.3 [5]).

g(x) =


−x1 + x2 + x3

x4 − 0.75(x2 + βx3)
1− x4 − 0.25(x2 + βx3)/x2

β − x4


and h(x) = x ∈ R4.

Experiment 10. (Test problem 4 in Section 10.3 [5]).
Experiment 11. (Test problem 5 in Section 10.3 [5]).
Experiment 12. (Test problem 6 in Section 10.3 [5]).
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