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Abstract
We propose two iterative algorithms for solving pseudomonotone quasi-
equilibrium problem in Hilbert spaces. The first one combines the
subgradient method and the projection method with self-adaptive step
sizes to generate a sequence of iterates that converges weakly to a solu-
tion of the problem. The second algorithm combines the first one with the
Mann iteration scheme to obtain the strong convergence of the generated
iterates. The convergence of our proposed algorithms requires a condition
milder than a similar one assumed in existing iterative solution meth-
ods for quasi-equilibrium problem. Numerical experiments show that
our algorithms are efficient and competitive to other extragradient-type,
projection-type, and proximal point algorithms in solving the problem.

Keywords: Quasi-equilibrium problem, fixed point problem,
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1 Introduction
Let H be a real Hilbert space equipped with an inner product ⟨·, ·⟩ and induced
norm ∥ · ∥. Let C be a closed convex subset of H. We are interested in the
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following quasi-equilibrium problem:

(QEP) Find p ∈ T (p) such that f(p, y) ≥ 0 for all y ∈ T (p),

where T is a multivalued mapping from C into itself and f : C × C → R is a
bifunction such that f(x, x) = 0 for all x ∈ C.

There are two following important particular cases of (QEP).
• When f(x, y) = ⟨F (x), y − x⟩ where F is a mapping from C to H, (QEP)

becomes a convex quasi-variational inequality problem:

(QVIP) Find p ∈ T (p) such that ⟨F (p), x− p⟩ ≥ 0 for all y ∈ T (p).

• When T (x) = C for all x ∈ C, (QEP) becomes the following equilibrium
problem:

(EP) Find p ∈ C such that f(p, y) ≥ 0 for all y ∈ C.

The (QVIP) was introduced in [1] in relation with an impulse control problem,
while it is well-known that (EP) is a general model for a wide range of other
important problems such as optimization, Kakutani fixed point, complemen-
tarity problem, variational inequality problem, and Nash equilibria problem
(see e.g. [2? –4]). It is shown in [5, 6] that (QVIP) cannot be considered as an
(EP). The (QEP) as well as its subclasses (QVIP) and (EP) have a numerous
applications economics, engineering, and operations research (see e.g. [7–11]),
therefore they are active research topics in literature. Perhaps the most well-
studied application of (QEP) is the generalized Nash equilibrium problem (see
e.g. [12–14]), which can be modeled in form of (QVIP) when its data sets are
differentiable (see [15]).

So far, many iterative methods for solving (EP) have been proposed (in
e.g. [16? –25] and the references therein). Since (QEP) includes (EP) as a
subclass, it is natural to extend existence results as well as solution methods for
the latter to the former. In fact, results on solution existence for (QEP) have
been given in [26–28], and many solution approaches to (QEP) (and (QVIP)
in particular) have been proposed such as the extragradient-type methods
[15, 29? , 30], projection-like algorithms [31, 32], Newton-type method [7, 33],
augmented Lagrangian method [34], proximal point method [9, 35, 36], and
gap functions technique [37]. However, solving (QEP) is still a challenging task
since it requires to solve simultaneously an equilibrium problem and a fixed
point problem. For instance, in [15], the authors introduced a general class
of algorithms for solving (QEP) in Rn with f being pseudomonotone. Their
method is an extragradient-type one whose second step consists in finding a
descent direction (or step size) by using a line search. The convergence of their
algorithms is established under suitable conditions, especially the following
one:

S∗ := {x ∈ ∩z∈CT (z) | f(x, y) ≥ 0 ∀y ∈ ∪z∈CT (z)} ̸= ∅. (1)
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The condition (1) was originally used in [32] to obtain the convergence of their
projection-like algorithms for solving (QVIP) arised from the generalized Nash
equilibrium problem. When T (x) = C for all x ∈ C, we have ∩z∈CT (z) =
∪z∈CT (z) = C, and consequently S∗ is the solution set of (EP). Thus, (1) can
be viewed as a generalization to (QEP) of the hypothesis that the solution set
of (EP) is nonempty. As claimed in [15], although this hypothesis is considered
as a mild condition when solving (EP), its generalization (1) for (QEP) is not
easy to verify since it concerns the image of T on every point in C.

The condition that S∗ is nonempty becomes indispensable for the conver-
gence of existing iterative solution methods for monotone (QEP) and (QVIP),
including extragradient-type, projection-type, and proximal point algorithms
(see [29, 31, 35? ]). In [30], an extragradient-type method modified from the
one in [15] to solve (QEP) without monotonicity of bifunction of f . However,
the authors in [30] imposed the following condition

S∗ := {x ∈ T (z) | f(y, x) ≤ 0 ∀y ∈ C} ̸= ∅

for the convergence of their algorithm. It is known that S∗ ⊂ S∗ and in general
S∗ ̸= S∗ when the bifunction f is nonmonotone. Therefore, the algorithm
proposed in [30] cannot be performed when S∗ = ∅ even though (QEP) has a
solution and S∗ ̸= ∅.

The aim of this paper is to develop extragradient subgradient-type algo-
rithms with self-adaptive step sizes to solve pseudomonotone (QEP) such that
the convergence of the proposed algorithms is still guaranteed even when
S∗ = ∅. Our first proposed algorithm is a combination of the subgradient
method and the projection method in each the step size is simply updated
through previous iteration points without using any search procedure. Under
suitable conditions imposed on the bifunction f and the multivalued map-
ping T , the sequence of iterates {xk} generated by the algorithm is proved to
converge weakly to a solution of (QEP), provided that

T ∗ := {x ∈ ∩k=0,1,...T (x
k) | f(x, y) ≥ 0 ∀y ∈ ∪k=0,1,...T (x

k)} ̸= ∅. (2)

Obviously S∗ ⊂ T ∗, so the condition (2) is milder than (1). We will reclaim
the mildness of (2) in Example 11 by showing an example of (QEP), which
is a generalized Nash equilibrium problem, where T ∗ ̸= ∅ but S∗ = ∅. For
this example, the aforementioned algorithms that require (1) are no longer
guaranteed to be convergent, but our approaches work well. Our second pro-
posed algorithm combines the first one with the Mann iteration scheme for
finding a fixed point of a multivalued mappings in [38], for that we obtain the
strong convergence of the generated iterates to a solution of (QEP). We also
present some numerical experiments with the aim to evaluate the performance
of our proposed algorithms and compare with the most recent extragradient
subgradient-type, projection-like, and proximal point methods for (QEP).

The organization of the paper is as follows. In Section 2, we collect some
basic concepts and preliminary results. Section 3 is devoted to describing our
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proposed algorithms and proving their convergence results. The last section
provides a number of numerical experiments to illustrate our algorithms and
compare with others.

2 Preliminaries
In this section, we recall some preliminaries that are used to prove the main
results of this paper. For any nonempty closed subsets A and B of H, the
Hausdorff distance between these subsets is defined by

dH(A,B) := max{d(A,B), d(B,A)}

where d(A,B) := supa∈A infb∈B ∥a − b∥. Note that for unique-element sets
A = {a} and B = {b} we have dH(A,B) = d(A,B) = ∥a− b∥. If, furthermore,
A is convex, then the projection PA(x) of a point x ∈ H on A is defined by
the unique solution of miny∈A ∥x− y∥.

Definition 1 (See e.g. [39]). Let T : C → 2C be a multi-valued mapping in which
T (x) is a nonempty closed bounded subset of C for each x ∈ C.

(i) T is said to be nonexpansive if for all x, y ∈ C we have

dH(T (x), T (y)) ≤ ∥x− y∥.

(ii) T is said to be quasi-nonexpansive if Fix(T ) := {p ∈ C | p ∈ T (p)} ̸= ∅ and
for each x ∈ C, p ∈ Fix(T ) we have dH(T (x), T (p)) ≤ ∥x− p∥.

(iii) T is said to be ∗-nonexpansive if for all x, y ∈ C and u ∈ ΠT (x) there exists
v ∈ ΠT (y) such that ∥u− v∥ ≤ ∥x− y∥, in which ΠT is defined by

ΠT (x) := {z ∈ T (x) | ∥x− z∥ = d(x, T (x))}.

It is obvious that any nonexpansive multi-valued mapping T with
Fix(T ) ̸= ∅ is also quasi-nonexpansive. It is shown in the first example of [38]
that a quasi-nonexpansive multi-valued mapping might not be nonexpansive.
By definition, if T is ∗-nonexpansive, then ΠT is nonexpansive. In case T is
convex valued, we have ΠT (x) ≡ PT (x)(x), and T is ∗-nonexpansive if

∥PT (x)(x)− PT (y)(y)∥ ≤ ∥x− y∥.

Lemma 2 (See [40], Lemma 1). Let T : C → 2C be a multi-valued mapping with
nonempty closed bounded value such that ΠT (x) ̸= ∅ for every x ∈ C. Then the
following claims are equivalent.

(i) x ∈ Fix(T ).
(ii) ΠT (x) = {x}.
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(iii) x ∈ Fix(ΠT ).

Definition 3 Let T : C → 2C be a multi-valued mapping with nonempty closed
bounded value.

(i) (See e.g. [41]) T is called demiclosed if for any sequence {xk} ⊂ C, xk ⇀
p ∈ C and yk ∈ T (xk), yk ⇀ p we have p ∈ Fix(T ).

(ii) (See e.g. [9], Definition 2.3) T is called M -continuous if it satisfies the
following two conditions:
(C1) for any sequences {xk}, {yk} ⊂ C with xk ⇀ x, yk ∈ T (xk) and yk ⇀ y
we have y ∈ T (x),
(C2) for any sequence {xk} ⊂ C with xk ⇀ x and for each y ∈ T (x) there
exists a sequence {yk} ⊂ C with yk ∈ T (xk) such that yk → y.

(iii) (See e.g. [38]) T is called hemicompact if for any sequence {xk} ⊂ C satisfy-
ing d(xk, T (xk)) → 0 there exists a subsequence {xki} such that xki → p ∈ C
as i → +∞

It is mentioned in [38] that the hemicompactness of T is satisfied when
C is compact and T has bounded value. In [9] the authors remarked that
the concept of M -continuity was originally introduced by Mosco in [42] for
studying stable approximation of variational inequalities, and then used in [43]
for studying quasi-variational inequality as well as in [44] for regularization of
set-valued variational inequalities.

Definition 4 (See [45]). A bifunction f : C × C → R is said to be

(i) strongly monotone with modulus η > 0 (shortly η-strongly monotone) on C
if f(x, y) + f(y, x) ≤ −η∥x− y∥2 for all x, y ∈ C;

(ii) monotone on C if f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(iii) strictly monotone on C if f(x, y) + f(y, x) < 0 for all x, y ∈ C with x ̸= y;
(iv) pseudomonotne on C if f(x, y) ≥ 0 implies f(y, x) ≤ 0 for all x, y ∈ C;
(v) quasimonotone on C, if f(x, y) > 0 ⇒ f(y, x) ≤ 0 ∀x, y ∈ C.

Let us now recall from e.g. [46] some basic concepts and results in convex
analysis. The subdifferential of a convex function g : C → R∪{+∞} at p ∈ C
is defined by

∂g(p) = {x∗ ∈ H | g(x)− g(p) ≥ ⟨x∗, x− p⟩ ∀x ∈ C}.

If ∂g(x) ̸= ∅, then g is called subdifferentiable at x. The function g is said to
be subdifferentiable on C if it is subdifferentiable at every x in C. The outer
normal cone NC of C at p ∈ C is defined by

NC(p) = {x∗ ∈ H | ⟨x∗, x− p⟩ ≤ 0 ∀x ∈ C}.
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Lemma 5 (See e.g. [46], Proposition 2.31) Let C ⊂ H be convex and g : C → R
convex and subdifferentiable. Then p is an optimal solution of the following convex
minimization problem

min{g(x) | x ∈ C}
if and only if 0 ∈ ∂g(p) +NC(p).

Lemma 6 (See e.g. [47], Chapter 6) Let C be a nonempty closed convex subset of
H and PC the projection mapping onto C. Then the following assertions hold.

(i) For any x ∈ H we have z = PC(x) if and only if ⟨x − z, y − z⟩ ≤ 0 for all
y ∈ C.

(ii) The mapping PC is nonexpansive, i.e., we have ∥PC(x)−PC(y)∥ ≤ ∥x− y∥
for all x, y ∈ H.

(iii) For all x ∈ H and z ∈ C we have

∥x− PC(x)∥2 + ∥PC(x)− z∥2 ≤ ∥x− z∥2.

Lemma 7 (See [48], Lemma 2.47) Let C ⊂ H be nonempty and {xk} ⊂ H satisfy
the following conditions:

(i) for all x ∈ C we have limk→+∞ ∥xk − x∥ exists;
(ii) every sequentially weak cluster point of {xk} is in C.

Then, the sequence {xk} converges weakly to a point in C.

It is easy and straightforward to obtain the following lemma.

Lemma 8 For every x, y ∈ H and λ ∈ R the following assertions hold.

(i) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.
(ii) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

3 Projection algorithms for quasi-equilibrium
problems

In this section, we construct two iterative algorithms for solving the quasi-
equilibrium problem (QEP). In order to prove the convergence of the
proposed algorithms, we need to use the following assumptions imposed on
the bifunction f .

(A1) f(x, x) = 0 for all x ∈ C, f(x, y) is pseudomonotone on C × C, and f(·, ·)
is sequentially weakly upper semicontinuous on C × C.

(A′
1) f(x, x) = 0 for all x ∈ C, f(x, y) is quasiomonotone on C × C, f(·, y) is

weakly upper semicontinuous on C for every y ∈ C, and f(·, ·) is sequentially
weakly lower semicontinuous on C × C.

(A2) f(x, ·) is convex and subdifferentiable on C.
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(A3) There exists L > 0 such that

dH (∂2f(x, x), ∂2f(y, y)) ≤ L∥x− y∥ ∀x, y ∈ C,

where ∂2f(x, x) = ∂2f(x, ·)(x) is the subdifferential of f(x, ·) at x, i.e.,

∂2f(x, x) = {ξ ∈ H | ⟨ξ, z − x⟩ ≤ f(x, z) ∀z ∈ C}.



Springer Nature 2021 LATEX template

8 Extragradient subgradient-type algorithms for QEP

Algorithm 1 An algorithm for solving (QEP)
1: Take an arbitrary starting point x0 ∈ C. Take λ0 > 0, ν ∈ (0, 1), L∗ > L,

γ ∈ (0, 2), and control parameter sequences {ρi}, {κi} satisfying conditions

ρi > 0,

+∞∑
i=0

ρi < +∞, κi > 0,

+∞∑
i=0

κi < +∞. (3)

2: for k = 0, 1, 2, . . . do
3: Compute uk ∈ ∂2f(x

k, xk).
4: if uk = 0 then
5: return xk

6: else
7: Compute

yk = PT (xk)(x
k − λku

k). (4)
8: if yk = xk then
9: return xk

10: else
11: Compute vk ∈ B

(
uk, L∗∥xk − yk∥

)
∩ ∂2f(y

k, yk).
12: if vk = 0 then
13: return xk

14: else
15: Compute

dk = xk − yk − λk(u
k − vk), (5)

τk =

{
(γ + κk)

|⟨xk−yk,dk⟩|
∥dk∥2 if ∥dk∥ ̸= 0,

0 otherwise,
(6)

xk+1 = PT (xk)(x
k − τkλkv

k), (7)

λk+1 =

{
min

{
ν∥xk−yk∥
∥uk−vk∥ , λk + ρk

}
if uk − vk ̸= 0,

λk + ρk otherwise.
(8)

16: end if
17: end if
18: end if
19: end for

Our first algorithm proposed in this paper is presented in Algorithm 1.
Hereafter, we use the notation B(x, r) to denote the set of points y ∈ H such
that ∥y − x∥ ≤ r. We have some remarks concerning this algorithm.

Remark 9 (i) Since uk ∈ ∂2f(x
k, xk), if uk = 0, then we have

f(xk, x) = f(xk, x)− f(xk, xk) ≥ ⟨uk, x− xk⟩ = 0 ∀x ∈ T (xk) ⊂ C.



Springer Nature 2021 LATEX template

Extragradient subgradient-type algorithms for QEP 9

Hence in this case the algorithm terminates at iteration k and xk is a solution of
Problem (QEP).

(ii) Assume that xk = yk. Then, we get from (4) that xk = PT (xk)(x
k − λku

k),

which together with Lemma 6 (i) and uk ∈ ∂2f(x
k, xk) implies that

0 ≤ ⟨uk, x− xk⟩ ≤ f(xk, x)− f(xk, xk) = f(xk, x), ∀x ∈ T (xk).

So, xk is a solution of the problem (QEP ).
(iii) We have from the assumption (A2) that ∂2f(y

k, yk) is a nonempty, closed
and convex set in H, which together the assumption (A3) implies that

∥uk − P∂2f(yk,yk)(u
k)∥ ≤ dH

(
∂2f(x

k, xk), ∂2f(y
k, yk)

)
≤ L∥xk − yk∥.

Therefore, we can always choose vk in line 11 of the algorithm statement. If f(x, ·)
is differentiable on C, then vk is uniquely determined by vk = ∇f(yk, ·)(yk), and so
the proposed algorithm can be implemented without knowing the constant L which is
mentioned in the assumption (A3).

(iv) In [? ], The step sizes τk, and λk respectively can be updated via equations
(5) and (8) without using the parameters κk and ρk. In Algorithm 1, we use the
parameters κk and ρk to obtain larger step sizes. �

As a key result in this section, we will show that Algorithm 1 is convergent
when the following sets are nonempty:

T ∗ := {x ∈ ∩k∈NT (x
k) | f(x, y) ≥ 0 ∀y ∈ ∪k∈NT (x

k)}
T∗ := {x ∈ ∩k∈NT (x

k) | f(y, x) ≤ 0 ∀y ∈ ∪k∈NT (x
k)}.

Example 10 Consider the equilibrium problem (EP ) and its associated Minty
equilibrium problem:

(MEP) Find p ∈ C such that f(y, p) ≤ 0 for all y ∈ C.

Suppose q and p are the solutions to the problems (MEP ) and (EP ), respectively.
Let T be a multi-valued map such that T (x) is a closed convex set in C and contains
p, q and x for all x ∈ C. It is easy to see that p, q ∈ ∩k∈NT (x

k), f(p, y) ≥ 0 ∀y ∈ C
and f(y, q) ≤ 0 ∀y ∈ C. Therefore, T ∗ and T∗ are nonempty.

It is easy to see that the set S∗ defined in (1) is a subset of both the set T ∗

defined above and the solution set Sol(EP ) of the equilibrium problem (EP).
The following example shows an instance of (QEP) with twofold aims. First,
for this problem instance we have S∗ = ∅ while T ∗ and T∗ are nonempty.
Second, this is an instance of (QEP) whose solution set Sol(QEP ) is different
from Sol(EP ).

Example 11 Let H = Rn and C = {x ∈ Rn
+ |

∑n
i=1 xi ≥ 1} which is a closed

polyhedron in the positive orthant of H. The multi-valued mapping T is given by
T (x) = {z ∈ C | z ≤ 2x}.
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Then T (x) is a convex polytope for each x ∈ C, and T is M-continuous by definition.
Now, let P and Q be n × n matrices with non-negative elements such that both Q
and P −Q are positive semidefinite. Let g be a convex, differentiable, and increasing
function on Rn

+ such that its gradient is Lipschitz continuous in the following sense

∥∇g(y)−∇g(x)∥ ≤ L1∥y − x∥ ∀x, y ∈ Rn
+,

where L1 is a positive constant. For an increasing function g on Rn
+ we mean that

g(x) ≤ g(y) for all x, y ∈ Rn
+ with x ≤ y. In our numerical experiment presented

in Section 4.1 we give an example of such a function g satisfying the mentioned
conditions. We consider (QEP) in which the set C and the mapping T are given
above, while the bifunction f is given by

f(x, y) = ⟨Px+Qy + c, y − x⟩+ g(y)− g(x), (9)

where c ∈ Rn
+ satisfying

cn > p1n + q11 + c1 − pnn − qn1 + g(b)− g(a). (10)

Here, a = (0, . . . , 0, 1) is the last unit vector and b = (1, 0, . . . , 0) is the first unit
vector of Rn. The bifunction f defined in (9) is a generalized form of the one in
the well-known Cournot-Nash equilibrium model. It is obvious that f(x, x) = 0 for
all x ∈ Rn and f is continuous on Rn × Rn. Furthermore, since Q − P is negative
semidefinite, for all x, y ∈ Rn we have

f(x, y) + f(y, x) = (y − x)t(Q− P )(y − x) ≤ 0,

i.e., f is monotone on Rn, hence it is pseudomonotone on C. So this bifunction satis-
fies Assumption (A1). Since Q is positive semidefinite, ⟨Px+Qy+ c, y−x⟩ is convex
quadratic with respect to y. This, together with the convexity and differentiability of
g, implies that the bifunction f satisfies Assumption (A2). Note that

∂2f(x, y) = {Px+ c−Qtx+ (Q+Qt)y +∇g(y)},

it follows that

dH(∂2f(x, x), ∂2f(y, y)) = ∥(P +Q)(x− y) +∇g(x)−∇g(y)∥
≤ ∥(P +Q)(x− y)∥+ ∥∇g(x)−∇g(y)∥
≤ (∥P +Q∥+ L1)∥x− y∥.

Hence f satisfies Assumption (A3) with L = ∥P +Q∥+ L1.
For the instance of (QEP) we are considering, we first observe that S∗ = ∅.

Indeed, it follows from definition of T that T (a) = [a, 2a] which is the line segment
connecting the points a and 2a. Similarly, we have T (b) = [b, 2b]. By our choice, we
have a, b ∈ C and [a, 2a] ∩ [b, 2b] = ∅, i.e., T (a) ∩ T (b) = ∅. Since S∗ ⊂ T (a) ∩ T (b),
it must be empty.

Our second observation is that T ∗ and T∗ are nonempty if we choose the starting
point x0 = t0a for some t0 > 1. Indeed, we have from the definition of T and (8)
that the iterate x1 is in the line segment T (x0) = [a, 2t0a], hence x1 = t1a for some
t1 satisfying 1 ≤ t1 ≤ 2t0. By a simple induction, for each k = 1, 2, . . . we have
T (xk) = [a, 2tka] for some tk ∈ [1, 2tk−1]. Hence a ∈ ∩k∈NT (x

k). Moreover, by the
specified structure of the sets T (xk) with k ∈ N, for any y ∈ ∪k∈NT (x

k) we have
y ≥ a. This, together with the facts that g is increasing on Rn while all elements of
P , Q, a, and c are nonnegative, gives us

f(a, y) = ⟨Pa+Qy + c, y − a⟩+ g(y)− g(a) ≥ 0 ∀y ∈ ∪k∈NT (x
k)
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f(y, a) = ⟨Py +Qa+ c, a− y⟩+ g(a)− g(y) ≤ 0 ∀y ∈ ∪k∈NT (x
k).

So we can conclude that a belongs to both T ∗ and T∗, which means that T ∗ and T∗
are nonempty.

By similar arguments, for all y ∈ T (a) = [a, 2a] we have

f(a, y) = ⟨Pa+Qy + c, y − a⟩+ g(y)− g(a) ≥ 0,

which shows that a ∈ Sol(QEP ). It follows from (10) that

f(a, b) = p1n + q11 + c1 − pnn − qn1 − cn + g(b)− g(a) < 0,

so a ̸∈ Sol(EP ). Since a ∈ T ∗, it follows that T ∗ is not a subset of Sol(EP ). Since
a ∈ Sol(QEP ), it also follows that Sol(QEP ) ̸= Sol(EP ). �

In the rest of this section, we always assume that (A1)-(A3) hold and
T ∗ ̸= ∅. We first obtain the following important lemmas.

Lemma 12 The sequence {λk} generated in Algorithm 1 is convergent.

Proof. Let M :=
∑+∞

k=0 ρk. We first show by induction that

λk ∈
[
min

{ ν

L∗ , λ0

}
, λ0 +M

]
(11)

for all k ≥ 0. This obviously holds for k = 0. Assume that (11) holds for
some k ∈ N, we will prove that λk+1 also belongs to the interval. Indeed, if
uk−vk = 0, then we have from (8) and positivity of ρk that λk+1 = λk+ρk ≥
min

{
ν
L∗ , λ0

}
. Otherwise, we have uk − vk ̸= 0, and it follows from the choice

of vk that ∥uk − vk∥ ≤ L∗∥xk − yk∥. Consequently, we obtain

ν∥xk − yk∥
∥uk − vk∥

≥ ν∥xk − yk∥
L∗∥xk − yk∥

=
ν

L∗ , (12)

which, together with (8), implies that

λk+1 ≥ min

{
ν∥xk − yk∥
∥uk − vk∥

, λk + ρk

}
≥ min

{ ν

L∗ , λk + ρk

}
≥ min

{ ν

L∗ , λ0

}
.

On the other hand, by using (8) and condition (3), we get

λk+1 ≤ λk + ρk ≤ . . . ≤ λ0 +

k∑
i=0

ρi ≤ λ0 +

+∞∑
i=0

ρi = λ0 +M.

Hence λk+1 ∈
[
min

{
ν
L∗ , λ0

}
, λ0 +M

]
, which completes the induction proof

for (11).
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We next show that {λk} converges to λ ∈
[
min

{
ν
L∗ , λ0

}
, λ0 +M

]
.

Indeed, by setting (λk+1 − λk)
+ = max{0, λk+1 − λk} and (λk+1 − λk)

− =
max{0,−(λk+1−λk)} we have λk+1−λk = (λk+1−λk)

+− (λk+1−λk)
−, and

it follows that

λk+1 − λ0 =

k∑
i=0

(λi+1 − λi) =

k∑
i=0

(λi+1 − λi)
+ −

k∑
i=0

(λi+1 − λi)
−. (13)

It is easy to see from (3) and (8) that

+∞∑
k=0

(λk+1 − λk)
+ ≤

+∞∑
k=0

ρk < +∞. (14)

If
∑+∞

k=0(λk+1−λk)
− = +∞, then by taking the limit as k → ∞ on both sides

of (13) and using (14) we have λk → −∞, which contradicts (11). Hence we
must have

∑+∞
k=0(λk+1−λk)

− < +∞, which, together with (13) and (14), guar-
antees that limk→∞(λk+1−λ0) is finite. So {λk} is convergent. Since (11) holds
for all k ≥ 0, the limit limk→+∞ λk = λ is also in

[
min

{
ν
L∗ , λ0

}
, λ0 +M

]
.
�

Lemma 13 Let {xk}, {yk}, {λk} be sequences generated by Algorithm 1. For any
p ∈ T ∗ there exists a nonnegative integer K such that

∥xk+1 − p∥2 ≤ ∥xk − p∥2 − (γ + κk)(2− γ − κk)
(λk+1 − νλk)

2

(λk+1 + νλk)2
∥xk − yk∥2 (15)

for all k ≥ K.

Proof. For all k ≥ 0 we have f(p, yk) ≥ 0 since p ∈ T ∗. By pseudomono-
tonicity of f , we then get f(yk, p) ≤ 0. Additionally, by f(yk, yk) = 0 and
vk ∈ ∂2f(y

k, yk), while noting that τk and λk are nonnegative, we obtain

τkλk⟨vk, yk − p⟩ ≥ τkλk[f(y
k, yk)− f(yk, p)] ≥ 0 ∀k ≥ 0. (16)

Furthermore, since T (xk) is closed convex, by Lemma 6(i) and the definition
of yk in (4) we have

⟨xk − yk − λku
k, yk − x⟩ ≥ 0 ∀x ∈ T (xk), k ≥ 0, (17)

which implies

τk⟨xk − yk − λku
k, yk − xk+1⟩ ≥ 0 ∀k ≥ 0 (18)

because τk ≥ 0 and xk+1 ∈ T (xk). Now, for all k ≥ 0 we have

∥xk+1 − p∥2
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= ∥PT (xk)(x
k − τkλkv

k)− p∥2 (by (7))
≤ ∥xk − τkλkv

k − p∥2 − ∥xk − τkλkv
k − xk+1∥2 (by Lemma 6(iii))

= ∥xk − p∥2 − 2τkλk⟨xk − p, vk⟩+ 2τkλk⟨xk − xk+1, vk⟩ − ∥xk+1 − xk∥2

= ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τkλk⟨xk − xk+1, vk⟩+ 2τkλk⟨yk − xk, vk⟩
− 2τkλk⟨xk − p, vk⟩ − 2τkλk⟨yk − xk, vk⟩

= ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τkλk⟨xk − xk+1 + yk − xk, vk⟩
− 2τkλk⟨xk − p+ yk − xk, vk⟩

= ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τkλk⟨yk − xk+1, vk⟩ − 2τkλk⟨yk − p, vk⟩
≤ ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τkλk⟨yk − xk+1, vk⟩ (by (16))
≤ ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τkλk⟨yk − xk+1, vk⟩
+ 2τk⟨yk − xk+1, xk − yk − λku

k⟩ (by (18))
= ∥xk − p∥2 − ∥xk+1 − xk∥2 + 2τk⟨yk − xk+1, xk − yk − λk(u

k − vk)⟩
= ∥xk − p∥2 − ∥xk − xk+1∥2 + 2τk⟨yk − xk+1, dk⟩
= ∥xk − p∥2 − ∥xk − xk+1 − τkd

k + τkd
k∥2 + 2τk⟨yk − xk+1, dk⟩

= ∥xk − p∥2 − ∥xk − xk+1 − τkd
k∥2 − (τk∥dk∥)2 − 2τk⟨xk − xk+1 − τkd

k, dk⟩
+ 2τk⟨yk − xk+1, dk⟩

= ∥xk − p∥2 − ∥xk − xk+1 − τkd
k∥2 + τ2k∥dk∥2 − 2τk⟨xk − xk+1, dk⟩

+ 2τk⟨yk − xk+1, dk⟩
= ∥xk − p∥2 − ∥xk − xk+1 − τkd

k∥2 + τ2k∥dk∥2 − 2τk⟨xk − yk, dk⟩
≤ ∥xk − p∥2 + τ2k∥dk∥2 − 2τk⟨xk − yk, dk⟩. (19)

We distinguish the two following cases.
Case 1: dk = 0. In this case, we have from (19) that

∥xk+1 − p∥ ≤ ∥xk − p∥. (20)

Since dk = xk − yk − λk(u
k − vk) = 0, by (8) we see that

∥xk − yk∥ = λk∥uk − vk∥ ≤ ν
λk

λk+1
∥xk − yk∥.

Consequently, we get (
1− νλk

λk+1

)
∥xk − yk∥ ≤ 0. (21)

As shown in Lemma 12, the sequence {λk} is convergent, so limk→∞(1 −
νλk

λk+1
) = 1 − ν > 0. Thus, there exists a nonnegative integer K0 such that
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1 − νλk

λk+1
> 0 for all k ≥ K0. By (21), this implies ∥xk − yk∥ = 0 for all

k ∈ {ℓ ∈ N | ℓ ≥ K0, d
ℓ = 0}. Together with (20), this means that (15) holds

for all k ∈ {ℓ ∈ N | ℓ ≥ K0, d
ℓ = 0}.

Case 2: dk ̸= 0. In this case, for all k ≥ 0 we see from (11) that λk > 0.
Hence, by (8) we have

λk+1 ≤ ν∥xk − yk∥
∥uk − vk∥

⇔ ∥uk − vk∥ ≤ ν

λk+1
∥xk − yk∥.

By this inequality, on one hand we get

⟨xk − yk, dk⟩ = ⟨xk − yk, xk − yk − λk(u
k − vk)⟩

= ∥xk − yk∥2 − λk⟨xk − yk, uk − vk⟩
≥ ∥xk − yk∥2 − λk∥xk − yk∥∥uk − vk∥

≥
(
1− νλk

λk+1

)
∥xk − yk∥2 (22)

≥ 0

for all k ≥ K0 specified above. On the other hand, for all k ≥ 0 we get

∥dk∥ = ∥xk−yk−λk(u
k−vk)∥ ≤ ∥xk−yk∥+λk∥uk−vk∥ ≤

(
1 +

νλk

λk+1

)
∥xk−yk∥,

or equivalently,

∥xk − yk∥ ≥ λk+1

λk+1 + νλk
∥dk∥.

Combining this inequality with (22), we obtain

⟨xk − yk, dk⟩ ≥ λk+1(λk+1 − νλk)

(λk+1 + νλk)2
∥dk∥2 ≥ 0 (23)

for all k ≥ K0. Since limk→+∞(2 − γ − κk) = 2 − γ > 0, there exists K1 > 0
such that 2−γ−κk > 0 for all k ≥ K1. So for k ≥ K := max{K0,K1} we have

∥xk+1 − p∥2

≤ ∥xk − p∥2 + τ2k∥dk∥2 − 2τk⟨xk − yk, dk⟩ (by (19))

≤ ∥xk − p∥2 + (γ + κk)
2 ⟨xk − yk, dk⟩2

∥dk∥4
∥dk∥2 − 2(γ + κk)

⟨xk − yk, dk⟩2

∥dk∥2
(by (6))

= ∥xk − p∥2 − (γ + κk)(2− γ − κk)
⟨xk − yk, dk⟩2

∥dk∥2
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≤ ∥xk − p∥2 − (γ + κk)(2− γ − κk)
λk+1(λk+1 − νλk)

(λk+1 + νλk)2
⟨xk − yk, dk⟩

(by (23))

≤ ∥xk − p∥2 − (γ + κk)(2− γ − κk)
(λk+1 − νλk)

2

(λk+1 + νλk)2
∥xk − yk∥2. (by (22))

In conclusion, (15) is satisfied for all k ≥ K = max{K0,K1}. �

Remark 14 In the proof of Lemma 13, the pseudomonotonicity of f and p ∈ T ∗

are used to obtain the inequality (16). It is easy to see that if p ∈ T∗ ̸= ∅, then the
inequality (16) still holds. Therefore, the assertion in Lemma 13 is still true when
p ∈ T∗ without the need for pseudomonotonicity of f .

We are now ready to prove the main convergence result of Algorithm 1.

Theorem 15 Assume that (A1)-(A3) hold, T is M-continuous and closed convex
valued, and T ∗ ̸= ∅. Then every weak cluster point of the sequence {xk} generated in
Algorithm 1 belongs to Sol(QEP ). In addition, if the bifunction f is strictly monotone
on C, then the whole sequence {xk} converges weakly to some p̂ ∈ Sol(QEP ).

Proof. Let K be specified as in the proof of Lemma 13 and p an arbitrary
point in T ∗. Then, for all k ≥ K we have 2 − γ − κk > 0 and it follows from
(15) that

∥xk+1 − p∥ ≤ ∥xk − p∥.
So the sequence {∥xk − p∥} converges, hence {xk} is bounded. We also have
from (15) that[
(γ + κk)(2− γ − κk)

(λk+1 − νλk)
2

(λk+1 + νλk)2

]
∥yk − xk∥2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2

for all k ≥ K. Passing k → +∞ while noting the convergences of {λk} and
{∥xk − p∥}, we have

γ(2− γ)
(1− ν)2

(1 + ν)2
lim

k→+∞
∥xk − yk∥ ≤ 0.

Using condition (3), this inequality implies

lim
k→+∞

∥xk − yk∥ = 0. (24)

Since {xk} is bounded, there exists a subsequence {xki} weakly converging to
some p̂. Thanks to (24), the sequence {yki} also converges weakly to p̂. Since
yk ∈ T (xk), by the M -continuity of T we obtain that p̂ ∈ T (p̂).
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To show that p̂ ∈ Sol(QEP ), it is left to verify that f(p̂, z) ≥ 0 for all
z ∈ T (p̂). Indeed, since vk is chosen in B

(
uk, L∗∥xk − yk∥

)
, we have ∥uk −

vk∥ ≤ L∗∥xk − yk∥. It then follows from (24) that ∥uk − vk∥ → 0 as k → +∞.
As already shown in (17), we have

⟨xki − yki − λkiu
ki , yki − x⟩ ≥ 0 ∀x ∈ T (xki).

Together with vki ∈ ∂2f(y
ki , yki), this implies that for all x ∈ T (xki) we have

⟨xki − yki , x− yki⟩ ≤ λki
⟨uki , x− yki⟩

≤ λki
(⟨vki , x− yki⟩+ ⟨uki − vki , x− yki⟩)

≤ λkif(y
ki , x) + λki⟨uki − vki , x− yki⟩,

and by positivity of λki
we get

1

λki

⟨xki − yki , x− yki⟩ ≤ f(yki , x) + ⟨uki − vki , x− yki⟩.

For each z ∈ T (p̂), we deduce from the M -continuity of T that there exists a
sequence {zki} such that zki ∈ T (xki) and zki ⇀ z. Taking x = zki in the last
inequality, one has

1

λki

⟨xki − yki , zki − yki⟩ ≤ f(yki , zki) + ⟨uki − vki , zki − yki⟩.

Taking the limit of both sides of this inequality as i → +∞, while noting
limi→+∞ ∥xki −yki∥ = 0, limi→+∞ ∥uki −vki∥ = 0, the weakly upper semicon-
tinuity of the function f(·, ·), and the boundedness of {λk}, we come up with
f(p̂, z) ≥ 0. Since z is chosen arbitrarily in T (p̂), this completes the proof for
p̂ ∈ Sol(QEP ).

Now, we assume that the bifunction f is strictly monotone on C. Before
showing that the whole sequence {xk} converges weakly to p̂, we claim that
T ∗ = {p̂}. We will prove this claim by taking an arbitrary p ∈ T ∗ and then
show that p = p̂. Indeed, since p ∈ T ∗, we have

f(p, y) ≥ 0 ∀y ∈ ∪k∈NT (x
k). (25)

Keeping in mind that xki ⇀ p̂ and p̂ ∈ T (p̂), by M -continuity of T there exists
a sequence {yki} such that yki ∈ T (xki) and yki → p̂. Since yki ∈ T (xki), by
(25) we have f(p, yki) ≥ 0 for all i ∈ N. Taking i → +∞ and using the weakly
upper semicontinuity of the function f(·, ·) we get f(p, p̂) ≥ 0. Due to strict
monotonicity of f , we obtain

f(p̂, p) ≤ 0. (26)
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On the other hand, since p ∈ T ∗, we have p ∈ T (xki) for all i ∈ N. This,
together with the facts that xki ⇀ p̂ and T is M -continuous, implies that p ∈
T (p̂). As shown above, it follows that f(p̂, p) ≥ 0. Combining this inequality
with (26) we come up with f(p̂, p) = 0. Therefore, if p̂ ̸= p, then

f(p, p̂) = f(p, p̂) + f(p̂, p) < 0

where the last inequality is due to the strict monotonicity of f . However, this
inequality contradicts the fact f(p, p̂) ≥ 0 we have shown above. Thus we must
have p = p̂, and consequently, T ∗ = {p̂}.

It has been shown in the beginning of this proof that {∥xk−p∥} converges
for any p ∈ T ∗. Since T ∗ = {p̂}, it means that the sequence {∥xk − p̂∥} is
convergent. Then, by applying Lemma 7 for C := T ∗ and x := p̂, we deduce
that the sequence {xk} generated by Algorithm 1 converges weakly to p̂. �

Theorem 16 Assume that (A1), (A′
2) and (A3) hold, T is M-continuous and closed

convex valued, and T∗ ̸= ∅. If the mapping ∂2f(x, x) satisfies Condition (C1), then
every weak cluster point of the sequence {xk} generated in Algorithm 1 belongs to
Sol(QEP ).

Proof. Let p be an arbitrary point in T ∗. By the same arguments as in the
proof of Theorem 16, we can prove that the sequence {∥xk − p∥} converges,
the sequence {xk} is bounded, and

lim
k→+∞

∥xk − yk∥ = 0. (27)

Since {xk} is bounded, there exists a subsequence {xki} weakly converging to
some p̂. Thanks to (24), the sequence {yki} also converges weakly to p̂. Since
yk ∈ T (xk), by the M -continuity of T we obtain that p̂ ∈ T (p̂).

To show that p̂ ∈ Sol(QEP ), it is left to verify that f(p̂, z) ≥ 0 for all
z ∈ T (p̂). Indeed, since vk is chosen in B

(
uk, L∗∥xk − yk∥

)
, we have ∥uk −

vk∥ ≤ L∗∥xk − yk∥. It then follows from (27) that ∥uk − vk∥ → 0 as k → +∞.
As already shown in (17), we have

⟨xki − yki − λkiu
ki , yki − x⟩ ≥ 0 ∀x ∈ T (xki).

Together with vki ∈ ∂2f(y
ki , yki), this implies that for all x ∈ T (xki) we have

⟨xki − yki , x− yki⟩ ≤ λki
⟨uki , x− yki⟩

≤ λki(⟨vki , x− yki⟩+ ⟨uki − vki , x− yki⟩),

and by positivity of λki
we get

1

λki

⟨xki − yki , x− yki⟩ ≤ ⟨vki , x− yki⟩+ ⟨uki − vki , x− yki⟩.
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For each z ∈ T (p̂), we deduce from the M -continuity of T that there exists a
sequence {zki} such that zki ∈ T (xki) and zki ⇀ z. Taking x = zki in the last
inequality, one has

1

λki

⟨xki − yki , zki − yki⟩ ≤ ⟨vki , zki − yki⟩+ ⟨uki − vki , zki − yki⟩.

Passing to the limit in the above inequality and taking into account that
limi→∞ ∥xki − yki∥ = 0, limi→∞ ∥uki − vki∥ = 0, limi→∞ λki

= λ > 0 and the
sequence {yk} is bounded, we obtain

lim inf
i→∞

⟨vki , zki − yki⟩ ≥ 0.

Let {γi} be a positive sequence decreasing and γi → 0 as i → ∞. Then, for
each i ∈ N, there exists a smallest positive integer hi such that⟨

vki , zki − yki
⟩
+ γi > 0.

Observe that {ki} is increasing. If vki = 0 then according to Remark 9 (i) and
vki ∈ ∂2f(y

ki , yki) we have yki as a solution, so without loss of generality we
assume vki ̸= 0 for all i. Setting ϱki := 1

∥vki∥2 v
ki , we have ⟨vki , ϱki⟩ = 1 for

every i ∈ N and ⟨
vki , zki + γiϱ

ki − yki
⟩
> 0.

It follows from the above inequality, the quasimonotonicity of f and vki ∈
∂2f(y

ki , yki) that

f(yki , zki+γiϱ
ki) = f(yki , zki+γiϱ

ki)−f(yki , yki) ≥
⟨
vki , zki + γiϱ

ki − yki
⟩
> 0,

which together with the quasimonotonicity of f implies that

f(zki + γiϱ
ki , yki) ≤ 0, ∀i ∈ N. (28)

It is easy to see from the boundedness of {yki}, the assumption (A3) and
vki ∈ ∂2f(y

ki , yki) for all i that the sequence {vki} is bounded. Therefore,
there exists a subsequence of {vki}, still denote {vki}, such that vki converges
weakly to v. Since ∂2f(x, x) satisfies condition (C1) and the sequence {yki}
converges weakly to p̂, we have v ∈ ∂2f(p̂, p̂). Because the norm mapping is
sequentially weakly lower semicontinuous, we have

0 ≤ ∥v∥ ≤ lim inf
i→∞

∥vki∥.

If v = 0 then we have from Remark 9 (i) and v ∈ ∂2f(p̂, p̂) that p̂ is a
solution. So, we only consider v ̸= 0. Then, we have from last inequality that
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0 lim infi→∞ ∥vki∥ > 0. Hence, we have that

0 ≤ lim sup
i→∞

γi∥ϱki∥ = lim sup
i→∞

γi
∥vki∥

≤ lim supi→∞ γi
lim infi→∞ ∥vki∥

= 0,

which implies that
lim
i→∞

lim sup
i→∞

γi∥ϱki∥ = 0. (29)

It follows that zki + γiϱ
ki ⇀ z as i → ∞. Passing the limit into the inequal-

ity (28), using the weakly lower semicontinuity of the function f(·, ·) and
limi→∞ γi = 0, we have

f(z, p̂) ≤ 0, ∀z ∈ T (p̂).

Since f(·, y) is weakly upper semicontinuous on C for every y ∈ C, the function
f has the upper sign property ([? ], Definition 2.1), and since the multivalued
mapping T (·) has convex values, we obtain that p̂ ∈ Sol(QEP ) ([? ], Propo-
sition 3.1). �

Remark 17 Let H be a finite dimensional Hilbert space. We have the following
sufficient conditions for the mapping ∂2f(x, x) to satisfy condition (C1):

(i) If f satisfies the assumption (A2) and the function f(·, y) is upper semicontin-
uous on C then the mapping ∂2f(x, x) satisfies Condition (C1). Indeed, let xk → x,
uk ∈ ∂2f(x

k, xk) and uk → u then we have

f(xk, y) = f(xk, y)− f(xk, xk) ≥ ⟨uk, y − xk⟩, ∀y ∈ H.

Taking the limit as k → +∞ on the last inequality and using the upper semicontinuity
of f(·, y), we get f(x, y)− f(y, y) ≥ ⟨u, y − x⟩,∀y ∈ H, and so u ∈ ∂2f(x, x).

(ii) Assume that f satisfies the assumption (A2) and ∂2f(x, x) is bounded for all
x ∈ C. Then, we have from the assumption (A3) that the mapping ∂2f(x, x) satisfies
Condition (C1) ([? ], Propositions 3 and 5, Chapter E). It is known that ∂2f(x, x)
is bounded at every x ∈ int(domf(x, ·)) ([46], Theorem 2.6). �

If T (x) = C for all x ∈ C then we have that T is M -continuous and closed
convex valued, T ∗ coincides with the solution set of Problem (EP ), and T∗
becomes the solution set of the Minty equilibrium problem (MEP ). If f(·, y)
is upper semicontinuous for each y ∈ C and f(x, ·) is lower semicontinuous
and convex for each x ∈ C, then T∗ ⊆ T ∗, add the assumption that f(x, y) is
pseudomonotone on C, we get T ∗ = T∗ ([? ]). In general, the inclusion T ∗ ⊆ T∗
is false even if f(x, y) is quasimonotone ([? ]).

Applying Algorithm 1 with T (x) = C for all x ∈ C, we get the following
result for Problem (EP ).

Proposition 18 Assume that (A1), (A′
2) and (A3) hold, T (x) = C for all x ∈ C,

and T∗ ̸= ∅. If the mapping ∂2f(x, x) satisfies Condition (C1), then the sequence
{xk} generated in Algorithm 1 converges weakly to a solution of Problem (EP ).
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Proof. Let p be an arbitrary point in T ∗. From the proof of Theorem 16, we
have that the sequence {∥xk − p∥} converges and every weak cluster point of
the sequence {xk} generated in Algorithm 1 belongs to T∗. Then, by applying
Lemma 7 for C := T∗ and x := p, we deduce that the sequence {xk} generated
by Algorithm 1 converges weakly to a point p̂ ∈ T∗. Since T∗ ⊆ T ∗, p̂ is a
solution of Problem (EP ). �

Remark 19 To our knowledge, there are currently no results on algorithms
specifically designed for quasi-equilibrium and equilibrium problems involving quasi-
monotonic functions. In the case of the quasi-monotone inequal variation problem,
the number of algorithms for this problem is not many. Some algorithms for equi-
librium and quasi-equilibrium problems with function f do not have any generalized
monotonicity as we can see in [30? ? ]. However, these algorithms come at a cost
because they have to use search procedures at each iteration.

By Theorems 15 and 16, we only obtain weak convergence results of Algo-
rithm 1. With the motivation of constructing a strongly convergent algorithm
to solve (QEP), we exploit the fact that we need to solve simultaneously an
equilibrium problem and a fixed point problem. This suggests us combining
Algorithm 1 with the Mann iteration scheme for finding a fixed point of a
multi-valued mapping (see [38]) to obtain Algorithm 2 described below. The
strong convergence of Algorithm 2 is stated in Theorem 20.

Theorem 20 Assume that (A1)-(A3) hold and T ∗∩Fix(T ) ̸= ∅. Assume furthermore
that T is a hemicompact multi-valued mapping satisfying condition (C2) and ΠT is
quasi-nonexpansive with ΠT (x) ̸= ∅ for every x ∈ C. Then every weak cluster point
of the sequence {xk} generated by Algorithm 2 belongs to Sol(QEP ). In addition,
the whole sequence {xk} converges strongly to a solution of (QEP) if the bifunction
f is strictly monotone on C and either T satisfies condition (C1) or the set S∗ is
nonempty.

Proof. By the same arguments as in the proof of Lemma 12, all the
elements of the sequence {λk} generated in Algorithm 2 are in the inter-
val

[
min

{
ν
L∗ , λ0

}
, λ0 +M

]
where M =

∑+∞
k=0 ρk. Furthermore, the sequence

{λk} converges to some λ belonging to the same interval.
Let p be an arbitrary point in T ∗ ∩ Fix(T ), and K determined as in the

proof of Lemma 13. By the same arguments as in that proof, we get

∥wk − p∥2 ≤ ∥xk − p∥2 − (γ + κk)(2− γ − κk)
(λk+1 − νλk)

2

(λk+1 + νλk)2
∥xk − yk∥2

(30)
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for all k ≥ K. Note that p ∈ Fix(T ), so we have ΠT (p) = {p} by Lemma 2,
and in addition we get for all k ≥ 0 that

∥xk+1 − p∥ = ∥αkW
k + (1− αk)w

k − p∥
≤ αk∥W k − p∥+ (1− αk)∥wk − p∥
≤ αkd(ΠT (w

k), p) + (1− αk)∥wk − p∥
= αkd

H(ΠT (w
k),ΠT (p)) + (1− αk)∥wk − p∥

≤ αk∥wk − p∥+ (1− αk)∥wk − p∥
= ∥wk − p∥. (31)
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Algorithm 2 An algorithm with Mann iteration for solving (QEP)
1: Take an arbitrary starting point x0 ∈ C. Take λ0 > 0, ν ∈ (0, 1), L∗ > L,

γ ∈ (0, 2), 0 < α < β < 1, and control parameter sequences {ρi}, {κi},
{αi} satisfying conditions

ρi > 0,

+∞∑
i=0

ρi < +∞, κi > 0,

+∞∑
i=0

κi < +∞, αi ∈ [α, β].

2: for k = 0, 1, 2, . . . do
3: Compute uk ∈ ∂2f(x

k, xk).
4: if uk = 0 then
5: return xk

6: else
7: Compute yk = PT (xk)(x

k − λku
k).

8: if yk = xk then
9: return xk

10: else
11: Compute vk ∈ B

(
uk, L∗∥xk − yk∥

)
∩ ∂2f(y

k, yk).
12: if vk = 0 then
13: return xk

14: else
15: Compute

dk = xk − yk − λk(u
k − vk),

τk =

{
(γ + κk)

|⟨xk−yk,dk⟩|
∥dk∥2 if ∥dk∥ ̸= 0,

0 otherwise,
wk = PT (xk)(x

k − τkλkv
k),

xk+1 = αkWk + (1− αk)w
k with W k ∈ ΠT (w

k),

λk+1 =

{
min

{
ν∥xk−yk∥
∥uk−vk∥ , λk + ρk

}
if uk − vk ̸= 0,

λk + ρk otherwise.

16: end if
17: end if
18: end if
19: end for

The last inequality above is by the assumption that ΠT is quasi-
nonexpansive. By (30) and (31), we obtain

∥xk+1 − p∥2 ≤ ∥xk − p∥2 − (γ + κk)(2− γ − κk)
(λk+1 − νλk)

2

(λk+1 + νλk)2
∥xk − yk∥2
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for all k ≥ K, i.e., the sequences {xk}, {yk}, {λk} generated in Algorithm 2
also satisfy (15). Thus, following the same arguments as in the begin of the
proof of Theorem 15, we deduce that ∥xk+1 − p∥ ≤ ∥xk − p∥ for all k ≥ K,
which implies the convergence of {∥xk−p∥} and the boundedness of {xk}. We
also deduce that ∥xk − yk∥ → 0. By Lemma 8(i) we have

∥xk+1 − p∥2 = ∥αkW
k + (1− αk)w

k − p∥2

= αk∥W k − p∥2 + (1− αk)∥wk − p∥2 − αk(1− αk)∥W k − wk∥2

≤ αk(d(ΠT (w
k), p))2 + (1− αk)∥wk − p∥2 − αk(1− αk)∥W k − wk∥2

≤ αk(d
H(ΠT (w

k),ΠT (p)))
2 + (1− αk)∥wk − p∥2 − αk(1− αk)∥W k − wk∥2

≤ αk∥wk − p∥2 + (1− αk)∥wk − p∥2 − αk(1− αk)∥W k − wk∥2

≤ ∥wk − p∥2 − αk(1− αk)∥W k − wk∥2. (32)

For all k ≥ K we have ∥wk − p∥ ≤ ∥xk − p∥ due to (30), so by (32) we get

∥xk+1 − p∥2 ≤ ∥xk − p∥2 − αk(1− αk)∥W k − wk∥2.

Note that αk ∈ [α, β] ⊂ [0, 1] for all k ≥ 0, it follows that

α(1− β)∥W k − wk∥2 ≤ αk(1− αk)∥W k − wk∥2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2,

which, together with W k ∈ ΠT (w
k), implies that

α(1− β)(d(wk,ΠT (w
k)))2 ≤ ∥xk − p∥2 − ∥xk+1 − p∥2.

Since [α, β] ⊂ (0, 1), by taking the limit as k → +∞ on both sides of this
inequality and keeping in mind that the sequence {∥xk − p∥} is convergent,
we get

lim
k→+∞

d(wk,ΠT (w
k)) = 0, (33)

which, together with ΠT (w
k) ⊆ T (wk), implies that

lim
k→+∞

d(wk, T (wk)) = 0. (34)

On the other hand, it follows from the definition of xk+1 in Algorithm 2 that

∥xk+1 − wk∥ = αk∥W k − wk∥ = αkd(w
k,ΠT (w

k)).

Hence, by (33) we have

lim
k→+∞

∥xk+1 − wk∥ = 0. (35)



Springer Nature 2021 LATEX template

24 Extragradient subgradient-type algorithms for QEP

Since {xk} is bounded, there exists a subsequence {xki+1} weakly converging
to some p̂ ∈ C. Together with (35), it implies that the sequence {wki} also
converges weakly to p̂. By (34) and the hemicompactness of T , there exists
a subsequence {wkih} strongly converging to p̂. Then, by Lemma 2 and the
triangle inequality, we have

d(p̂,ΠT (p̂)) ≤ d(wkih , p̂) + d(wkih ,ΠT (w
kih ))) + dH(ΠT (w

kih ),ΠT (p̂))

≤ 2∥wkih − p̂∥+ d(wkih ,ΠT (w
kih ))). (36)

Let i → +∞ in (36) and keeping (33) in mind, we obtain d(p̂,ΠT (p̂)) = 0,
which means p̂ ∈ ΠT (p̂). By Lemma 2, one has p̂ ∈ T (p̂). Since {xki+1}
weakly converges to p̂ and ∥xk−yk∥ → 0, the sequence {yki+1} also converges
weakly to p̂. By the condition (C2) and the same arguments as in the end of
the proof of Theorem 15, we obtain f(p̂, z) ≥ 0 for all z ∈ T (p̂). Therefore,
p̂ ∈ Sol(QEP ).

Now, assume that the bifunction f is strictly monotone on C and either
T satisfies condition (C1) or the set S∗ is nonempty. By the same arguments
as in the proof of Theorem 15, we have p̂ ∈ T ∗. Hence, p̂ ∈ T ∗ ∩ Fix(T ),
which implies that {∥xk − p̂∥2} has finite limit. By (35) and the fact that
{wkih} converges strongly to p̂, we have {xkih

+1} also converges strongly to
p̂. Therefore, the sequence {xk} converges strongly to p̂. �

Remark 21 It is easy to see that p ∈ Fix(T ) for all p ∈ S∗. Hence, we have that
T ∗ ∩ Fix(T ) ̸= ∅ if S∗ ̸= ∅ because S∗ is a subset of the set T ∗.

4 Numerical experiments
We did a number of numerical experiments to evaluate the performance of our
first proposed algorithm (Algorithm 1) and compare its numerical behavior
with some state-of-the-art algorithms for solving (QEP) involving pseudo-
monotone equilibrium bifunctions. Namely, we chose version 1b of the hybrid
extragradient algorithm (HEA1b for short) proposed in [15] and the proximal
point method (PPM for short) proposed in [35]. It is worth noting that in the
former paper the authors presented six variants of their algorithm and pointed
out by their numerical experiments that Algorithm HEA1b outperforms the
others in most of their tests.

All programs in our experiments were coded by using MATLAB R2020a
and conducted on a PC Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
2.60GHz, 16.0 GB RAM. In all of our tests, we applied the stopping rule
∥xk+1 − xk∥ ≤ 10−4. For experimenting Algorithm 1 proposed in this paper,
we set λ0 = 0.5, ν = 0.5, γ = 1, and chose αi = 0.5, ρi = κi =

1
i+1 for all i ∈ N.

For experimenting Algorithm HEA1b (resp., Algorithm PPM), we chose the
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same setting as in the experiments of [15] (resp., [35]). In the following sub-
sections, we describe our tested instances and report the numerical results of
the tests.

4.1 Experiment 1
Consider the (QEP) described in Example 11 with g(x) =

∑n
i=1 x

2
i . It is trivial

to see that the function g is convex, differentiable, and increasing on Rn
+, while

its gradient ∇g(x) = 2x is Lipschitz continuous on Rn
+. Therefore, this choice

satisfies the conditions applied on the function g as stated in Example 11.
Note that g(b)− g(a) = 0 where a and b are specified in the example.

For creating numerical instances of this problem, given the dimension n of
the space H = Rn, we generated the matrices P and Q as follows. We first
generated a diagonal matrix DQ ∈ Rn×n whose diagonal entries are random
real values in [0, 0.3], and a diagonal matrix DP ∈ Rn×n whose diagonal entries
are random values in [0.3, 1]. We then generated a matrix Z ∈ Rn×n whose
entries are random values in [0, 2]. After that, we computed Q = ZtDQZ and
P = ZtDPZ. In this way, it is easy to see that Q is positive semidefinite.
Furthermore, since DP −DQ is a diagonal matrix with nonnegative entries, it
follows that P −Q = Zt(DP −DQ)Z is also positive semidefinite. In addition,
since all entries of DP , DQ, Z are nonnegative, it is clear that all elements of
both P and Q are nonnegative. Concerning vector c, we randomly generated
non-negative values for c1, . . . , cn−1, and then let cn = p1n + q11 + c1 − pnn −
qn1 + 1, so the obtained vector c satisfies

cn > p1n + q11 + c1 − pnn − qn1 + g(b)− g(a).

For the instances of (QEP) in this experiment, it has been already shown
in Example 11 that S∗ = ∅, so the extragradient algorithm (HEA1b) and the
proximal point method (PPM) are not guaranteed to be convergent, hence we
only apply Algorithm 1. The projection performed in the experiment is solved
using the MATLAB subroutine ‘quadprog’ by observing that the projection
of a vector u on T (x) is the optimal solution to the quadratic programming

min ∥u− z∥2 s.t.

n∑
i=1

zi ≥ 1 and 0 ≤ zi ≤ 2xi ∀i = 1, . . . , n.

For illustration, in the first generated instance, we set n = 5 and obtained

P =


5.9413 2.5584 2.5172 4.5852 4.6082
2.5584 2.1685 0.6480 2.1818 2.0165
2.5172 0.6480 1.7650 2.5874 2.0910
4.5852 2.1818 2.5874 4.8431 4.2424
4.6082 2.0165 2.0910 4.2424 4.5611

 ,
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Q =


1.0159 0.4685 0.3725 0.6405 0.5837
0.4685 0.3472 0.1165 0.2973 0.2212
0.3725 0.1165 0.2473 0.3663 0.2803
0.6405 0.2973 0.3663 0.6432 0.5031
0.5837 0.2212 0.2803 0.5031 0.4926

 ,

c = (0.0399, 0.5880, 0.1125, 0.1292, 1.5192)t.

Starting at x0 = (0, 0, 0, 0, 5)t, Algorithm 1 converges to the solution
(0, 0, 0, 0, 1)t after 6 iterations and within 0.024 second. To confirm the effi-
ciency of this algorithm on the considering problem, we generated more
instances with different values of n, and for each of such instance we run 50
times of the algorithm with random starting points in the corresponding set
C. In Table 1 we report the minimum, maximum, and average of the number
of iterations as well as the CPU time in our tests.

Table 1: Results for Experiment 4.1.
n

Number of iterations CPU time (seconds)
min max average min max average

5 6 56 24.12 0.012 0.127 0.050
10 12 94 37.88 0.024 0.195 0.080
20 22 102 51.52 0.048 0.241 0.111
30 31 110 59.78 0.066 0.231 0.129
40 39 114 69.48 0.085 0.269 0.152

4.2 Experiment 2
In this experiment we considered the instance of (QEP) in which H = R2,
C = R2

+, f(x, y) = y1 − x1 + y22 − x2
2, T (x) = {y ∈ R2

+ | y1 + y2 = 1 + x1

1+x1
}.

This is a modification of Example 4.1 in [35], which is the QEP version of
Example 4.4. in [49]. It is known that the solution set of this (QEP) consists of
the single point x∗ = (1, 1

2 ). It is simple to verify that the bifunction f in this
(QEP) satisfies conditions (A1)-(A3), especially that f is monotone on C ×C
and its partial differential ∂2f(x, y) = (1, 2y2)

t satisfies (A3) with L = 2. Note
that the projection on T (x) performed in this experiment has the following
explicit formulation:

PT (x)(u) =


(0, β)t if u1 − u2 ≤ −β,
(β, 0)t if u1 − u2 ≥ β,(
1
2 (β + u1 − u2),

1
2 (β − u1 + u2)

)t if −β < u1 − u2 < β,

in which β = 1 + x1

1+x1
.

For the convergence of Algorithm HEA1b, the authors in [15] impose a
condition that x ∈ T (x) for all x ∈ C. However, this condition does not hold
in general for the multivalued mapping T defined above. Hence, Algorithm



Springer Nature 2021 LATEX template

Extragradient subgradient-type algorithms for QEP 27

HEA1b is not applicable in this experiment. In fact, if we start from x0 =
(0, 0)t, then following the description of this algorithm we get y0 = (0.5, 0.5)t,
which leads to

f(z, x0)− f(z, y0) = −0.75 < c∥x0 − y0∥2 = 0.25

for all z ∈ C, and consequently, Step 2 in Algorithm HEA1b does not
terminate.

To see the performance of Algorithm 1 and Algorithm PPM on the (QEP)
instance in this experiment, we randomly generated a list of 50 initial points
in the box [0, 5] × [0, 5]. Then, for each starting point in the list, we tested
these algorithms and recorded their performance (the number of iterations and
running time). In Table 2 we report the minimum, maximum, and average of
the number of iterations as well as the CPU time of each of these algorithms
over 50 runs. One can see from the result in this table that our algorithm
needs more number of iterations than Algorithm PPM but outperforms the
latter in sense of computation time. In fact, a closer look into the detail result
shows that, in every run corresponding to any starting point in the above
mentioned list, our algorithm is faster than Algorithm PPM. This can be
explained by the fact that in each iteration of Algorithm PPM one needs to
solve an auxiliary equilibrium problem, which is more time consuming than
performing projection operations in Algorithm 1.

Table 2: Results for Experiment 4.2.
Algorithm Number of iterations CPU time (seconds)

min max average min max average
Algorithm 1 20 34 29.68 0.0000442 0.0001394 0.0000665

Algorithm PPM 7 19 16.24 0.0000699 0.0001902 0.0000993

4.3 Experiment 3
The (QEP) instance in this experiment is taken from Example 2 in [15]. In this
instance we have H = R2, C = (−∞, 15] × (−∞, 15], f(x, y) = ⟨F (x), y − x⟩
in which F (x) = (2x1 +

8
3x2 − 34, 2x2 +

5
4x1 − 24.25), T (x) = T1(x2)× T2(x1)

in which

T1(x2) = {y1 ∈ R | 0 ≤ y1 ≤ 10, y1 ≤ 15− x2},
T2(x1) = {y2 ∈ R | 0 ≤ y2 ≤ 10, y2 ≤ 15− x1}.

One can check that the bifunction f in this (QEP) satisfies conditions (A1)-
(A3). Particularly, simple computations give us

f(x, y) + f(y, x) = ⟨F (x)− F (y), y − x⟩
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= −2

((
(y1 − x1) +

47

48
(y2 − x2)

)2

+
95

482
(y2 − x2)

2

)
,

hence f is strictly monotone on C ×C, and its partial differential ∂2f(x, x) =
F (x) satisfies (A3) with L =

√
643
4 . It is worth noting that the projection on

T (x) performed in this experiment has the following explicit formulation:

PT (x)(y) = (PT1(x2)(y1), PT2
(x1)(y2)),

in which

PT1(x2)(y1) =


min{10, 15− x2} if y1 ≥ min{10, 15− x2},
0 if y1 ≤ 0,
y1 if y1 ∈ [0,min{10, 15− x2}],

PT2(x1)(y2) =


min{10, 15− x1} if y2 ≥ min{10, 15− x1},
0 if y2 ≤ 0,
y2 if y2 ∈ [0,min{10, 15− x1}].

4.4 Experiment 4
Taken from Example 4 in [15].

This example is the same as the one in Experiment 3 above, except that

T2(x1) = {y2 ∈ R | 0 ≤ y2 ≤ 10}.

Formula of of projection on T (x):

PT (x)(y) = (PT1(x2)(y1), PT2(x1)(y2)),

in which PT1(x2)(y1) is as in Experiment 3 above, and

PT2(x1)(y2) =


10 if y2 ≥ 10,
0 if y2 ≤ 0,
y2 if y2 ∈ [0, 10].

4.5 Experiment 5
Taken from Example 1 in [15].
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Consider (QEP) in which H = R5, C = {x ∈ [−5, 5]5 |
∑5

i=1 xi ≥ −1},
f(x, y) = ⟨Px+Qy + q, y − x⟩ in which

P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 , Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 , q =


1
−2
−1
2
−1

 ,

T (x) = T1(x)× T2(x)× T3(x)× T4(x)× T5(x) in which

Ti(x) = {yi ∈ R | yi +
∑

1≤j≤5,j ̸=i

xj ≥ −1} for i = 1, . . . , 5.

Check conditions (A1)-(A3):
• f(x, x) = 0 for all x ∈ C; f(x, y) + f(y, x) = (y− x)t(Q− P )(y− x) ≤ 0 for

all x, y ∈ C since

Q− P =


−1.5 −1 0 0 0
−1 −2 0 0 0
0 0 −2 −1 0
0 0 −1 −1.8 0
0 0 0 0 −1


is negative definite (by Sylvester’s criterion on determinants of principal
minors of Q − P ), hence f is strictly monotone on C × C, which implies
that f is pseudomonotone on C × C; f is continuous on C × C.

• f(x, ·) is quadratic, and since Q is positive definite, we have f(x, ·) is convex
and continuous on C; its partial differential is ∂2f(x, y) = Px+ q −Qtx+
(Q+Qt)y, so ∂2f(x, x) = (P +Q)x+ q.

• For all x, y ∈ C we have

ρ(∂2f(x, x), ∂2f(y, y)) = ∥(P +Q)x− (P +Q)y∥ ≤ ∥P +Q∥∥x− y∥.

Hence (A3) is satisfied with L = ∥P +Q∥ which is the largest eigenvalue of
P +Q. Since

P +Q =


4.7 3 0 0 0
3 5.2 0 0 0
0 0 5 3 0
0 0 3 4.8 0
0 0 0 0 5


has 5 eigenvalues 1.8983, 1.9396, 5, 7.9017, 7.9604, we have L = 7.9604 and
we can take L∗ = 8.
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Formula of projection on T (x):

PT (x)(y) = (PT1(x)(y1), PT2(x)(y2), PT3(x)(y3), PT4(x)(y4), PT5(x)(y5)),

in which each Ti(x) is the ray [−1−
∑

j∈{1,...,5}\{i} xj ,+∞) ⊂ R, hence

PTi(x)(yi) =

{
yi if yi ≥ −1−

∑
j∈{1,...,5}\{i} xj ,

−1−
∑

j∈{1,...,5}\{i} xj if yi < −1−
∑

j∈{1,...,5}\{i} xj .

4.6 Experiment 6
Taken from Example 2 in [15].

Consider (QEP) in which H = R5, C = [1, 150]5, f(x, y) = ⟨F (x), y − x⟩
in which F (x) = (F1(x), F2(x), F3(x), F4(x), F5(x)) where

F1(x) = 10 +
(x1

5

) 1
1.2

+

(
5000

Q

) 1
1.1
(

x1

1.1Q
− 1

)
,

F2(x) = 8 +
(x2

5

) 1
1.1

+

(
5000

Q

) 1
1.1
(

x2

1.1Q
− 1

)
,

F3(x) = 6 +
x3

5
+

(
5000

Q

) 1
1.1
(

x3

1.1Q
− 1

)
,

F4(x) = 4 +
(x4

5

) 1
0.9

+

(
5000

Q

) 1
1.1
(

x4

1.1Q
− 1

)
,

F5(x) = 2 +
(x5

5

) 1
0.8

+

(
5000

Q

) 1
1.1
(

x5

1.1Q
− 1

)
,

with Q = x1 + x2 + x3 + x4 + x5, the mapping T : C → C is determined
by T (x) = (T1(x), T2(x), T3(x), T4(x), T5(x)) in which for each i = 1, . . . , 5 we
have

Ti(x) = {yi ∈ [1, 150] | yi +
∑

j∈{1,...,5},j ̸=i

xj ≤ 700}.

Check conditions (A1)-(A3):
• f(x, x) = 0 for all x ∈ C; f(x, y) + f(y, x) = ⟨F (x) − F (y), y − x⟩ ≤ 0

for all x, y ∈ C due to the monotonicity of F (since F is the gradient of a
convex function), hence f is monotone on C × C, which implies that f is
pseudomonotone on C × C; f is continuous on C × C.

• f(x, ·) is affine, hence it is convex and continuous on C; its partial differential
is ∂2f(x, y) = F (x), so ∂2f(x, x) = F (x).
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• Since F is continuous on the compact set C, it is Lipschitz on C. Therefore,
for all x, y ∈ C we have

ρ(∂2f(x, x), ∂2f(y, y))

=∥F (x)− F (y)∥
≤L∥x− y∥,

Hence (A3) is satisfied with L is the Lipschitz constant of F .

Formula of projection on T (x):

PT (x)(y) = (PT1(x)(y1), PT2
(x)(y2), PT3(x)(y3), PT4(x)(y4), PT5(x)(y5)),

in which for each i = 1, . . . , 5 we have

PTi(x)(yi) =


1 if yi ≤ 1,
ui if yi ≥ ui,
yi if yi ∈ [0, ui],

where ui = min{150, 700−
∑

j∈{1,...,5},j ̸=i xj}.
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