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Abstract

We introduce the Set Team Orienteering Problem (STOP), a generalised variant of the Set Ori-

enteering Problem (SOP), in which customers’ locations are split into multiple clusters (or groups).

Each cluster is associated with a profit that can be gained only if at least one customer from the

cluster is visited. There is a fleet of homogeneous vehicles at a depot, and each vehicle has a limited

travel time. The goal of the STOP is to find a set of feasible vehicle routes to collect the maximum

profit. We first formulate the problem as a Mixed Integer Linear Programming (MILP) to mathe-

matically describe it. A branch-and-price (B&P) algorithm is then developed to solve the problem

to optimality. To deal with large instances, we propose a Large Neighbourhood Search (LNS),

which relies on problem-tailored solution representation, removal, and insertion operators. Mul-

tiple experiments on newly generated instances confirm the performance of our approaches. The

B&P is able to obtain optimal certificates for 77.6% of the STOP instances. Our LNS can achieve

optimal solutions for all of these instances except one. More remarkably, we test the algorithms on

the SOP via benchmarks available in the literature. It is shown that our B&P can close optimality

gaps in 61.2% of these instances. This is the first time such a large number of SOP instances are

solved to optimality. Our LNS outperforms existing algorithms proposed to solve the SOP in terms

of solution quality. Out of 612 considered instances, it improves 43 best-known solutions.
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1. Introduction

This paper studies a new extension of the Orienteering Problem (OP), which we call the Set

Team Orienteering Problem (STOP), in which customers are split into multiple groups (or clusters).

Each cluster is associated with a profit that can be gained only if at least one customer from the

cluster is visited. There is a fleet of homogeneous vehicles at the depot, and each vehicle has a

limited travel time. The goal of the STOP is to find a set of feasible vehicle routes such that the

total collected profit is maximised.

The STOP can be considered a generalised version of the Set Orienteering Problem (SOP),

which is first introduced by Archetti et al. (2018). Different from the STOP, the fleet size of vehicles

in the SOP is only one. In Archetti et al. (2018), the authors propose a Mixed Integer Linear Pro-

gramming (MILP) formulation and a matheuristic-based Tabu Search for solving the SOP. Pěnička

et al. (2019) introduce an improved MILP formulation for this problem using subtour elimination

constraints instead of connectivity cuts like the previous one. They also design a Variable Neigh-

bourhood Search (VNS) and test it on the SOP instances and similar variants, such as the Dubins

Orienteering Problem introduced in Pěnička et al. (2017). The authors of Carrabs (2021) employ

a Biased Random-Key Genetic Algorithm (BRKGA), which encodes a chromosome as an array

of float numbers in a range of [0, 1] and employs three local search procedures for intensification.

A graph reduction algorithm based on the work of Gutin and Karapetyan (2009) is also re-used

to reduce the problem size, thus improving the computation time of BRKGA. The latest heuris-

tic method proposed to solve the SOP is the Adaptive Memory Matheuristic (AMMH) in Dontas

et al. (2023). It employs several local search procedures in combination with the adaptive mem-

ory mechanism and a MILP model in a customer insertion-deletion process to intensify the search.

The experiments show that the AMMH provides better results than previous methods on the SOP

instances introduced in Archetti et al. (2018).

Many routing problems deal with clusters like STOP in the literature. The Clustered Team Ori-

enteering Problem (CTOP) studied in Yahiaoui et al. (2019) shares several common attributes with

the STOP. The difference between them is that the profit of a cluster in the CTOP is collected only

if all of its customers are served concurrently. The CTOP also has a single-vehicle variant, which

is the Clustered Orienteering Problem (COP), introduced in Angelelli et al. (2014). In addition, the

Generalised Vehicle Routing Problem (GVRP) in (Ghiani and Improta, 2000; Bektaş et al., 2011;

Hà et al., 2014) uses the term cluster which represents possible locations of a customer. A set of
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vehicles must serve all customers at one of their locations. The goal of the GVRP is to minimise the

total travel cost of the vehicles w.r.t. capacity constraints, indicating that the total demand of cus-

tomers served by a vehicle must not exceed its capacity. A variant of GVRP that has an interesting

application in last-mile delivery is the Vehicle Routing Problem with Roaming Delivery Locations

(VRPRDL) (Reyes et al., 2017). It models a routing problem by providing trunk delivery service,

which allows couriers to deliver goods to customers via accessing their trunks (Harbison, 2018).

The VRPRDL can be considered the GVRP with time window (TW) constraints, in which TWs of

locations in a cluster satisfy special attributes that mimic the itinerary of their corresponding cus-

tomers. The problem has been solved by various exact methods and metaheuristics: branch-and-

price (Ozbaygin et al., 2017), branch-and-price-and-cut (Tilk et al., 2021), large neighbourhood

search (Dumez et al., 2021), and hybrid genetic algorithm (Pham et al., 2022).

More recently, Gunawan et al. (2021) introduce a variant of the STOP, known as the Set Team

Orienteering Problem with Time Windows (STOPTW), in which a time window is imposed for each

customer and the delivery must be done within this time period. The authors propose an Adaptive

Large Neighborhood Search algorithm to solve the problem. The preliminary results show the

capability of the proposed algorithm to provide good solutions within reasonable computational

times compared to the commercial solver CPLEX.

Similar to the SOP, the STOP finds application in the mass distribution of products Archetti et al.

(2018). More precisely, we consider the case where multiple customers belong to different supply

chains (or clusters) and the profit is associated with each chain rather than with each individual

retailer as in the COP. In the STOP, the carrier only has to serve one retailer belonging to each chain

with the entire quantity demanded by all of its retailers. Product transportation within a chain will

be performed internally. This strategy allows the carrier to reduce the transportation cost, possibly

providing a better price for the chains. Another application is when customers in an area want to

gather together in a group to place large quantity orders, which may result in a lower price. In this

case, a customer in each group will be selected to be the delivery location and receive the entire

quantity of all customers in the area. The STOP can also model routing problems in e-commerce

where customers can get orders at different addresses, e.g., home, workplace, parents’ home, and so

on. As such, a cluster in this application includes different delivery locations for a customer. And

the profit of a cluster can be set to the profit obtained from serving the corresponding customer.

The main contributions of our work are as follows:
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• We propose the STOP, which is a generalised version of several important routing problems

with profits. The problem has multiple applications in supply chain distribution and mass

distribution products.

• We propose a branch-and-price (B&P) algorithm to solve the problem to optimality. The

B&P uses a bucket-based dynamic programming to solve its pricing subproblem and strong

branching to reduce the size of the branch-and-bound tree.

• We introduce a metaheuristic that is based on the Large Neighbourhood Search (LNS). The

LNS is built from several existing and new components, adapted and designed to efficiently

deal with the problem’s characteristics.

• We test our proposed methods on the existing SOP instances as well as new STOP instances

with up to 1084 customers and 217 clusters. The obtained results clearly show the perfor-

mance of our approaches. The exact algorithm B&P can close the gap for 77.70% of the

STOP instances, while the LNS is able to reach optimal solutions for all but one of these

instances.

• For the SOP, 61.2% of the existing instances are solved to optimality (compared with 8.5% in

the current literature), and we also provide dual bounds for the first time for those instances.

Our metaheuristic has a competitive performance with state-of-the-art methods. More specif-

ically, 43 new best-known solutions are found for the first time in this study. These results are

remarkable because our algorithms are designed to mainly solve the multiple-vehicle version.

The remainder of this paper is structured as follows: Section 2 introduces the problem definition

and a mixed integer linear programming model. The detailed descriptions of our branch-and-price

algorithm and metaheuristic are provided in Sections 3 and 4, respectively. Experimental results

are reported in Section 5. And finally, we conclude our work in Section 6.

2. Problem Definition

The STOP is formally defined as follows. Let G = (V, A) be a complete directed graph in

which V = {0} ∪ C. Node 0 represents the depot, while C represents the set of customers. Each

arc (i, j) ∈ A is associated with a travel cost ci j. These costs are assumed to satisfy the triangle
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inequality and to be symmetric. We also define a set of K clusters S = {S 1, S 2, ..., S K} where⋃K
k=1 S k = V\{0} and S i ∩ S j = ∅,∀i , j. A profit pk is associated with each cluster S k and

collected only if a customer in cluster S k is served. Note that, for convenience, we sometimes use

S i to denote the set of customers belonging to the corresponding cluster. The goal of the STOP is

to find a set of at most m feasible vehicle routes with maximum total profit serving each cluster at

most once. A feasible route must satisfy the following requirements:

• A vehicle departs from the depot and returns to the depot after serving its assigned clusters.

• The total travel cost of each vehicle must not exceed a budget Tmax.

To mathematically describe the problem, we formulate it as a Mixed Integer Linear Program-

ming (MILP) using the following types of variables:

• yk: binary variable, equal to 1 if the profit of cluster S k ∈ S is collected by a vehicle, 0

otherwise.

• xi j: binary variable, equal to 1 if arc (i, j) ∈ A is traversed by a vehicle, 0 otherwise.

• si: non-negative real variable, representing the total travel cost of the vehicle when visiting

customer i.

The MILP model of the STOP can be written as follows:

max
∑

S k∈S

pkyk (1)

s.t.
∑

i∈V\{ j}

xi j =
∑

i∈V\{ j}

x ji ∀ j ∈ V (2)∑
i∈V\S k

∑
j∈S k

xi j = yk ∀S k ∈ S (3)

s j ≥ si + ci jxi j − Tmax(1 − xi j) ∀(i, j) ∈ A, j , 0 (4)

si + ci0xi0 ≤ Tmax ∀i ∈ V (5)∑
i∈V\{0}

xi0 ≤ m (6)

0 ≤ si ≤ Tmax ∀i ∈ V (7)
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xi j ∈ {0, 1} ∀(i, j) ∈ A (8)

yk ∈ {0, 1} ∀S k ∈ S (9)

The objective function (1) maximises the total profit collected from all clusters visited by the

vehicles. The flow conservation is satisfied by Constraints (2). Constraints (3) represent the rela-

tionship between variables y and x, i.e., the profit of a cluster is collected if and only if one customer

in that cluster is visited. Constraints (4) compute the total travel cost of vehicles at customers’ lo-

cations. Constraints (5) ensure that the total travel cost when returning to the depot of each vehicle

does not exceed budget Tmax. The maximum number of vehicles is respected by Constraint (6).

Finally, the remaining constraints define the variables’ domains.

3. Branch-and-Price

As for many vehicle routing problems, the compact formulation has a small limit on the size

of instances it can solve (Martinelli et al., 2014; Baldacci et al., 2011). When pursuing the solu-

tion of larger instances, one can resort to decomposition methods that generate exponential-sized

formulations, which must be solved using column generation. The formulation presented in this

section considers a set of all feasible routes Ω. A route r starts at the depot, visits a non-empty

sequence of customers, and ends at the depot. Based on which nodes a route visits, we can define

the binary constants akr, which indicate whether the route visits cluster S k, and calculate its profit,

pr =
∑

S k∈Sr
pk, where Sr is the set of clusters visited on route r. Given the binary variables λr,

which indicate if route r is used in the solution, the formulation is presented as follows:

max
∑
r∈Ω

prλr (10)

s.t.
∑
r∈Ω

λr ≤ m (11)∑
r∈Ω

akrλr ≤ 1 ∀S k ∈ S (12)

λr ∈ {0, 1} ∀r ∈ Ω (13)

The objective function (10) maximises the profit obtained by visiting the clusters. Constraint

(11) limits the number of vehicles used. Constraints (12) force every cluster to be visited at most

once. Constraints (13) present the variables’ domains.
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The above formulation has an exponential number of λr variables. To cope with this issue,

the solution of this formulation must be acquired using Column Generation. We will detail the

approach in the following sections.

3.1. Pricing

The approach initialises set Ω with a subset of routes (which can be empty) and generates new

routes by solving a pricing sub-problem on each iteration. This sub-problem aims at finding a

feasible route with the highest reduced cost value. The approach stops when no route with positive

reduced costs is found. Given the dual variables γ and βk associated with Constraints (11) and (12)

respectively, the reduced cost of a route r can be defined as in Equation (14).

c̄r =
∑

S k∈S

(pk − βk) akr − γ (14)

The pricing problem is then solved by a forward dynamic programming algorithm. Each state

of the algorithm is a partial path P starting at the depot and ending at a given customer. All the in-

formation associated with a partial path P is represented by a label L (P) = {c̄(P), v(P), t(P),Π(P)},

where c̄(P) is the path’s reduced cost, v(P) the last customer of the path, t(P) the accumulated time,

and Π(P) the set of visited clusters. The algorithm initially generates the label associated with the

depot L (P0) = {−γ, 0, 0,∅}, and given a label L (P1) = {c̄(P1), v(P1), t(P1),Π(P1)} performs the

extension to customer i generating label L (P2) = {c̄(P1)+ pK (i)−βK (i), i, t(P1)+cv(P1)i,Π(P1)∪{i}},

if t(P1) + cv(P1)i + ci0 ≤ Tmax and i < Π(P1), where K (i) = k if i ∈ S k. The algorithm stops when no

further extension is possible. Next, it tests all extensions back to the depot and returns the routes

with positive reduced costs.

In order to reduce the number of labels during the dynamic programming algorithm, we resort

to the following dominance rule: Given labels L1(P1) and L2(P2), we say that L1(P1) dominates

L2(P2), i.e., L1(P1) ⪯ L2(P2) if c̄(P1) ≥ c̄(P2) ∧v(P1) = v(P2) ∧ t(P1) ≤ t(P2) ∧ Π(P1) ⊆ Π(P2).

We further develop other pricing improvement techniques. The ng-route relaxation (Baldacci

et al., 2011) aims to strengthen the dominance rule, allowing non-elementary routes based on

memory sets Nk,∀S k ∈ S . Given the minimum travel cost for a pair of clusters S 1 and S 2 as

min(ci j,∀i ∈ S i,∀ j ∈ S 2), the memory sets are built considering the ∆N = 8 closest clusters of S k.

Therefore, on the extension from label L1(P1) to label L2(P2), Π(P2) = Π(P1)∩NK (v(P2))∪{v(P2)}.
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Another pricing improvement is to consider buckets of labels based on the minimum travel

cost, κ = min(ci j,∀(i, j) ∈ A). Thus, we create ⌈(Tmax + 1)/κ⌉ buckets for each customer and only

test the dominance for a pair of labels L1(P1) and L2(P2) when they are in the same bucket, i.e.,

⌊c(P1)/κ⌋ = ⌊c(P2)/κ⌋.

3.2. Main Formulation Relaxation

The main formulation (10)–(13) relaxation is solved iteratively, starting with a non-empty Ω

set obtained by a simple constructive heuristic and solving the pricing subproblem to obtain new

routes. The initial heuristic builds a single solution by choosing on each iteration the cluster with

the highest profit, which has not been visited yet, and the vehicle closest to any customer from this

cluster, which would not lead to an infeasible route due to Tmax. When all clusters are visited or no

vehicle can perform any further visits, the heuristic stops and returns the solution found.

To aid the Column Generation convergence, we use a simple stabilisation technique as sug-

gested by (Pessoa et al., 2010), with a stabilisation factor σ ∈ [0, 1], used to perform a convex

combination of the current dual variable values γ and βk with the values from the last iteration. The

algorithm starts with σ = 0.9 and, on each mispricing, i.e., when the best route returned by the

pricing is not a positive-reduced cost route, the algorithm reduces σ ← σ − 0.1, until it reaches

zero, concluding the stabilisation.

Since the exact pricing presented in Section 3.1 can be time-consuming, on each iteration, the

Column Generation first solves a heuristic pricing (Martinelli et al., 2011), which uses a relaxation

of the dominance rule, L1(P1) ⪯ L2(P2) if c̄(P1) ≥ c̄(P2)∧v(P1) = v(P2), which is tested only if the

labels are in the same bucket. Thus, the heuristic pricing keeps only one label for each customer’s

bucket. The Column Generation solves the exact pricing problem only when no positive-reduced

cost route is found. If the exact pricing cannot find any positive-reduced cost route, the Column

Generation is finished, and the main formulation relaxation is solved.

3.3. Branch-and-Bound

The Column Generation algorithm presented in Section 3.2 only solves the linear relaxation of

the main formulation. A Branch-and-Bound approach is used to obtain integer solutions. It solves

a Column Generation with branching constraints on each node, resulting in a Branch-and-Price

algorithm.
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We use two branching rules. The first is a branch on cluster variables yk, and the branching

constraints added in the main formulation are in the form
∑

r∈Ωk
λr = 0 or 1, where Ωk is the set of

routes that visit cluster S k ∈ S . The second branching rule is to branch on arc variables xi j, and

the branching constraints added are in the form
∑

r∈Ωi j
λr = 0 or 1, where Ωi j is the set of routes that

traverse arc (i, j) ∈ A.

To further reduce the size of the branching tree, the algorithm conducts strong branching by

choosing the ten most fractional branching candidates (clusters or arcs) and evaluating their child

nodes. Given the solutions of the two child nodes zle f t and zright, the strong branching chooses the

node with a larger αmax(zle f t, zright) + (1 − α) min(zle f t, zright), where α = 3/4.

Including branching constraints can make the main formulation infeasible, but this result could

be due to a lack of routes in set Ω, an issue the following Column Generation iterations would

manage. However, since the formulation result is infeasible, the Simplex algorithm cannot provide

dual variable values. To cope with this issue, we include artificial variables in the constraints when-

ever the formulation is infeasible and perform the first phase of a Two-Phase Simplex algorithm,

which uses an artificial objective function. Whenever all artificial variables are null, we remove

them from the formulation, restore the original objective function, and usually carry the solution.

If the Column Generation finishes with any nonzero artificial variable, the current formulation is

infeasible, and the Branch-and-Bound can prune the node.

On each iteration of the Branch-and-Bound, the algorithm should choose a new node to be

branched. We use a best-bound strategy, i.e., the node with the highest upper bound value is chosen.

This strategy is tentative and aims to reduce the gap on each iteration by pushing down the worst-

known upper bound.

3.4. Preprocessing

Before starting the approach, we perform preprocessing to identify incompatible nodes and

clusters. Given a customer node i ∈ C, if c0i + ci0 > Tmax, node i is incompatible with all other

nodes and can then be removed from the problem instance. Given an arc (i, j), if c0i+ci j+c j0 > Tmax,

then arc (i, j) is incompatible and can also be removed. Moreover, if all customers of a given cluster

S k are incompatible, S k can be removed from the problem instance. If all arcs between a pair of

clusters are incompatible, those two clusters cannot appear on the same route.
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4. Metaheuristic

4.1. Large Neighborhood Search framework

The B&P method may not provide good solutions for large STOP instances in a reasonable

amount of time. To fill this methodology gap, we develop a metaheuristic based on the Large

Neighbourhood Search (LNS) of Shaw (1998). At each iteration, LNS explores a large neighbour-

hood, which can rearrange a large part of the current solution, thus allowing the search to move

to other promising regions of the search space. More precisely, the current solution in LNS is it-

eratively improved by ruining it (i.e., removing a part of it) and recreating it (i.e., reinserting the

removed part in a different way). If the algorithm finds an accepted solution, it becomes the new

current solution, and a new large neighbourhood is defined around it. This process is repeated until

a stopping criterion (usually a time limit or a maximal number of iterations) is reached.

Algorithm 1: LNS algorithm

s← InitialSolution();

s∗ ← s;

T ← T0;

while the stopping criterion is not met do
Remove← SelectRemoval();

Insert← SelectInsertion();

s′ ← Insert(Remove(s));

if Accept(s’, s) then
s← s′;

if fs′ > fs∗ then
s∗ ← s′;

end

end
T ← αT ;

end
return s∗;

A STOP solution in our LNS is represented by m vehicle routes. Each route i ∈ [1,m] is a
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permutation of clusters that are visited by vehicle i. This solution representation is also used in

(Carrabs, 2021; Pěnička et al., 2019). It allows us to limit the search space around the clusters

instead of the customers, which are more numerous. The total profit of visited clusters, i.e., the

value of the objective function, of a solution can be trivially computed, but we need to check

the solution’s feasibility by comparing the cost of every route with the budget Tmax. As such,

a dynamic programming procedure is required to provide the travel cost of each route passing

explicit customers. The dynamic programming uses two vectors g and h to track the cost of each

route. We denote gu the minimum travel cost of the partial route from the depot to the customer u.

Similarly, hu is the minimum travel cost of the remaining part of the route from the customer u to

the depot. For every two consecutive clusters S i and S j in the same route r, we can calculate g and

h as follows:

gv = min
u∈S i

(gu + cuv), ∀v ∈ S j (15)

hu = min
v∈S j

(hv + cuv), ∀u ∈ S i. (16)

Then the travel cost of route r can be calculated by:

cor = min
u∈S i

(gu + hu), ∀S i ∈ r. (17)

The pseudo-code of our LNS is illustrated in Algorithm 1. The procedures SelectRemoval and

SelectInsertion randomly select Removal and Insertion operators called Remove and Insert

from the operator pool using the roulette wheel selection. A new solution s′ is then generated using

these selected operators. The algorithm is stopped after niter iterations. We evaluate the Accept

function using the Simulated Annealing (SA) framework, which allows a solution worse than the

current one to be accepted. This gives the algorithm the possibility to escape local optima and

explore other promising neighbourhoods. We denote fs as the objective value of solution s. The

probability of accepting a new solution s′, which is worse than the current solution s, is controlled

by the temperature parameter T , as follows:

p(s′,s) = e( fs′− fs)/T (18)

T is set to exponentially decrease after each iteration by the cooling rate α to lower the probabil-

ity of the algorithm moving to worse solutions over time. The computation of the initial temperature
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T0 is based on the objective value of the initial solution s0. It is set so that a new solution that is µ

factor worse than the initial solution is accepted with a probability of 50%:

T0 =
−µ fs0

loge 0.5
(19)

4.2. Removal operators

The removal operators remove a fraction of the clusters from the current solution based on

different criteria. Each operator guides the algorithm to a different neighbourhood. The number

of clusters to be removed r is based on the size of the current problem. More specifically, it is

randomly generated in the range [2,max(2, ηK)], where η is the removal control parameter. Each

removal operator is associated with a priority weight and is randomly selected using the roulette

wheel selection method in each LNS iteration. In this paper, we employ five removal operators as

follows:

Random removal. This is the simplest removal proposed in Ropke and Pisinger (2006). It first

selects r clusters randomly from the current solution. These clusters are then removed from the

solution while keeping the order of the remaining clusters intact. The operator is mainly used to

diversify the search, giving every solution a chance to be reached.

Worst-cost removal. The operator is adapted from Ropke and Pisinger (2006). It aims to remove

clusters from the solution to reduce the travel cost as much as possible. We denote co as the cost

of the current solution and coi as the cost of the solution after removing the cluster S i. The value

of coi can be assessed via the vectors g and h defined above. The list of all clusters in the current

solution is then sorted in the increasing order of coi. The random priority selection process of

Ropke and Pisinger (2006) is then applied to select a cluster from the list, such that the clusters at

the beginning of the list will be more likely to be selected. A pre-defined parameter, rp > 1, which

represents the degree of randomness, is used to control the random power of the operator.

Worst-profit removal. The worst-profit removal prioritises removing clusters with a small profit

using a similar procedure to the worst-cost removal. The difference is that instead of sorting the

cluster list in the order of coi, we sort the list in the increasing order of cluster profit pi.
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Worst profit-over-cost removal. The worst profit-over-cost removal balances the impact of profit

and cost on the removal process. Similar to the procedure of the worst-cost removal, it prioritises

removing clusters based on profit over the cost of the solution after the removal of a cluster. More

specifically, we sort the list of clusters in the decreasing order of ∆pi/coi, where ∆pi is the profit

obtained after removing S i.

Related removal. We adapt this operator from Ropke and Pisinger (2006) with some modifications

to the relatedness function. Its main idea is to remove clusters that have high similarities with the

expectation of shuffling them around during the insertion phase. The relatedness R(i, j) of two

clusters S i and S j is given by:

R(i, j) = ϕ1

∑
u∈S i

∑
v∈S j

cuv

comax.|S i|.|S j|
+ ϕ2X(i, j), (20)

where the value of X(i, j) is defined as:

X(i, j) =


|posi − pos j|

ncr
, if clusters S i and S j are both serviced in route r

1, if clusters S i and S j are in different routes.
(21)

Here, posi is the position of cluster S i, and ncr is the number of clusters in route r. The lower value

of R(i, j) is, the more related are S i and S j. The first term of the Equation (20) measures the average

distance for all pairs of customers’ locations from the two clusters, S i and S j. We normalise the

distances by dividing the sum by the maximum possible travel cost between any two customers’

locations. The term X(i, j) represents the difference in the relative position of the two clusters in

the current solution. If S i and S j are serviced by the same vehicle, X(i, j) is correlated with the

difference in their positions posi and pos j in the route. Otherwise, X(i, j) is set to 1. These two

terms are weighted using the pre-defined parameters ϕ1 and ϕ2.

4.3. Insertion operators

Insertion operators are used to guide the algorithm to a good solution in the neighbourhoods

created by the removal operators. The partial solutions are reconstructed by selecting unserved

clusters and inserting them until no more clusters can be inserted. The new solution after the

process must be feasible. We use the vectors g and h to quickly validate the feasibility of the
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solution after each insertion. Initially, the solution only includes routes travelling from the starting

depot to the ending depot. We initialise the g of the starting depot and the h of the ending depot

to 0. When we consider inserting a cluster S i into the position after the cluster S j and before the

cluster S k, we can calculate gu and hu (∀u ∈ S i) using Equations 15 and 16. The new travel cost of

the route after the insertion of S i, coi, can then be calculated using the following formula:

coi = min
u∈S i

(gu + hu). (22)

Algorithm 2: Calculate coi when inserting cluster S i between clusters S j and S k.

coi ← ∞;

for u ∈ S i do
gu ← ∞;

for v ∈ S j do
gu ← min(gu, gv + cvu);

end
hu ← ∞;

for v ∈ S k do
hu ← min(hu, hv + cuv);

end
coi ← min(coi, gu + hu);

end
return coi;

The procedure of calculating coi for the insertion of S i is demonstrated in Algorithm 2. The

new solution is feasible if and only if the calculated coi is less than or equal to Tmax. The total

complexity of this process is O(κ2), where κ is the maximum number of customers in a cluster:

κ = max
S i∈S
|S i|. (23)

We categorise our insertion operators into two types: predetermined-order insertion and parallel

insertion. The former pre-generates a list of unserved clusters beforehand and inserts those clusters

in that order. Meanwhile, the latter checks all the clusters during each insertion and determines

which cluster to insert. Their detailed descriptions will be discussed in the following sections:
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4.3.1. Predetermined-order insertion operators

The insertion procedure of the predetermined order operations is presented in Algorithm 3. In

these operators, the order of inserted clusters is predetermined using some cluster-related criteria

to define a cluster list, L . Different operators use different criteria. We consider each cluster

sequentially and insert it into the best route at the best position possible. More specifically, we

find the position to insert such that the increase in the travelling cost, i.e., coi − co, is the least.

The process of calculating coi and finding the best position is demonstrated in Algorithm 2. The

complexity of finding the best insertion location for a cluster and inserting it into that position is

O(|V | ∗ κ). Thus, the complexity of the whole process in Algorithm 3 is O(|V |2). To prevent the

search from being trapped in local optima, we employ the same randomised process as in the worst-

cost removal with the power parameters rp to select the clusters’ order. We illustrate the criteria

used to sort the clusters in each operator in the following:

Random order insertion. This operator is adapted from Hammami et al. (2020), in which the order

of clusters in L is fully randomised. Its objective is to increase the diversity of the search.

Profit-based insertion. As proposed by Hammami et al. (2020), this operator sorts clusters’ orders

based on their profits. Clusters with higher profits are prioritised to be inserted first.

Proximity-based insertion. In this new operator, we sort the order of clusters by a measure named

“proximity”. For each cluster S i, its proximity ρi is given by:

ρi =

∑
u∈S i

∑
v∈S i

cuv

|S i|
2 . (24)

The lower ρi is, the closer the customers’ locations in the cluster S i are. The main idea of this

operator is that clusters with greater proximity, i.e., those with distant customers, should be inserted

first because they are more flexible and could easily change their locations when subsequent clusters

are added to reduce the solution cost.
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Algorithm 3: Predetermined order insertion.

Input Solution s;

s′ ← s;

L ← {S i|S i ∈ S , S i < s′};

Sort L by heuristic criteria;

while L , ∅ do
y← Random[0, 1);

id ← ⌊yrp|L |⌋;

S i ← L [id];

L ← L \{S i};

∆coi ← +∞;

for each route r in s′ do
for each insertion position in r do

Calculate coi for the insertion of S i into the selected position;

if coi ≤ Tmax then
∆coi ← min(∆coi, coi − co);

Update the best position for S i;

end

end

end
if ∆coi < +∞ then

Insert S i into the best position;

end

end
return s′;

4.3.2. Parallel insertion operators

Instead of prefixing the order of cluster insertions, parallel insertion operators consider all clus-

ters for insertion in each iteration. The process is demonstrated in Algorithm 4. In each iteration,

we evaluate the new costs after inserting each cluster into each possible position, coi, and calcu-

late the minimum increased cost of each cluster, S i, when it is inserted into the best vehicle in the

16



best position, ∆coi. Thus, the complexity of each insertion operation is O(|V |2) and Algorithm 4

runs in O(K|V |2). These insertion operators often take much more computational time than the

predetermined-order ones. Therefore, they should be used less frequently. As such, the weights of

predetermined-order operators will be multiplied by a constant value (8 in our experiments). We

only select which cluster to insert, S best, after evaluating the insertion of every cluster into every po-

sition of the solution. The way we select S best depends on the different heuristic criteria we choose,

as described in the following:

Cheapest insertion. Proposed by Ropke and Pisinger (2006), this is a simple, construction-based

greedy heuristic. After the calculation of ∆coi, we select the cluster S i with the smallest ∆coi to

insert into the position that would increase the total travel cost the least.

Dynamic profit-over-cost insertion. Inspired by Hammami et al. (2020), this insertion operator

incorporates the profits of the clusters and the travel cost of the solution. The clusters will be

selected in the order of their profit divided by the new cost obtained after inserting them into the

solution, i.e., we choose the cluster S i with the largest value of pi/coi. The clusters are also inserted

in the position that would increase the cost the least. This insertion helps the algorithm tackle the

profit-related objective function more efficiently.

Regret-k insertion. The idea of this insertion is inspired by the regret insertion operators as sug-

gested in Ropke and Pisinger (2006). We denote ∆cok
i as the cost increases when inserting the

cluster S i into the k-th best route. The regret-k cost of the cluster S i is defined as:

Rk
i =

k∑
j=1

(∆co j
i − ∆co1

i ). (25)

The regret value estimates roughly how much the insertion cost ∆coi of S i will increase, or

how “difficult” it will be, if we do not insert S i into the solution immediately. The cluster with the

largest regret-k cost is selected to be inserted into the solution in its best position. If any clusters

can only be inserted into less than k routes, we will select the cluster that has the fewest feasible

insertion routes. The regret-k insertion operators aim to insert the clusters that are harder to insert

into the solution first.
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Algorithm 4: Parallel insertion.

Input Solution s;

s′ ← s;

L ← {S i|S i ∈ S , S i not in s′};

while L , ∅ do
for S i ∈ L do
∆co← +∞;

for each r in s′ do
for each insertion position in r do

Calculate coi for the insertion of S i into the selected position of vehicle r;

if coi ≤ Tmax then
∆coi ← min(∆coi, coi − co);

Update the best position for S i;

end

end

end

end
Select the best cluster S best based on heuristic criteria;

L ← L \{S best};

if ∆cobest < +∞ then
Insert S best into the best position;

end

end
return s′;

Dynamic profit regret-k insertion. As the regret-k insertions do not consider the profits of clusters,

we introduce the dynamic profit regret-k insertion operators. Instead of inserting the cluster with

the largest regret-k value, we consider the cluster with the largest product of its profit and regret-k

cost, i.e., the cluster S i with the largest piRk
i to be inserted first. In our experiments, the k values in

the two regret insertions are set to {2, 3}.
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4.3.3. Insertion noise factor

Since all our insertion operators always insert a cluster into the position that will increase the

cost the least, this can make the algorithm revisit the same solution multiple times. To improve the

algorithm diversity, we add some noise to the increased cost calculated in the insertion operators.

For each iteration, there is a 50% chance that a noise is added to all the insertion cost ∆coi calcula-

tions. The noise values are generated uniformly randomly in the range [−θ.comax, θ.comax], where θ

is the noise control parameter.

5. Experimental results

5.1. Benchmark instances and experimental configurations

We first carry out the experiments on the SOP instance benchmark, which is introduced in

Archetti et al. (2018).The authors generate two sets of instances called Set 1 and Set 2 by modifying

the Generalised Travelling Salesman Problem (GTSP) instances of Fischetti et al. (1997). The

number of clusters is kept unchanged, and the profit of each cluster is equal to the sum of its

customers’ profits, which are generated by two strategies, g1 and g2. In the first strategy, g1,

the profit of every customer is set to one, while this figure in the second strategy, g2 is an integer

ranging from 1 to 100. The value of Tmax in each instance is equal to ω.solGTS P where solGTS P is the

objective value of the GTSP best-known solution and ω is set to one of three values {0.4, 0.6, 0.8}.

The number of nodes in this instance class ranges from 52 to 1084, while the number of clusters

varies from 11 to 217.

Table 1: General parameters of LNS

Parameter Symbol Value Tuning range

Number of iterations niter 20000 -

Removal control η 0.3 (0.1, 0.5)

Temperature control µ 0.327 (0.01, 0.4)

Cooling rate α 0.99948 (0.999, 0.99999)

Noise factor θ 0.011 (0, 0.2)

Weights - - (0, 4)

Random powers rp - (2, 20)
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The benchmark instances for the STOP are not available; we must generate them ourselves.

Similar to Yahiaoui et al. (2019), we generate new STOP instances from the SOP instances by

dividing the original time limit TS OP by the number of vehicles, i.e., Tmax =
⌈

TS OP
m

⌉
. From each SOP

instance in Archetti et al. (2018), we derive two new instances with the number of vehicles m equal

to two and three.

Table 2: Parameters of the LNS operators

Operator Weight Random power (rp) Others

Random removal 3 - -

Worst cost removal 3 3 -

Worst profit removal 3 11 -

Worst profit-over-cost removal 1 6 -

Related removal 1 10 ϕ1 = 18, ϕ2 = 1

Random order insertion 8 × 1 - -

Profit-based insertion 8 × 4 5 -

Proximity-based insertion 8 × 1 4 -

Cheapest insertion 1 - -

Dynamic profit-over-cost insertion 2 - -

Regret-2 insertion 1 - -

Regret-3 insertion 3 - -

Dynamic profit regret-2 4 - -

Dynamic profit regret-3 3 - -

All algorithms are implemented in the C++ programming language. We conduct the B&P

experiments on an Intel Core i7-8700K @ 3.7GHz with 64GB of RAM and the LNS experiments

on an Intel Core i7-7700HQ @ 2.8GHz with 32GB of RAM. The configuration package IRACE

(López-Ibáñez et al., 2016) is used to calibrate the parameters of our LNS. The calibration results

after running 10,000 experiments of LNS on randomly sampled STOP instances are illustrated

in Table 1 (for the general parameters) and Table 2 (for the weights and random degrees of the

operators). As mentioned before, the weights of the predetermined-order insertion operators are

multiplied by 8 due to their faster running time. All instances and detailed results are reported in
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the supplementary material available at http://orlab.com.vn/home/download.

5.2. Results on the SOP instances

In this section, we report the experimental results to access the performance of the LNS and

the B&P on the existing SOP instances proposed by Archetti et al. (2018). For simplicity, its

parameters are set by default, as in the multi-vehicle version, STOP.

5.2.1. Performance of the branch-and-price algorithm

We run the B&P with a time limit of six hours (21600 seconds) for each SOP instance, starting

the approach with the lower bound found by the LNS, and compare the results with the only exact

method available in the literature (Archetti et al., 2018). Table 3 presents the summary results for

all configurations (set, gi, and ω). For each configuration, the first two groups of columns represent

the average results for the root node and the complete B&P algorithm. Columns Gap present the

average gaps against the best-known solutions, including the ones found in this work, and columns

Time present the average times. The last group of columns presents the instance information.

Column #Total is the total number of instances in the configuration, and column #Valid is the total

number of instances for which our algorithm finds a valid upper bound, i.e., it finishes the root

node within the time limit. Note that if the algorithm cannot find a valid upper bound for a given

instance, the instance does not contribute to the average gap but contributes to the average time.

Finally, columns #Opt and #Lit present the optimal certificates found by B&P and the literature,

respectively.

Given the size of larger instances, which could have up to 1084 customers and 217 clusters, it

is expected that our B&P algorithm would only be able to solve some of them. Nevertheless, it

could not obtain a valid bound for only 19%, and it obtained an optimality certificate for 61.2%, a

noteworthy difference from the 8.5% of the current literature. Unfortunately, we cannot perform a

more detailed analysis due to the lack of detailed results from the literature. In any case, we provide

complete results in the supplementary material.
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Table 3: Summary of B&P results on SOP instances.

Set g ω
Root B&P Instances

Gap Time Gap Time #Total #Valid #Opt #Lit

1

g1

0.4 0.97 3679.6 0.18 5207.2 51 45 39 4

0.6 0.88 6109.8 0.38 6931.2 51 39 36 3

0.8 0.68 8070.3 0.00 8577.9 51 33 33 3

g2

0.4 0.85 4058.0 0.11 5606.7 51 44 40 4

0.6 0.98 6124.8 0.35 7065.1 51 39 36 3

0.8 0.77 8020.0 0.00 9176.8 51 34 34 3

2

g1

0.4 5.26 3891.4 2.57 12726.5 51 44 22 6

0.6 1.60 4251.4 0.98 14314.1 51 43 18 6

0.8 0.01 4351.1 0.01 4773.6 51 44 43 0

g2

0.4 5.64 3782.6 2.73 13735.2 51 44 20 5

0.6 1.64 4296.9 0.97 14871.8 51 43 16 5

0.8 0.01 4406.7 0.01 4829.3 51 43 42 0

Total/Avg 1.61 5086.9 0.69 8984.6 612 495 379 42

For each SOP instance, we run the LNS 10 times independently and compare its results with

those of the three state-of-the-art methods: VNS (Pěnička et al., 2019), BRKGA (Carrabs, 2021),

and AMMH (Dontas et al., 2023). The three algorithms VNS, BRKGA, and LNS are implemented

in C++, while AMMH is programmed in C#. The single-thread performance of the machine run-

ning the LNS is similar to that of the VNS and the BRKGA, while being 23% poorer than that of

the AMMH, according to Passmark Software1. Table 4 summarises these comparison results. For

each method, we report the following information:

• G: The average of the gap values in percentage over all instances of each instance group.

Here, gap is calculated as 100 × Lit−Best
Lit , where Best and Lit are the objective values of the

best solution found over 10 runs and of the best-known solution in the literature, respectively.

• A: The average gap values in percentage over all instances of each instance group. Here, gap

1https://www.cpubenchmark.net/compare/2906vs897vs3099
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is calculated as 100 × Lit−Avg
Lit , where Avg is the average objective value over 10 runs.

• #B: The number of best solutions found by a method.

For the LNS, we also report in Column “#O”, the numbers of optimal solutions verified by

B&P, and in Column “#I”, the numbers of new best-known solutions found by our method. The

values in bold represent the best values across all methods.

Table 4: Summarized comparison results of different metaheuristics on the SOP instances.

Group VNS BRKGA AMMH LNS

Set g ω G A #B G A #B G #B G A #B #I #O

1

g1

0.4 0.70 1.27 41 0.23 0.68 40 0.03 46 -0.06 0.01 51 4 39

0.6 1.03 2.15 35 0.44 1.07 36 0.00 47 0.02 0.08 47 4 36

0.8 0.69 1.27 34 0.64 1.22 35 0.01 43 -0.01 0.07 49 6 33

g2

0.4 0.81 1.56 39 0.30 0.62 39 0.02 49 0.00 0.07 48 0 39

0.6 0.89 2.18 34 0.31 0.85 39 0.01 44 0.01 0.08 47 6 36

0.8 0.63 1.32 36 0.61 1.06 33 0.01 43 -0.01 0.07 47 6 34

2

g1

0.4 0.69 1.58 33 1.04 1.61 34 0.00 50 0.05 0.26 43 1 22

0.6 0.48 0.99 35 0.75 1.41 31 0.00 45 -0.04 0.17 51 6 18

0.8 0.00 0.02 51 0.07 0.22 43 0.00 51 0.00 0.00 51 0 43

g2

0.4 0.79 1.64 35 0.78 1.45 32 0.00 48 0.01 0.21 42 2 19

0.6 0.43 0.98 32 0.50 1.19 31 0.01 42 -0.02 0.16 49 8 16

0.8 0.00 0.02 51 0.06 0.17 44 0.00 51 0.00 0.00 51 0 42

Total/Avg 0.60 1.25 456 0.48 0.96 437 0.01 559 0.00 0.10 576 43 377

From Table 4, we can see that our LNS outperforms the VNS and BRKGA regarding solution

quality. The “Gap” values of LNS are less or equal to those of VNS and BRKGA in all groups.

When compared to the AMMH, the LNS outperforms this method in terms of its capability to find

the best solutions. The “Gap” values of LNS are better in 6 groups, equal in 3 groups, and worse

in only 3 groups. Our LNS finds 576 best-known solutions over 612 instances, outperforming

all reference algorithms. These figures for the VNS, BRKGA, and AMMH are: 456, 437, and
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559, respectively. In these 576 solutions, there are 43 new best-known solutions that are provided

by LNS. Furthermore, the LNS finds 377 out of the 379 optimal solutions found by the B&P.

Two instances where LNS cannot reach optimality are 40d198 s2 40 g2 and 80rd400 s1 40 g2.

Regarding stability, we only compare the LNS to the VNS and BRKGA since the AMMH does

not provide average results over multiple runs. The “Avg” value of the LNS ranges from 0.00%

to 0.26%, while these figures for the VNS and the BRKGA can increase up to 2.18% and 1.45%,

respectively. This clearly shows that, compared to other methods for the SOP, the LNS can generate

high-quality solutions in a more consistent manner.
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Figure 1: Average running time per SOP instance of each method.

Using the same programming language and being run on machines with similar performance,

it could be fair to compare the results of the three algorithms, VNS, BRKGA, and LNS. However,
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Figure 2: Growth of running time (logarithmic scale) comparison on SOP instances

since it is hard to estimate how much C# is slower than C++, the comparison with AMMH could

not be fairly done. Despite that, we still use the raw running time of AMMH in the comparison in

an attempt to give a sense of the speed of this method. Figures 1 and 2 compare the running times

of the methods. From Figure 1, regarding the running time for each instance, LNS consumes an

average of 35.22 seconds, making it the best algorithm in terms of speed. We compare the growth

of running time (on a logarithmic scale) by instances’ sizes in Figure 2. The LNS is the fastest

method on instances with less than 750 customers. For larger instances, the BRKGA is slightly

faster. It is worth noting that the BRKGA uses a graph reduction to reduce the computation time

by 6.6% to 17.55% on average (Carrabs, 2021). The LNS does not employ this pre-processing

procedure. Therefore, we could conclude that LNS is competitive with the existing methods in
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terms of computation speed when dealing with large instances.

5.3. Results on the STOP instances

5.3.1. Performance of the branch-and-price algorithm

We present the results for the STOP in Table 5, following almost the same style as Table 3, but

including the first column with the number of vehicles and removing the last Column #Lit. From

this table, it is possible to note that as the number of vehicles increases, the easier the instance gets,

i.e., the gaps and times are smaller and the number of solved instances is larger. It is the expected

behaviour since when more vehicles are available, there is a trend towards smaller routes, helping

the dynamic programming algorithm used to solve the pricing subproblem.

Regarding the instance parameters, it is possible to note that instances from Set 2 are more

challenging than those from Set 1, like the ones with larger ω. However, surprisingly, the root

node is faster to solve for some instances with a larger ω, even considering the time limit for those

without valid bounds.

The largest instance the B&P is able to solve to optimality has 783 nodes and 157 clusters,

and it is so for both Sets 1 and 2, with 2 and 3 vehicles, and for all values of ω. Moreover, the

largest instance for which the approach is able to obtain a valid upper bound has 1060 nodes and

212 clusters, for both Sets 1 and 2, but only with 3 vehicles, and for ω = 0.4. On the other hand,

the smallest instance in which the B&P is not able to obtain any valid upper bound has 417 nodes

and 84 clusters, for Set 1, with 2 vehicles, and for ω = 0.8. Finally, the B&P is the only approach

to obtain the best upper bound (also being the optimal solution) for an instance with 99 nodes, 493

clusters, and 2 vehicles. Complete results can be found in the supplementary material.

26



Table 5: Summary of B&P results the STOP instances.

m Set g ω
Root B&P Instances

Gap Time Gap Time #Total #Valid #Opt

2

1

g1

0.4 0.21 1427.0 0.00 1518.0 51 48 48

0.6 0.45 2819.1 0.09 4494.6 51 46 42

0.8 1.00 4686.5 0.11 6248.0 51 41 37

g2

0.4 0.18 1376.6 0.00 1949.6 51 48 47

0.6 0.48 2873.1 0.10 5155.6 51 46 39

0.8 0.95 4635.3 0.12 6882.9 51 41 35

2

g1

0.4 2.62 1414.9 0.60 5779.2 51 48 38

0.6 2.13 3007.2 0.62 9614.6 51 45 31

0.8 0.96 2037.6 0.54 9608.4 51 48 29

g2

0.4 2.49 1409.2 0.61 6047.7 51 48 38

0.6 2.02 2948.3 0.53 10617.2 51 45 27

0.8 0.93 2058.8 0.52 9625.5 51 48 29

Total/Avg 1.20 2557.8 0.32 6461.8 612 552 440

3

1

g1

0.4 0.13 526.2 0.02 1273.8 51 50 48

0.6 0.24 1434.8 0.02 2351.3 51 48 46

0.8 0.34 2124.9 0.04 3957.4 51 48 44

g2

0.4 0.13 544.5 0.02 1274.2 51 50 48

0.6 0.18 1427.8 0.01 2234.9 51 48 47

0.8 0.31 1898.8 0.07 4263.3 51 48 42

2

g1

0.4 0.90 691.8 0.31 3547.7 51 50 43

0.6 1.57 1426.2 0.41 5733.5 51 48 38

0.8 0.83 1932.9 0.30 6009.9 51 48 37

g2

0.4 0.83 781.4 0.31 3539.9 51 50 43

0.6 1.37 1416.9 0.36 5620.1 51 48 38

0.8 0.69 1898.3 0.29 6292.2 51 48 37

Total/Avg 0.63 1342.0 0.18 3841.5 612 584 511
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5.3.2. Performance of the LNS

Similar to the experiments on one-vehicle instances, we run the LNS 10 times on each instance

and record the best and average objective values and the average running time. We compare the

solutions of the LNS with the best upper bounds provided by the B&P. We report these results in

Table 6. The first three columns present the characteristics of the instance groups. For each group,

we report the following information:

• Gap: The gap (in percentage) averaged on all instances in a group between the best and

average objective values of the solutions found in 10 runs by the LNS.

• GapUB: The average gap in percentage between the objective value of the best solution found

by LNS and the best upper bound provided by B&P. In this calculation, we ignore the in-

stances in which the B&P cannot find a valid upper bound.

• Time: The average running time of the LNS in second.

• #Opt: The number of optimal solutions found by the LNS, as verified by the B&P.

As can be seen in the result table, the LNS can consistently produce high-quality solutions in

a reasonable computational time. In 951 instances where the B&P can find optimal solutions, the

LNS fails to reach optimality in only one instance. The resultant variations between multiple runs

of our metaheuristic are quite small. In more details, the maximal objective gaps of 10 solutions

for each instance never bypass 2.67% (for the 2-vehicle instances) and 1.49% (for the 3-vehicle

instances). As for computation time, the increment in the number of vehicles only affects the

running time of the LNS slightly. The average computation time increases from 35.22 seconds

on the one-vehicle instances to 38.03 and 38.38 seconds for the two-vehicle and three-vehicle

instances, respectively.

28



Table 6: Performance of LNS on the STOP instances.

Set g ω
m = 2 m = 3

Gap GapUB Time #Opt Gap GapUB Time #Opt

1

g1

0.4 0.04 0.00 30.94 48 0.02 0.02 24.03 48

0.6 0.09 0.09 41.30 42 0.02 0.02 39.56 46

0.8 0.11 0.11 41.83 36 0.05 0.04 39.67 44

g2

0.4 0.03 0.00 30.07 47 0.01 0.02 24.18 48

0.6 0.08 0.10 40.24 39 0.02 0.01 39.02 47

0.8 0.18 0.12 41.60 35 0.05 0.07 39.13 42

2

g1

0.4 0.16 0.60 48.04 38 0.09 0.31 50.02 43

0.6 0.10 0.62 38.91 31 0.04 0.41 44.05 38

0.8 0.04 0.54 28.43 29 0.05 0.30 33.46 37

g2

0.4 0.13 0.61 47.70 38 0.10 0.31 49.58 43

0.6 0.10 0.53 38.62 27 0.06 0.36 44.23 38

0.8 0.05 0.52 28.66 29 0.05 0.29 33.66 37

Total/Avg 0.09 0.32 38.03 439 0.05 0.18 38.38 511

6. Conclusions and Future Works

In this paper, we study the Set Team Orienteering Problem (STOP), a multi-vehicle variant of

the Set Orienteering Problem (SOP), with multiple real-world applications. To tackle the prob-

lem, we propose a branch-and-price (B&P) algorithm and a LNS-based metaheuristic. Our LNS is

designed with adapted and new removal and insertion operators to efficiently deal with the profit

objective function and the clustering aspect of the problem. The results achieved on benchmark

instances of both the problems SOP and STOP show the effectiveness of our methods. We antic-

ipate that our LNS can be utilised to address multiple problems involving profit-related objective

functions and/or clustered customers. Thus, applying the LNS to problems such as the CTOP or

GVRP could be an interesting research direction. The exact approach is devised by combining a
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bucket-based pricing algorithm and a strong branching procedure to obtain optimal solutions and

valid upper bounds for large instances. The approach is able to obtain optimal certificates and

valid bounds for 77.6% and 92.8% of the STOP instances, respectively, solving instances up to 783

nodes and 157 clusters. The approach can also be used for other prize-collecting and clustering-

based routing problems.

Acknowledgments

Rafael Martinelli was partially supported by CAPES (the Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Finance Code 001), CNPq (projects 315361/2020-4 and 422470/2021-

0), and by FAPERJ (projects E-26/201.417/2022, E-26/010.002232/2019, and E-26/210.041/2023).

The manuscript of the paper was finished during the research stay of the corresponding author Minh
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Pěnička, R., Faigl, J., Saska, M., 2019. Variable neighborhood search for the set orienteering prob-

lem and its application to other orienteering problem variants. European Journal of Operational

Research 276, 816–825.
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