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Abstract

The purpose of this article is twofold. The first aim is to find the number of complex

solutions of a polynomial of one variable counting multiplicity. Then, our second aim is to

approximate these solutions.

1 Introduction

From the Fundamental Theorem of Algebra, we deduce that every non-constant, single variable,

degree n polynomial with real coefficients has counted with multiplicity, exactly n complex roots

(see [3]). Mathematicians found the formula for the solution of a polynomial of degree less than

5 (see [2]). However, for an equation of degree greater than or equal to 5, we can’t find a general

formula of roots by radicals (see [4]). In this article, we want to find the number of complex

solutions of a polynomial of one variable counting multiplicity. Then, we can approximate these

solutions numerically. First of all, we list here some results about the information on the roots

of a polynomial see for example [3, 6].

Theorem 1.1 (Descartes’ Rule [3]). The number of positive real roots of an equation with

real coefficients is either equal to the number of its variations of sign or is less than that number

by a positive even integer. A root of multiplicity m is here counted as m roots.

This rule can be derived as a corollary of the Budan’s Theorem below.

Theorem 1.2 (Budan’s Theorem [3]). Let a and b be real numbers, a < b, neither a root of

f(x) = 0, an equation of degree n with real coefficients. Let Va denote the number of variations

of the sign of

f(x); f ′(x); f ′′(x); . . . ; f (n)(x)

for x = a, after vanishing terms have been deleted. Then Va − Vb is either the number of real

roots of f(x) = 0 between a and b or exceeds the number of those roots by a positive even

integer. A root of multiplicity m is here counted as m roots.

Given a square-free polynomial f(x), denote:

• f0(x) = f(x).

• f1(x) = f ′(x).

• f2(x) = −rem(f0(x), f1(x)) = f1(x)q0(x)−f0(x), where rem(f0(x), f1(x)) is the remainder

when polynomial long division is used to divide f0(x) by f1(x), and q0(x) is the quotient

of said long division.
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• f3(x) = −rem(f1(x), f2(x)) = f2(x)q1(x)− f1(x).

• In general, we define fk inductively as −rem(fk−2(x), fk−1(x)) = fk−1(x)qk−2(x)−fk−2(x).

• Repeat this process until we arrive at somem such that rem(fm−1, fm) = 0, where fm(x) 6=

0.

The finite sequence f0, f1, ..., fm is called a Sturm sequence or a Sturm chain. Using this defini-

tion, we can locate the distinct real roots of a polynomial.

Theorem 1.3 (Sturm theorem [6]). Let f(x) = 0 be a polynomial equation and let

f0(x), f1(x), . . . , fm(x)

be a Sturm sequence of the polynomial f(x). Then for any two real numbers a < b, neither of

which is a root of f(x) = 0, the number of distinct roots of f(x) = 0 lying between a and b

equals the difference gf (a)− gf (b) between the variations of the signs of the Sturm functions at

x = a and x = b.

2 Main result

In this section, we use the Sturm theorem to deduce a result on the number of complex solutions

of a polynomial of one variable. For simplicity, for a polynomial f(x) of degree n, we denote

• Rf : the number of real distinct roots of f(x).

• Rkf : the number of real roots of multiple greater than or equal to k of f(x).

• Cf : the number of complex distinct roots of f(x).

• Ckf : the number of complex roots of multiple greater than or equal to k of f(x).

We have the following theorem.

Theorem 2.1. Consider f(x) ∈ Pn[x] be a polymomial of degree n ≥ 1. Let f0, f1, . . . fm, fm+1 =

0 be its Sturm sequence. Then, if fm is a constant, then f only has simple roots. If fm is a

non-contant polynomial then f has multiple roots. Denote fm0 , fm1 , ..., fms
, fms+1 be the Sturm

sequence of fm. Then:

1. The number of real distinct roots of f(x) is

R1f = Rf = gf (−∞)− gf (+∞) = gf0/fm(−∞)− gf0/fm(+∞).

2. The number of complex distinct roots of f(x)

C1f = Cf = deg
f0
fm

− g(−∞) + g(+∞) = n− deg fm −Rf.

3. The number of real roots of f(x) of multiplicity 1 is

g(−∞)− g(+∞)− gfm(−∞) + gfm(+∞) = Rf −Rfm

where gfm(x) the number of changes sign of Sturm sequence of fm(x).
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4. The number of complex roots of multiple greater than or equal to 1 of f(x) is

n− 2 deg fm + deg fms
−R1f +R1fm

where fm0 , fm1 , . . . , fms
, fm(s+1)

= 0 is Sturm sequence of fm.

Proof. 1. This is derived directly from the Sturm theorem since the multiplicity does not

affect the difference gf (−∞)− gf (+∞).

2. Since the polynomial f0/fm only contains simple roots of f so the numbers of distinct

complex roots of f is

Cf = deg
f0
fm

− g(−∞) + g(+∞).

3. If fm (the greatest common divisor of f and its derivative) is a non-constant polynomial

then f(x) has roots with multiple greater than 1. We construct the Sturm sequence of

fm. Then gfm(−∞) + gfm(+∞) is the numbers of distinct real roots of fm. This is the

number of roots with multiple greater than 1 of the f(x). So, the number of real roots

with multiplicity 1 is

g(−∞)− g(+∞)− gfm(−∞) + gfm(+∞) = Rf −Rfm.

4. The number of distinct complex roots (not counting multiplicity) of fm is

Cfm = deg
fm
fms

− gfm(−∞) + gfm(+∞) = deg fm − deg fms
−Rfm.

This is the number of complex roots of multiplicity greater than or equal 2 of f(x). Thus,

the the number of complex roots of multiplicity 1 of f(x) is:

Cf − Cfm = n− 2 deg fm + deg fms
−R1f +R1fm.

Remark 2.2. Continue the Sturm sequence of fms
and so on, we will get the numbers of complex

roots with higher multiplicity.

3 Numerical examples

In this section, we will use Newton’s method2 and the modified Newton’s methodto approximate

the solution of f(x). Newton’s method is a root-finding algorithm that produces successively

better approximations to the roots of a real-valued function. The most basic version starts with

a real-valued function f , its derivative f ′, and an initial guess x0 for a root of f . If f satisfies

certain assumptions and the initial guess is close, then

x1 = x0 −
f(x0)

f ′(x0)

2also known as the Newton–Raphson method

3



is a better approximation of the root than x0. The process is repeated as

xn+1 = xn −
f(xn)

f ′(xn)

until a sufficiently precise value is reached. If we know the multiplicity of roots, we can use the

modified Newton’s Method.

Theorem 3.1 ([5]). If f is (m+1)-times continuously differentiable on [a, b], which contains a

root r of multiplicity m > 1, then Modified Newton’s Method

xi+1 = xi −
mf (xi)

f ′ (xi)

converges locally and quadratically to r.

Remark 3.2. When m = 1, this theorem becomes the original Newton’s Method.

Example 3.3. Consider the following polynomial of degree 8:

f(x) = x8 + 12x7 + 68x6 + 236x5 + 550x4 + 884x3 + 964x2 + 660x+ 225 = 0.

The Sturm sequence of f is:

f0(x) = f(x) = x8 + 12x7 + 68x6 + 236x5 + 550x4 + 884x3 + 964x2 + 660x+ 225

f1(x) = f ′(x) = 8x7 + 84x6 + 408x5 + 1180x4 + 2200x3 + 2652x2 + 1928x+ 660

f2(x) = −5x6 − 48x5 − 215x4 − 560x3 − 903x2 − 864x− 405

f3(x) = x5 + 5x4 + 10x3 + 6x2 − 7x− 15

f4(x) = x4 + 6x3 + 16x2 + 22x+ 15

f5(x) = 0.

We have the following table:

x f0(x) f1(x) f2(x) f3(x) f4(x) g(x)

−∞ + − − − + 2

∞ + + − + + 2

So, the number of distinct real roots of f(x) is

Rf = g(−∞)− g(+∞) = 2− 2 = 0.

This means f(x) has no real roots. So, all 8 roots are complex. We see that f4(x) is the greatest

common divisor of f and f ′. Thus, the number of distinct complex roots of f(x) is

Cf = n− deg f4 −Rf = 8− 4− 0 = 4.
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Next, we consider the sturm sequence of f4(x):

f40(x) = f4(x) = x4 + 6x3 + 16x2 + 22x+ 15

f41(x) = 4x3 + 18x2 + 32x+ 22

f42(x) = −
5

4
x2 −

9

2
x−

27

4

f43(x) =
64

25
x−

64

25

f43(x) =
25

2

f44(x) = 0.

We have

x f40(x) f41(x) f42(x) f43(x) f44(x) g(x)

−∞ + − − − + 2

∞ + + − + + 2

From the Sturm sequence of f4(x), we see that f4 does not have multiple roots and from the

table above we see that f4 has no distinct real roots. Thus, f4 have 4 distinct complex roots of

the form: a± ib và c± id where (a, b) 6= (c, d).

To approximate solutions of f , we use the modified Newton’s methodwith m = 2. With

intial guess x0 = 1 + i, after 10 iterations, we get the result x10 = −2 − i. If we choose x0 = i

after 7 iterations, we get the result : x7 = −1.0000+ 1.4142i. If we use the Newton method, we

need 17 iteration to get the same result as shown in the following tables:

k Newton’s method Modified Newton’s method

0 1+i 1+i

1 0.6210 + 0.9088i 0.2420 + 0.8175i

2 0.2766 + 0.8390i -0.3888 + 0.7324i

3 -0.0403 + 0.7925i -0.9568 + 0.7888i

4 -0.3364 + 0.7738i -1.4765 + 1.1562i

5 -0.6163 + 0.7919i -2.1792 - 0.7662i

6 -0.8792 + 0.8633i -1.9572 - 0.9262i

7 -1.9989 - 1.0084i

8 -1.9999 - 1.0000i

9 -2.0000 - 1.0000i

10 -2.0000 - 1.0000i

17 -1.0000 + 1.4142i

18 -1.0000 + 1.4142i

and
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k Newton’s method Modified Newton’s Method

0 i i

1 -0.2800 + 0.9600i -1.0334 + 1.0182i

2 -0.5371 + 0.9555i -1.2977 + 1.4562i

3 -0.7684 + 0.9959i -1.0302 + 1.2350i

4 -0.9588 + 1.0925i -1.0413 + 1.4598i

5 -1.0662 + 1.2451i -1.0048 + 1.4114i

6 -1.0419 + 1.3617i -1.0000 + 1.4142i

7 -1.0190 + 1.3912i -1.0000 + 1.4142i

8 -1.0091 + 1.4033i

9 -1.0045 + 1.4089i

10 -1.0022 + 1.4116i

17 -1.0000 + 1.4142i

18 -1.0000 + 1.4142i

All 4 solutions are sketched in the following figure:

−2

−1

1

2

3

−3 −2 −1 1 2 3

Example 3.4. Consider the polynomial equation of degree 11:

f(x) = x11 + x10 + x9 + x8 − 2x7 − 2x6 − 2x5 − 2x4 + x3 + x2 + x+ 1 = 0,

The Sturm sequence of f(x) is

f0(x) = f(x) = x11 + x10 + x9 + x8 − 2x7 − 2x6 − 2x5 − 2x4 + x3 + x2 + x+ 1

f1(x) = p′(x) = 11x10 + 10x9 + 9x8 + 8x7 − 14x6 − 12x5 − 10x4 − 8x3 + 3x2 + 2x+ 1

f2(x) = −x9 − 2x8 + 8x7 + 8x6 + 10x5 + 12x4 − 8x3 − 8x2 − 9x− 10

f3(x) = −x8 + 2x4 − 1

f4(x) = −x7 − x6 − x5 − x4 + x3 + x2 + x+ 1

f5(x) = 0.
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y = f(x)

= f(x)/fm(x)

We have the following table:

x f0(x) f1(x) f2(x) f3(x) f4(x) g(x)

−∞ − + + − + 3

∞ + + − − − 1

Thus, f has 3 − 1 = 2 distinct real solution (not counting multiplicity). The number of

complex distinct roots of f is

11− 7− 2 = 2.

So f has two complex roots (not counting multiplicity) of the form a±ib. To get the information

about multiplicity, we consider the Sturm sequence of f4: f4(x):

f40(x) = f4(x) = −x7 − x6 − x5 − x4 + x3 + x2 + x+ 1

f41(x) = f ′

4(x) = −7x6 − 6x5 − 5x4 − 4x3 + 3x2 + 2x+ 1

f42(x) = x5 + 2x4 − 4x3 − 4x2 − 5x− 6

f43(x) = x4 − 1

f44(x) = x3 + x2 + x+ 1

f45(x) = 0.

So, we have the following table:

x f40(x) f41(x) f42(x) f43(x) f44 g(x)

−∞ + − − + 0 2

∞ + + + + 0 0

Thus, f4(x) has 2−0 = 2 distinct real roots (not counting multiplicity). Then, we deduce that

the roots f have multiplicity greater than or equal to 2. Then, f has no simple real root and f

two complex roots with multiplicity greater than or equal to 2. We can continue to calculate the

Sturm sequence of f43 . However, in this particular case, we have f43(x) = (x2 +1)(x+1).Thus,
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it has one simple root x = −1 and two complex roots x = ±i. Therefore, x = −1 is a root with

multiplicity 3, and x = ±i are also roots with multiplicity 3. The other real root is multiple

2. Then f(x) = (x + i)3(x − i)3(x + 1)3(x − x0)
2. Divide f(x) by (x + i)3(x − i)3(x + 1)3 =

(x+ 1)3(x+ 1)3 we derive x0 = 1. So, we have all the roots

• x = 1 (multiple 2)

• x = −1 (multiple 3)

• x = ±i (multiple 3)

In the general case, when it is not easy to factor f43(x), we continue this process to get the

result.

4 Conclusion

The main result of the article is to state the theorem for calculating the number of complex solu-

tions with corresponding multiples of any n degree algebraic equation. Then, we can accurately

calculate the solution in special cases or approximate the solution with Newton’s algorithm with

known multiples.
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