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Abstract. We develop sufficient conditions for the existence of the weak sharp minima at

infinity property for nonsmooth optimization problems via asymptotic cones and generalized

asymptotic functions. Next, we show that these conditions are also useful for studying the

solution stability of nonconvex optimization problems under linear perturbations. Finally,

we provide applications for a subclass of quasiconvex functions which is stable under linear

additivity and includes the convex ones.

1. Introduction

The notion of asymptotic (or recession) directions of an unbounded set has been introduced

in order to study its behavior at infinity more than 100 years ago in the series of papers [36]

and then rediscovered in the 1950’s in connection with some applications in economics [9].

Subsequently, the study of asymptotic directions was pursued during decades and the concept

was developed both for convex and nonconvex sets, and then extended to infinite dimensional

spaces, too (see [1–6,27,28,34,35]).

A notion related to the asymptotic cone of the epigraph of the function is the so-called

asymptotic function. A careful analysis of the behavior of the asymptotic function associated

to the objective function of the optimization problem, along the asymptotic directions of

the feasible set, is crucial for determining the existence of minimizers (see [6] for a great

account in the convex case). But when dealing with nonconvex sets and functions, the

usual notions of asymptotic cone and function does not provide adequate information on

the asymptotic directions and the level sets of the original function, for these reasons, the

authors in [2, 27, 28, 30] developed different notions for dealing with nonconvex sets while

in [2,12,15,16,18,25,30] the authors developed different notions for dealing with nonconvex

(quasiconvex) functions. As a consequence, several notions were introduced, but one of the
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most useful ones in the quasiconvex case is the so-called q-asymptotic function, introduced

in [12] (see also [16]).

Generalized asymptotic sets and functions have been developed deeply in the recent years,

and they have been proved to be useful in several nonconvex optimization problems as,

for instance, for developing existence results for noncoercive minimization problems (see

[4,6,12,18,25]), variational inequalities (see [6,20]), equilibrium problems (see [1,10,19]) and

vector optimization problems (see [11,13,24,27]) among others.

In this paper, and motivated by very recent developments on different theoretical tools

for studying minimization problems at infinity (see [22, 23, 29, 37, 38]), we study weak sharp

minima at infinity and solution stability for optimization problems via asymptotic analysis.

In particular, we develop sufficient conditions for weak sharp minima at infinity as well as for

solution stability under linear perturbations in the general nonconvex case and, also, we study

continuity properties for the solution map and the optimal value function. Furthermore, and

by using the q-asymptotic function for the particular case when the objective function is

quasiconvex (i.e., including the convex case), we develop even finer sufficient conditions for

both mentioned problems. Moreover, we prove that our assumptions are weaker than the

ones used in [22] (for weak sharp minima at infinity) for a class of nonconvex functions which

includes the convex ones, confirming once again the importance of the use of asymptotic tools

in the study of nonconvex optimization problems and, specially, when we are searching for

useful information from the infinity.

The paper is organized as follows. In Section 2 we review some standard facts on gener-

alized convexity, generalized asymptotic cones and its associated asymptotic functions and

set-valued mappings. In Section 3, we provide a finer sufficient condition for characterizing

weak sharp minima at the infinity. In Section 4, we study solution stability as well as conti-

nuity properties for the solution map and the optimal value function. Finally, in Section 5,

we apply our previous results to the quasiconvex case by using the q-asymptotic function.

2. Preliminaries and Basic Definitions

Throughout the paper, the space Rn is equipped with the usual scalar product ⟨·, ·⟩ and
the corresponding Euclidean norm ∥ · ∥. We use the notation Bδ to represent the open ball

centered at the origin with a radius of δ > 0. The set of all positive integer numbers is

denoted by N.
Given any function f : Rn → R := R ∪ {±∞}, the effective domain of f is defined by

dom f := {x ∈ Rn : f(x) < +∞}.
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We say that f is proper if f(x) > −∞ for every x ∈ Rn and dom f is nonempty. For a

function f , we adopt the usual convention inf∅ f := +∞ and sup∅ f := −∞.

We denote by

epif := {(x, t) ∈ domf × R : f(x) ≤ t}

its epigraph and for a given λ ∈ R by

Sλ(f) := {x ∈ Rn : f(x) ≤ λ}

its sublevel set at value λ. As usual,

argminXf := {x ∈ X : f(x) ≤ f(y) ∀y ∈ X}.

A proper function f is said to be:

(a) convex if its domain is convex and for every x, y ∈ dom f

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1].

(b) quasiconvex if for every x, y ∈ dom f ,

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} ∀λ ∈ [0, 1].

Every convex function is quasiconvex, but the converse statement does not hold as the

continuous function f : R → R with f(x) := min{|x|, 1} shows. Recall that

f is convex ⇐⇒ epi f is a convex set;

f is quasiconvex ⇐⇒ Sλ(f) is a convex set, for all λ ∈ R.

As it is well-known, quasiconvex functions are not closed for the sum, i.e., the sum of

quasiconvex functions is not necessarily quasiconvex. For this reason, the authors in [31]

have introduced the following subclass which is closed under addition with linear functions.

Definition 2.1 (see [7,31]). For α ≥ 0, a proper function f : Rn → R is said to be α-robustly

quasiconvex if the function x 7→ f(x) + ⟨u, x⟩ is quasiconvex for all u ∈ Bα.

Note that every convex function is α-robustly quasiconvex for all α ≥ 0, but the converse

statements does not holds (see [7, p. 1091]). An important property of α-robustly quasicon-

vex functions is that every local minimum is global, but α-robustly quasiconvex functions

are different from semistrictly quasiconvex ones (see [7, p. 1091]). For a further study we

refer to [7, 31,32].

As explained in [6], the notions of asymptotic cone and the associated asymptotic function

have been employed in optimization theory in order to handle unbounded and/or nonsmooth
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situations, in particular when standard compactness hypotheses are absent. We recall some

basic definitions and properties of asymptotic cones and functions, which can be found in [6].

For a nonempty set X ⊂ Rn, the asymptotic cone of X, denoted by X∞, is the set defined

by

X∞ :=

{
u ∈ Rn : ∃ tk → +∞, ∃ xk ∈ X,

xk

tk
→ u

}
.

We adopt the convention that ∅∞ = ∅.
We note here that when X is a closed and convex set, its asymptotic cone is equal to

X∞ =
{
u ∈ Rn : x0 + λu ∈ X ∀ λ ≥ 0

}
for any x0 ∈ X,

see [6, Proposition 2.1.5].

Let f : Rn → R be a proper function. The asymptotic function f∞ : Rn → R of f is the

function for which

epi f∞ := (epi f)∞.

From this, one may show that

f∞(d) = inf

{
lim inf
k→+∞

f(tkdk)

tk
: tk → +∞, dk → d

}
.

Moreover, when f is lower semicontinuous (lsc henceforth) and convex, then we have

f∞(u) = sup
t>0

f(x0 + tu)− f(x0)

t
= lim

t→+∞

f(x0 + tu)− f(x0)

t
∀x0 ∈ dom f, (1)

see [6, Proposition 2.5.2].

A function f : Rn → R is called coercive on a subset X ⊂ Rn if

lim
∥x∥ X−→+∞

f(x) = +∞.

We say that f is coercive if it is coercive on Rn. We know that, if f∞(u) > 0 for all u ̸= 0,

then f is coercive. Furthermore, if f is convex and lsc, then

f is coercive ⇐⇒ f∞(u) > 0 ∀u ̸= 0 ⇐⇒ argminRn f is nonempty and compact,

see [6, Proposition 3.1.3].

When f is nonconvex, the asymptotic function f∞ is not good enough for providing

information on the behavior of f . For this reason, several authors have been proposed

different notions for dealing with, specially, quasiconvex functions, see [12, 15,16,18,25].

Definition 2.2. Given a proper function f : Rn → R, we consider:

(i) (see [12,16]) The q-asymptotic function of f is the function f∞
q : Rn → R given by:

f∞
q (u) := sup

x∈dom f
sup
t>0

f(x+ tu)− f(x)

t
∀ u ∈ Rn.
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(ii) (see [25]) The sublevel asymptotic function of f at the height λ ∈ R, with Sλ(f) ̸= ∅,
is the function f∞

λ : Rn → R given by:

f∞
λ (u) := sup

x∈Sλ(f)

sup
t>0

f(x+ tu)− f(x)

t
∀ u ∈ Rn.

If f is lsc and quasiconvex, then, by [12, Theorem 4.7], we have

f∞
q (u) > 0 ∀u ̸= 0 ⇐⇒ argminRn f is nonempty and compact,

and, by [25, Theorem 3.1], for any λ ∈ R with Sλ(f) ̸= ∅ we have

f∞
λ (u) > 0 ∀u ̸= 0 ⇐⇒ argminRn f is nonempty and compact.

If f is quasiconvex (resp. lsc), then f q(·) and f∞
λ (·) are quasiconvex (resp. lsc). Further-

more, the following relations hold for any λ ∈ R with Sλ(f) ̸= ∅,

f∞(·) ≤ f∞
λ (·) ≤ f∞

q (·).

Both inequalities could be strict even for quasiconvex functions, see, for example, [25].

We now recall definitions of the upper and lower semicontinuity to set-valued mappings.

Definition 2.3 (see [6]). Let F : Rn ⇒ Rm be a set-valued mapping. Then, F is said to be:

(i) upper semicontinuous (usc henceforth) at x̄ if, for any open set V ⊂ Rm such that

F (x̄) ⊂ V there exists a neighborhood U of x̄ in X such that F (x) ⊂ V for all x ∈ U ;

(ii) lower semicontinuous (lsc) at x̄ if F (x̄) ̸= ∅ and if, for any open set V ⊂ Rm such that

F (x̄)∩V ̸= ∅ there exists a neighborhood U of x̄ such that F (x)∩V ̸= ∅ for all x ∈ U ;

(iii) continuous at x̄ if it is both usc and lsc at this point.

For a further study on generalized convexity and asymptotic analysis we refer to [2–8,10–

12,14–21,24–26,28,31,33–35] and references therein.

3. Weak Sharp Minima at Infinity

Let us consider the following optimization problem

inf
x∈X

f(x), (P )

where f : Rn → R is assumed to be a proper lsc function and X ⊂ Rn is a closed set such

that dom f ∩X is unbounded during the whole paper.

Theorem 3.1 (The coercivity and the weak sharp minima property at infinity). Assume

that

X∞ ∩ K(f) = {0}, (2)

where K(f) := {d ∈ Rn : f∞(d) ≤ 0}. Then the following statements hold:
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(a) Problem (P ) has a finite optimal value and Sol (P ) is nonempty and compact.

(b) Problem (P ) has a weak sharp minima at infinity, i.e., there exist constants c > 0

and R > 0 such that

f(x)− f∗ ≥ c dist(x, Sol (P )) ∀x ∈ X \ BR,

where f∗ := infx∈X f(x) and dist(x, Sol (P )) stands for the distance from x to Sol (P ).

(c) f is coercive on X.

Proof. (a): See [33, Theorem 4.2.1].

(b): By contradiction, assume that there exists a sequence xk ∈ X such that xk → ∞ and

0 ≤ f(xk)− f∗ <
1

k
dist(xk, Sol (P )) ∀k ∈ N. (3)

Since xk → ∞, by passing to subsequences if necessary we may assume that xk

∥xk∥
converges

to some d ∈ Rn. Clearly, d ∈ X∞ and ∥d∥ = 1. By (2),

f∞(d) = inf

{
lim inf
k→∞

f(tkdk)

tk
: tk → ∞, dk → d

}
> 0. (4)

Put tk := ∥xk∥ and dk :=
xk

∥xk∥
. Then it follows from (4) that

γ := lim inf
k→∞

f(tkdk)

tk
> 0. (5)

Let ε ∈ (0, γ). Then the relation (5) implies that there exists k0 > 0 such that

f(tkdk)

tk
> γ − ε ∀k ≥ k0,

or, equivalently,

f(xk) > (γ − ε)∥xk∥ ∀k ≥ k0.

This together with (3) imply that

(γ − ε)∥xk∥ − f∗ < f(xk)− f∗ <
1

k
dist(xk, Sol (P )) ∀k > k0.

Let zk ∈ Sol (P ) be satisfied ∥xk − zk∥ = dist(xk, Sol (P )). Then, by the compactness of

Sol (P ), we have

∥xk − zk∥ ≤ ∥xk∥+ ∥zk∥ ≤ ∥xk∥+M,

where M := max{∥z∥ : z ∈ Sol (P )}. Hence

(γ − ε)∥xk∥ − f∗ <
1

k
(∥xk∥+M) ∀k > k0. (6)

By dividing both sides of (6) by ∥xk∥ and letting k → ∞, we get γ ≤ ε, a contradiction.

(c): This is a direct consequence of (a) and (b). □
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Now, we present a result in order to compare with [22, Theorem 6.4]. To that end, we need

to recall some definitions from variational analysis at infinity that were introduced in [22].

Definition 3.2 (see [22]). The norm cone to the set X at infinity is defined by

N(∞;X) := Lim sup

x
X−→∞

N̂(x;X),

where x
X−→ ∞ means that ∥x∥ → ∞ and x ∈ X and N̂(x;X) is the regular/Fréchet normal

cone to X at x and defined by

N̂(x;X) =

{
v ∈ Rn : lim sup

z
X−→x

⟨v, z − x⟩
∥z − x∥

≤ 0

}
.

Definition 3.3 (see [22]). The limiting/Mordukhovich subdifferential of f at infinity is de-

fined by

∂f(∞) :=
{
u ∈ Rn : (u,−1) ∈ Lim sup

x→∞
N((x, f(x)); epif)

}
,

where “Lim sup” is the sequential upper/outer limit in the sense of Painlevé–Kuratowski,

i.e., u ∈ ∂f(∞) if and only if there exist sequences xk ∈ Rn, (uk, vk) ∈ Rn × R such that

(uk, vk) ∈ N((xk, f(xk)); epif) for all k ∈ N, and ∥xk∥ → ∞, (uk, vk) → (u,−1) as k → ∞.

Some properties and calculus rules of the normal cone and the subdifferential at infinity

can be found in [22]. In [22, Theorem 6.4], the authors show that if f is bounded from below

on X and the following condition

0 /∈ ∂f(∞) +NX(∞) (7)

is satisfied, then assertions of Theorem 3.1 hold. The following result gives us that, in some

cases, condition (2) is weaker than condition (7).

Proposition 3.4. Assume that X is a convex set and f is a convex function. Then condition

(2) is equivalent to that the solution set Sol (P ) is nonempty and compact. Consequently, if

f is bounded from below on X and (7) holds, then so is (2).

Proof. If (2) is satisfied, then the nonemptiness and compactness of Sol (P ) follow from

Theorem 3.1(a). We now assume that Sol (P ) is nonempty and compact, but (2) is not

satisfied, i.e., there exists a nonzero vector v ∈ X∞ ∩ K(f). Fix any x̄ ∈ Sol (P ). Since f is

proper, lsc, convex and v ∈ K(f), we have by formula (1) that

f∞(v) = sup
t>0

f(x+ tv)− f(x)

t
≤ 0 ∀x ∈ dom f,
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or, equivalently,

f(x+ tv) ≤ f(x) ∀x ∈ dom f, ∀t > 0.

Hence, f(x̄ + tv) ≤ f(x̄) for all t > 0. Since X is convex and v ∈ X∞, one has x̄ + tv ∈ X

for all t > 0. Thus, x̄ + tv ∈ Sol (P ) for all t > 0, contrary to the compactness of Sol (P ).

Therefore, condition (2) is satisfied.

If f is bounded from below on X and (7) holds, then, by [22, Theorem 6.4], Sol (P ) is

nonempty and compact. Thus (2) is satisfied. The proof is complete. □

Remark 3.5. If f is an affine function and bounded from below on X, then (2) implies (7)

and thus they are equivalent. Indeed, suppose that (2) is satisfied and f(x) = cTx + β for

all x ∈ Rn, where c ∈ Rn and β ∈ R. If (7) does not hold, then 0 ∈ ∂f(∞) + NX(∞).

Clearly, ∂f(∞) = {c} and so −c ∈ NX(∞). By definition, there exist sequences xk ∈ X,

x∗
k ∈ NX(xk) with ∥xk∥ → ∞, x∗

k → −c as k → ∞. Without any loss of generality, we may

assume that xk

∥xk∥
→ v ∈ X∞ with ∥v∥ = 1. Since X is convex and x∗

k ∈ NX(xk), we have

⟨x∗
k, x− xk⟩ ≤ 0 ∀x ∈ X, ∀k ∈ N.

Dividing two sides by ∥xk∥ and letting k → ∞ we obtain

cTv = ⟨−c,−v⟩ ≤ 0.

Clearly, f∞(v) = cTv. Hence, v ∈ X∞ ∩ K(f) and ∥v∥ = 1, contrary to (2).

The following simple example shows that (2) is not equivalent to (7) for the case of convex

quadratic functions.

Example 3.6. Let f : R2 → R and X ⊂ R2 be defined, respectively, by

f(x) := x2
2 ∀x = (x1, x2) ∈ R2

and X := {x = (x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1, x2 ≥ 0}. An easy computation shows that

X∞ = {0} × R and, for any v = (v1, v2) ∈ R2,

f∞(v) =

0, if v2 = 0,

+∞, otherwise.

Thus X∞ ∩ K(f) = {0}. However, we can see that NX(∞) = R × {0}, ∂f(∞) = {0} × R.
Hence, 0 ∈ ∂f(∞) +NX(∞), i.e., the condition (7) does not hold.
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4. Solution stability

For every u ∈ Rn, we define the function fu : Rn → R by fu(x) := f(x) − ⟨u, x⟩ for all

x ∈ Rn. Consider the perturbed optimization problem

inf
x∈X

fu(x), (Pu)

where u is the parameter of perturbation. The solution set of (Pu) is denoted by Sol(u).

When u = 0, one has Sol (0) = Sol (P ). Furthermore, the function µ : Rn → R defined by

µ(u) =

infx∈X fu(x), if X ̸= ∅,

+∞, otherwise,

is said to be the optimal value function of (Pu).

Solution stability is an interesting and very useful research field in optimization (see [5,6,

17,35] among others) in virtue of its applications on concrete applications since, in practice,

we are usually finding the solution of the optimization problem via numerical methods.

Before presenting our results, note that:

(fu)
∞(y) = (f)∞(y)− ⟨u, y⟩, (8)

(fu)
∞
q (y) = (f)∞q (y)− ⟨u, y⟩. (9)

The proofs are similar, we just prove (8). For every y, u ∈ Rn, we have

(fu)
∞(y) = lim inf

y′→y
t→∞

f(ty′)− ⟨u, ty′⟩
t

= lim inf
y′→y
t→∞

f(ty′)

t
+ lim inf

y′→y
t→∞

(−⟨u, y′⟩)

= (f)∞(y)− ⟨u, y⟩.

4.1. The semicontinuity of the solution map.

Theorem 4.1. Assume that X∞ ∩ K(f) = {0}. Then there exists ε > 0 such that for all

u ∈ Bε, the following statements hold:

(a) fu is bounded from below on X.

(b) fu is coercive.

(c) Sol (u) is nonempty and compact.

(d) Lim supu→0 Sol (u) ⊂ Sol (0).

(e) Sol (·) is usc at 0.

Proof. We first show that there exists ε > 0 such that for all u ∈ Bε, the following condition

holds

X∞ ∩ K(fu) = {0}. (10)
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Indeed, if otherwise, then for any k ∈ N, there is uk ∈ B 1
k
such that X∞ ∩ K(fuk

) ̸= {0},
i.e., there exists dk ∈ X∞ \ {0} such that (fuk

)∞(dk) ≤ 0. Since X∞ is a closed cone,

by passing a subsequence if necessary we may assume that hk := dk
∥dk∥

converges to some

h ∈ X∞ with ∥h∥ = 1. For each k > 0, by the positive homogeneity of (fuk
)∞ and the fact

that (fuk
)∞(dk) ≤ 0, one has (fuk

)∞(hk) ≤ 0. By (8), we have

f∞(hk)− ⟨uk, hk⟩ = (fuk
)∞(hk) ≤ 0,

or, equivalently,

f∞(hk) ≤ ⟨uk, hk⟩ ∀k ∈ N.

This and the lower semicontinuity of f∞ imply that

f∞(h) ≤ lim inf
k→∞

f∞(hk) ≤ lim
k→∞

⟨uk, hk⟩ = 0.

Hence h ∈ X∞ ∩K(f), which contradicts the assumption that X∞ ∩K(f) = {0}. Thus (10)
holds.

(a), (b), and (c) follow directly from Theorem 3.1 and (10).

(d): Take any x̄ ∈ Lim supu→0 Sol (u). Then there exist sequences uk → 0 and xk ∈ Sol (uk)

with xk → x̄ as k → ∞. For each k > 0, we have

f(xk)− ⟨uk, xk⟩ ≤ f(x)− ⟨uk, x⟩ ∀x ∈ X.

This and the lower semicontinuity of f imply that

f(x̄) ≤ lim inf
k→∞

f(xk) = lim inf
k→∞

(f(xk)− ⟨uk, xk⟩)

≤ lim inf
k→∞

(f(x)− ⟨uk, x⟩) = f(x) ∀x ∈ X.

Hence x̄ ∈ Sol (0), as required.

(e): Suppose on the contrary that Sol (·) is not usc at 0. Then there exists an open set

U ⊂ Rn, with Sol (0) ⊂ U , such that for every neighborhood 0 ∈ W ⊂ Rn, there exists

u ∈ W satisfying Sol (u) ⊈ U . Hence, there exist sequences uk and xk such that uk → 0 and

xk ∈ Sol (uk) \ U for all k ∈ N.
If {xk} is bounded, we assume without loss of generality that xk → x̂ ∈ Rn. By (d),

x̂ ∈ Sol (0) ⊂ U , which contradicts that xk /∈ U for all k and U is open. So, {xk} is

unbounded. Without any loss of generality, we can assume that ∥xk∥ → ∞ as k → ∞.

Take tk := ∥xk∥ and dk := xk

tk
. Hence, dk → d ∈ X∞ with ∥d∥ = 1, taking a subsequence if

necessary. Fix any y ∈ X. Then, we have fuk
(xk) ≤ fuk

(y) for all k and so

f∞(d) ≤ lim inf
k→∞

f(tkdk)

tk
= lim inf

k→∞

f(xk)− ⟨uk, xk⟩
tk

≤ lim inf
k→∞

f(y)− ⟨uk, y⟩
tk

= 0,

which contradicts the fact that X∞ ∩ K(f) = {0}. □
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Lemma 4.2. If X is a convex set and f is a convex function and the following condition

holds

X∞ ∩ K(f) ̸= {0}, (11)

then there exists a sequence {uk}k ⊂ Rn with uk → 0 as k → ∞ such that Sol (uk) = ∅ for

every k ∈ N.

Proof. If (11) holds, then there exists a nonzero vector d ∈ X∞ such that f∞(d) ≤ 0. For

each k ∈ N, let uk :=
1
k
d. Then, uk → 0 as k → ∞ and ⟨uk, d⟩ > 0 for all k ∈ N. Hence,

(fuk
)∞(d) = f∞(d)− ⟨uk, d⟩ < 0 ∀k ∈ N.

Fix any x0 ∈ X ∩ dom f . It follows from the convexity of X that x0 + td ∈ X for all t > 0.

By [6, Proposition 2.5.2] and the convexity of X and f , one has

(fuk
)∞(d) = lim

t→∞

fuk
(x0 + td)− fuk

(x0)

t
= lim

t→∞

fuk
(x0 + td)

t
.

Hence,

lim
t→∞

fuk
(x0 + td)

t
< 0.

This implies that limt→∞ fuk
(x0 + td) = −∞ for any k ∈ N. Hence, Sol (uk) = ∅ for all

k ∈ N. The proof is complete. □

The following theorem presents necessary/sufficient conditions for the lower semicontinuity

of the solution map Sol (·).

Theorem 4.3 (The lower semicontinuity of the solution map). If the following conditions

are satisfied:

(a) Sol (0) is a singleton,

(b) X∞ ∩ K(f) = {0},

then Sol (·) is lsc at 0. Conversely, if Sol (·) is lsc at 0, then (a) holds true. Moreover, if X

and f are additionally assumed to be convex, then (b) is also satisfied.

Proof. Suppose that (a) and (b) hold. By (a), Sol (0) = {x̄} for some x̄ ∈ X. Let U be an

open neighborhood containing x̄. Then, by (b) and (10), there exists ε1 > 0 such that

X∞ ∩ K(fu) = {0} ∀u ∈ Bε1 .

It follows from Theorem 4.1(c) that Sol (u) ̸= ∅ for every u with ∥u∥ < ε1. Since Sol (·) is
usc at 0, by Theorem 4.1(e), there exists ε2 > 0 such that Sol (u) ⊂ U for every u satisfying

∥u∥ < ε2. Thus Sol (u) ∩ U ̸= ∅. Therefore, by taking ε := min{ε1, ε2} > 0, we obtain that

Sol (·) is lsc at 0.
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Conversely, suppose that Sol (·) is lsc at 0. We show that the condition (a) is satisfied.

Suppose on the contrary that (a) does not hold, i.e., Sol (0) contains at least two different

points x̄ and ȳ. We choose λ = (λ1, . . . , λn) ∈ Rn satisfying

∥λ∥ = 1, −⟨λ, x̄⟩ > −⟨λ, ȳ⟩.

So, there exists an open set U containing x̄ such that

−⟨λ, x⟩ > −⟨λ, ȳ⟩ ∀x ∈ U. (12)

For any ε > 0 and x ∈ U , from (12) it follows that

fελ(x) = f(x) + ⟨−λϵ, x⟩ > f(x̄) + ϵ⟨−λ, ȳ⟩ = f(ȳ)− ϵ⟨λ, ȳ⟩ = fελ(ȳ).

It implies that x /∈ Sol (ϵλ). Hence, there exists ϵλ → 0 as ε → 0 such that Sol (ϵλ)∩U = ∅,
which contradicts that Sol (·) is lsc at 0, i.e., condition (a) holds.

Now, suppose in addition that X and f are convex but (b) does not hold. Then, by Lemma

4.2, there exists a sequence {uk}k ⊂ Rn such that uk → 0 as k → ∞ and Sol (uk) = ∅ for all

k ∈ N. This contradicts that Sol (·) is lsc at 0. □

4.2. The continuity of the optimal value function. Now, we focus our attention on the

continuity of the optimal value function µ.

Theorem 4.4. The following assertions hold:

(a) µ is usc at 0.

(b) If X∞ ∩K(f) = {0}, then µ is lsc at 0 and so it is continuous at 0.

Proof. (a) Let {uk}k ⊂ Rn be a sequence converging to 0. Since X ̸= ∅, we have µ(0) < +∞.

Then, there is a sequence {xl}l in Rn such that xl ∈ X and f(xl) → µ(0) as l → ∞. For

each l ∈ N, we have µ(uk) ≤ fuk
(xl) for all k ∈ N. This implies that

lim sup
k→∞

µ(uk) ≤ f(xl).

Taking l → ∞ we get

lim sup
k→∞

µ(uk) ≤ µ(0).

This means that µ is usc at 0.

(b) Let {uk}k ⊂ Rn be an arbitrary sequence converging to 0. We show that

lim inf
k→∞

µ(uk) ≥ µ(0),

12



i.e., µ is lsc at 0. Suppose on the contrary that lim inf
k→∞

µ(uk) < µ(0). By taking a subsequence

if necessary, we can assume that

lim inf
k→∞

µ(uk) = lim
k→∞

µ(uk).

Then there exist k0 ∈ N and β ∈ R such that β < µ(0) and µ(uk) ≤ β for all k ≥ k0. Since

uk → 0 as k → ∞ and Theorem 4.1(c), there exists an integer k1 ≥ k0 such that Sol (uk) ̸= ∅
for all k ≥ k1. For each k ≥ k1, take any xk ∈ Sol (uk). Then we have xk ∈ X and

fuk
(xk) = µ(uk) ≤ β. (13)

We show that the sequence {xk}k is bounded. Indeed, if otherwise, then, without loss of

generality, we can assume that ∥xk∥ ≠ 0 for all k ≥ k1 and ∥xk∥ → +∞ as k → ∞. Then,

the sequence {∥xk∥−1xk}k is bounded, and hence it has a convergent subsequence. Without

loss of generality, we can assume that this sequence itself converges to some d ∈ Rn with

∥d∥ = 1 and d ∈ X∞. Let tk := ∥xk∥ and dk := t−1
k xk. By (13), we obtain

fuk
(tkdk)

tk
≤ β

tk
∀k ≥ k1.

Letting k → ∞ in the last inequality we get

f∞(d) ≤ lim inf
k→∞

f(tkdk)

tk
= lim inf

k→∞

f(tkdk)− ⟨uk, dk⟩
tk

= lim inf
k→∞

fuk
(xk)

tk
≤ 0.

This with d ∈ X∞ contradict the assumption that X∞ ∩K(f) = {0}. Therefore, {xk}k is

bounded.

Now, passing a subsequence if needed, {xk}k converges to some x̂ ∈ X. By (13) and the

lower semicontinuity of f , we obtain

f(x̂) ≤ lim
k→∞

fuk
(xk) ≤ β.

Combining this with β < µ(0), we have f(x̂) < µ(0), which contradicts that x̂ ∈ X. There-

fore, µ is lsc at 0 and the proof is complete. □

5. The Quasiconvex Case

In this section, we apply our previous results to the particular case when the objective

function in problem (P ) is quasiconvex or α-robustly quasiconvex (see Definition 2.1).

As mentioned in the introduction, when the function f is nonconvex, then the usual

asymptotic function f∞ does not provide adequate information on the behavior of f at

infinity. For instance, and in relation to Theorem 3.1, we mention that when the function f

is quasiconvex, the assumption

X∞ ∩ K(f) = {0},
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is too restrictive. Indeed, let us consider the one-dimensional real-valued function f : R → R
given by f(x) =

√
|x| and X = R. Here f is coercive and argminX f = {0} is a singleton,

but X∞ ∩ K(f) = R, and Theorem 3.1 cannot be applied even in this basic situation.

On the other hand, if we use any of the generalized asymptotic functions f∞
q and f∞

λ , we

obtain that

f∞
q (u) = +∞ ∀u ̸= 0, and 0 < f∞

λ (u) ≤ 2 ∀u ̸= 0.

Therefore,

X∞ ∩Kq(f) = {0}, and X∞ ∩Kλ(f) = {0},

where Kq(f) := {d ∈ Rn : f∞
q (d) ≤ 0} and Kλ(f) := {d ∈ Rn : f∞

λ (d) ≤ 0}, respectively.
Before stating main results of this section, we give a result on the nonemptiness and com-

pactness of the solution set to constrained optimization problems by using the q-asymptotic

function.

Lemma 5.1. Assume that X ⊂ dom f is a convex set and f is a quasiconvex function.

Then, the following assertions are equivalent:

(a) Sol (P ) is nonempty and compact.

(b) X∞ ∩ Kq(f) = {0}.

Proof. By [12, Theorem 4.7], it suffices to show that (b) is equivalent to the following condi-

tion

Kq(f + δX) = {0},

where δX is the indicator function of X and defined by

δX =

0, if x ∈ X,

+∞, otherwise.

Indeed, by definition of the q-asymptotic function and the convexity of X, we have

(f + δX)
∞
q (d) = sup

x∈dom (f+δX)

sup
t>0

(f + δX)(x+ td)− (f + δX)(x)

t

= sup
x∈X

sup
t>0

f(x+ td) + δX(x+ td)− f(x)

t

=

f∞
q (d), if d /∈ X∞,

+∞, otherwise,

= f∞
q (d) + δX∞(d).

Hence, X∞ ∩ Kq(f) = {0} if and only if Kq(f + δX) = {0}, which completes the proof. □
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Remark 5.2. The equivalent conditions (a) and (b) in Lemma 5.1 do not imply the coercivity

of f on X. For example, let f(x) = x2

1+x2 and X = R. Clearly, f is quasiconvex on R and

Kq(f) = {0}. Hence, condition (b) in Lemma 5.1 is satisfied, but the function f is not

coercive on R.

In the same spirit than Proposition 3.4, the following corollary shows that condition (14)

is weaker than (7) for quasiconvex functions, too.

Corollary 5.3. Assume that X ⊂ dom f and it is convex. If the function f is quasiconvex

and bounded from below on X and (7) holds, then so is (14).

Proof. By (7) and [22, Theorem 6.4], Sol (P ) is nonempty and compact. Thus, the desired

conclusion follows directly from Lemma 5.1. □

In the next proposition we improve Theorem 3.1 for proper, lsc, α-robustly quasiconvex

functions.

Proposition 5.4. Let X be a convex set and f be an α-robustly quasiconvex function (α > 0)

with X ⊂ dom f . If

X∞ ∩Kq(f) = {0}, (14)

then there exists ε > 0 such that for all u ∈ Bε, the following statements hold:

(a) fu is bounded from below on X.

(b) Sol (u) is nonempty and compact.

(c) lim supu→0 Sol (u) ⊂ Sol (0).

(d) Sol (·) is usc at 0.

Proof. We first show that there exists ε > 0 such that the following condition holds

X∞ ∩Kq(fu) = {0} ∀u ∈ Bε. (15)

Indeed, suppose on the contrary that for every k ∈ N, there exists uk ∈ B 1
k
such that

X∞ ∩Kq(fuk
) ̸= {0}, i.e., there exists dk ∈ X∞\{0} such that

(fuk
)∞q (dk) ≤ 0.

Since X∞ is a closed cone, by passing a subsequence if necessary, we may assume that{
hk :=

dk
∥dk∥

}
k
⊂ X∞ converges to h ∈ X∞ with ∥h∥ = 1.

For every k ∈ N, since f∞
q is positively homogeneous of degree one and (fuk

)∞q (hk) ≤ 0,

and by using relation (9),

(fuk
)∞q (hk) = f∞

q (hk)− ⟨uk, hk⟩ ≤ 0.
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Since f is lsc, f∞
q is lsc too by [12, p. 118], thus

f∞
q (h) ≤ lim inf

k→+∞
f∞
q (hk) ≤ lim inf

k→+∞
⟨uk, hk⟩ = 0.

Hence, h ∈ X∞ ∩Kq(f) with h ̸= 0, a contradiction. Therefore, relation (15) holds.

Since X is convex and f is α-robustly quasiconvex, fu(x) = f(x) − ⟨u, x⟩ is quasiconvex
for all u ∈ Bα. Let ε be satisfied (15) and ε < α. Hence, (a) and (b) follow from relation

(15) and Lemma 5.1.

The proof of part (c) is quiet similar to the proof of Theorem 4.1(d), so omitted.

(d): Suppose on the contrary that Sol (·) is not usc at 0. Analysis similar to that in

the proof of Theorem 4.1(e) shows that there exist sequences uk and xk such that uk → 0,

xk ∈ Sol (uk) for all k ∈ N, and the sequence {xk} is unbounded. Without loss of generality,

we can assume that ∥xk∥ → +∞ and dk := xk

∥xk∥
→ d ∈ X∞ with ∥d∥ = 1. Since uk → 0,

there exists k1 ∈ N such that uk ∈ Bα for all k ≥ k1. Furthermore, since ∥xk∥ → +∞ for

every t > 0, there exists k2 ∈ N such that 0 < t
∥xk∥

< 1 for all k ≥ k2.

Take any y ∈ X, then fuk
(xk) ≤ fuk

(y) for all k ∈ N. Since X is convex and f is α-robustly

quasiconvex, we obtain for every k ≥ k0 := max{k1, k2} that

f

((
1− t

∥xk∥

)
y +

t

∥xk∥
xk

)
−

〈
uk,

(
1− t

∥xk∥

)
y +

t

∥xk∥
xk

〉
≤ max{fuk

(xk), fuk
(y)}

= f(y)− ⟨uk, y⟩.

Since f is lsc, we have

f(y + td)− 0 ≤ f(y)− 0 ∀ t > 0 ∀y ∈ X.

This implies f∞
q (d) ≤ 0. Therefore, d ∈ X∞ ∩Kq(f), a contradiction. □

Furthermore, we also adapt the results for solution stability for the quasiconvex case below.

Proposition 5.5 (The lower semicontinuity of the solution map). Let X be a convex set

and f be an α-robustly quasiconvex (α > 0) with X ⊂ dom f . Then Sol (·) is lsc at 0 if and

only if the following conditions hold:

(a) Sol (0) is a singleton;

(b) X∞ ∩Kq(f) = {0}.

Proof. The proof of the part “only if” is similar to the proof of first one of Theorem 4.3, so

omitted.

We now assume that Sol (·) is lsc at 0. Then, by Theorem 4.3, (a) holds true. Assume

that Sol (0) = {x̄}. If (b) does not hold, then there exists d ∈ X∞ \{0} such that f∞
q (d) ≤ 0.
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Clearly, x̄+ td ∈ X for all t > 0. Let uk :=
1
k
d. Then uk → 0 as k → ∞ and

(fuk
)∞q (d) = f∞

q (d)− ⟨uk, d⟩ = f∞
q (d)− 1

k
∥d∥2 < 0.

By definition, we have

sup
t>0

fuk
(x̄+ td)− fuk

(x̄)

t
< 0.

This implies that fuk
(x̄+ td) → −∞ as t → ∞ and Sol (uk) = ∅. Hence, Sol (·) is not lsc at

0, a contradiction. □

As a consequence, we have the following corollary.

Corollary 5.6 (The continuity of the solution mapping). Let X be a convex set and f be

an α-robustly quasiconvex (α > 0) with X ⊂ dom f . Then Sol (·) is continuous at 0 if and

only if conditions (a) and (b) in Proposition 5.5 hold.

Finally, we ensure the continuity of the value function µ at 0 when f is proper, lsc and

α-robustly quasiconvex (α > 0).

Proposition 5.7 (The continuity of the optimal value function). Let X be a convex set and

f be an α-robustly quasiconvex (α > 0) with X ⊂ dom f . If X∞ ∩Kq(f) = {0}, then µ is

continuous at 0.

Proof. We repeat the proof of Theorem 4.4 until relation (13). Hence, we need to show

that the sequence {xk}k≥k1 is bounded, where xk ∈ Sol (uk) for all k ≥ k1 with uk being an

arbitrary sequence converging to 0. Indeed, if {xk}k≥k1 is unbounded, then, without loss of

generality, we assume that ∥xk∥ → +∞. Hence, { xk

∥xk∥
}k is bounded. Passing a subsequence

if needed, xk

∥xk∥
→ d ∈ X∞ with ∥d∥ = 1.

Since uk → 0, there exists k2 ∈ N such that uk ∈ Bα for all k ≥ k2. Furthermore, since

∥xk∥ → +∞, for every t > 0, there exists k3 ∈ N such that 0 < t
∥xk∥

< 1 for all k ≥ k3.

Take any y ∈ X. Since xk ∈ Sol (uk), fuk
(xk) ≤ fuk

(y) for all k ∈ N. Since X is convex and

f is α-robustly quasiconvex, we have f∞
q (d) ≤ 0 by the same analysis than Proposition 5.4.

Hence, d ∈ X∞ ∩Kq(f), a contradiction.

Therefore, {xk}k is bounded and the rest of the proof follows as in Theorem 4.4. We note

here that the upper semicontinuity of µ at 0 does not depend on the assumptions on the

function f and X. □
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6. Conclusions

We contributed to the discussion on the analysis of optimization problems at infinity by

studying sufficient conditions for weak sharp minima and solution stability in the general

nonconvex case and also in the quasiconvex case.

By using the usual tools from (generalized) asymptotic analysis, we proved that this

classical approach is finer than the one from the variational analysis at infinity, specially

for weak sharp minima since the sufficient conditions based on asymptotic tools are weaker

than the ones based on variational analysis at infinity for the whole class of proper, lsc and

convex functions (and also for the quasiconvex ones).

In this sense, we strongly believe that the valuable efforts for obtaining useful information

for optimization problems from the infinity could be improved, and this improvements should

be based on adding a “direction term” in Definitions 3.2 and 3.3, that is, by defining the

normal cone of the set X at the infinity in the direction v and its respectively limiting

subdifferential of f at the infinity in the direction v. This will be a matter of a subsequent

work.

We hope that our results could provide new lights for further developments on asymptotic

analysis and variational analysis at infinity.
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