NONLINEAR RAYLEIGH-TAYLOR INSTABILITY FOR INCOMPRESSIBLE VISCOUS
FLUIDS REVISITED

TIEN-TAI NGUYEN

ABSTRACT. The goal of this paper is to prove the viscous Rayleigh-Taylor instability in a horizontal
periodic domain with infinite height, extending the inviscid result of Guo and Hwang [4]. Using the
spectral analysis obtained by Lafitte and the author [13], we show the existence of infinitely many
unstable solutions to the linearized equations. Hence, we are able to construct a large class of initial
data to approximate the nonlinear equations, refining Grenier’s method [6] and then to prove the
nonlinear instability. Our result improves the previous one of Jiang, Jiang and Ni [9] by using a strong
notion of instability.
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1. INTRODUCTION

The governed equations are the gravity-driven incompressible Navier—Stokes equation:

orp + div(pi) = 0,
Ot (ptt) + div(pi ® U) + VP = pAd — pges, (1.1)
divi = 0,

where t > 0,2 = (x1,22,23) € (2rLT)? x R ( T be the usual 1D torus and L > 0 be the length
of periodicity). The unknowns p := p(x,t), 4 := @(z,t) and P := P(x,t) denote respectively the
density, the velocity and the pressure of the fluid, while ¢ > 0 is the viscosity coefficient, g > 0 is
the gravity constant and €3 = (0,0, 1)7. Let py > 0 be a C''-function depending only on z3 and let
Py be another function of x3 given by P = —gpo with’ = d/dx3. Hence, (po(z3), 0, Py(z3)) is an
equilibrium to Eq. (1.1). Of interest of this paper is to study the nonlinear instability of Eq. (1.1)
around the above steady state, assuming that

0<p_ <py <+oo with lin}roopo(xg) = p+, (1.2)

r3—T
since we are interested in Rayleigh-Taylor instability.

The Rayleigh—Taylor (RT) instability, studied first by Lord Rayleigh in [16] and then Taylor [ 18]
is well known as a gravity-driven instability in two semi-infinite inviscid and incompressible flu-
ids when the heavy one is on top of the light one. It has attracted much attention due to both its
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physical and mathematical importance. Two applications of worth mentioning are implosion of iner-
tial confinement fusion capsules [14] and core-collapse of supernovae [15]. For a detailed physical
comprehension of the RT instability, we refer to three survey papers [8, 19, 20].

Mathematically speaking, for the inviscid and incompressible regime in the neighborhood of such
steady state, the linear instability has been studied by Lafitte et al. [2, 3, 11, 7] thanks to the vari-
ational structure of the linearized system. Guo and Hwang [4] used the celebrated framework of
Grenier [0] to prove the nonlinear instability. After that, Lafitte developed these above results in
[12] considering the density profile of quasi-isobaric type (p— = 0). Tan and Xu in [17] extend the
result of Guo and Hwang to a slab domain studying the effect of boundary conditions.

For the viscous problem (1.1), Jiang, Jiang and Ni [9] studied the linear instability of such steady
state (pg(z3),0, Py(x3)) satisfying (1.2) and that pf, € C§° is locally positive. To study the linear
instability, the authors followed a modified variational approach of Guo and Tice [5] for a RT prob-
lem with two compressible channel flows. Hence, the authors [9, Theorem 1.1 and Remark 1.3]
introduced a weak notion of instability and proved the nonlinear RT instability in that sense.

Very recently, assuming that the density profile pg satisfies (1.2) and that pf, is a nonnegative
function of class Cg(R), the author and Lafitte [13] initiate another approach to study the linear
instability. The method is based on the spectral theory of compact and self-adjoint operators and the
given result proves the existence of infinitely many normal mode solutions to the linearized equations
(see (2.2)). For readers convenience, we refer to Theorem 2.1 below for the statement. This paper
is a continuation of [13], passing the linear instability to the nonlinear instability by refining the
framework of Grenier [6]. Precisely, having infinitely many normal mode solutions to the linearized
equations at hands, we illustrate the nonlinear RT instability with a wide class of initial data. We
refer the statement to Theorem 2.3. Let us point out that our main result uses the strong notion of
instability, see [0, Definition 2.1] and thus sharpen the previous result of Jiang, Jiang and Ni [9].

This paper is organized as follows. In Section 2, we formulate the problem with the governing
equations by following [13]. After that, we present the known result, Theorem 2.1, on the spectral
analysis of the linearized equations (2.2). The second part is to present the nonlinear result and
introduce the strategy of the proof.

2. THE GOVERNED EQUATIONS AND MAIN RESULTS

Let us formulate the main problem. In the vicinity (po(3), 0, Py(x3)), the quantities
0 = p— pPo, ’J:ﬂ_aa p=P-D
satisfy the following nonlinear perturbation equations

oo +U-V(pp+0)=0,
(po + 0)04i + (po + )i - Vii + Vp = pAii — goés, 2.1)
divi = 0.

Hence, instead of proving the nonlinear RT instability to (1.1), we move to prove the nonlinear
instability of trivial solution to the nonlinear equations (2.1). For this purpose, in the first part, we
represent the spectral analysis in [13] and deduce further property of the maximal growth rate to
the linearized equations (2.2) below. In the second part, we introduce the strategy of the proof to
nonlinear instability result, following Grenier’s idea [0] with a refinement.
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2.1. The linear instability. Omitting the nonlinear terms in (2.1), we obtain the following lin-
earized equations,

0o + p6U3 =0,
polri + Vp = uAd — goes, 2.2)
divii = 0.

Since pg depends only on xz3, we continue the analysis into normal modes as in [I, Chapter X,

Section 91]. The linear instability amounts to the investigation of normal mode solution to (2.2) of
the form

o(t,z) = eMcos(kizy + koxo)C(x3),
uy (t, ) = eMsin(kyz + koxo)(x3),

ug(t,x) = eM sin(ki1xy + kox2)0(x3), (2.3)
us(t, z) = e cos(krz1 + koxa)p(x3),

p(t,z) = eMcos(kiza + koxa)q(x3),

where k = (ky, ko) € (L7'Z)%, A = A(k) € C\{0} and ReX > 0. In this case, such a X is a
growth rate of the instability or is a characteristic value of the linearized problem (see [, Chapter
X, Sections 92-93)).

Let k = |k| = +/ k‘% + k3, substituting (2.3) into (2.2), we arrive at the following system

AC + pyd =0,
Apoth — k1q + p(k* — ") = 0,
Apof) — kaq + (k%0 —0") = 0, (2.4)

Apod + ¢ + (ko — ¢") + g¢ =0,
k1t + kaof + ¢ = 0.

We directly see ( = —%T(b. Hence, (2.4), becomes
Npop + Aq' + Au(k>p — &) = gpo¢ (2.5)
We multiply (2.4), by k1 and (2.4)5 by ko, then use (2.4), to obtain the equality
Npo¢' + k*Aq + Au(k?¢' — ¢") = 0.
Deriving this equation, and replacing A\q’ thanks to (2.5), we get the fourth-order ordinary equation:
N (pok*¢ — (pod)) + M6 — 2K¢" + k*¢) = gk piyo, (2.6)

The investigation of normal mode solutions (2.3) for fixed k£ amounts to finding regular solutions
¢ € H*(R) of (2.6). These solutions physically decay to zero at +c0, i.e. ¢ satisfies

lim ¢(x3) = 0. (2.7)

xr3—+00

For any increasing density profile pg, we necessarily have the uniform boundedness of A in £,
following [13, Lemma 2.1].

Lemma 2.1. Let py be increasing, all characteristic values \ for Eq. (2.6)-(2.7) in H 4(R) are
always real and satisfy that X < [ £~, with Lo := (| Z—g | Loo(r)) ™" being the characteristic length of
density profile.

In [13], the author and Lafitte consider the density profile pg satisfying further that

pp is a nonnegative function of class CJ(R), supp(ph) = [—a, a], (2.8)
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and that outside (—a, a),

p— as x3 € (—o0, —al,
- 2.9
po(@s) {p+ as x3 € [a, +0), (29

with 0 < p_ < p,. With the above profile, the following theorem is proven in [13, Theorem 2.1],
showing the existence of infinitely many characteristic values \.

Theorem 2.1. Let k be fixed and let pg satisfy (2.8) and (2.9). There exists an infinite sequence
(Any &n)n=1 with A, € (0, 4 /Lio) and ¢, € H*(R) satisfying (2.6)-(2.7). In addition, \,, decreases

towards 0 as n goes to .

As an intermediate result of Theorem 2.1, we obtain an infinite sequence of normal mode solu-
tions to the linearized equations.

Proposition 2.1. Let k be fixed and let py € C*(R) satisfy (2.8) and (2.9). There exists an infinite
sequence of normal mode solutions (cj,u;,p;)(t,k,z) € H®(Q) (j = 1) of the form (2.3) with
X = \j(k) to the linearized equations (2.2).

Following Lemma 2.1, we have

A= sup k) <, /L, (2.10)
ke(L—1Z)2\{0} Lo

Our first theorem is to prove that A defined above is the sharp exponential growth rate for the
linearized equations (2.2) in the following sense.

Theorem 2.2. Let py € C*(R) satisfy (2.8) and (2.9). Let (0, u) be an arbitrary solution of the
linearized equations (2.2) with an associated pressure p. For any s € N and for 0 < ( < 1, we

denote
As = A+ s(C++/Q).
The following inequality thus holds

t
lo ()7 + ()| + ufo D |ViE(7) [3edr < Coene® s (|0(0)[ 7 + [@(0)Fo11)-

(2.11)

2.2. The nonlinear instability. Once the linear instability is proven, we aim at showing the nonlin-

ear instability by refining Grenier’s method [6] as follows.

From (2.10), there exists a kg € (L~'Z)?\{0} such that \; (ko) > % Fix k = ko and we obtain
from Theorem 2.1 infinitely many normal mode solutions (o, @;,p;j)(t,z) € H*(2) (j = 1). Let
integer s > 3 be given and we choose ¢ > 0 sufficiently small such that

A
A> )\ > 75
We thus split the sequence (A, )n>1 as follows
A
A>)\1>~~~>)\M>7S>)\M+1>~-> (2.12)

Note that M is finite due to the limit A\; — 0 as j — 0. Choosing constants c; being chosen such
that
at least one of ¢; (1 < j < M) is non-zero (2.13)

and

1 . R . 'y )
§|cjm\|\ujm\|L2 > Z Ic;l|l@] L2, where j, := min{j : 1 < j < M, c; # 0}. (2.14)
JZjm+1
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For any integer N, we formulate a linear combination of those above normal mode solutions

AR Z (05,5, pi)t, @), 2.15)

to set § (U(N), U(N), p(N)) with 0 < § « 1 as the first-order approximate solution to the nonlinear
equations (2.1). After that (see Lemma 4.1), we construct higher-order approximations. Using such
an approximate solution (¢, @*, p®) and constructing the classical energy estimates in Lemma 4.1,
the nonlinear instability thus follows..

Theorem 2.3. Let pg € C*(R) satisfy (2.8) and (2.9). For any integer N, we can find a positive
constant mg and two positive constants &y and eq sufficiently small so that for any § € (0,0p), the
nonlinear equations (2.1) with the initial data

N
5 cjlog, iy, p)) (@)
j=1
satisfying (2.13)-(2.14) has a unique local strong solution (05, ﬁ‘s) with an associated pressure ¢°
such that

|@(T°)] 2 = moeo, (2.16)
where T € (0, Tiax) is given by

5Z|cj|e” ) Z Ic;1e¥T = €.

J=Jjm

Throughout this paper, we write a < Cb for a generic constant C' depending only physical param-
eters. We frequently use the interpolation inequality (for any integer s and real v > 0)
1 s

[72" vl g < vlolgssr + Cov™?[v]l 2. (2.17)

[olzs < v
3. THE MAXIMAL GROWTH RATE

In this part, we show that A defined as in (2.10) is the maximal growth rate of the linearized
equations (2.2), i.e. to prove Theorem 2.2. We begin with the variational formulation of the largest
characteristic value \;.

Lemma 3.1. Let B, j, ) is given by (3.3) and let (A1, ¢1) be found from Theorem 2.1. We have that
1 § 0 P09

gk per?((aa)) MBa g (¢, 0) GD
and the extremal problem (3.1) is attained by ¢ restricted on (—a, a) up to a constant.
Furthermore, let us define the following bilinear form on H*(R.),
Bia(,0) == A f po(K*¢0 + ¢'60') + p f (6" + K 9)(0" + K*0) + 4k*¢'0)).
Hence, we have N N
L max M. 3.2)

gk%  ger>(R) MByx, (6, )
The extremal problem (3.2) is attained by ¢1 up to a constant.

To do that, we recall [13, Propositions 4.2, 4.3].

Proposition 3.1. Let 74 = /k? + \p+/pu.
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(1) Let us denote by

(ke (ke T)0(~a)p(~a) — kr_ (~a)(~a)
BV_qkA(V,0) = p ( — kr_9(—a)d' (—a) + (k + 7')19,(—@)9,(—@)>

and by

BVir(9,0) = 1 <k7+(k + 74)%(a)o(a) — kT+19/(a)g(a) ) |

— kry9(a)d'(a) + (k + 74 ) (a)d'(a)

Hence,

a

Baia(¥,0) := BV (9, 0) + BV_gp(¥,0) + A | po(k*Vo + o)

—a
_I_’uf (19”,9”—1—2]4:219/9/—1-16‘419@.

is a continuous and coercive bilinear form on H*((—a, a)).

3.3)

(2) Let (H%*((—a,a)))’ be the dual space of H*((—a, a)) associated with the norm A/Bq (-, *),

there exists a unique operator
Yo € LUH?((—a,a)), (H*((—a,a)))'),
that is also bijective, such that, for all ¥, 0 € H*((—a, a)),
Ba i (V,0) = Yok, 0)-
(3) Forall Y € H*((—a,a)), we have
Yorat = Mpok®9 — (po?)') + p(0W — 220" + k*9)  in D'((—a, a)).
(4) Let f € L?>((—a,a)) be given, there exists a unique solution 9 € H*((—a,a)) of
Yor9 = fin (H*((—a,q))),
then 9 € H*((—a, a)) and satisfies the boundary conditions at x3 = —a,
{k:fﬂ(—a) — (k+ 7)Y (—a) + 9" (—a) = 0,
kr_(k + 7_)0(—a) — (k* + k7_ + 72)9'(—a) + 9" (—a) = 0,
and at T3 = a,

kryd(a) + (B + 7)Y (a) + ¢"(a) = 0,
—kri(k +740)9(a) — (k* + k74 + 72)9'(a) + 9" (a) = 0.

Proof of Lemma 3.1. We divide the proof into two parts, proving (3.1) and (3.2), respectively.

Part 1. We show that (3.1) holds. For all A > 0, we solve the variational problem

arO) = max [ pilo € HH(-aa), ABura(6,6) = 1).

Let us define the Lagrangian functional

Lu(v, 6) = f_ 08 — V(\Basor(6,6) — 1).

It follows from the Lagrange multiplier theorem that the extrema of the quotient

§* phd*des
)\Ba,k,)\(¢7 (b)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
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are necessarily obtained at the stationary points (v4, ¢« ) of Lg, which satisfy
a
MBoia(@ei0) =1 | o = MBusal6:,6) =0, (3.10
—a

forall € H?((—a,a)). Restricting § € C§°((—a, a)), one deduces from (3.10) that ¢, has to satisfy

ALYy e adx = PO (3.11)
in a weak sense. Using bootstrap argument, we further get that ¢, € H*((—a, a)) and satisfies (3.11)
and the boundary conditions (3.6)-(3.7). Hence, all stationary points (v/y, qﬁ*) of Lp satisfy that v,
is an eigenvalue of the compact and self-adjoint operator S, . » = MY k /\M (M = \F from
L?((—a,a)) to itself, with

MY, ae = X e L*((—a,a))
being an associated eigenfunction. That implies
a1\ k) < Ay (A k). (3.12)

Meanwhile, since the operator S, . » is self-adjoint and positive, we thus obtain that

(A k) = sup M
oeL?((—a,a) ”¢”L2( (—a,a))

Hence, for all ¢ € L?((—a,a)) and for ) = Y, k/\./\/l¢e H*((—a,a)), we have
Yo, ) = (Sa k20, 0,

which yields
Sak$, )
HOR Va9 < SO g oz,
1622 o
This yields
M2
ANEk) <supl —————— —a,a)) and MY, € L*((—a,a))t.
O R) < sup { = < 1 (—0,0) ka0 € L((~a,a))}

Owing to (3.4), we have that

a /.12
y1(\, k) < sup {ww e H*((—a,a)) and MY,z € L*((—a, a))}.

Ba,k,)\ (T% 1/})
We thus obtain
Ay (N E) < an (N B) (3.13)
The two inequalities (3.12) and (3.13) tell us that a1 (A1, k) = A~ ty1(Aq, k) for all A > 0, from
which we deduce o (A1, k) = g% and the extremal problem (3.1) is attained by the function

$1|(=a,a) UPp to a constant.

Part 2. We prove that (3.2) holds. We set
as(nk) = max (| pho?ABua(6.0) = 1),
R

$eH?*(R)

and consider the Lagrangian functional
Lae.0) = | pht? —w(Bia(6.6) = 1)
Thanks to Lagrange multiplier theorem again, the extrema of the quotient

S P09
)\Bk,)\(¢7 (b)
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are necessarily obtained at the stationary points (w,, ®,) € Ry x H?(R) of Lg, which satisfy

ABia(®s, @) = 1, J Po®0 — Aw, By A (P4, 0) = 0 (3.14)
R
for all @ € H?(R). Restricting 6 € C§°(R), one deduces from (3.14) that ®, has to satisfy
(1) — 2k20" + k1®,) + A(k?po®@, — (po®.)) = VpE)(I)* in D'(R). (3.15)

Using bootstrap argument, we further get that ®, € H*(R) and ®, decays to 0 at infinity. Since
suppp(, = [—a, a], we use [13, Proposition 3.1] to deduce that ®, on (—a, a) is a solution of

Aox Yok A(Pul(—a0) = P0Pel(—aa) = M?Pu|(_a0)
satisfying the boundary conditions (3.6)-(3.7). Set

1
AWy

&) = M_lya,k,/\(q)*‘(—a,a)) = M(I)*|(—a,a) € LQ((_aa a)): (3.16)

it yields

Aw,® = MY LMD = S, 12D
That means Aw, is an eigenvalue of the compact and self-adjoint operator S, j ) from L?((—a, a))
to itself, with ® € L?((—a, a)) (defined as in (3.16)) being an associated eigenfunction. Hence, we

get
Ao (A k) < (A k). (3.17)

Let us recall the function ¢; from Theorem 2.1. One thus has
SR pE)(ﬁ

(N k) 2 ————. (3.18)
2(AF) ABgx (91, 1)
Note that from [13, Proposition 3.1],
k2 A1p_
b1 (x3) Ay eF@s+a) 4 Aze Fo o) as — o < w3 < —a,
1(T3) = X
_ k}2 1P+ _
Afe k@=a) 4 AFe \ ) e < T3 < 400,
Hence, the direct computations show that
Bi (91, #1) = Ba kA (D1l (—a,0) P1l(—a,a))s (3.19)
and we keep in mind the assumption suppp), = [—a, a]. Then, from (3.18) and (3.19), we have
a /42
as(\ k) = Vo .
)\Ba,k,)\(d)l |(—a,a)7 ®1 |(—a,a))
It then follows . )
/
1
as(A1, k) Vo - (3.20)

>

Allga,k,)\l (¢1|(—a,a)’ ¢1|(—a,a)) gk2
Combining (3.17) and (3.20) gives us that ag (A1, k) = g% and the extremal problem (3.2) is attained
by ¢1 up to a constant. We finish the proof of Proposition 3.1. O

Thanks to Lemma 3.1, we exploit the Fourier transform to obtain the following lemma, whose
proof is similar to [10, page 1882]. Hence we omit the details here.

Lemma 3.2. For any i such that divi = 0, there holds

N | ol A [ ViR =g [ il (3.21)
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Now let (o, @) be a solution to the linearized equations (2.2) with an associated pressure p, we
prove Theorem 2.2. In advance, we show the two following lemmas.
Lemma 3.3. There holds
0w ()| prs < ||lo(t)] s (3.22)
Proof. Since divoyu = 0, we apply Young’s inequality to get that

j polés]2 = j godvuz < v]ous|2s + Cullo|2.
Q Q

Taking v > 0 sufficiently small, we have
|ovil > < ol e (3.23)
Next, for any o € N3 with |a| < s, we get
0%(polel) + 0“Vp — uAd“i = 0% (goes).
Multiplying 0%0;u on both sides of the resulting equation and then integrating by parts to obtain

j p0|8aé’tﬁ|2 + ,uf |V8az_[|2 = j g0“oc0“0pus + f (po0“ 0yl — 0%(po0std)) - 0“0y
0 0 0 0

Note that
0™ (podyil) — pod®dpii = > 07 pod™ Oyl
0#v<a
Using (2.17), we have

1 2s+1
f (pod® vt — 0% (podyid)) - %0yt S ) 070yl 120 0vid] L2 < |0t 13" 0l T -
Q 0#v<a
Owing to Young’s inequality and (3.23), one obtains for any v > 0,

fﬂ(poa“atﬁ — 0%(p00ud)) - 0°Fu < V] dviilys + Culnil3a < vdviilye + Culol?a (3.24)

Similarly,
f 90%00“0yus < v|dus|fs + Cullo|Fs. (3.25)
As aresult of (3.24) and (3.25?, we sum up over « to observe
p-leills < Covlovilhs + Cullols.
Let v > 0 be sufficiently small, the inequality (3.22) follows. Proof of Lemma 3.3 is complete. [
Lemma 3.4. There holds
|og il s < |1] s (3.26)
Proof. We take the derivative in time of the second line of (2.2) to get that
poafﬁ + Voip — nAoi = gpjuses. (3.27)
We multiply (3.27) by d7 ¢ and use Young’s inequality to get that

J p0|6t22_[|2 + uf \V&tﬁ|2 = J gp6u36t2U3 < Vf |(9t2u;z,|2 + C,,J |U3|2,
Q Q 0 Q Q

yielding
|67l 2 <l . (3.28)

Next, for & € N3 with |a| < s, we have that

0% (po0?il) + Vo;0%p — ulo; 0% = go™(phusés). (3.29)
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That implies
J polo®o%d|? + “j Vori|? = f g0 (phus)0® 0Fug + J (po@® 02 — 0%(pod?a)) - 0“2
Q Q Q Q
Note that
0*(pod7ii) — pod®dfii = . @ pod®é7il.

0#v<a

Thus, using (2.17) and Young’s inequality, we have

| R R R L PO P R e e
Q
for any v > 0. Together with (3.28), we have
| mlevazap < | go(hunenctu + | (oot~ o (puota) - ovcta
Q Q Q
< 2v]3f il + Co(uslFps + 1674 12)
< 2v|dfil s + CullalF.
Summing over «, the resulting inequality implies
p-loFilFs < Csvldfalhs + ColldlFs.
Let v > 0 be small enough, we obtain (3.26). [l

We are in position to obtain the exponential growth of the linearized equations (2.2).

Proof of Theorem 2.2. Let as := ||o(0)|gs + |@(0)]gs+1, we prove the inequality (2.11) by the
induction on s.

In case s = 0, we multiply by J;u on both sides of (3.27) to obtain

1d . L a2 .
poloyil]* = J po0yil - 071l = —J |V oyid)? +f gpousdrus,
Q Q Q

2dt Jo
1 d 2 / 2 —12
2dt(Lp0‘atu| —QLP0|U3\ )+L\V5tul =0

which implies
Integrating from O to ¢ and using (3.22), we have
t
| mlawr?+ || wivadmPar < | wiaao)l - | osblea©)? + | asblua(t)
Q 0Jo Q Q Q

< Clo(0)[2, + A? fﬂ pola(t)]? + Ajgmvw)\?
(3.30)

Using Cauchy-Schwarz’s inequality, we have that

Luwﬁ(m J;wu +2f f UVi(r) : Voi(r)dr

J p|Vi(0) J J w|V ()| dT—I—AJ f p|Vi(r)dr,

d
dt

(3.31)

and that
1 . S
ol < 1 | plovit? + 8| ol (3:32)
Q Q
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The three inequalities (3.30), (3.31) and (3.32) imply that

d t
& i + [ v <pven [ wlaoy+a [ [ wviepar. 639
dt Jo Q 0 0 Jo

where

C S
w = S1oOl: + | alvao) < an
Q

In view of Gronwall’s inequality, we obtain from (3.33) that

t
j pola(®)]? + f j §|Va(r)Pdr < M f pold(0)2 + L2 1y (334)
Q 0 Ja Q 2A

Because of (3.34), we observe
¢
[0 + | 198 Radr < (10O + 70) ) (335)
Now, we obtain from (2.2); that
d -
gplolee < ldwle < e
That implies
t
lo@l2 < llo(0)] 2 +L |@(7)] z2dr < Cone™.
The inequality (2.11)s—¢ follows from the resulting inequality and (3.35).
Suppose that we have
o) gs—1 + @) gs—1 < Cs_l,Aas_leAs—lt. (3.36)

For o € N3 with |a| < s, using (3.29), we obtain

1d

—— | polo“e.al? +“J |V 0% 0yii|? :J g0 (phusz)0“dsus +J (po0“021 — 0“(pod?id)) - 0%yl
2dt Jo Q Q Q

From this, we further obtain

1d J =2 J / 2 f =2
—— o“optdl” — | gpplo“u + V0“0t
i | poleal = | gptloul?) +u | Ve s

= Z f 907 p0* Tugd“opus — Z f(mpgﬁa”&?ﬁ) - 0%0i 0
Q Q

0#£Y<a 0#£y<a
< (luslgs—1 + [07@] o) |/pod® 24| 2.
We use Young’s inequality and (3.26) to have
33 (| mievaia? = | abieusl) +u | (vl
< Clv/pod®oet| e + Cclusl s + |07 Fe1)
< Cllv/pod®aed| e + Ol Frea-
Together with (3.22), we have

d — o’ an ~
G (Wmeaalts —g | plomul) + 2ulveeaial:
Q

< 2¢|/Po0® 0|22 + Cras_re*hs1t,
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—2ct

By multiplying the resulting inequality by e™*%*, we get

d - an ~ - an ~
a(e W atu|\§2) + 2ue~ % |V 0, |2,

d - - —
< %(e 2Ctj g,06|60‘u3|2> + 2Ce 2th gp6|aau3|2 + Ccag_le%As,l Ot
@ Q

Integrating from O to ¢ and using (3.22) yields
¢
e 2 /pod® (1) |22 + 21 f e 20|V ai(s) 3 2ds
0
¢
< Ca; + e_wf 9Pp10%uz (1)* + QCJ e_z“f 9Pp10%us(s)[*ds
Q 0 Q

¢
+ Ca?_l f e2(Ns—1=C)s g,
0

Note that divo*u = 0, we apply Lemma 3.2 to further get that

t
VAol +2u | X0 |Vaar) adr
0

< CaZe™ + N?|y/pod®a(t) |2 + Ap|Voi(t)] 7 (3.37)

t
+2¢ f > (=) (AQII\//Toéaﬁ(T)II%Q + Au\lw“ﬁ(s)lliz)df + Cal_ye*hott,
0
Mimicking (3.31) and (3.32), we have
d = 1 an [ 54
Z VP07, < £ 1Vpo0® T + Ally/pod® a7, (3.38)
and
t
IVea(t)|2 = [Vo“a(0)) + 2 f f Voi(r) | Vo,0%i(r)dr
0 JQ
1 t t
<|veuaO)* + ¢ J |Vo*osti(7)|72ds + A f |Vo%ii(r)|72ds
0 0

1 t t
< [[@O) e + fo X[V 0yii(7) s + Afo XV o(s) |7 adr
(3.39)

Combining (3.37), (3.38) and (3.39) gives us that

d . bt .
G (WmE ) e+ | 900 )

t

d _ ; L, R
= —IVpod* @t 7z + plVorut) 7. + 2Cuf 2DV o) | dr

e
0
t
< Cab(e ) s o (et e+ | 0|0 () )
0

t
#2¢ |0 (N mova(r) e + 2l V(o))
0
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Hence,
d t
G (20O (el + | O v adr))
dt 0
< CaZ(e ™! 4 ety 4 2(A = Agy — Qe 2RO ppaii(t) 7
t
DA+ (= Agop)pe 2ol f XD |Ve(r) [adr
0
t
L ache 2O J $E=) |\ /oo™ () |22dr.
0
Define

0
) = sup (20N (o) [ O Ve () Fadr))

0<6<t
Note that for any 6 € [0, t],

0
N0 TO) s+ | X0 [T fadr < 20ty ),

yielding that

t
1
20 (t—7) o%ii(1)|2.dr < 2(As—14CHVOL (1)
[, e < e 70

Note also that A < A;_1, we thus deduce

d — T e
(e (a0l + [ D) )

A
e S L I Ve (R —— | PV
(e + et 120G 1) V()

< Cai(e_QCt + 6_2AS‘1t) + 3{62*@@(1?).

We integrate the resulting inequality from 0 to ¢ to obtain
e+ (nwaa #(0) 32 + f 7| 9% () [}
) i \[e2ft

C”Q -

That implies
t

e—“AH*“@t(Hmmﬁ(w 72+ m f XU |V (r) Fadr )
0

< Ca; (g A, 1) \[y

Taking the supremum, we have

Ca ( ) +
y(t) < TR \f Cylt
Since ( is sufficiently small, we have y(t) is bounded for all time, i.e. for all ¢ > 0,
1
QCa ( )
( ) C As 1

As a result, we have

i
I/poda(t) [z + f XDV i(r)|adr < Cy pa2e P+,
0
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Summing over o, we obtain

t
)3 + p f D) V() |3edr < Cpe pae .

Similarly, we can obtain an estimate for |0 (¢)| z= and thus deduce our desired inequality (2.11). O

4. NONLINEAR INSTABILITY

4.1. A high-order of approximate solution. In the first part, we construct approximate solutions to
the nonlinear equations (2.1), whose H °-norm enjoys the controllability in a short time by induction.
Second, we define the difference between the exact solutions and the approximate one (see (4.8))
and derive its error estimate. Combining those estimates, we deduce the existence of escaping time
to obtain the nonlinear instability. We recall (2.15),

N
(U(N)aﬁ( )7 Z Uj7u]7pj t ‘T)a

which is a to the linearized equations (2.2). Usmg (U(N), Ny, p(N)), we closely follow Grenier’s
idea to construct approximate solutions to the nonlinear equations (2.1) in the following lemma. To
this purpose, we define

M N . M N N
= Y leiledt + > feilezt = D leledt + D gl
j=1 J=M41 J=jm j=M+1
and
N N
- Z ]cj|e>‘jt = Z ]cj]e)‘jt.
Jj=1 J=Jm

Obviously we have Gy(t) = Fy(t) forall t > 0. Let 0 < ¢y < 1, there is a unique 7 such that
SFN(T?) = «.

Lemma 4.1. Let 0 < 0 « 1 and n € N, there is an approximate solution to the nonlinear equations
(2.1), of the form

j=1
@(t,x) = ), ol (t, @), @.1)
j=1
pi(t) = Y §pP(t,x)
j=1
satisfying
0t +V(po +0%) - u* = RS,
(po + o) (0™ + u® - Vu ) + Vp* — pAT* — gotes = 4, 4.2)
Moreover, for any mteger s=20,if0<t< T(S then the j-th order coefficients o9 (t, z), @9 (t, x)
and p9(t, x) for 1 < j < n satisfy
[0, @9, p ) (O < CinGn(it), (4.3)

and the (n + 1)-th order remainders R% and S¢ satisfy
I(R%, SO (®) | s < Csnd™ Gn((n + 1)), (4.4)
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Proof. We use the induction on n to prove Lemma 4.1. For n = 1, we choose the normal mode
solutions to the linearized equations

(@, 7V, p ) (t, 2) = (o), Ty D)) (E: ).

Obviously, the functions a<1>, uY and p<1> satisfy (4.3). Substituting (a<1>, ﬁ<1>, p<1>) into the left
hand side of (2.1), we obtain

R} = V(50) (0 ),
5S¢ = (66 (60,7 + (po + o) (57 - v (57D).
Since (o0, @V, pV) € H for any s > 0, we have that R% and S¢ satisfy (4.4).

Assume that we have constructed (0<J T p<3>) as well as R“ S“ which satisfy (4.3)-(4.4) for
4 < n. We now construct (¢ g0+ pl+D) as well as RSy, S]Jrl Let

J J J
oD = S 5o ®, D = 3, D = 3 ghy®)
h=1 h=1 h=1
Substituting (677, @7, p?) into the left hand side of (4.2), we obtain the nonlinear parts
fi+1(6) = Vol ﬁ<j>7
riv1(0) = oD 0, a9 + (po + 09N TI - VA,

For 0 < t < T, we now expand f;1(6) and 7j1(0) in terms of § around § = 0. The coefficients

ARSI () .
of the (j + 1)-th order term are ](erjrl)! and J(;il)! , that are functions on (¢,z). On the other

hand, notice that for 0 < t < T°,

(3+1)
; 0 . .
fi71°(0) _ Z AjthVUOO VTN

] |
(] + 1)' Jitje=j+1
a0 @5)
+ . . ) '
m - Z le:jza<j1>atﬂ<j2> + 2 Cj1g2 PV - VI
' Jitja=j+1 Jitje=j+1

+ Z Dj17j21j30<j1>ﬁ<j2> . Vﬁ<j3>,

Ji+j2+jz=j+1

where Aj, j,, Bj, j,,Cj, 4, and Dj, 4, ;. depend on pg and physical parameters. By the induction
hypothesis (4.3) for (a<h>, u<h>, p™) (1 < h < j), we obtain, for every s > 0,

9,

D,

< Ciam(GN(1t)GN(j2t) + GG (120G () (4 6
< CimGn((F + D).

We now define the (5 + 1)-th order coefficients <1 7+1 and p9*1 as solutions of the follow-
ing inhomogeneous linear system:

+1

(G+nt 2 )
(J+ )(0)

poatq_j<]+1> + VP<]+1> — IuAu<.7+1> — go—<]+1>€3 = J(;l 1) ,

B0+ Ty - g+ — L O
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with initial data 6+ (0, z) = 0,79+ (0, ) = 0. It follows from Proposition 2.2 and Duhamel’s
principle that

EARI()
G+ D!

t
< Cjiin J A G (G + 1)7)dr
0

dr

t
/mﬁwuwﬂs<6%mnfe““f>
0 He#

(0)

M t ‘ N ; .
< Cjﬂ,neAst( > Iij U= N |ck|f e((a+1)%—As)TdT).
h=1 0 0

h=M+1
“4.7)

Here we have used (4.6) and the definition of Gy in the last inequality. As 1 < A < M, we have
from (2.12) that
(J+ DAp =22, > A,

that implies

(G+DM—A)T g _ <
e T - S - .
0 (] + 1))\k — Ay (] + 1)/\h —Ag

Plugging the resulting inequality into (4.7), we have

Jt GHDA A=At _ 1 o(G+D)A—As)t

. t
[+ (@) s < Cj+1,nfo AUTDEN((F + Dr)dr < CranGn((F + 1)),

The same argument gives us the bound of |1 (t)| s and [pY+1(t)] s to deduce (4.3).

Once, we have (6997, 797 p&?) for 1 < j < n, let

ot = N oioD, g = Y ea, pr= Y 6.
j=1 j=1 j=1

They satisfy
m 5j+1f(j+1) (0)
00% + Vpg i = — 3 L
]Z‘l (F+1)!
z, 1
P00 + Vp® — AT — goléy = — Y — 2 7
];1 (j+1)!
Let

f(6) =Vo*-a* r(d) =0 + oca* - Vi,

we thus have (0%, @®, p®) is a solution of (4.2) with

n 5j+1f(j+1)(0) o n 5j+17~(j+1)(())
RY = — ——=+ f(5), S;=-— — =+ 1r(9).
X G IO % G O

We now prove that R% and S satisfy (4.4) to complete the proof. Since f(#) and r(J) are quadratic
in terms of (0, ©®), we have that their (j + 1)-th order terms are the same as those ones of f;1(6)

and rj;1(0) forall 1 < j + 1 < n, respectively. Consequently, R and 5;‘{ have the form
Z C((U@,ﬁ<j>7p<j>>1<j<n)5h.
hzn+1

Mimicking the proof of (4.6), we obtain (4.4). Lemma 4.1 is proven. O
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4.2. The difference functions. Let us recall
(Ud7 ﬁd7pd) = (067 ﬂ67p6) - (Uaa ﬁaapa)
satisfy the nonlinear equations in §2,
0,0t + V(po + o) - d@? + Vol - % = —RY,
(po + 08y + Vp? — pAi? — godes
— —(po + oM@ - Vil + @ Va*) — oot + @ - Vi) — S,
div @ = 0.

(4.8)

We will derive the following inequality in this section.

Proposition 4.1. Let s > 3 and (0%, 4%, q%, R2, §g)(t, x) € L5.(H®) as in Lemma 4.1. Assume
that 00|+ < $p— and |0 g+ < p— There exists a universal constant Cy > 0 such that the

following inequality holds

d
2 (109 e + 17) + IV < Co (

2
1+ [|6e0®| g2 + HﬁtﬁaHIp ) (HO'dH2 . ”ﬁdHQ )
—d H H
+ oI + 1 G + @03
+ Co (| Bl 7 + 155 72)-
4.9)
To prove Proposition 4.1, we state the following lemma.

Lemma 4.2. With the same assumption as in Proposition 4.1, the following inequality holds

02 < IV s+ (14 00 2 + [ s + 1% ) (N1 + [0 20) + 520 2. 4.10)

Proof. Multiplying (4.8) by 0, and using divd, i = 0, we obtain

j(po + oY) |opad)? = J (nAT? + goles) - ot — f (po + o) (@ - Vit + a - Va®) - oy
9 Q
—f oy + @ - Vi) - oyt —j S . o,
Q Q
Using Sobolev embedding and Cauchy-Schwarz’s inequality, we get further
|07 < |IVpo + o072
< (1@ 2 + Lol )@z + (0@ 12 + 18] 12 |VZ ] 12) |0 2 | ora] .2
+ (L4 o gr2) (18| pa |V @ pa + @) 2 V| o) | 0 2 + | Sl 20t 2.
That implies
lovii 2 < |0 gz + (@ g+ 1G] g2 ) |0 g2
+ (|| 2 + @32 + 1@032) 0 2 + 193] 22
2

Applying J; (resp. 0;;) to (4.8)2, multiplying the resulting equation by ;i (resp. 6%-) and mimick-

ing the above arguments, we obtain
l0ca g2 < @ e + (17 s + 1T grs) [ @) s
+ (14 008 g2 + 1@ | 5| @ | ) |0 122 + S| 2
< M@ e+ (@ s + 17 ) 1@ s

+ (L 0@ + 1@ + 1@ ) o e + 1S3 e
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Applying Cauchy-Schwarz’s inequality, we have

L+ @35 + 0|
o < 2 (

(2 + [o%2) + |52 e
T + s + |ﬁd|323> . " "

The inequality (4.10) thus follows, Lemma 4.2 is proven. U
We now prove Proposition 4.1.

Proof. Letting o € N? with |a| < 4 and taking the a-derivative of (4.8);, we obtain that

1d
2dt

d
gl L

faa (Vo 0% faa (po + o) d)a%d—faaRgaaad

—f (aa(va i) — @0Vl )a%d —f (Vo - i) o%o? (4.11)
Q Q
- f (0%(Vpo - @) + 6°R) 0.
Q

Using Gagliardo-Nirenberg’s inequality, we bound the first integral in the right hand side of (4.11)
as

le% d =0\ _ , 07 d\pa _d ~ | d d —0 d
L (0(vo! @) = w2V ) %" 5 o s (190 ol @l + V@Vl Vo ls)
< o B (1 o + 1 g0,

For the second integral in the right hand side of (4.11), we use Sobolev embedding to get

Jaa g aozd

< Vol paldpallo?l 2 + (1V20 | a Vi o + | Vo | Lo [ V2@ 12) [ V20 12
+ (IV20% |V | Lo + V20 1 V2@ o + V0| 1o [ VP 12) [ VP07 12 4.13)
Vo0 ol @ pe + V40| 2| V@ oo + V20 o[ V2@ s\ _,
2 3.~d 4-d (N V%
+ Vo pa|[ V2| o + Vo | oo [VEE?| 12
< o s |@® | galo? | ga-

For the last integral in the right hand side of (4.11), we estimate

L (0%(Vpo - @) + *Ry) 0% < (|@] o + | Ry ) |0 o (4.14)
In view of (4.12), (4.13) and (4.14), we get
ino—duiﬂ < o (@ e + 1@ s0) + lo®| s N@ | rallo® s + (1@ e + | RSN |0 e
Using Young’s inequality, we obtain further

d d d
Hff [7s < VIV G2 + Co (L4 [@ s + 05 + lo®7a) (o + 1@ 5pa) + | RS -
(4.15)
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We proceed to derive energy estimates for the difference of velocity. Applying 0 with |a| < 3
to (4.8),, we have

(po + 00 = — > P (po + 0")0,0° Pt — Vp? + pAat + govotes — 058
0#B<a
—*((po + o®)(@ - Ve + @ - Vi) — 0°(o(0pa® + @ - V)

— > P(po+0")0, 0 Pt — Vo pt + pAovit + govoles — oSy
0#8<a
— *((po + o) (@ - V@t + a - Vi) — 0%(cd(opa® + @ - ViIP)).

Multiplying the resulting identity by 0% to get that
3V T e [ (voa?
= 2f oo |0 ? — f % (po + 00,0 Pu - 0% + gf 0*0%0%ug f 0S4 - o
Q 0#£8<a
| oot oy @ vt vy vt ol aa + V) oo
Q
(4.16)
Now, we estimate each integrals in the right hand side of (4.16). It can be seen that

f oo at? + gJ oo ud —f 0°5% . ooyt
Q

< (L + 20 )@ s + o3 + 155 1.

“4.17)

Next, we estimate the second integral as follows

3 f P (po + 00 Pat - 0al < N (1+ |70 gr2)|0:0° P o 0% e
0#B<a 0#8<

+ (1 + 0% g2) | v = | 0@ 12
< (U o o) |0vi gz @ -
Using Young’s inequality and thanks to (4.10), we get further

Jaﬁ po + 020, 0% Pat . ol
0#8<a

< vIVE s + O (L4 [0 G + 1@ s + 1371 52) (NG s + I0%150) + Coll Sl 2.
(4.18)

Next, we use Gagliardo-Nirenberg’s inequality and Sobolev embedding to have
fﬂ&a((/)o +0)a - Vi) - 0%
_ L [((po + W)@ - Vi) — (po + 0@ - Vo] - o
< @ ([ (po + 0“)@ | 13| V@ [ 1o + [V ((po + 0)@) | 1= |V 172)

—d
< @ (L4 lo ) (1 s + 17 s ).

Arguing similarly to (4.13), we have

J 0*((po + o) - var) - 0%a? < (L + o) s ) [T g |-
Q
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Hence, the fifth integral will be bounded as follows
JQ *((po + o)(@ - V' + @l - var)) - o%at < (@] s + @)@ - (4.19)
Similarly, for the sixth integral, we have
JQ (0% - vat) - 0%a? < @ Fs o ps (1@ s + 1T 15),
and
L 0% (0@’ - va®) - %@ < @ g (1@ s + 1@ o) 1@ s o s
These inequalities imply

L o (oh 0 + @ Vi) - @ < (14 [T e + @) (1750 + 0% 30).  (420)

Combining (4.15), (4.17), (4.18) and (4.19) and (4.20) gives us that

d d —d —d
o3 + 1) + [V

L+ 000 | gz + 0vit? |72

< Cv|Vil|4s + G, ( ) (o2 + 170 2%) @21

10 s + 1@ + @ s
+ Co (157 + [R5 3)-

Let v be sufficiently small, we deduce (4.9). Proof of Lemma 4.1 is finished. O

4.3. Nonlinear instability. Based on the approximate solution (¢, 4%, ¢*) in Lemma 4.1, for which
n will be chosen later (see (4.27)), we now construct a family of solutions (0‘5, 65) to (2.1) which
are nonlinearly unstable. For any 6 > 0, we define (05, 12'5) to be the unique solution of (2.1) with
initial data (o(0), %%(0)). We want to bound (¢?, @?) = (09 — ¢, @’ — i®) which is a solution of
(4.8) satisfying (¢%(0), @*(0)) = (0,0).

In what follows, the constants C; are universal ones depending only on physical parameters, M, N
and cj(j > 1), being refered later.

Proof of Theorem 2.3. First, we begin the proof with the inequality

”U(N)(t)”LQ > C1 Fy (t) forallt > 0. 4.22)
Indeed, from (2.15), we obtain that
N
lany D72 = D) e ailia +2 )] Cz‘Cje(““j)tJ Ui - U (4.23)
i:jm Jm<7/<]<N Q

It can be seen that

N
liny®)7: = D) Geiig i +2 > et f i - 1
=ljm Jm+1<i<j<N Q
N
e lliz (D) Tl gz )emtAmei),
J=jm+1
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By Cauchy-Schwarz’s inequality, we obtain

2 ) Cicje()\i+>\‘7)tj R D S 1| et A PR A
Jm+1<i<j<N Q jmtl<i<j<N
N 2
2_6(Ajm+1+&m+z)t( 3 |cj|\|ﬁj||L2>.
]=]m+1
This yields
N N 2
@3 > Y 2P i3 — eGomerAmet (N e 12 )
J=Jjm J=jm+1
N
>\. )\ — —
— e eCom T hm st (N el lze )
j=Jm+1

Due to the assumption (2.14), we deduce that

N
ligy ()32 = ) Fe? i3, — 2cF ePomerthime2l i 9,
j:jm
1 ) ) N
_ fC?me(AﬂmHJm“)tHUjm 2.

This yields

1 1
fi (D32 > &, (2t — Zeom Aot — 2o i g |2,

N
A
+ Y e uy]7e.
Jj=Jm+1

Notice that for all ¢ > 0,

eQAjmt — le(Ajm+Ajm+1)t — le(Ajm+1+Ajm+2)t > 162)‘jmt
4

Hence, we have (4.22).

Second, we estimate the existence time interval for (¢°, ). Let w be a small positive constant
which assures the local-in-time existence. Let 7* (depending on d) be the first time ¢ such that

: a —q a —a w
either [0,0%(t) | 2 + 0™ (1) | 2 + [0 (&) s + @ ()]st =
] y w (4.24)
or o) | + @ @) s = 3

Note that ¢(0) = 0, 7%(0) = 0 and that
[ O)llzzs + [@*(0)] s = O(5),

so T™ is well-defined for sufficiently small d.
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We now prove that T° < T*. Suppose that 7° > T*, on one hand, we deduce from the construc-
tion of approximate solutions in Lemma 4.1 that

[0 (D)2 + 0@ (Dl 2 + 10Ol s + @ Ol gs < Y Crnd* (J0% s + [ )
k=1

M:

< Ck n(5 Gn(kt)

)

k=1
n
<C ) (0GN(1))
k=1
= w
<C Y NFek < =
Z o 4
k=1
(4.25)
On the other hand, it follows from the definition of 7™ (4.24) and the inequality (4.9) that
d w w2 (.d4 d a a
10" s + 1) < o1+ % + 2+ ) (103 + 1) + Col1 R s +1551%).

Owing to (4.4), we further get

d
o e+ 17y0) < Call + ) (o3 + |7 3) + C20* " VG2 + 1)), (426)

Choosing n sufficiently large such that
Co(w+1)* < (n+1)A <2(n+1)Au. (4.27)

Hence, applying Gronwall’s inequality to (4.26), we have

d —d
lo Ol + 2O

< 0620+ f o~ Ca(l+w)*(t— T)(i |Cj|62(n+1)AjT+ ZN: ‘lee(nﬂ)m)dT
0 j=1 j=M+1

M
< 0362(n+1) < Z |Cj|62(n+1)>\jt + Z ‘Cj|€(n+1)At)

j=1 j=M+1

< CyNe2™),

That implies

w

loO)as + @) s < +/CaNeg™ < 1 (4.28)

The two inequalities (4.25) and (4.28) imply a contradiction to the definition of 7™ (4.24). Hence,
we have T° < T*.
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Once we have that 7° < T*, we conclude the nonlinear instability. Choosing ¢t = T, it thus
follows from (4.1), (4.3) and (4.22) that

[T 12 = 8l (T°) ]2 — Z oM@ (T%)| 2
k=2

> C10FN(T?) — Z Chn0 G (ET?)
k=2

> C10FN(T?) — Z o (OGN (T?))F (4.29)

> Cheg — Z CkmeEIg
k=2
> Gigo,
2
Thanks to (4.29), we let t = T in (4.28) to deduce

C C
| (T°) 2 > (1) |2 — (1) |12 > =5 — /N ™ > =12 (4.30)
The inequality (2.16) is proven. This ends the proof of Theorem 2.3. g
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