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ABSTRACT. Let p be positive and n ≥ 3 be an integer. Let f(·, ·) : R+ ×R+ → R+

be a continuous function. In this paper, we are concerned with positive solution to the two
following integral equations

u(x) =

∫
Rn
|x− y|pf(|y|, u(y))dy in Rn.

By imposing some suitable conditions on f , we obtain the radially symmetry property of
positive solutions to the above equation by using the method of moving spheres in integral
form.
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1. INTRODUCTION

Let n ≥ 3 be an integer. Let k be a smooth function in Rn, the equation

−∆u = k(x)u
n+2
n−2 in Rn, (1.1)

is closely related to the famous Yamabe problem as well as the prescribing scalar curvature
problem on the unit sphere Sn. We refer to [GNN79, GS81, BVV91] for celebrated results
on the existence of (non)radial solutions and their properties to Eq. (1.1). In [JLX08],
Jin, Li and Xu study the genreal second-order elliptic equation with continuous function
f(·, ·) : R+ ×R+ → R+

−∆u = f(|x|, u) and u > 0 in Rn \ {0}. (1.2)
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Imposing the condition:

for any x 6= 0, 0 < λ < |x|, |z| > λ and a ≤ b, there holds

f(|z|, a) >
( λ
|z|
)n+2

f
(∣∣∣x+

λ2z

|z|2
∣∣∣, ( |z|

λ

)n−2
b
)
,

(1.3)

the authors proved that any positive solution u ∈ C2(Rn \ {0}) to (1.2) must be radially
symmetric and monotone decreasing with respect to the origin.

In this paper, let us show the geometric extension to Eq. (1.2) with Laplace operator of
arbitrary order s ∈ R+ \ {n/2}. Following [Sil07, Def. 2.2] (see also [CFY15, CAL15]),
we introduce the nonlocal operator, that is the fractional Laplacian (−∆)s in Rn with
s ∈ (−n/2, 1], via the Fourier transform,

̂(−∆)sf(ξ) = |ξ|2sf̂(ξ), (1.4)

for any function f in the Schwartz space. In the particular case s ∈ (0, 1), the operator
(−∆)s can be presented via the singular integral, i.e.

(−∆)sf(x) := Cn,sP.V.

∫
Rn

f(x)− f(y)

|x− y|n+2s
dy

= Cn,s lim
ε→0+

∫
|y−x|≥ε

f(x)− f(y)

|x− y|n+2s
dy,

for some constant Cn,s > 0. Hence, for non-integer s > 1, the higher power fractional
Laplacian can be understood as

(−∆)s = (−∆)s−[s](−∆)[s],

where [·] is the usual floor function. We also refer to the extension method [CS07] to define
the fractional Laplacian. With the fractional Laplacian (−∆)s defined above in Rn, we
consider the following general form of elliptic equation (1.15), inspired by [JLX08],

(−∆)su = f(|x|, u) and u > 0 in Rn \ {0}, (1.5)

for some smooth function f . The equation (1.5) is related the problem of prescribing
Q-curvature in conformal geometry, that we present below to make our paper more com-
prehensive.

First, let s ∈ N \ {n/2} be an integer, we consider the model (Sn, gSn) equipped with
the standard metric gSn and let ∆Sn be the Laplace–Beltrami operator on Sn. It was dis-
covered by Graham, Jenne, Mason and Sparling [GJMS92] that there exists a generalized
operator of order 2s to the well-known conformal Laplace operator

−∆Sn +
n(n− 2)

4

in this setting. This operator is currently well-known as the GJMS operator. With the
standard metric gSn on Sn, we have the precise formula

P2s,gSn =

s∏
k=1

(
−∆Sn +

(n
2
− k
)(n

2
+ k − 1

))
. (1.6)

The GJMS operator is conformal in the sense that with any metric g̃ = v4/(n−2s)gSn for
some smooth function v on Sn, we have the following relation between the two operators
P2s,g̃ and P2s,gSn ,

P2s,g̃(ϕ) = v−
n+2s
n−2sP2s,gSn (vϕ) (1.7)

for any smooth, positive function ϕ on Sn. We set ϕ ≡ 1 in (1.7) to obtain

P2s,gSn (v) = P2s,g̃(1)v
n+2s
n−2s .
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Owing to [Juh13, Eq. (1.12)], we have

P2s,g̃(1) = (−1)s
(n

2
− s
)
Q2s,g̃

for some scalar function Q2s,g̃ known that the Q-curvature associated with the GJMS op-
erator P2s,g̃ . We thus obtain from (1.7) that

P2s,gSn (v) = Kv
n+2s
n−2s on Sn, (1.8)

for some smooth function K on Sn.

Second, let s ∈ R+ \{n/2}, the fractional extension to the GJMS operator (1.6) fulfill-
ing (1.7) on Sn has been widely studied. Repeating our previous work with Ngô [LNN23],
we briefly show the construction of P2s,gSn (see [Gon18, section 6.4] and [KL22, section
3]). Let N0 := N ∪ {0} and {Yl}l∈N0

be the L2(Sn)-orthonormal basis of spherical har-
monics of degree l. In fact, all Yl are the eigenfunctions of the (negative) Laplace–Beltrami
operator −∆Sn on Sn corresponding to the eigenvalues λl = l(l + n − 1) with l ∈ N0,
namely

−∆SnYl = λlYl, λl = l(l + n− 1). (1.9)
For any v ∈ L2(Sn), we have the unique representation

v =
∑
l∈N0

vlYl.

Let

α2s,n(l) =
Γ(l + n/2 + s)

Γ(l + n/2− s)
. (1.10)

the fractional operator P2s,gSn is now defined by

P2s,gSn (v) =
∑
l∈N0

α2s,n(l)vlYl, (1.11)

provided the right hand sides converges in L2(Sn). The fractional operator P2s,gSn (1.12)
is well-defined in the whole range s > 0, provided that α2s,n(l) = 0 when the denominator
in (1.10) vanishes. Equivalently, the operator P2s,gSn acts on L2(Sn) by multiplication
with α2s,n(l). An alternative expression for P2s,gSn is as follows

P2s,gSn =
Γ(B + 1/2 + s)

Γ(B + 1/2− s)
with B =

√
−∆Sn +

(n− 1)2

4
, (1.12)

where Γ is the usual Gamma function. For s integer, we obtain that

P2s,gSn =
(
B + s− 1

2

)(
B + s− 3

2

)
. . .
(
B − s+

3

2

)(
B − s+

1

2

)
=

s∏
k=1

(
B2 −

(2s− 2k + 1

2

)2)
,

that is exactly (1.6). On spherical harmonics Yl of degree l ∈ N0, the operator B acts by
multiplication with l+ (n− 1)/2 and therefore the operator P2s,gSn acts by multiplication
with α2s,n(l) as stated (1.10).

With the above fractional GJMS operator P2s,gSn , we still consider the equation (1.8).
Let us write N = (1, 0, .., 0) ∈ Sn as the north pole, we recall the stereographic projection
πN : Sn → Rn \ {0} and it is well-known that

(π−1N )∗(gSn) =
( 2

1 + |x|2
)2
dx2.

Making use of [FKT22, Lemma 4] gives us that

(−∆)bsc−s
(( 2

1 + |x|2
)n+2s

2 P2s,gSn (v) ◦ π−1N
)

= (−∆)bsc
(( 2

1 + |x|2
)n−2s

2 v ◦ π−1N
)
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in Rn. Therefore, if we let

u(x) =
( 2

1 + |x|2
)n−2s

2 (v ◦ π−1N )(x), (1.13)

then u solves

(−∆)bscu(x) = (−∆)bsc−s(h(|x|)u
n+2s
n−2s (x)) in Rn \ {0}, (1.14)

where h is a smooth function on R+. Heuristically speaking, equation (1.14) can be seen
as

(−∆)su(x) = h(|x|)u
n+2s
n−2s (x) in Rn \ {0}, (1.15)

which is of type (1.5). We refer to the arguments in [FKT22, page 8] for the reason that
we cannot rigorously claim this.

Not only in conformal geometry, but also problems involving the fractional Laplacian
operator (−∆)s of type (1.5) have been widely studied in other mathematical models.
We refer to [BG90, Con06, CV10] and the references therein for the picture in numerous
physical phenomena, such as anomalous diffusion and quasi-geostrophic flows, turbulence
and water waves, molecular dynamics, and relativistic quantum mechanics of stars. Let
us mention also the appearance of the (higher-order)fractional Laplacian in probability
and finance [CT04, App09], and in nonlinear elasticity and crystal dislocation [Ant05,
DFV14].

Studying the radial symmetry of solutions to Eq. (1.5) is of our interest. However, it
is not easy to extend the condition (1.3) of Jin, Li and Xu [JLX08] to the higher-order
elliptic equation (1.5) even for s integer. The main reason is that the proof in [JLX08,
Prop. 2.1] relies heavily on the maximum principle. So that, in this paper, we move to the
corresponding integral equation of Eq. (1.5),

u(x) =

∫
Rn

|x− y|pf(|y|, u(y))dy in Rn \ {0}. (1.16)

Indeed, having the fundamental solution of the fractional polyharmonic equation

(−∆)su = 0 in Rn \ {0}

(see [LNN23, page 4] and see also [CLM20, chapter 2]), we formally deduce the integral
equation (1.16) with p = 2s − n > 0. Assuming that u ∈ C1(Rn \ {0}) is a positive
solution to (1.16), we now state the main result of this note.

Theorem 1.1. Let n ≥ 2 and p > 0. Let f(α, β) : R+×R+ → R+ be a continuous
function satisfying the following condition

for any x 6= 0, 0 < λ < |x|, |z − x| > λ and a ≤ b, there holds

f(|z|, a) >
( λ

|z − x|
)p+2n

f
(∣∣∣x+

λ2(z − x)

|z − x|2
∣∣∣, ( λ

|z − x|
)p
b
)
.

(1.17)

Then, any positive solution u ∈ C1(Rn \ {0}) to (1.16) must be radially symmetric
and monotone increasing with respect to the origin.

Our main theorem reveals a sufficient condition of f to show the radial symmetry of
positive solutions to the general integral equation (1.16) via the method of moving spheres.
Proving the radially symmetry property is an initial step in studying the integral equation
(1.16), as well as the corresponding partial differential equation (1.5). It has a key role in
the classification of entire solutions (Liouville-type theorem) and in the characterization
of their asymptotic behavior, see some celebrated papers [CBS89, WX99, Li04, CLO06]
and some recent papers [Yan21, DPQ22, CDQ23, DQ23, HN24].
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We have the following remark from Theorem 1.1, that is partly complement to the recent
result of Hyder-Ngô [HN24]. Indeed, they consider the case

f(|y|, u) = fε(|y|, u) := ε
( 1

1 + |y|2
)p+n

u+
( 1

1 + |y|2
) p+2n−pq

2 u−q (q > 0).

The authors make use of the method of moving planes to show that any smooth positive
solution u to the integral equation

u(x) =

∫
Rn

|x− y|pfε(|y|, u(y))dy in Rn, (1.18)

appearing in a perturbative approach to study (sub)critical Sobolev inequalities on higher
dimensional sphere, is radially symmetric if one of the following conditions hold: 0 <
ε� 1, 0 < q ≤ (p+ 2n)/p and ε = 0, 0 < q < (p+ 2n)/p. Clearly, any solution (1.18)
in Rn is also a solution to (1.18) in Rn \ {0}.

We now use the condition (1.17) to revisit the result of Hyder-Ngô [HN24] as ε = 0
and q < (p+ 2n)/p. That means, we let

f(α, β) = (1 + α2)
pq−p−2n

2 β−q.

and use Theorem 1.1 to deduce that for any x 6= 0, 0 < λ < |x|, |z − x| > λ and a ≤ b,
there holds

(1 + |z|2)
pq−p−2n

2 a−q >
(

1 +
∣∣x+

λ2(z − x)

|z − x|2
∣∣2) pq−p−2n

2 ( λ

|z − x|
)p+2n−pq

b−q.

This inequality is equivalent to

(
b

a
)q >

( λ2

|z − x|2
1 + |z|2

1 +
∣∣x+ λ2(z−x)

|z−x|2
∣∣2)

p+2n−pq
2

. (1.19)

Thanks to [LNN23, Lemma 3.4], we have that for any x 6= 0, |z − x| > λ and λ ∈
(0,
√

1 + |x|2),

λ2

|z − x|2
1 + |z|2

1 +
∣∣x+ λ2(z−x)

|z−x|2
∣∣2 < 1.

Hence, the inequality (1.19) holds true if 0 < q < (p + 2n)/p. We thus have any C1

positive solution to the integral equation (1.18) in Rn \ {0} is radially symmetry if 0 <
q < (p+ 2n)/p.

2. SYMMETRY PROPERTY OF SOLUTIONS TO (1.16)

2.1. The method of moving spheres. We introduce the preliminaries of the method of
moving spheres to prove Theorem 1.1. In what follows, let u > 0 be a C1-solution to
(1.16) with p > 0.

Let Br(x) be the ball with radius r > 0 and center at x ∈ Rn. Given the real parameter
λ > 0 and x ∈ Rn, we denote by

ξx,λ = x+
λ2(ξ − x)

|ξ − x|2

the inversion of ξ ∈ Rn \ {x} via the sphere ∂Bλ(x).
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x

ξ

ξx,λ = x+ λ2(ξ−x)
|ξ−x|2

zx,λ

z = x+ λ2(zx,λ−x)
|zx,λ−x|2∂Bλ(x)

FIGURE 1. Inversion in the method of moving spheres.

We also denote by ux,λ the Kelvin transform of u via the sphere ∂Bλ(x), namely

ux,λ(ξ) =
( |ξ − x|

λ

)p
u(ξx,λ) =

( |ξ − x|
λ

)p
u
(
x+

λ2(ξ − x)

|ξ − x|2
)
,

for any ξ ∈ Rn \ {x}. Therefore

ux,λ(ξx,λ) =
( |ξx,λ − x|

λ

)p
u(ξ) =

( λ

|ξ − x|
)p
u(ξ).

Moreover, it is clear that (ξx,λ)x,λ = ξ and

|z − x||ξ − x||ξx,λ − zx,λ| = λ2|ξ − z|. (2.1)

The basic idea of the method of moving spheres is to compare u and ux,λ pointwise
with small λ > 0. Indeed, we will prove in Lemma 2.1 the following inequality,

ux,λ(y) ≥ u(y) (2.2)

for any y satisfying |y − x| ≥ λ > 0 and for sufficiently small λ > 0. The proof of (2.2)
relies on the condition (1.17) of f . After that, we increase λ toward the largest value of
possible to ensure that the inequality (2.2) still holds true.

2.2. A comparision lemma.

Lemma 2.1. There exists some λ0 > 0 such that for any λ ∈ (0, λ0), we have

ux,λ(y) ≥ u(y)

for any y satisfying |y − x| ≥ λ > 0.

Proof. This lemma will be proved in two steps.

In the first step, we fix x ∈ Rn and θ in the standard unit sphere Sn and compute that
d

dr

(
r−

p
2 u(x+ rθ)

)
= −p

2
r−

p
2−1u(x+ rθ) + r−

p
2 (∇u)(x+ rθ) · θ

= r−
p
2−1u(x+ rθ)

(
− p

2
+ r
∇u
u

∣∣∣
x+rθ

· θ
)

≤ r−
p
2−1u(x+ rθ)

(
− p

2
+ r‖∇ log u‖∞

)
,

because u is positive and of class C1. That means, the mapping

r 7→ r−
p
2 u(x+ rθ) (2.3)

is decreasing in the regime

0 < r < min
(

1,
p

2‖∇ log u‖∞

)
.
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Now, let y satisfy 0 < λ < |y − x| ≤ λ1. That implies

|yx,λ − x| ≤ λ ≤ |y − x|.
Hence, choosing θ = (y− x)/|y− x| ∈ Sn and r = |y− x|, we deduce from the decrease
(2.3) that

|y − x|−
p
2 u
(
x+ |y − x| y − x

|y − x|
)
≤
∣∣yx,λ − x∣∣− p2 u(x+ |yx,λ − x| y − x

|y − x|
)
.

This shows that

u(y) ≤
(∣∣yx,λ − x∣∣
|y − x|

)− p2
u(yx,λ) = ux,λ(y) (2.4)

for any y satisfying 0 < λ < |y − x| ≤ λ1.

In the second step, we consider |y − x| ≥ λ1 > 0. We will prove that

ux,λ(y) ≥ u(y) for |y − x| ≥ λ1 > 0.

To do this, we will show that∫
Rn

(1 + |z|p)f(|z|, u(z))dz <∞. (2.5)

Indeed, fix ȳ ∈ Rn such that 1 ≤ |ȳ| ≤ 2 to get that

u(ȳ) =

∫
Rn

|ȳ − z|pf(|z|, u(z))dz <∞.

It is easy to see that for z ∈ Rn \B4(0), we have

|ȳ − z| ≥ |z| − |ȳ| ≥ |z|
2
≥ 2.

Hence, we get∫
Rn\B4(0)

(1 + |z|p)f(|z|, u(z))dz ≤ (1 + 2p)

∫
Rn\B4(0)

|ȳ − z|pf(|z|, u(z))dz

≤ (1 + 2p)u(ȳ) <∞.
It follows from the continuity of u and f that∫

B4(0)
(1 + |z|p)f(|z|, u(z))dz ≤ (1 + 4p)

∫
B4(0)

f(|z|, u(z))dz <∞.

Thanks to the above inequalities, we obtain (2.5). Thanks to (2.5), we obtain for |y| ≥ 1
that ∫

Rn

|y − z|p

|y|p
f(|z|, u(z))dz ≤

∫
Rn

(1 + |z|p)f(|z|, u(z))dz <∞. (2.6)

Thus, using (2.6) and using the Lebesgue dominated convergence theorem, we deduce the
following result

lim
|y|→∞

|y|−pu(y) = lim
|y|→∞

∫
Rn

|y − z|p

|y|p
f(|z|, u(z))dz

=

∫
Rn

f(|z|, u(z))dz ∈ (0,∞),

yielding
u(y) ≤ C|y − x|p for all |y − x| ≥ λ1 and for some C > 0.

Hence, for small λ0 � λ1 and for λ ≤ λ0 we have

ux,λ(y) =
( |y − x|

λ

)p
u(yx,λ) ≥

( |y − x|
λ0

)p
inf

Bλ1 (x)
u ≥ u(y) (2.7)

for |y − x| ≥ λ1 > 0.

The two inequalities (2.4) and (2.7) help us to complete the proof. �
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Let x ∈ Rn \ {0} be arbitrary, but fixed, we define

λ(x) := sup

{
µ > 0, ux,λ(y) ≥ u(y) for all |y − x| ≥ λ > 0

and for all 0 < λ < µ

}
. (2.8)

Thanks to Lemma 2.1, we have that λ(x) is well defined and 0 < λ(x) ≤ +∞.

Proposition 2.2. There holds

λ(x) ≥ |x| for any x ∈ Rn \ {0}.

To prove Proposition 2.2, we establish integral formulations of ux,λ and ux,λ−u below.

Lemma 2.3. There holds

ux,λ(ξ) =

∫
Rn

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz, (2.9)

for any ξ ∈ Rn \ {x}.

Proof. Using (1.16) with y = zx,λ, we get

ux,λ(ξ) =
( |ξ − x|

λ

)p
u(ξx,λ)

=
( |ξ − x|

λ

)p ∫
Rn

f(|zx,λ|, u(zx,λ))|ξx,λ − zx,λ|pd(zx,λ).

Computing directly, one has

d(zx,λ) =
( λ

|z − x|
)2n

dz. (2.10)

Therefore, we obtain

ux,λ(ξ) =

∫
Rn

( |ξ − x|
λ

)p|ξx,λ − zx,λ|pf(|zx,λ|, u(zx,λ)
)( λ

|z − x|
)2n

dz.

Using the relation (2.1), we have

ux,λ(ξ) =

∫
Rn

(λ|ξ − z|
|z − x|

)p( λ

|z − x|
)2n

f
(
|zx,λ|, u(zx,λ)

)
dz

=

∫
Rn

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz.

Hence, we obtain our desired equality (2.9). The proof is completed. �

Having the formula (2.9), we obtain the integral form of the difference between ux,λ
and u.

Lemma 2.4. We have
ux,λ(ξ)− u(ξ)

=

∫
|z−x|≥λ

K(x, λ; ξ, z)
(
f(|z|, u(z))− (

λ

|z − x|
)p+2nf

(
|zx,λ|, u(zx,λ)

))
dz.

(2.11)

with the kernel K(x, λ; ξ, z) given by

K(x, λ; ξ, z) =
( |ξ − x|

λ

)p|ξx,λ − z|p − |ξ − z|p
= |ξ − zx,λ|p

( |z − x|
λ

)p − |ξ − z|p. (2.12)

Furthermore, the kernel K > 0 for any |ξ − x| > λ and |z − x| > λ.
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Proof. Using (1.16) again after decomposing the integral
∫
Rn into two parts

∫
{z:|z−x|≥λ}

and
∫
{z:|z−x|≤λ} to get

u(ξ) =

∫
{z:|z−x|≥λ}

|ξ − z|pf(|z|, u(z))dz

+

∫
{zx,λ:|zx,λ−x|≤λ}

|ξ − zx,λ|pf(|zx,λ|, u(zx,λ))d(zx,λ).

For the integral
∫
{zx,λ:|zx,λ−x|≤λ}, we make change of variable zx,λ 7→ z and use (2.10)

to obtain

u(ξ) =

∫
|z−x|≥λ

|ξ − z|pf(|z|, u(z))dz

+

∫
|z−x|≥λ

|ξ − zx,λ|pf(|zx,λ|, u(zx,λ))
( λ

|z − x|
)2n

dz.

Then, we get

u(ξ) =

∫
|z−x|≥λ

|ξ − z|pf(|z|, u(z))dz

+

∫
|z−x|≥λ

λ2n|ξ − zx,λ|p

|z − x|2n
f
(
|zx,λ|, u(zx,λ)

)
dz.

(2.13)

Note that (zx,λ)x,λ = z. Using (2.9) in Lemma 2.3, we clearly have

ux,λ(ξ) =

∫
|z−x|≥λ

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz

+

∫
{zx,λ:|zx,λ−x|≤λ}

λp+2n|ξ − zx,λ|p

|zx,λ − x|p+2n
f
(
|z|, u(z)

)
d(zx,λ)

=

∫
|z−x|≥λ

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz

+

∫
|z−x|≥λ

λp+2n|ξ − zx,λ|p

|zx,λ − x|p+2n
f
(
|z|, u(z)

)
d(zx,λ).

Thanks to (2.1) again, we have

|zx,λ − x||ξ − x||ξx,λ − (zx,λ)x,λ| = |zx,λ − x||ξ − x||ξx,λ − z| = λ2|ξ − zx,λ|

then

|ξ − zx,λ| = |z
x,λ − x||ξ − x||ξx,λ − z|

λ2
.

Therefore, using (2.10) again also, we have

ux,λ(ξ) =

∫
|z−x|≥λ

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz

+

∫
|z−x|≥λ

λp+2n|zx,λ − x|p|ξ − x|p|ξx,λ − z|p

λ2p|zx,λ − x|p+2n
f
(
|z|, u(z)

)( λ

|z − x|

)2n
dz

=

∫
|z−x|≥λ

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz

+

∫
|z−x|≥λ

|ξ − x|p|ξx,λ − z|p

λp−4n|z − x|2n|zx,λ − x|2n
f
(
|z|, u(z)

)
dz.
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Note that |zx,λ − x||z − x| = λ2, we obtain

ux,λ(ξ) =

∫
|z−x|≥λ

λp+2n|ξ − z|p

|z − x|p+2n
f
(
|zx,λ|, u(zx,λ)

)
dz

+

∫
|z−x|≥λ

|ξ − x|p|ξx,λ − z|p

λp
f
(
|z|, u(z)

)
dz.

(2.14)

In view of (2.13) and (2.14), we obtain

ux,λ(ξ)− u(ξ) =

∫
|z−x|≥λ

(
k2(

λ

|z − x|
)p+2nf

(
|zx,λ|, u(zx,λ)

)
− k1f(|z|, u(z))

)
dz.

with k1, k2 being

k1 = k1(x, λ; ξ, z) = |ξ − z|p −
( |ξ − x|

λ

)p|ξx,λ − z|p.
and

k2 = k2(x, λ; ξ, z) = |ξ − z|p − |ξ − zx,λ|p
( |z − x|

λ

)p
.

It can be seen that( |ξ − x|
λ

)2|ξx,λ − z|2 − |ξ − z|2 =
(|z − x|2 − λ2)(|ξ − x|2 − λ2)

λ2

and that ( |z − x|
λ

)2|ξ − zx,λ|2 − |ξ − z|2 =
(|z − x|2 − λ2)(|ξ − x|2 − λ2)

λ2
.

Hence, the negativity of the kernels k1 < 0 and k2 < 0 for any |ξ−x| > λ and |z−x| > λ
follows. In addition, the above calculations also tell us that k1 = k2. Hence, by putting
k1 = k2 = −K, we obtain (2.11). The proof is complete. �

We are in position to prove Proposition 2.2 now.

Proof of Proposition 2.2. By way of contradiction, we suppose λ(x0) < |x0| for some
points x0 ∈ Rn \ {0}. To simplify, we can write

λ0 = λ(x0) and δ0 = min{1, |x0| − λ0
2

} > 0.

From the definition of λ0, we know that

ux0,λ0
(y) ≥ u(y) for all y satisfying |y − x0| ≥ λ0. (2.15)

However, for some λ slightly bigger than λ0, we will prove that

ux0,λ(y) ≥ u(y) for all y satisfying |y − x0| ≥ λ.

In this situation, we obtain a contradiction to the definition of λ0 in (2.8). We thus get
λ(x0) ≥ |x0|. The proof follows from the estimates ux0,λ − u outside and inside the ball
B(x0, λ0 + δ0).

Estimate of ux0,λ − u outside the ball B(x0, λ0 + δ0). To do that, we first estimate
ux0,λ0

− u. In the region |y − x0| ≥ λ0 + δ0, we prove that there exists C0 ∈ (0, 1) such
that

(ux0,λ0
− u)(y) ≥ C0|y − x0|p for all |y − x0| ≥ λ0 + δ0. (2.16)

Let us use the identity (2.11) in Lemma 2.4 to obtain
(ux0,λ0

− u)(y)

=

∫
|z−x0|≥λ0

K(x0, λ0; y, z)
(
f(|z|, u(z))− (

λ0
|z − x0|

)p+2nf
(
|zx0,λ0 |, u(zx0,λ0)

))
dz.

(2.17)
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Let

Hx0,λ0
(z) = f(|z|, u(z))− (

λ0
|z − x0|

)p+2nf
(
|zx0,λ0 |, u(zx0,λ0)

)
, (2.18)

which is positive thanks to the condition (1.17). Hence, using the Fatou’s lemma, we have

lim inf
|y|↗∞

(ux0,λ0
− u)(y)

|y − x0|p
= lim inf
|y|↗∞

∫
|z−x0|≥λ0

K(x0, λ0; y, z)

|y − x0|p
Hx0,λ0

(z)dz

≥
∫
|z−x0|≥λ0

(( |z − x0|
λ0

)p
− 1
)
Hx0,λ0

(z)dz

> 0.

Thus, there is some small C1 > 0 and some large R ≥ δ0 such that

(ux0,λ0
− u)(y) ≥ C1|y − x0|p for all |y − x0| ≥ λ0 +R.

To obtain (2.16), we are left to show that ux0,λ0
− u is bounded from below by a positive

constant in the ring {y : λ0 + δ0 ≤ |y − x0| ≤ λ0 + R}. Thanks to the positivity of the
kernel K(x0, λ0; y, z) in the region |y − x0| > λ0 and |z − x0| > λ0 (see again Lemma
2.4), there is some small C2 > 0 such that

K(x0, λ0; y, z) ≥ C2

for all y and z satisfying

λ0 + δ0 ≤ |y − x0| ≤ λ0 +R < 2(λ0 +R) ≤ |z − x0| ≤ 4(λ0 +R).

Using this and (2.21) we can estimate

(ux0,λ0
− u)(y) ≥ C2

∫
2(λ0+R)≤|z−x|≤4(λ0+R)

Hx0,λ0
(z)dz = C3

for some C3 > 0 which depends only on x0. Combining the above estimates, we deduce
(2.16) for some C0 depending on C1 and C3.

We continue to estimate ux0,λ−u in the region |y−x0| ≥ λ0+δ0 with λ0 ≤ λ ≤ λ0+δ1
for some small δ1 ∈ (0, δ0). Indeed, since

ux0,λ(y) =
( |y − x0|

λ

)p
u(yx0,λ),

we use the continuity to get

(ux0,λ0
− ux0,λ)(y) ≥ −C0

2
|y − x0|p (2.19)

for some small δ1 ∈ (0, δ0) and for all λ0 ≤ λ ≤ λ0 + δ1 and all |y−x0| ≥ λ0 + δ0. Here
the constant C0 is as in (2.16). The two inequalities (2.16) and (2.19) implies that

(ux0,λ − u)(y) = (ux0,λ0
− u)(y) + (ux0,λ − ux0,λ0

)(y) ≥ C0

2
|y − x0|p (2.20)

for all y satisfying |y − x0| ≥ λ0 + δ0 and all λ satisfying λ0 ≤ λ ≤ λ0 + δ1.

Estimate of ux0,λ − u inside the ball B(x0, λ0 + δ0). With the constant δ1 being found
in the previous step, we continue our analysis assuming λ0 ≤ λ ≤ λ0 + δ1 to obtain (2.29)
below.

Let Hx0,λ be as same as Hx0,λ0
(see (2.18)) after replacing λ0 by λ. We have that

(ux0,λ − u)(y) ≥
∫
|z−x0|≥λ

K(x0, λ; y, z)Hx0,λ(z)dz

=
(∫

λ0+δ0≥|z−x0|≥λ
+

∫
|z−x0|≥λ0+δ0

)
K(x0, λ; y, z)Hx0,λ(z)dz.

(2.21)
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Due to (2.20), we have that ux0,λ ≥ u in the region |z − x0| ≥ λ0 + δ0 and λ0 ≤ λ ≤
λ0 + δ1, yielding∫
|z−x0|≥λ0+δ0

K(x0, λ; y, z)Hx0,λ(z)dz ≥
∫
λ0+3≥|z−x0|≥λ0+2

K(x0, λ; y, z)Hx0,λ(z)dz.

As a result, we obtain that

(ux0,λ − u)(y) ≥
(∫

λ0+δ≥|z−x0|≥λ
+

∫
λ0+3≥|z−x0|≥λ+2

)
K(x0, λ; y, z)Hx0,λ(z)dz

= (I + II).

Hence, let δ2 ∈ (0, δ1) be sufficiently small, we will prove that (see (2.29))

I + II ≥ 0 for all λ ≤ |y − x0| ≤ λ0 + δ0, λ0 ≤ λ ≤ λ0 + δ2.

Estimate of I . Thanks to the smoothness of f and u, there exists C5 > 0 independent of
δ2 such that∣∣∣f(|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ(z)

)
− f

(
|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ0

(z)
)∣∣∣

≤ C4

( λ

|z − x0|
)p|ux0,λ(z)− ux0,λ0

(z)|

≤ C5(λ− λ0) ≤ C5δ2,

for all λ ≤ |z−x0| ≤ λ0 + δ0 and all λ0 ≤ λ ≤ λ0 + δ2. Note that u(z) ≤ ux0,λ0
(z) (see

(2.15)). Hence, combining the resulting inequality with the condition (1.17) gives us that

Hx0,λ(z) = f(|z|, u(z))− (
λ

|z − x0|
)p+2nf

(
|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ(z)

)
> (

λ

|z − x0|
)p+2nf

(
|zx0,λ|,

( λ

|z − x0|
)p
u(z)

)
− (

λ

|z − x0|
)p+2nf

(
|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ(z)

)
> (

λ

|z − x0|
)p+2nf

(
|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ0

(z)
)

− (
λ

|z − x0|
)p+2nf

(
|zx0,λ|,

( λ

|z − x0|
)p
ux0,λ(z)

)
≥ −C6δ2.

(2.22)

Meanwhile, we utilize (2.12) to get∫
λ≤|z−x0|≤λ0+δ0

K(x0, λ; y, z)dz ≤ C7(|y − x0| − λ) (2.23)

for some C7 > 0 (see Appendix A). In view of the two estimates (2.22) and (2.23), we
deduce

I =

∫
λ0+δ0≥|z−x0|≥λ

K(x0, λ; y, z)Hx0,λ(z)dz ≥ −C6C7δ2(|y − x0| − λ). (2.24)

Estimate of II . Second, we estimate II as follows. For any λ0 ≤ λ ≤ λ0 + δ2 and for any
z satisfying λ0 + 2 ≤ |z − x0| ≤ λ0 + 3, we obtain from the condition (1.17) again that
Hx0,λ(z) > 0. By the continuity of f and u, that implies

min
λ0+2≤|z−x0|≤λ0+3

Hx0,λ(z) = C8 > 0.
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Hence, we obtain

II =

∫
λ0+3≥|z−x0|≥λ0+2

K(x0, λ; y, z)Hx0,λ(z)dz

≥ C8

∫
λ0+3≥|z−x0|≥λ0+2

K(x0, λ; y, z)dz.

(2.25)

Note that K(0, λ; ξ, z) = 0 for ξ ∈ ∂Bλ(0) from and that

〈∇ξK(0, λ; ξ, z), ξ〉
∣∣
|ξ|=λ = p|ξ − z|p−2(|z|2 − |ξ|2)

> p|ξ − z|p−2((λ0 + 2)2 − (λ0 + 1)2) > 0,

for all λ0 + 2 ≤ |z| ≤ λ0 + 3. Therefore, there is some C9 > 0 independent of δ2 such
that

K(0, λ0; ξ, z) ≥ C9(|ξ| − λ) (2.26)

for all ξ near ∂Bλ(0) and all z satisfying λ0 + 2 ≤ |z| ≤ λ0 + 3. However, thanks to the
positivity and the smoothness of K, we can choose C9 even smaller, if necessary, in such
a way that the preceding estimate also holds for all ξ ∈ Bλ0+δ0

(x) \ Bλ(x). Now letting
ξ = y − x0, we arrive at

K(x0, λ; y, z) = K(0, λ; y − x0, z) ≥ C9(|y − x0| − λ) (2.27)

for all λ0 + 2 ≤ |z − x0| ≤ λ0 + 3 and all λ ≤ |y − x0| ≤ λ0 + δ. Putting (2.27) into
(2.25), we arrive at

II ≥ C8C9

(∫
λ0+3≥|z−x0|≥λ0+2

dz
)

(|y − x0| − λ) =: C10(|y − x0| − λ). (2.28)

We are now in position to combine (2.24) and (2.28). By (2.24), if we choose δ2 sufficiently
small, then we have that

(ux0,λ − u)(y) = I + II ≥ (−C6C7δ2 + C10)(|y − x0| − λ) > 0, (2.29)

for λ0 ≤ λ ≤ λ0 + δ2 and for λ ≤ |y − x0| ≤ λ0 + δ0.

With the help of (2.20) and (2.29), we deduce that (ux0,λ − u)(y) > 0. This violates
the definition of λ0 in (2.8). Hence, Proposition 2.2 is proven. �

2.3. Proof of Theorem 1.1. Let us complete the proof of Theorem 1.1.

Proof. By Lemma 2.2, we have for every x ∈ Rn \ {0},
u(y) ≤ ux,λ(y) for all |y − x| ≥ λ, 0 < λ < |x|. (2.30)

Let y ∈ Rn \ {0} and a > 0 be arbitrary but fixed. So, for e be any unit vector in Rn (e.g.
e = −y/|y|), which satisfies

〈y − ae, e〉 ≤ 0. (2.31)
For any R > a, we set λ = R− a > 0 and x = Re ∈ Rn. For 0 < λ < |x|, then

|y − x|2 = |y − ae− λe|2 = λ2 + |y − ae|2 − 2λ〈y − ae, e〉 ≥ λ2,
due to (2.31). Thus, using (2.30) to get

u(y) ≤ ux,λ(y) =
( |y − x|

λ

)p
u
(
x+

λ2(y − x)

|y − x|2
)

=
( |y −Re|
R− a

)p
u
(
Re+

(R− a)2(y −Re)
|y −Re|2

)
.

Note that

Re+
(R− a)2(y −Re)
|y −Re|2

=
R(|y|2 − 2R〈y, e〉+R2)e+ (R2 − 2Ra+ a2)(y −Re)

|y −Re|2
.
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Therefore

Re+
(R− a)2(y −Re)
|y −Re|2

→ y − 2(〈y, e〉 − a)e as R→ +∞.

Moreover, ( |y −Re|
R− a

)p → 1 as R→ +∞.

Following the continuity of u, we get

u(y) ≤ u(y − 2(〈y, e〉 − a)e). (2.32)

In the inequality (2.32), we take the limit a↘ 0 to obtain

u(y) ≤ u(−y) for all y ∈ Rn \ {0}.
This inequality implies that u is radially symmetric about the origin.

To complete the proof, we will show that u is monotone decreasing with respect to
the origin. Let y = (y1, y2, ..., yn), due to the radial symmetry of u(y), it suffices to
show the monotonicity in the y1-direction. For arbitrary but fixed a > 0, let us choose
e = (1, 0, ..., 0) ∈ Rn and consider y = (y1, 0, . . . , 0) ∈ (0,+∞)×Rn−1 in such a way
that it satisfies (2.31), namely 0 < y1 < a. Then, by (2.32) and by

y − 2(〈y, e〉 − a)e = (2a− y1, 0, . . . , 0).

we obtain
u(y1, 0, ..., 0) ≤ u(2a− y1, 0, ..., 0).

Hence, the function t 7→ u(t, 0, ..., 0) is increasing on (0,+∞). This implies that the
symmetric function u is monotone increasing with respect to the origin. The proof of
Theorem 1.1 is complete. �
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APPENDIX A. ESTIMATE (2.23) FOR THE KERNEL K

This appendix is to prove (2.23) , that is∫
λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz ≤ C
(
|y − x| − λ

)
for some C > 0. The proof is standard, and we show that to make our paper fully compre-
hensive.

Let us recall the elementary inequality

|as − bs| ≤ s|a− b|max
{
as−1, bs−1

}
(A.1)

for any a, b > 0 and any s > 0. Next we prove that with κ > n, there holds∫
λ≤|z−x|≤λ+δ

|y − z|κdz ≤ C(λ, δ, |x|, R) (A.2)
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if y ∈ B(x,R). Indeed, (A.2) follows from the following estimate∫
λ≤|z−x|≤λ+δ

|y − z|κdz =

∫
{y+z:λ≤|z−x|≤λ+δ}

|z|κdz

≤
∫
B(λ+δ+|x|+R)

|z|κdz =: C

by triangle inequality. Thanks to (2.12), we obtain∫
λ+δ2≤|z−x|≤λ+δ

K(x, λ; y, z)dz

≤
∫
λ≤|z−x|≤λ+δ

∣∣∣|y − z|p − |yx,λ − z|p∣∣∣dz
+

∫
λ≤|z−x|≤λ+δ

∣∣∣( |y − x|
λ

)p
− 1
∣∣∣|yx,λ − z|pdz

= I1 + I2.

We estimate I1 and I2 term by term. For the integral term I1, using (A.1), we have∣∣∣|y − z|p − |yx,λ − z|p∣∣∣ ≤ p|y − yx,λ|max
{
|y − z|p−1, |yx,λ − z|p−1

}
.

Note that for y satisfying λ ≤ |y − x| ≤ λ+ δ,

|yx,λ − x| = λ2

|y − x|
≤ λ ≤ λ+ δ.

Hence, making use of (A.2) twice, we get for some C > 0 that

I1 ≤ C|y − yx,λ|. (A.3)

For the integral term I2, as |y − x| ≥ λ, we have∣∣∣( |y − x|
λ

)p
− 1
∣∣∣ = λ−p

∣∣∣|y − x|p − λp∣∣∣
≤ pλ−p

∣∣|y − x| − λ∣∣max
{
|y − x|p, λp

}
≤ p
(
|y − x| − λ

)
.

Thus, we continue applying (A.2) to obtain for some C > 0

I2 ≤ C
(
|y − x| − λ

)
. (A.4)

Combining (A.3) and (A.4) gives us that∫
λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz ≤ C|y − yx,λ|+ C
(
|y − x| − λ

)
= C

∣∣∣1− λ2

|y − x|2
∣∣∣∣∣y − x∣∣+ C

(
|y − x| − λ

)
≤ C

(
|y − x| − λ

)
for some C > 0, which is our desired inequality.
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