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Abstract

We consider trust-region methods for solving optimization problems where the objective is
the sum of a smooth, nonconvex function and a nonsmooth, convex regularizer. We extend
the global convergence theory of such methods to include worst-case complexity bounds in
the case of unbounded model Hessian growth, and introduce a new, simple nonsmooth trust-
region subproblem solver based on combining several iterations of proximal gradient descent
with a single projection into the trust region, which meets the sufficient descent requirements
for algorithm convergence and has promising numerical results.

AMS Subject Classifications: 47H05; 49M37; 65K05; 65K10; 90C30.
Keywords: trust-region methods; nonsmooth optimization; proximal gradient descent; weak convexity.

1. Introduction

In this work, we consider trust-region methods for solving nonconvex, nonsmooth optimization
problems of the form

min
x∈Rd

F (x) := f(x) + h(x), (1)

where f : Rd → R is smooth (at least C1) but nonconvex, and h : Rd → (−∞, +∞] is a proper,
lower semicontinuous and (possibly nonsmooth) convex function. The general form (1) encompasses
convex-constrained optimization (where h is the indicator function for the constraint set) [HR22],
and problems from areas such as optimal control of PDEs [HSW12] and imaging [ER21]. We
assume that access to f is available through at least zeroth- and first-order oracles (i.e. at least f
and ∇f are available to an algorithm) and access to h is available through direct evaluations and
its proximity operator.

Most commonly, particularly in data science [WR22], first-order methods such as the proximal
gradient method or FISTA [Bec17] are used to solve (1). In contrast, trust-region methods are
typically second-order, using either ∇2f (if available) or a suitable quasi-Newton approximation
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such as symmetric rank-1 (SR1), and are well designed to exploit potential negative curvature in
f [NW06].

In this work, we build on a recent trust-region method for solving (1) [BK23b]. The convergence
analysis in [BK23b] allows for the model Hessians to grow unboundedly across iterations k, at a
rate O(kt) as k → ∞ for t ∈ [0, 1]. The uniformly bounded case t = 0 is the most widely used
assumption for theoretical results (e.g. [CGT22]), but the case t = 1 can arise from using SR1
Hessian approximations [CGT00, Chapter 8.4.1.2], with convergence results in the smooth case
(i.e. h ≡ 0 in (1)) derived in [Pow84]; the algorithm does not converge if t > 1 [Toi88]. By
extending very recent results for smooth problems [DHO24], we broaden the convergence analysis
from [BK23b] and show worst-case complexity bounds that match those of the smooth case. We
also introduce a novel trust-region subproblem solver suitable for (1) based on a projected proximal
gradient (PPG) iteration, and show that it meets the sufficient decrease requirements for the main
trust-region algorithm. Our numerical results show that our PPG method can outperform existing
subproblem solvers [BK23a].

1.1. Existing Works

In the special case where h is the indicator function for a convex constraint set, trust-region meth-
ods have been available for many years [CGT88, CGST93]. These methods achieve a worst-case
complexity of O(ϵ−2) iterations to find an ϵ-approximate first-order critical point, although using
cubic regularization methods can improve this to O(ϵ−3/2) [CGT12, CGT22], both in the case of
uniformly bounded Hessians. Similarly, we note there are trust-region methods for general nons-
mooth F , not exploiting the F = f + h structure, such as [QS94, DLT95, CNY13, GJV16], and
[CMW23] considers F = f + h but builds a smooth approximation to F directly at each iteration.
Alternative composite formulations have also been studied, such as F = f + h ◦ c for c smooth and
nonconvex (and vector-valued) [GYY16] and F = g ◦ c + h for nonsmooth convex g, h and smooth
nonconvex c [BE19, BE20], or (1) restricted to a smooth manifold [ZYZ24].

For the specific case of (1), proximal Newton methods extend the proximal gradient method
to include second-order information about f by modifying the form of the proximity operator
(potentially making it significantly harder to evaluate). This has allowed the development of second-
order linesearch methods for (1) in the case of f both convex [LSS14] and nonconvex [LW19, KL21].

Trust-region methods for (1) but where h is nonconvex and nonsmooth are considered in
[ABO22b, ABO22a, LO23]. These methods achieve worst-case complexity bounds of O(ϵ−2) iter-
ations for uniformly bounded Hessians, and develop several subproblem solvers tailored to specific
choices of regularizer h. By contrast, [KSD10] considers the case where h and f are both convex,
yielding O(ϵ−1) worst-case complexity in this more restrictive setting. We also note [LLR24] consid-
ers the case where f is nonconvex but the local quadratic approximations used in the trust-region
subproblem are convex (such as in some formulations of nonlinear least-squares problems), and the
subproblem is solved with accelerated first-order methods.

The most relevant works for our results are [BK23b, BK23a, BK24]. These consider the same
problem (1), albeit in an infinite-dimensional setting. In [BK23b], the general algorithmic frame-
work is given, including sufficient decrease conditions for the trust-region subproblem. They show
global convergence to first-order critical points under the assumption of potentially unbounded Hes-
sians, specifically ∑∞

k=0(1 + maxj∈{0,...,k} ∥Hj∥)−1 = ∞, where Hk is the model Hessian at iteration
k, essentially assuming a growth rate of ∥Hk∥ = O(k). Global convergence of smooth trust-region
methods under this Hessian growth condition were shown in [Pow84] in the unconstrained case,
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and [Toi88] for the convex-constrained case. The theory from [Toi88] is extended to the case of
general h in [BK23b], to give global convergence, and O(ϵ−2) complexity in the case of uniformly
bounded model Hessians; this is extended to local convergence rates in [BK24] (with different local
rates depending on the quality of Hessian approximation in the model for f).

A variety of trust-region subproblem solvers for (1) are also studied in [BK23b, BK23a]. These
include nonsmooth generalizations of the standard Cauchy point and dogleg method for the smooth
(h ≡ 0) case and a nonlinear conjugate gradient method. However, from the numerical results in
[BK23a], the most successful method developed in these works is the so-called spectral proximal
gradient (SPG) method. This method essentially performs proximal gradient iterations with some
degree of linesearch to enforce both sufficient decrease and feasibility with respect to the trust
region constraint.

Lastly, we note that both [KSD10] and [OM24] consider trust-region subproblem solvers for (1)
based on combining an iterative solver with a final projection step, which is similar to the approach
in our new subproblem solver. However, [KSD10] considers only the case where f is convex, and
[OM24] uses a semismooth Newton formulation.

1.2. Contributions

We provide two main contributions in this work.
Firstly, we build on the theoretical analysis of the general nonsmooth trust-region method

from [BK23b] to include worst-case complexity in the case of unbounded model Hessians. Broadly
speaking, if the model Hessians grow at a rate ∥Hk∥ = O(kt) for t ∈ [0, 1], then we prove convergence
to an ϵ-approximate first-order critical point after at most O(ϵ−2/(1−t)) iterations if t ∈ [0, 1), and
Õ(e−cϵ−2) iterations (for some c > 0) if t = 1. Our analysis is based on recent complexity results
for the smooth case h ≡ 0 [DHO24]; our worst-case complexity bounds in the nonsmooth case are
identical to the smooth case.

Secondly, we introduce a new trust-region subproblem solver suitable for use in the main algo-
rithm, which we call a projected proximal gradient (PPG) method. Our approach is simpler than
the SPG method from [BK23b, BK23a] in that we perform several iterations of proximal gradient
descent on our model, and only once, at the end of our iterations, compute a projection to satisfy
the trust region constraint. We show that this method satisfies the sufficient decrease conditions
required for global convergence (and complexity bounds) of the main trust-region algorithm. We
numerically compare our new PPG method against SPG on a large collection of ℓ1-regularized
CUTEst [GOT15] problems, and show that PPG can outperform SPG (in the sense of the whole
trust-region algorithm converging more quickly) when high accuracy solutions are desired. We also
observe that PPG is better able to make use of larger subproblem iteration budget if available.

1.3. Organization and Notation

In Section 2, we provide the relevant technical background for nonsmooth functions. The main
trust-region algorithm and its worst-case complexity in the unbounded Hessian case are given in
Section 3. In Section 4, we introduce our new subproblem solver, and we present our numerical
results in Section 5.

Throughout, we use ∥ · ∥ to represent the Euclidean norm in Rd and the matrix 2-norm.
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2. Preliminaries

Given h : Rd → (−∞, +∞], its domain is dom h := {x ∈ Rd : h(x) < +∞} and its epigraph is
epi h := {(x, ρ) ∈ Rd×R : ρ ≥ h(x)}. We recall that h is proper if dom h ̸= ∅, lower semicontinuous
if epi h is a closed set, and convex if epi h is a convex set.

Let h : Rd → (−∞, +∞] be proper. The regular subdifferential of h at x ∈ Rd is defined by

∂h(x) :=
{

u ∈ Rd : lim inf
y→Rd

h(y) − h(x) − u⊤(y − x)
∥y − x∥

≥ 0
}

, (2)

if x ∈ dom h, and ∂h(x) := ∅ otherwise. When h is convex, the regular subdifferential coincides
with the convex subdifferential, see, e.g., [Mor06, Theorem 1.93],

∂h(x) = {u ∈ Rd : ∀y ∈ Rd, h(x) + u⊤(y − x) ≤ h(y)}. (3)

Proposition 2.1 ([Mor06, Proposition 1.107(i)]). Let h : Rd → (−∞, +∞] be proper and
f : Rd → (−∞, +∞] be differentiable at x ∈ dom h. Then

∂(f + h)(x) = ∇f(x) + ∂h(x). (4)

We recall that the proximity operator of h with parameter γ > 0 at x ∈ Rd is

Proxγh(x) := argmin
z∈Rd

(
h(z) + 1

2γ
∥z − x∥2

)
. (5)

Proposition 2.2. Let h : Rd → (−∞, +∞] be a lower semicontinuous convex function. Then
(i) Proxγh is single-valued, and u = Proxγh(x) if and only if x − u ∈ γ∂h(u).
(ii) Proxγh is nonexpansive, i.e., for all x, y ∈ Rd, ∥ Proxγh(x) − Proxγh(y)∥ ≤ ∥x − y∥.

Proof. See, e.g. [Bec17, Theorems 6.39 & 6.42]. ■

For problem (1), we will assume f is differentiable and we have access to the proximity operator
for h (see Assumption 3.1 below), and so consider the first-order stationarity measure given by

π(x, γ) := 1
γ

∥ Proxγh(x − γ∇f(x)) − x∥, (6)

for any x ∈ Rd and γ > 0, which is the same measure considered in [BK23a]. When we consider
our main algorithm and generate iterates xk, we will use the shorthand πk(γ) := π(xk, γ).

The function π(x, γ) has several useful properties for a stationarity measure, such as π(x, γ) ≥ 0
with π(x, γ) = 0 if and only if 0 ∈ ∇f(x) + ∂h(x), and being continuous in both x and γ [BK23a,
Proposition 1].

Lemma 2.3 ([Bec17, Theorem 10.9]). For any x ∈ Rd and 0 < γ1 ≤ γ2,

π(x, γ2) ≤ π(x, γ1) ≤ γ2
γ1

π(x, γ2). (7)
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For λ ∈ R, a function f : Rd → (−∞, +∞] is said to be λ-convex if for all x, y ∈ dom f and all
α ∈ (0, 1),

f((1 − α)x + αy) + λ

2 α(1 − α)∥x − y∥2 ≤ (1 − α)f(x) + αf(y). (8)

It is well known that f is λ-convex if and only if f − λ
2 ∥ · ∥2 is convex, see, e.g., [DP19, Section 5].

Then we say that f is strongly convex if λ > 0, and weakly convex if λ < 0. More properties of
λ-convex functions can be found in, e.g., [DP19, Section 5].

Example 2.4. Recall that for a symmetric matrix H ∈ Rd×d, we have H ⪰ λminI where λmin is
the minimum eigenvalue of H.

(i) The quadratic function p 7→ 1
2p⊤Hp is λmin-convex. In addition, we note that ∥H∥ =

max{|λ| : λ is an eigenvalue of H}. Thus,

∥H∥ ≥ λmin. (9)

(ii) If f1 is λ1-convex and f2 is λ2-convex, then f1+f2 is (λ1+λ2)-convex, see, e.g., [?, Lemma 5.3].
Thus, for any x ∈ Rd, g ∈ Rd, and any convex function h, the function

m(p) := c + g⊤p + 1
2p⊤Hp + h(x + p), (10)

is also λmin-convex.

Proposition 2.5. Let f : Rd → (−∞, +∞] be proper, lower semicontinuous, and λ-convex. Then,
for all x, y ∈ Rd and all u ∈ ∂f(x),

f(y) − f(x) ≥ u⊤(y − x) + λ

2 ∥y − x∥2. (11)

Proof. This follows from [DPT24, Proposition 2.1(ii)]. ■

3. Trust-Region Algorithm and Worst-Case Complexity

We begin by outlining our main trust-region algorithm for solving (1), in the case of Assumption 3.1.
This algorithm is essentially the same as [BK23a, Algorithm 1], but we will extend the analysis from
global convergence to worst-case complexity, following the approach from [DHO24]. Our algorithm
is designed to solve problems of the form (1) satisfying the following conditions.

Assumption 3.1.
(i) The smooth component f is differentiable with ∇f being L∇f -Lipschitz continuous.
(ii) The nonsmooth component h is proper, lower semicontinuous and convex.
(iii) The whole objective F is bounded below by Flow.

Although not a formal assumption, our algorithm is designed using the proximity operator of
h, and so we assume Proxγh is practical to compute. See [Bec17, Chapter 6.9] for examples of such
functions.
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Algorithm 1 Nonsmooth trust-region method for (1).
Input: Starting point x0 ∈ dom F and trust-region radius ∆0 > 0. Algorithm parameters: scaling

factors 0 < γdec < 1 < γinc and acceptance threshold η ∈ (0, 1).
1: for k = 0, 1, 2, . . . do
2: Build a local quadratic model mk (12) satisfying Assumption 3.2.
3: Solve the trust-region subproblem (13) to get a step pk satisfying Assumption 3.3.
4: Evaluate F (xk + pk) and calculate the ratio

ρk := F (xk) − F (xk + pk)
mk(0) − mk(pk) . (14)

5: if ρk ≥ η then
6: (Successful iteration) Set xk+1 = xk + pk and ∆k+1 = γinc∆k.
7: else
8: (Unsuccessful iteration) Set xk+1 = xk and ∆k+1 = γdec∆k.
9: end if

10: end for

3.1. Main Algorithm

As is standard in trust-region methods [CGT00], at each iteration k (with current iterate xk), we
construct a local approximation to the full objective F (1). In our case, we approximate the smooth
part f with a quadratic approximation and assume exact access to h, yielding an approximation

F (xk + p) ≈ mk(p) := f(xk) + ∇f(xk)⊤p + 1
2p⊤Hkp + h(xk + p), (12)

where Hk ∈ Rd×d is some symmetric matrix approximating the curvature of f , for example via
symmetric rank-1 quasi-Newton updating [NW06, Chapter 6.2]. We then compute a tentative step
pk by approximately minimizing the model subject to a constraint on the size of the step, the
trust-region subproblem

pk ≈ argmin
p∈Rd

mk(p) s.t. ∥p∥ ≤ ∆k, (13)

for some value ∆k > 0 which is dynamically updated by the algorithm. Lastly, we decide whether
to accept the tentative new iterate xk + pk by computing the ratio of the actual decrease in the
objective from the step pk compared to the predicted decrease implied by the model (14). This full
procedure is given in Algorithm 1.

As in [BK23b, BK23a], we assume that our model Hessian Hk may grow unboundedly. Specifi-
cally, we follow [DHO24, Model Assumption 4.1] and (broadly speaking) assume that ∥Hk∥ = O(kt)
for some t ∈ [0, 1]. The case t = 0 corresponds to the more common assumption of uniformly
bounded Hessians, but t = 1 can occur when Hk is generated by symmetric rank-1 quasi-Newton
updating [CGT00, Chapter 8.4.1.2]. If t > 1, the algorithm can be shown to not be globally
convergent [Toi88].

Assumption 3.2. There exist µ > 0 and t ∈ [0, 1] such that, for all k ∈ N,

max
j∈{0,...,k}

∥Hj∥ ≤ µ(1 + kt). (15)
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Lastly, we again follow [BK23a] and require the following sufficient decrease condition from the
(approximate) trust-region step (13).

Assumption 3.3. There exists κp > 0 and γmax > 0 (both independent of k) such that for all
iterations k ∈ N, the step pk satisfies

mk(0) − mk(pk) ≥ κpπk(γmax) min
{

∆k,
πk(γmax)
∥Hk∥ + 1

}
, (16)

where πk(γ) := π(xk, γ) is the first-order stationarity measure at xk.

A key feature of this work is the new projected proximal gradient subproblem solver introduced
in Section 4. In Corollary 4.4, we will show that this solver satisfies Assumption 3.3. Alternatively,
[BK23a] provides several suitable subproblem solvers.

The global convergence of Algorithm 1 has already been established.

Theorem 3.4. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then

lim inf
k→∞

πk(γmax) = 0. (17)

Proof. This is [BK23a, Theorem 1], which is a small extension of [BK23b, Theorem 3]. ■

3.2. Worst-Case Complexity

We now extend the analysis of Algorithm 1 beyond the global convergence in Theorem 3.4 and
consider its worst-case complexity. That is, we wish to bound the number of iterations it takes to
drive the stationarity measure πk(γmax) below some desired level ϵ > 0. The analysis in this section
follows [DHO24], which considers only the smooth case h ≡ 0.

First, we bound the error in our model (12). Denote

c1 := 1
2 max(L∇f , 1). (18)

Lemma 3.5. Suppose Assumption 3.1 holds. Then the trust-region step pk satisfies

|F (xk + pk) − mk(pk)| ≤ c1(1 + ∥Hk∥)∆2
k, (19)

where c1 is given by (18).

Proof. Since ∇f is L∇f -Lipschitz continuous, we have the standard bound (e.g. [NW06, Appendix
A])

|f(xk + pk) − f(xk) − ∇f(xk)⊤pk| ≤ 1
2L∇f ∥pk∥2. (20)

Then by the definitions of F and mk we have

|F (xk + pk) − mk(pk)| = |f(xk + pk) + h(xk + pk)

− f(xk) − ∇f(xk)⊤pk − 1
2p⊤

k Hkpk − h(xk + pk)|, (21)

≤ 1
2L∇f ∥pk∥2 + 1

2∥Hk∥ · ∥pk∥2, (22)

≤ c1∥pk∥2 + c1∥Hk∥ · ∥pk∥2. (23)

The result then follows from ∥pk∥ ≤ ∆k. ■
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An important quantity to track in our analysis is

ak := ∆k · 1 + maxj≤k ∥Hj∥
minj≤k πj(γmax) . (24)

We have the following.

Lemma 3.6. Suppose Assumptions 3.1 and 3.3 hold. Then, for all k ∈ N,

ak ≥ amin := min
{

a0, γdec,
γdecκp(1 − η)

c1

}
, (25)

where ak and c1 are from (24) and (18), respectively.

Proof. We first note that ak/∆k is non-decreasing by definition, and so

ak+1
∆k+1

≥ ak

∆k
. (26)

We will show the result by induction. The case k = 0 is trivial by the definition of amin, so now
suppose ak ≥ amin for some k.

First, if ak ≥ min{1, κp(1 − η)/c1}, then by the updating mechanism for ∆k (see Algorithm 1)
and (26) we have

ak+1 = ak+1
∆k+1

· ∆k+1 ≥ ak

∆k
· γdec∆k = γdecak ≥ γdec min

{
1,

κp(1 − η)
c1

}
≥ amin, (27)

and we are done.
Now suppose that ak < min{1, κp(1 − η)/c1}. Then since mk(0) = F (xk) by the definition of

mk, we have

|ρk − 1| = |F (xk + pk) − mk(pk)|
mk(0) − mk(pk) ≤ c1(1 + ∥Hk∥)∆2

k

κpπk(γmax) min
{

∆k, πk(γmax)
1+∥Hk∥

} , (28)

using Lemma 3.5 and Assumption 3.3. Hence

|ρk − 1| ≤ c1 (1 + maxj≤k ∥Hj∥) ∆2
k

κp [minj≤k πj(γmax)] min
{

∆k,
minj≤k πj(γmax)
1+maxj≤k ∥Hj∥

} , (29)

= c1ak∆k

κp min
{

∆k, ∆k
ak

} , (30)

= c1
κ

ak < 1 − η, (31)

using the assumption ak < 1 to get min(∆k, ∆k/ak) = ∆k for the last equality. Thus we have
ρk ≥ η, so iteration k is successful. By the trust-region updating mechanism, ∆k+1 ≥ ∆k, and so
using (26) we get

ak+1 = ak+1
∆k+1

· ∆k+1 ≥ ak

∆k
· ∆k = ak ≥ amin, (32)

and we are done. ■
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Lemma 3.7. Suppose Assumptions 3.1 and 3.3 hold. Then for each k,

mk(0) − mk(pk) ≥ κpamin · minj≤k πj(γmax)2

1 + maxj≤k ∥Hj∥
, (33)

where amin is defined in (25).

Proof. From Assumption 3.3 and the definition (24) of ak, we have

mk(0) − mk(pk) ≥ κpπk(γmax) min
{

∆k,
πk(γmax)
1 + ∥Hk∥

}
, (34)

≥ κp

[
min
j≤k

πj(γmax)
]

min
{

ak · minj≤k πj(γmax)
1 + maxj≤k ∥Hj∥

,
minj≤k πj(γmax)
1 + maxj≤k ∥Hj∥

}
, (35)

= κp · min{ak, 1} · minj≤k πj(γmax)2

1 + maxj≤k ∥Hj∥
. (36)

The result then follows from ak ≥ amin (Lemma 3.6) and 1 > γdec ≥ amin. ■

We also need the following technical lemmas. The first is relevant to Assumption 3.2, and the
second will be used to bound the time before the first successful iteration.

Lemma 3.8. Suppose µ > 0 and t > 0. Then for all k1 < k2 we have
k2∑

k=k1

1
1 + µ(1 + (k + 1)t) ≥ (k1 + 1)t

1 + µ(1 + (k1 + 1)t)

∫ k2+2

k1+1

1
st

ds. (37)

Proof. This is [DHO24, Lemma 5]. ■

Lemma 3.9. Suppose a1, a2 > 0. Then there exists k∗ such that k > k∗ implies k > a1 + a2
√

k,
and moreover we have k∗ = Θ(a1) as a1 → ∞.

Proof. The inequality k ≥ a1+a2
√

k holds provided that
√

k is at least the larger root of t2−a2t−a1,
i.e,

k >

a2 +
√

a2
2 + 4a1

2

2

=
2a1 + a2

2 + a2
√

a2
2 + 4a1

2 , (38)

which gives k∗ = Θ(a1). ■

Our first main result bounds the total time until the first successful iteration.

Lemma 3.10. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then if π0(γmax) ≥ ϵ > 0, then there is
at least one successful iteration, and if k0 is the first successful iteration we have k0 = O(log(1/ϵ))
as ϵ → 0.

Proof. We have that the iterations k = 0, . . . , k0 − 1 are unsuccessful, and so x0 = x1 = · · · = xk0 .
Thus, π0(γmax) = · · · = πk0(γmax) ≥ ϵ and ∆k0 = γk0

dec∆0. Applying Lemma 3.6 and Assump-
tion 3.2, we have (for all k)

γk0
dec∆0 = ∆k0 ≥ minj≤k0 πj(γmax)

1 + maxj≤k0 ∥Hj∥
· amin ≥ ϵ

1 + µ(1 + kt
0) · amin. (39)
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Equivalently,

log(1 + µ(1 + kt
0)) ≥ log

(
ϵamin
∆0

)
+ k0 log(γ−1

dec). (40)

Using the identity log(x) ≤ 2
e

√
x for all x > 0 [Mit70, Section 3.6.1], together with t ≤ 1 we get

2
e

√
1 + µ + µk0 ≥ log

(
ϵamin
∆0

)
+ k0 log(γ−1

dec). (41)

Now using the identity √
x + y ≤

√
x + √

y for x, y ≥ 0, we have

2
√

1 + µ

e
+

2√
µ

e

√
k0 ≥ log

(
ϵamin
∆0

)
+ k0 log(γ−1

dec), (42)

or

k0 ≤ 1
log(γ−1

dec)

[
2
√

1 + µ

e
+ log

( ∆0
ϵamin

)]
+

2√
µ

e log(γ−1
dec)

√
k0. (43)

From Lemma 3.9, we get that k0 is finite, and k0 ≤ O(log(1/ϵ)) as ϵ → 0. ■

Now consider a desired accuracy level ϵ, and define kϵ to be the first iteration with πkϵ(γmax) < ϵ
(or kϵ = ∞ if this never occurs).

If π0(γmax) < ϵ, then we have kϵ = 0 and no further effort is required. Hence we will assume
our desired accuracy level satisfies ϵ ≤ π0(γmax). In this case, from Lemma 3.10 we have a first
successful iteration k0 with k0 = O(log(1/ϵ)). Since xk is only changed on successful iterations, we
have πk(γmax) = π0(γmax) for all k ≤ k0, and so we must have kϵ > k0.

Assume that

τ is a positive integer such that γincγ
τ−1
dec < 1, (44)

which must exist due to γdec < 1.
We now define the following sets:

• S := {j ∈ {0, 1, 2, . . . } : ρj ≥ η} is the set of all successful iterations

• Sk := {j ∈ {0, 1, 2, . . . , k} : ρj ≥ η} = {j ∈ {k0, . . . , k} : ρj ≥ η} is the set of all successful
iterations up to iteration k, with S(ϵ) := Skϵ .

• Uk := {j ∈ {0, 1, 2, . . . , k} : ρj < η} is the set of all unsuccessful iterations up to iteration k,
with U(ϵ) := Ukϵ .

• For k ≥ k0, define Vk := {j ∈ {k0, . . . , k} : |Sj | ≥ j/τ} is the set of iterations for which we
have had a relatively high fraction of successful iterations in the history to that point.1

• For k ≥ k0, define Wk := {j ∈ {k0, . . . , k} : |Sj | < j/τ} is the set of iterations for which we
have had a relatively low fraction of successful iterations, Wk = {k0, . . . , k} \ Vk.

1For example, if τ = 3 and j ∈ Vk, then at least 1/3 of the iterations 0, . . . , j were successful. We may choose
τ = 3 if for example we have the common parameter choices γinc = 2 and γdec = 0.5.
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Lemma 3.11. Let rk be any strictly positive, non-decreasing sequence, and we have at least one
successful iteration (i.e. k0 exists). Then for any k ≥ k0, we have

τ
∑

j∈Sk

1
rj

≥
∑

j∈Vk

1
rj

=
k∑

j=k0

1
rj

−
∑

j∈Wk

1
rj

, (45)

using the convention
∑

j∈∅
1
rj

= 0.

Proof. This is [DHO24, Lemma 7].
■

Lemma 3.12. Suppose Assumptions 3.1, 3.2 and 3.3 hold, and we have at least one successful
iteration (i.e. k0 exists). Then for any ϵ > 0,

∑
k∈Wkϵ

1
1 + µ(1 + kt) ≤ ∆0ξ

ϵamin
, (46)

again with the convention
∑

k∈∅ ak = 0, and where

ξ :=
∑
k∈N

(γincγ
τ−1
dec )k/τ < ∞. (47)

Proof. First, note that indeed ξ < ∞ since it is a geometric series ∑k∈N δk for δ = (γincγ
τ−1
dec )1/τ

with δ < 1 by the definition of τ in (44).
If Wkϵ = ∅ the result is trivial. Otherwise, fix k ∈ Wkϵ (and so in particular k ≤ kϵ) and let

rk = 1 + µ(1 + kt). Then Assumption 3.2, Lemma 3.6 and the update mechanism for ∆k give

aminϵ

rk
≤ ak

minj≤k πj(γmax)
1 + maxj≤k ∥Hj∥

≤ ∆k = γ
|Sk|
inc γ

k−|Sk|
dec ∆0. (48)

Since k ∈ Wkϵ , we have k > τ |Sk|, and so

aminϵ

rk
≤ γ

k/τ
inc γ

k−k/τ
dec ∆0 = (γincγ

τ−1
dec )k/τ ∆0. (49)

Summing over all k ∈ Wkϵ then gives

aminϵ
∑

k∈Wkϵ

1
rk

≤
∑

k∈Wkϵ

(γincγ
τ−1
dec )k/τ ∆0 ≤

∑
k∈N

(γincγ
τ−1
dec )k/τ ∆0, (50)

and we are done. ■

We can now state our main worst-case complexity result.

Theorem 3.13. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then for any 0 < ϵ ≤ π0(γmax), if
0 ≤ t < 1 we have

kϵ ≤
[
(1 − t)(c2ϵ−2 + c3ϵ−1)1 + µ(1 + kt

0)
1 + kt

0
+ (k0 + 1)1−t

]1/(1−t)

− 2, (51)

11



and if t = 1 we have

kϵ ≤ exp
(

(c2ϵ−2 + c3ϵ−1)1 + µ(1 + kt
0)

1 + kt
0

)
(k0 + 1) − 2, (52)

where in both bounds we use the constants

c2 := τ [F (x0) − Flow]
ηκamin

, and c3 := ∆0ξ

amin
. (53)

If instead ϵ > π0(γmax), then kϵ = 0.

Proof. If ϵ > π0(γmax), the result is trivial. Otherwise, from ϵ ≤ π0(γmax) and Lemma 3.10, we
know that there must be a first successful iteration (i.e. k0 exists).

For successful iterations k ∈ S(ϵ), we have, using Lemma 3.7,

F (xk) − F (xk + pk) ≥ η(mk(0) − mk(pk)), (54)

≥ ηκamin · minj≤k πj(γmax)2

1 + maxj≤k ∥Hj∥
, (55)

≥ ηκamin · ϵ2

1 + µ(1 + kt) . (56)

Summing over all k ∈ S(ϵ) (and noting that xk+1 = xk for k /∈ S(ϵ)), we have

F (x0) − Flow ≥
∑

k∈S(ϵ)
F (xk) − F (xk + pk) ≥ ηκaminϵ2 ∑

k∈S(ϵ)

1
1 + µ(1 + kt) . (57)

Define rk = 1 + µ(1 + kt), which is strictly positive and non-increasing. Hence Lemmas 3.11 and
3.12 give

F (x0) − Flow ≥ ηκaminϵ2

τ

 kϵ∑
j=k0

1
rj

−
∑

j∈Wkϵ

1
rj

 , (58)

≥ ηκaminϵ2

τ

 kϵ∑
j=k0

1
rj

− ∆0ξ

ϵamin

 . (59)

Finally, Lemma 3.8 gives

F (x0) − Flow ≥ ηκaminϵ2

τ

[
(1 + kt

0)
rk0

∫ kϵ+2

k0+1

1
st

ds − ∆0ξ

ϵamin

]
, (60)

or equivalently ∫ kϵ+2

k0+1

1
st

ds ≤
(
c2ϵ−2 + c3ϵ−1

) rk0

1 + kt
0
. (61)

We get the final result from evaluating the integral,∫ kϵ+2

k0+1

1
st

ds =
{ (kϵ+2)1−t−(k0+1)1−t

1−t , if 0 ≤ t < 1,

log(kϵ + 2) − log(k0 + 1), if t = 1,
(62)

and rearranging for kϵ. ■
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Algorithm 2 Projected proximal gradient method for nonsmooth trust-region subproblem (63).
Parameters: stepsize γ > 0, maximum iterations N ∈ N and trust-region scaling µu ≥ 1.

1: Set i = 0 and u0 = x.
2: while i < N and ∥ui − x∥ ≤ µu∆ do
3: ui+1 = Proxγh(ui − γg − γH(ui − x)).
4: i = i + 1.
5: end while
6: return p∗ = ∆

max{∆,∥ui−x∥}(ui − x).

In summary, the worst-case complexity bounds are the same as the smooth case [DHO24], as
summarized below. In the case of uniformly bounded Hessians (t = 0), we recover the standard
O(ϵ−2) worst-case iteration complexity for smooth trust-region methods (e.g. [CGT22, Theorem
2.3.7]).

Corollary 3.14. Suppose the assumptions of Theorem 3.13 hold. If 0 ≤ t < 1, then kϵ =
O(ϵ−2/(1−t)), and if t = 1 then kϵ = Õ(ecϵ−2) for some c > 0, where Õ(·) hides logarithmic factors
of size log(1/ϵ).

Proof. This follows directly from (51) and (52), and then using k0 = O(log(1/ϵ)) from Lemma 3.10.
■

4. Projected Proximal Gradient Subproblem Solver

In this section we introduce our new solver for the nonsmooth trust-region subproblem (c.f. (13))

p∗ ≈ argmin
s∈Rd

m(p) := c + g⊤p + 1
2p⊤Hp + h(x + p), s.t. ∥p∥ ≤ ∆, (63)

where here x ∈ Rd is the current iterate, c ∈ R, g ∈ Rd and H ∈ Rd×d (symmetric) form the current
quadratic approximation for f and ∆ > 0 is the current trust-region radius. Our approach is based
on minimizing m using the proximal gradient method [Bec17, Chapter 10.2], with the constraint
∥p∥ ≤ ∆ enforced at the end by projecting into the feasible region.

A full specification is given in Algorithm 2. In particular, we note that the stepsize γ for the
proximal gradient part is a (to-be-specified) input, and to reduce the total effort we terminate the
proximal gradient part early if we move too far outside the trust-region, ∥ui − x∥ > µu∆k (for
µu > 1).

First, we lower bound the decrease in m achieved in the first iteration.

Lemma 4.1. Suppose h satisfies Assumption 3.1(ii), ∥H∥ ≤ L and λ := λmin(H). Then for any
iteration i of Algorithm 2 we have

m(ui − x) − m(ui+1 − x) ≥
(1

γ
− L + λ

2

)
∥ui+1 − ui∥2. (64)

Proof. From the iteration ui+1 = Proxγh(ui − γg − γH(ui − x)) and the optimality condition for
the proximity operator (Proposition 2.2) we get

ui − ui+1 − γg − γH(ui − x) ∈ γ∂h(ui+1), (65)
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and so
1
γ

(ui − ui+1) + H(ui+1 − ui) ∈ g + H(ui+1 − x) + ∂h(ui+1) = ∂m(ui+1 − x). (66)

By assumption, m is λ-convex (see Example 2.4) and so from Proposition 2.5 we have

m(ui − x) − m(ui+1 − x) ≥
〈1

γ
(ui − ui+1) + H(ui+1 − ui), ui − ui+1

〉
+ λ

2 ∥(ui − x) − (ui+1 − x)∥2 (67)

= 1
γ

∥ui+1 − ui∥2 − (ui+1 − ui)⊤H(ui+1 − ui) + λ

2 ∥ui+1 − ui∥2 (68)

≥
(1

γ
− L + λ

2

)
∥ui+1 − ui∥2, (69)

which completes the proof. ■

We can now show that Algorithm 2 achieves sufficient decrease in the model.

Theorem 4.2. Suppose h satisfies Assumption 3.1(ii), ∥H∥ ≤ L and λ := λmin(H). Then the
output p∗ of Algorithm 2 satisfies

m(0) − m(p∗) ≥ θ∥u1 − x∥ min (∆, ∥u1 − x∥) , (70)

where

θ := 1
γ

− L + λ

2 + min
(

0,
λR(γL)2

2

)
, (71)

and where for any t > 0 we define R(t) := ∑N−1
i=0 (1 + t)i = (1+t)N −1

t > 1.

Proof. Suppose the loop in Algorithm 2 terminates after n ∈ {1, . . . , N} iterations (note that the
termination conditions ensure at least one loop iteration is run).

Since Proxγh is nonexpansive (Proposition 2.2), for any i ∈ {0, . . . , n − 2},

∥ui+2 − ui+1∥ ≤ ∥ui+1 − ui − γH(ui+1 − ui)∥ ≤ (1 + γL)∥ui+1 − ui∥, (72)

and so by induction we have ∥ui+1 −ui∥ ≤ (1+γL)i∥u1 −u0∥ for all i ∈ {0, . . . , n−1}. By definition
of R(t), this gives us

∥un − x∥ = ∥un − u0∥ ≤
n−1∑
i=0

∥ui+1 − ui∥ ≤ R(γL)∥u1 − u0∥ = R(γL)∥u1 − x∥, (73)

where the second inequality uses n ≤ N . Next, we apply Lemma 4.1 to obtain

m(0) − m(un − x) =
n−1∑
i=0

m(ui − x) − m(ui+1 − x), (74)

≥
(1

γ
− L + λ

2

) n−1∑
i=0

∥ui+1 − ui∥2, (75)

≥
(1

γ
− L + λ

2

)
∥u1 − x∥2, (76)

14



where the last line uses n ≥ 1, yielding ∑n−1
i=0 ∥ui+1 − ui∥2 ≥ ∥u1 − u0∥2 = ∥u1 − x∥2.

Now, define α := ∆
max(∆,∥un−x∥) ∈ (0, 1], so the output of Algorithm 2 is p∗ = α(un −x). Writing

p∗ = (1 − α)0 + α(un − x) and using the λ-convexity of m (Proposition 2.5) we get

(1 − α)m(0) + αm(un − x) ≥ m(p∗) + λ

2 α(1 − α)∥un − x∥2, (77)

and so from (76) we have

m(0) − m(p∗) ≥ α(m(0) − m(un − x)) + λ

2 α(1 − α)∥un − x∥2, (78)

≥ α

(1
γ

− L + λ

2

)
∥u1 − x∥2 + λ

2 α(1 − α)∥un − x∥2. (79)

If λ ≥ 0 then we use α ≤ 1 to conclude λ(1−α)
2 ≥ 0, and if λ < 0 then we use α > 0 to get

λ(1−α)
2 > λ

2 . Hence

λ(1 − α)
2 ≥ min

(
0,

λ

2

)
, (80)

and so

m(0) − m(p∗) ≥ α

(1
γ

− L + λ

2

)
∥u1 − x∥2 + α min

(
0,

λ

2

)
∥un − x∥2. (81)

We then apply (73) to get

m(0) − m(p∗) ≥ α

(1
γ

− L + λ

2

)
∥u1 − x∥2 + α min

(
0,

λ

2

)
R(γL)2∥u1 − x∥2 = αθ∥u1 − x∥2.

(82)

Lastly, if ∥u1 − x∥ ≤ ∆ then α = 1, so α∥u1 − x∥ = ∥u1 − x∥ = min(∆, ∥u1 − x∥). Instead, if
∥u1 − x∥ > ∆ then α = ∆

∥u1−x∥ and so α∥u1 − x∥ = ∆ = min(∆, ∥u1 − x∥). In either case, we get
the desired result. ■

From Lemma 4.2, using the fact that limt→0 R(t) = N , we note that θ > 0 holds provided we
pick the stepsize γ > 0 to be sufficiently small (for any choice of total iterations N). However,
in light of Assumption 3.2, the value of L may grow unboundedly over the iterations of the main
trust-region algorithm (Algorithm 1). The below result shows that regardless of the value of L,
there is a range of values of γ that achieve sufficient decrease.

Lemma 4.3. Assume ∥H∥ ≤ L and g = ∇f(x), and we run Algorithm 2 with at most N ≥ 1
iterations with stepsize γ > 0. Then there exists c∗ > 0 and κs > 0 such that, for all γ ∈
[c∗/(10L), c∗/L], we have

m(0) − m(p∗) ≥ κsπ(x, γ) min
(

∆,
π(x, γ)

L

)
. (83)

The constants c∗ and κs depend on N , but not γ or µu.
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Proof. From Lemma 4.2 with the conservative bound λ = −L and ∥u1 − x∥ = γπ(x, γ) by the
definition of π(x, γ) (6), we have

m(0) − m(p∗) ≥
(

1 − 3γL

2 − γLR(γL)2

2

)
π(x, γ) min

(
∆, (γL)π(x, γ)

L

)
. (84)

Now suppose that γ = c/L for some 0 < c < 1. Then

m(0) − m(p∗) ≥
(

1 − 3c

2 − cR(c)2

2

)
π(x, γ) min(1, c) min

(
∆,

π(x, γ)
L

)
(85)

= c

(
1 − 3c

2 − cR(c)2

2

)
π(x, γ) min

(
∆,

π(x, γ)
L

)
(86)

Furthermore, since R(c) = ∑N−1
i=0 (1 + c)i ≤ N(1 + c)N−1, a sufficient condition for the result to

hold is therefore to choose κs such that

c

(
1 − 3c

2 − c[N(1 + c)N−1]2
2

)
≥ κs > 0. (87)

Since the factor inside the brackets approaches 1 as c → 0+, there exists c∗ such that

1 − 3c

2 − c[N(1 + c)N−1]2
2 ≥ 1

2 , ∀ c ∈ (0, c∗]. (88)

Thus (87) and hence the final result holds with, for example, κs = c∗

20 and any c ∈ [c∗/10, c∗]. ■

Our final result confirms that the sufficient decrease requirement Assumption 3.3 can be achieved
by running Algorithm 2 with decreasing choices of γ, regardless of the size of ∥H∥.

Corollary 4.4. Suppose the assumptions of Lemma 4.3 hold. If we run Algorithm 2 with stepsize
choices γj = αjγ0 for some α ∈ (0.1, 1) and j = 0, 1, 2, . . . , with γ0 ≤ γmax, then there is a finite j
(possibly dependent on L and N) such that

m(0) − m(p∗) ≥ κsπ(x, γmax) min
(

∆,
π(x, γmax)

L

)
, (89)

for some κs > 0 depending on N but independent of L.

Proof. Since α ∈ (0.1, 1), there must be at least one j for which γj ∈ [c∗/(10L), c∗/L], and so
Lemma 4.3 holds. The result follows from π(x, γj) ≥ π(x, γ0) ≥ π(x, γmax) (Lemma 2.3 with
γj ≤ γ0 ≤ γmax). ■

Remark 4.5. In our numerical experiments, follow the approach in Corollary 4.4, where we accept
the current choice of γj if all computed iterates ui of Algorithm 2 satisfy m(0) − m(ui) > 0 and
m(0) − m(p∗) > 0. For the backtracking, we use the heuristic choice γ0 = 2∥g0∥

3∥H0g0∥ , where g0
and H0 are the model gradient and Hessian at the first iteration. This choice arises from setting
1
γ0

− L + λ
2 = 0 (compare with Lemma 4.1) under the conservative assumption λ = −L, and where

L = ∥H0∥ is approximated by one iteration of the power method, ∥H0∥ ≥ ∥H0g0∥/∥g0∥. The
successful value γj in one iteration of Algorithm 1 is then taken to be the value of γ0 in the next
iteration. We do not change the value of N across iterations of Algorithm 1.
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5. Numerical Experiments

In our experiments we compare Algorithm 1 with different choices of subproblem solver. Our
implemented version of Algorithm 1 uses ∆0 = 1 and a slightly more sophisticated mechanism for
choosing xk+1 and ∆k+1, similar to [NW06, Algorithm 4.1]. Specifically, we set xk+1 = xk + pk if
ρk ≥ 10−3 and xk+1 = xk otherwise, and

∆k+1 =


min(2∆k, 1010), ρk ≥ 0.75 and ∥pk∥ ≥ (1 − 10−5)∆k,
0.5∆k, ρk < 0.25,

∆k, otherwise.

(90)

This modification does not affect the complexity theory developed in Section 3, and was chosen for
practicality. The two choices of subproblem solver we compare for this version of Algorithm 1 are:

• PPG: the projected proximal gradient method developed in Algorithm 2; and

• SPG: the spectral proximal gradient method given in [BK23a, Algorithm 3].

The SPG method was chosen for comparison as it was the top-performing method of the 5 subprob-
lem solvers compared in [BK23a] (excluding one method that specifically exploits an L1 regulariza-
tion structure rather than just using Proxγh). Both methods use comparable problem information:
they interact with the model Hessian Hk only through Hessian-vector products, and with the non-
smooth term h through only evaluations of h and its proximity operator. For PPG we use µu = 2
and α = 0.9 (α is used for backtracking; see Corollary 4.4 and Remark 4.5) and for SPG we set
tmin = 10−12, tmax = 1012, τ = 10−5, t0 = 1 and τk = 10−3hk (with all values except t0 taken
from [BK23a]). We consider the impact of varying the maximum iterations N for both PPG and
SPG subproblem solvers, and show results for N ∈ {15, 30, 50}, where N = 15 is the value used in
[BK23a].

For our test problems (1), we use h(x) = ∥x∥1 and take f to be from a collection of 154
unconstrained CUTEst problems [GOT15, FRB22] with dimension d ∈ [2, 50] based on [Rag22,
Appendix A.1]. These problems are listed in Appendix A. For all problems we use the exact
Hessian Hk = ∇2f(xk) to build our model (12). We run all test problems until we reach first-order
optimality level πk(1) = π(xk, 1) ≤ 10−6, capped at 104 iterations of Algorithm 1.

To compare our (subproblem) solvers, we measure the number of iterations taken to achieve
πk(1) ≤ τ for the first time, for some accuracy level τ ≪ 1. We plot both data [MW09] and
performance profiles [DM02]. For solvers S ∈ S and problems P ∈ P, let K(S, P, τ) be the first
iteration with πk(1) ≤ τ (with K = +∞ if this never occurs). For a given solver S and accuracy level
τ , data profiles measure the proportion of problems solved after some fixed number of iterations,

dS,τ (α) = 1
|P|

|{P : K(S, P, τ) ≤ α}|, ∀α ≥ 0, (91)

and performance profiles measure the proportion of problems solved within some ratio of the fastest
solver for that problem,

pS,τ (α) = 1
|P|

|{P : K(S, P, τ) ≤ α min
S′∈S

K(S′, P, τ)}|, ∀α ≥ 1. (92)

Our results compare PPG and SPG subproblem solvers with N ∈ {15, 30, 50} for accuracy levels
τ ∈ {10−3, 10−6}, with data and performance profiles given in Figure 1.
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Figure 1. Comparison of PPG (Algorithm 2) and SPG [BK23a] subproblem solvers with increasing maximum
iterations N ∈ {15, 30, 50} in the trust-region method Algorithm 1.

For low accuracy solutions τ = 10−3, the three SPG subproblem solvers outperform the PPG
subproblem solvers, with the PPG solvers improving in performance with larger values of N . The
best PPG variant, N = 50, has comparable performance to the SPG solvers.

However, for high accuracy solutions τ = 10−6, all the PPG variants notably outperform all
the SPG variants. We also note that increasing the value of N for PPG continues to improve the
performance, where increasing N for SPG has limited benefit.

Thus, our results suggest that PPG with larger N is a more effective subproblem solver than
PPG with smaller N , and that PPG can outperform SPG when higher accuracy solutions are
desired.

6. Conclusion and Future Work

We extended the theoretical analysis of the nonsmooth trust-region method from [BK23b] to prove
worst-case complexity bounds in the case of unbounded model Hessians, and showed results that
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match the smooth case [DHO24]. We also introduced the projected proximal gradient nonsmooth
trust-region subproblem solver, a simple method that demonstrates good numerical performance,
particularly when high-accuracy solutions of the main problem (1) are desired. Potential directions
for future work include extending our results to the derivative-free case (i.e. where ∇f) is not
available, and handling more complicated h via inexact proximity operator evaluations.
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A. List of Test Problems

The following table contains a list of the 154 CUTEst problems [GOT15, FRB22] used for the
numerical experiments in Section 5 and their dimension d ∈ [2, 50], based on the collection from
[Rag22, Appendix A.1]. Any values in brackets after the problem name are the optional problem
parameters used.

Name (params) d Name (params) d Name (params) d
AKIVA 2 FREUROTH (N = 10) 10 PALMER2C 8

ALLINITU 4 GAUSSIAN 3 PALMER3C 8
ARGLINA (N = 10) 10 GBRAINLS 2 PALMER4C 8
ARGLINB (N = 10) 10 GENHUMPS (N = 5) 5 PALMER5C 6
ARGLINC (N = 10) 10 GENROSE (N = 5) 5 PALMER5D 4

ARGTRIGLS (N = 10) 10 GROWTHLS 3 PALMER6C 8
BARD 3 GULF 3 PALMER7C 8
BEALE 2 HAHN1LS 7 PALMER8C 8

BENNETT5LS 3 HAIRY 2 PENALTY1 (N = 10) 10
BIGGS6 6 HATFLDD 3 PENALTY2 (N = 10) 10

BOX (N = 10) 10 HATFLDE 3 POWELLBSLS 2
BOX3 3 HATFLDFL 3 POWELLSG (N = 16) 16

BOXBODLS 2 HEART6LS 6 POWER (N = 20) 20
BOXPOWER (N = 10) 10 HEART8LS 8 QUARTC (N = 25) 25
BROWNAL (N = 10) 10 HELIX 3 RAT42LS 3

BROWNBS 2 HIELOW 3 ROSENBR 2
BROWNDEN 4 HILBERTA (N = 5) 5 ROSENBRTU 2

BROYDN3DLS (N = 10) 10 HILBERTB (N = 10) 10 ROSZMAN1LS 4
BROYDNBDLS (N = 10) 10 HIMMELBB 2 S308 2

BRYBND (N = 10) 10 HIMMELBF 4 SBRYBND (N = 10) 10
CHNROSNB (N = 25) 25 HIMMELBG 2 SCHMVETT (N = 3) 3
CHNRSNBM (N = 25) 25 HIMMELBH 2 SCOSINE (N = 10) 10

CHWIRUT1LS 3 HUMPS 2 SCURLY10 (N = 10) 10
CHWIRUT2LS 3 INDEFM (N = 10) 10 SENSORS (N = 3) 3

CLIFF 2 JENSMP 2 SINEVAL 2
COSINE (N = 10) 10 KIRBY2LS 5 SINQUAD (N = 5) 5

CUBE 2 KOWOSB 4 SISSER 2
DENSCHNA 2 LANCZOS1LS 6 SNAIL 2
DENSCHNB 2 LANCZOS2LS 6 SPARSINE (N = 10) 10
DENSCHNC 2 LANCZOS3LS 6 SPARSQUR (N = 10) 10
DENSCHND 3 LIARWHD (N = 36) 36 SSBRYBND (N = 10) 10
DENSCHNE 3 LOGHAIRY 2 SSCOSINE (N = 10) 10
DENSCHNF 2 LSC1LS 3 SSI 3

DIXON3DQ (N = 10) 10 LSC2LS 3 STREG 4
DJTL 2 MANCINO (N = 20) 20 THURBERLS 7

DQDRTIC (N = 10) 10 MARATOSB 2 TOINTGOR 50
DQRTIC (N = 10) 10 MEXHAT 2 TOINTGSS (N = 10) 10

ECKERLE4LS 3 MEYER3 3 TOINTPSP 50
EDENSCH (N = 36) 36 MGH09LS 4 TOINTQOR 50
ENGVAL1 (N = 2) 2 MGH10LS 3 TQUARTIC (N = 10) 10

ENGVAL2 3 MISRA1BLS 2 TRIDIA (N = 20) 20
ENSOLS 9 MISRA1DLS 2 VARDIM (N = 10) 10

ERRINROS (N = 25) 25 MOREBV (N = 10) 10 VAREIGVL (N = 19) 20
ERRINRSM (N = 25) 25 NCB20B (N = 22) 22 VESUVIALS 8

EXPFIT 2 NONCVXU2 (N = 10) 10 VESUVIOLS 8
EXTROSNB (N = 5) 5 NONCVXUN (N = 10) 10 VESUVIOULS 8

FBRAIN3LS 6 NONDIA (N = 20) 20 VIBRBEAM 8
FLETBV3M (N = 10) 10 OSBORNEB 11 WATSON (N = 12) 12
FLETCBV2 (N = 10) 10 OSCIGRAD (N = 10) 10 YFITU 3
FLETCBV3 (N = 10) 10 OSCIPATH (N = 5) 5 ZANGWIL2 2
FLETCHBV (N = 10) 10 PALMER1C 8
FLETCHCR (N = 10) 10 PALMER1D 7

Table 1. List of CUTEst problems used for numerical experiments.
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