
AN ANALYTIC PROOF OF GUI–LI’S DIFFERENTIAL INEQUALITY 1

QUỐC ANH NGÔ AND TRUNG NGUYEN 2

Abstract. In a recent work due to C. Gui and Q. Li (Math. Z. 305 (2023) Art. 40), the
following integral inequality ∫ +∞

0
eu(r)dr ≤ π

is proved for any radial C2-solution u to the differential inequality

∆u + e2u ≤ 0 in R2.

However, the argument provided in the paper is purely geometric. In this short note,
we provide a purely analytic proof for the above inequality, hence partly answering
Question 8.6 in the work of Gui and Li. In fact, we show that the inequality remains
valid for any radial solution to the differential inequality in the punctured space R2 \{0}.
Comments on higher dimensional spaces are also made.

1. Introduction 3

Bishop’s volume comparison theorem in differential geometry is a classical theorem 4

that provides the estimate 5

volg (M) ≤ vol(Sn) (1.1) 6

for any compact n-dimensional Riemannian manifold (M,g) whose the Ricci curvature 7

satisfies 8

Ricg ≥ (n− 1)g; 9

see [Bis63], see also [Bes87, page 16]. Here and always, Sn denotes the unit n-sphere in 10

Rn+1 with the standard metric, namely the constant sectional curvature is 1. Without the 11

compactness, (1.1) is not necessarily true. For e.g., with respect to the metric g = e2uδ, 12

where δ denotes the standard Euclidean metric and u is any C2-solution to 13

∆u + e2u = 0 in R2, (1.2) 14

the volume of the conformal flat Riemannian manifold (R2, g) enjoys either volg (R2) = 15

4π or volg (R2) = +∞. See [CL91, CW94] and related references. Geometrically, the 16

Gaussian curvature of (R2, g) is equal to 1 because 17

Kg =
(
−∆u +Kδ

)
e−2u = 1, 18

thanks to the flatness of (R2,δ); and as one is in two dimension, it is well-known that 19

Ricg = Kgg . Thus, we have Ricg = g = (2−1)g . In the language of PDE, the above result 20

simply reads 21∫
R2

e2udx1dx2 ∈
{
4π,+∞

}
22

with x = (x1,x2). See Appendix B for an example of u so that the integral above is 23

infinite. 24
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In a recent paper by Gui and Li, see [GL23], various geometric inequality on the25

conformal flat manifold (R2, e2uδ) are derived, here instead of considering the PDE (1.2)26

the authors consider u being any C2-solution to the following differential inequality27

∆u + e2u ≤ 0 in R2. (1.3)28

Among other results, Gui and Li show that if u is a C2-radial solution to (1.3), then there29

holds30

volg (R
2) ≤ 4π = vol(S2), (1.4)31

namely, Bishop’s estimate (1.1) is true in this non-compact case. In other words, the32

alternative volg (R2) = +∞ never occurs if u is a radial solution to the equation (1.2).33

Apart from the Gaussian curvature point of view, see [Bes87, Theorem 1.159(f) and34

section 1.119(a)], which reads35

Kg = −(∆u)e−2u ≥ 1,36

it is worth recalling that the presence of (1.3) is equivalent to saying that the Ricci37

curvature of (R2, g) is bounded from below by 1, namely Ricg ≥ g , see [GL23, equation38

(6.6)] for even higher dimensions. So, the above result of Gui and Li extends Bishop’s39

estimate to the case of non-compact manifolds in the radial setting. It turns out that40

limiting to the class of radial functions is necessary for (1.4) to hold because it is known41

that there is a solution u to (1.3) such that the conformal metric e2uδ does not enjoy42

(1.4), in fact, volg (R2) can be arbitrary large, see [Lyt23, Proposition 1.2].43

To prove (1.4), Gui and Li first establish the following two-side inequalities44

A(r)
(∫

R2
e2udx −A(r)

)
≤ l(r)2 ≤ 4πA(r)−A(r)2 (1.5)45

where we denote by46

A(r) =
∫
Br

e2udx and l(r) =
∫
∂Br

euds47

the conformal perimeter and conformal volume of the ball Br of radius r > 0 in R2,48

respectively. Assuming the finite of the integral
∫
R2 e

2udx, which is also known as49

volg (R2) or simply A(+∞), it now follows from (1.5) that50

A(r)
(∫

R2
e2udx −A(r)

)
≤ 4πA(r)−A(r)251

which, by canceling A(r), then yields52 ∫
R2

e2udx ≤ 4π,53

which is exactly the desired estimate (1.4). Interestingly, it is also shown in [GL23, page54

20] that (1.4) can be derived from either of the two inequalities in (1.5). It is worth noting55

that the upper bound for l2 in (1.5) can be though of as the reverse Alexandrov–Bol56

inequality, or the reverse isoperimetric inequality, because the classical Alexander–Bol57

inequality states58

l(∂Ω)2 ≥ 4πA(Ω)−A(Ω)259

for any Riemannian surface Ω with the Gaussian curvature ≤ 1, see [Ban76, Suz92,60

Top99]. (The two quantities l(∂Ω) and A(Ω) are the conformal length of ∂Ω and61

conformal volume of Ω.) Hence, the lower bound for l2 in (1.5) can be though of as62

an Alexandrov–Bol type inequality for higher Gaussian curvature since the Gaussian63

curvature of (R2, e2uδ) is now ≥ 1. This can also be considered as the Lévy–Gromov64

isoperimetric inequality, see [Gro80].65

To establish the lower bound for l2 in (1.5), the authors exploit a sophisticated ar-66

gument involving the well-known Heintze–Karcher inequality, see [HK78], and a key67
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ordinary differential inequality, see (1.7), that we are about to describe. To be more 68

precise, let u be any function satisfying 69

u′′ +
u′

r
+ e2u ≤ 0 for r > 0, (1.6) 70

then following interesting inequality 71∫ +∞

0
eu(r)dr ≤ π (1.7) 72

holds; see [GL23, Proposition 5.1]. The inequality (1.7) is sharp in the sense that the right 73

hand side π cannot be replaced by any smaller number. This can be easily verified by 74

testing the function 75

ureg(r) = log
2

1+ r2
for r ≥ 0. 76

This function ureg is of class C2(R) and fulfills 77

u′′reg +
u′reg
r

+ e2ureg = 0. 78

In addition, there holds 79∫ +∞

0
eureg(r)dr = π. 80

We note that the integral in (1.7) can be made arbitrarily close to 0. This can be verified 81

by using the function log(2ε/(1 + r2)) with ε ∈ (0,1). 82

The geometric meaning of (1.7) is that the conformal distance 83

distg (0,x) ≤ π for any x ∈ R2. 84

In particular, by the triangle inequality, the conformal diameter of (R2, g) fulfills 85

diamg (R
2) ≤ 2π. (1.8) 86

In fact, it is proved in [GL23, Theorem 1.5 and Proposition 6.1] that diamg (Rn) ≤ 87

π which is sharp. This is closely related to the Bonnet–Myers theorem for complete 88

manifolds, see [Mye41]. However, our situation is different because (R2, g) is no longer 89

complete, see Lemma A.1. It is worth noting that without the symmetry of u, generally 90

we do not expect (1.8). Again, we refer the reader to [GL23, Theorem 1.4] for a sufficient 91

condition. 92

It is worth emphasizing that (1.7) is also related to the powerful sphere covering in- 93

equality and its dual and singular discovered in [GM18], in [BGJM19], and in [GHM20]. 94

These inequalities are stated for domains of the Gaussian curvature ≤ 1. However, with 95

help of the first inequality in (1.5), a reverse sphere covering inequality and its dual in 96

the radial setting are obtained; see [GL23, Theorems 1.9 and 1.10]. 97

In [GL23], the key inequality (1.7) was proved by geometric argument which mimics 98

the idea of the proof of the Bonnet–Myers theorem. This procedure is possible, although 99

(R2, g) is not necessary complete, due to the radial symmetry of the conformal factor 100

in the underlying metric g . The motivation of writing this note comes from a comment 101

in [GL23], which shows the lack of an analytic argument for the proof of (1.7). In this 102

note, on one hand, we indeed provide an analytic proof for (1.7), on the other hand, we 103

slightly improve (1.7) for a larger class of functions satisfying (1.6). 104

Toward a possible generalization of (1.7), we observe from the geometric proof given 105

in [GL23] that the function u satisfying (1.6) needs to be defined everywhere in [0,+∞). 106

However, it turns out that (1.7) remains valid for any function u defined in (0,+∞). As 107

the main finding of our note, let us state this as a theorem. 108
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Theorem 1.1. Let u : (0,+∞)→ R be any C2-function satisfying (1.6), namely

u′′ +
u′

r
+ e2u ≤ 0 for r > 0,

then the inequality (1.7) holds, namely

0 <

∫ +∞

0
eu(r)dr ≤ π.

Moreover, the range (0,π] in the inequality is optimal in the sense that the integral∫ +∞
0 eu(r)dr can be any number in (0,π].

First we note that the upper bound π in the inequality is sharp, which can be easily109

verified by testing the function110

using(r) = log2− log
(
r1−
√
2/2(2 + r

√
2)
)

with r > 0.111

This function is obviously singular at 0 and still solves112

u′′sing +
u′sing
r

+ e2using = 0 for r > 0,113

but certainly we have114 ∫ +∞

0
eusing(r)dr = π.115

Now we let ε ∈ (0,1) be arbitrary. By considering the function116

u0(r) = logε+using(r) = log(2ε)− log
(
r1−
√
2/2(2 + r

√
2)
)

with r > 0117

we know that the above function u0 is well-defined, thanks to ε > 0, and still satisfies118

(1.6) because119

u′′0 +
u′0
r

+ e2u0 = u′′sing +
u′sing
r

+ ε2e2using = (ε2 − 1)e2using < 0,120

thanks to ε2 < 1. In addition, there holds121 ∫ +∞

0
eu0(r)dr = ε

∫ +∞

0
eusing(r)dr = επ.122

Hence, this shows that the integral
∫ +∞
0 eu(r)dr can be any number in (0,π].123

Our last comment concerns the higher dimensions. Again it was proved in [GL23]124

that under the condition Ricg ≥ (n− 1)g , we still have125

diamg (R
n) ≤ π126

for any n ≥ 3. If we regard the integral in (1.7) is the conformal distance between 0 and127

infinity, then we know that (1.7) remains true in Rn with n ≥ 3. In other words, in the128

radial setting a suitable bound on the Ricci curvature is enough to gain (1.7). We shall129

revisit this further in section 3.130

2. Proof131

It suffices to provide an analytic proof of the inequality in Theorem 1.1. Let u ∈132

C2(0,+∞) be a non-trivial function satisfying (1.6). For clarity, we divide our proof into133

several steps as follows.134

Step 1. (A simpler version of (1.6).) Since the function u is defined only in (0,+∞), it is135

more convenient to use the following change of variable136

r = es with s ∈ R,137
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or equivalently s = log r with r > 0. Then we define 138

v(s) = u(r) for s ∈ R. 139

Then v ∈ C2(R) and by direct calculation we easily get 140

u′(r) = v′(s)e−s and u′′(r) = (v′′(s)− v′(s))e−2s. 141

From this and (1.6) we arrive at 142

v′′ + e2(v+s) ≤ 0 in R (2.1) 143

and a change of variable leads to 144∫ +∞

0
eu(r)dr =

∫ +∞

−∞
ev(s)+sds. 145

Now we define a function w given by 146

w(s) = v(s) + s. 147

Obviously, w ∈ C2(R) and from (2.1) we get 148

w′′ + e2w ≤ 0 in R. (2.2) 149

Our aim is to show that 150∫ +∞

−∞
ew(s)ds ≤ π. 151

Thanks to w ∈ C2(R) and because w′′ < 0 in R, see (2.2) above, we know that w′ is 152

strictly decreasing in R. Hence, either w′ has some zero or w′ has a fixed sign, namely, 153

one of the following three alternatives occurs: 154

• either w′ is sign-changing (due to the strict monotonicity), 155

• or w′ > 0 everywhere in R, 156

• or w′ < 0 everywhere in R. 157

Step 2. (Assuming the function w′ has a fixed sign.) As discussed earlier, if w′ has a 158

fixed sign, then either w′ > 0 or w′ < 0 everywhere. We show that this is not the case. 159

Substep 2.1. We first rule out the case w′ > 0 everywhere in R. Indeed, by contradiction 160

we assume w′ > 0 everywhere. Consequently, w is monotone increasing in R, so is the 161

function e2w. In particular, there holds 162

e2w(s) ≥ e2w(0) for all s ≥ 0. 163

Now making use of (2.2) and the above estimate gives 164

w′(s)−w′(0) =
∫ s

0
w′′(τ)dτ ≤ −

∫ s

0
e2w(τ)dτ ≤ −

∫ s

0
e2w(0)dτ = −e2w(0)s 165

for all s ≥ 0. By sending s↗ +∞ we conclude that w′ is negative somewhere. This is a 166

contradiction, hence the alternative w′ > 0 everywhere cannot occur. 167

Substep 2.2. Now we rule out the alternative w′ < 0 everywhere, whose proof is almost 168

similar to the proof presented in the preceding case. Indeed, by contradiction we sup- 169

pose that w′ < 0 everywhere, namely w is monotone decreasing in R, so is the function 170

e2w. Hence, 171

e2w(s) ≥ e2w(0) for all s ≤ 0. 172

Now making use of (2.2) and the above estimate gives 173

w′(0)−w′(s) =
∫ 0

s
w′′(τ)dτ ≤ −

∫ 0

s
e2w(τ)dτ ≤ −

∫ 0

s
e2w(0)dτ = e2w(0)s 174

for all s ≤ 0. In other words, we have 175

w′(s) ≥ w′(0)− e2w(0)s. 176
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By sending s↘−∞ we conclude that w′ is positive somewhere. This is a contradiction,177

hence the alternative w′ < 0 everywhere cannot occur.178

Step 3. (Assuming the function w′ is sign-changing.) From now on we focus on the179

remaining alternative, namely w′ is sign-changing, namely there is some s0 ∈ R such180

that181

w′(s0) = 0.182

In fact, as w′′ < 0 in R, see (2.2), such a number s0 is unique. Moreover, there holds183

w′(s) > 0 > w′(t) for any s < s0 < t.184

Denote185

C = ew(s0) and h = w −w(s0).186

Clearly, h enjoys h(s0) = 0, h′(s0) = 0, and h′ < 0 in (s0,+∞). Moreover,187 ∫ +∞

0
eu(r)dr =

∫ +∞

−∞
ew(s)ds = C

∫ +∞

−∞
eh(s)ds188

and we also have189

h′′ +C2e2h ≤ 0 in R. (2.3)190

In the next two steps we show that191

C

∫ +∞

s0

eh(s)ds ≤ π
2

(2.4)192

and that193

C

∫ s0

−∞
eh(s)ds ≤ π

2
. (2.5)194

Once we have the above two estimates, the proof follows.195

Step 4. (The integral
∫ +∞
s0

.) Now we show that (2.4) holds. Thanks to h′ < 0 on [s0,+∞)196

by multiplying both sides of (2.4) by h′ and integrating over [s0, s] we arrive at197 ∫ s

s0

h′(t)
(
h′′(t) +C2e2h(t)

)
dt ≥ 0,198

which then yields199 (
h′(s)

)2
+C2

(
e2h(s) − 1

)
≥ 0 in [s0,+∞), (2.6)200

thanks to h(s0) = 0. As before, since h′ < 0 in [s0,+∞) and h(s0) = 0, we deduce201

that h < 0 in (s0,+∞). Thus, the function eh is monotone decreasing in (s0,+∞) and202

eh(s) ∈ (0,1] for any s ≥ s0. Therefore, one can define a function y : [s0,+∞)→ [0,π/2)203

as follows204

y(s) = arccos(eh(s)).205

Obviously, y(s0) = 0 and206

eh(s) = cos(y(s)) for s ≥ s0,207

namely h(s) = logcosy(s). From this we obtain208

h′ = −
siny
cosy

y′ ,209

which, in particular, gives y′ > 0 everywhere in (s0,+∞). We now come back to (2.6) to210

get211 (
−
siny
cosy

y′
)2

+C2
(
(cosy)2 − 1

)
≥ 0 in [s0,+∞),212

thanks to e2h = (cosy)2. Thus, resolving the above inequality gives213

y′(s) ≥ C|cosy(s)| ≥ C cosy(s) for any s > s0,214
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thanks to y′ > 0. We are now in position to obtain the following estimate 215

C

∫ +∞

s0

eh(s)ds = C

∫ +∞

s0

cos(y(s))ds ≤
∫ +∞

s0

y′(s)ds ≤
(π
2
− y(s0)

)
=
π
2
, 216

which yields the desired estimate (2.4). 217

Step 5. (The integral
∫ s0
−∞.) Now, by a similar argument we show that (2.5) holds. Indeed, 218

now multiply both sides of (2.4) by h′ and integrate over [s, s0] with arbitrary s < s0 to 219

get 220∫ s0

s
h′(t)

(
h′′(t) +C2e2h(t)

)
dt ≤ 0, 221

thanks to h′ > 0 on (−∞, s0]. Hence, instead of (2.6) one should have 222

−
(
h′(s)

)2
+C2

(
1− e2h(s)

)
≤ 0 in (−∞, s0], (2.7) 223

but this is still nothing but (2.6), however, on (−∞, s0]. Now as h′ > 0 in (−∞, s0) and 224

h(s0) = 0, we get h < 0 in (−∞, s0). Hence, 0 < eh(s) ≤ 1 for any s ≤ s0. From this one 225

can find a function z : (−∞, s0]→ [0,π/2) such that 226

eh(s) = cos(z(s)) for s ≤ s0. 227

Arguing similarly, we arrive at 228

h′ = − sinz
cosz

z′ , 229

which gives z′ > 0 everywhere in (−∞, s0) and z(s0) = 0. Coming back to (2.7) we show 230

have 231(
− sinz
cosz

z′
)2

+C2
(
(cosz)2 − 1

)
≥ 0 in (−∞, s0], 232

thanks to e2h = (cosz)2. Thus, as z′ ≥ 0, resolving the above inequality gives 233

z′(s) ≥ C|cosz(s)| ≥ C cosz(s) for any s < s0. 234

Hence, we estimate the integral in (2.5). Clearly, we have 235

C

∫ s0

−∞
eh(s)ds = C

∫ s0

−∞
cos(z(s))ds ≤

∫ s0

−∞
z′(s)ds ≤

(
z(s0)−

(
− π
2

))
=
π
2
, 236

which yields the estimate (2.5) we need. 237

Step 6. (Completing the proof.) Finally, combing the two estimates (2.4) and (2.5) yields 238

C

∫ +∞

−∞
eh(s)ds = C

∫ +∞

0
eh(s)ds+C

∫ 0

−∞
eh(s)ds ≤ π 239

which is our desired estimate. The optimality of this inequality can be verified easily by 240

making use of the function using. 241

Remark 2.1. In Step 2 of the above proof, we essentially show that the differential in- 242

equality (2.2), namely w′′ + e2w ≤ 0 in R, does not admit solution w whose w′ has a 243

sign. In terms of u, if w′ had a sign, then
∫ +∞
0 eudr would be divergent. Indeed, let us 244

consider the case w′ < 0 everywhere. Then we clearly have u′(r) < 1/r in (0,+∞). A 245

simple integration shows that the function r 7→ u(r) + logr is monotone decreasing in 246

(0,+∞). In particular, there holds 247

u(r) + log r ≥ u(1) + log1 = u(1) (2.8) 248

for all 0 < r ≤ 1. Thus, u(r) ≥ u(1) + log(1/r) for r ∈ (0,1]. Hence 249∫ 1

0
eudr ≥ eu(1)

∫ 1

0

dr
r

= +∞. 250
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If w′ > 0 everywhere, then (2.8) holds for all r ≥ 1. Thus, we should arrive at251 ∫ +∞

1
eudr ≥ eu(1)

∫ +∞

1

dr
r

= +∞.252

3. Some further remarks253

Let us discuss in this section the higher dimensional cases. First, we consider (1.6) in254

Rn with n ≥ 3 although it has no geometric background. Previously, we regard (1.6) as255

the radial version of the equation ∆u + e2u ≤ 0 in R2. In Rn with n ≥ 3, a similar radial256

version reads as follows257

u′′ +
n− 1
r

u′ + e2u ≤ 0 for r > 0. (3.1)258

Hence, it is natural to ask whether or not (1.7) remains true for any function u satisfying259

(3.1). The answer, unfortunately, is no. A simple counter-example in R3 is a modification260

of ureg given by261

u1(r) = log
11
10

+ureg = log
(22
10

1
1+ r2

)
for r ≥ 0.262

Then in R3, (3.1) is true because263

u′′1 +
2
r
u′1 + e2u1 = − 50r2 +29

25(1+ r2)2
< 0 for any r > 0.264

However,265 ∫ +∞

0
eu1(r)dr =

11
10

∫ +∞

0
eu1(r)dr =

11π
10

> π.266

However, we can formulate the following question.267

Question 1. Does there exist any constant C > 0 such that268 ∫ +∞

0
eu(r)dr ≤ C269

for any function u : [0,+∞)→ R satisfying (3.1)? If the answer is yes, what is the sharp270

constant?271

Unfortunately, the answer is still no. Indeed, for arbitrary ε > 0 let us consider272

u2(r) = log
( 1
1+ r

)
for r ≥ 0.273

Then274

u′′2 +
n− 1
r

u′2 + e2u2 = −n− 1+ (n− 3)r
(1 + r)2r

< 0 for any r > 0275

as n ≥ 3 and276 ∫ +∞

0
eu2(r)dr =

∫ +∞

0

dr
1+ r

= +∞.277

Let us now discuss the case of scalar curvature Rg of (Rn, g) with n ≥ 3. Then, under278

the conformal change279

g = u
4

n−2 δ.280

we know that Rg enjoys281

Rg =
(
− 4(n− 1)

n− 2
∆u +Rδ

)
u−

n+2
n−2 = −4(n− 1)

n− 2
(∆u)u−

n+2
n−2 ;282
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see [Bes87, Corollary 1.161]. If we take the trace of the both sides of Ricg ≥ (n − 1)g , 283

then we arrive at Rg ≥ n(n− 1), which leads us to 284

−∆u ≥ n(n− 2)
4

u
n+2
n−2 . 285

Then we can ask the following question. 286

Question 2. Does there exist any constant C > 0 such that 287∫ +∞

0
u(r)

2
n−2 dr ≤ C 288

for any function u : [0,+∞)→ R satisfying 289

u′′ +
n− 1
r

u′ +
n(n− 2)

4
u

n+2
n−2 ≤ 0 290

for r > 0 with n ≥ 3? If the answer is yes, what is the sharp constant? 291

Note that if we choose 292

ubub(r) =
( 2
1+ r2

) n−2
2

with r ≥ 0, 293

which is just the standard bubble, then 294

u′′bub +
n− 1
r

u′bub +
n(n− 2)

4
u

n+2
n−2
bub = −2

n−2
2 n(n− 2)

( 1
1+ r2

) n+2
2

+
n(n− 2)

4
u

n+2
n−2
bub = 0. 295

In this case, we easily get 296∫ +∞

0
u
2/(n−2)
bub dr = π. 297

In view of Bray’s football theorem, see [Bra97], which still involves suitable smallness 298

of the Ricci curvature, Question 2 is not expected to be true. This is indeed the case if 299

u is singular at 0. For e.g., one can consider the following very slow decay function 300

u3(r) =
(n− 2

n

) n−2
4
r−

n−2
2 with r > 0. 301

Obviously, 302

u′′3 +
n− 1
r

u′3+
n(n− 2)

4
u

n+2
n−2
3 = −

(n− 2
n

) n−2
4 (n− 2)2

4
r−

n+2
2 +

n(n− 2)
4

(n− 2
n

) n+2
4
r−

n+2
2 = 0 303

and 304∫ +∞

0
u
2/(n−2)
3 dr =

√
n− 2
n

∫ +∞

0

dr
r

= +∞. 305

However, even with functions regular at 0, the answer to Question 2 is still no. Indeed, 306

for ε > 0 to be determined later, let us consider 307

u4(r) = ε(1 + r)−
n−2
2 with r > 0. 308

Then 309

u′′4 +
n− 1
r

u′4 +
n(n− 2)

4
u

n+2
n−2
4 = ε

n(n− 2)
4

(
− n− 2

n
− 2(n− 1)

nr
+ ε

4
n−2

)
(1 + r)−

n+2
2 310

≤ ε
n(n− 2)

4

(
− n− 2

n
+ ε

4
n−2

)
(1 + r)−

n+2
2 . 311

Keep in mind that n ≥ 3. Hence, if we choose ε > 0 in such a way that 312

ε
4

n−2 ≤ n− 2
n

313
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and fix it, then314

u′′4 +
n− 1
r

u′4 +
n(n− 2)

4
u

n+2
n−2
4 ≤ 0.315

However,316 ∫ +∞

0
u(r)

2
n−2 dr = ε

2
n−2

∫ +∞

0

dr
1+ r

= +∞.317

(Apparently, the condition n ≥ 3 plays an important role in the above construction,318

otherwise one cannot select ε > 0.)319
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Appendix A. Completeness of conformal metrics323

We list in this appendix a simple but useful criteria for the completeness of conformal324

metrics e2uδ on R2. See [GAR08, Appendix A] for a similar result.325

Lemma A.1. Let u : [0,+∞)→ R be a C2-function. Then the conformal metric g on R2,326

defined by327

g(x) = e2u(|x|)δ(x) for x ∈ R2,328

is complete if, and only if,329 ∫ +∞

0
eu(r)dr = +∞.330

Proof. For the necessity, fix any z0 ∈ R2 \ {0}, and consider the curve331

γ : t→ tz0
|z0|

for t ∈ R,332

which is simply a ray passing through the origin (at t = 0) and the point z0 (at t = |z0|).333

This is a divergent curve in M, see [Car92, page 153]. Indeed, take any compact subset334

K ⊂ R2, then there is some R > 0 such that K ⊂ BR. Then335

γ(t) < BR for all t ≥ R.336

Keep in mind that the length of γ is337

2
∫ +∞

0

√
g(γ ′(t),γ ′(t))dt = 2

∫ +∞

0
eu(r)dr.338

Thus, the completeness of (R2, g) implies339 ∫ +∞

0
eu(r)dr = +∞.340

For the sufficiency, let γ : R→ R2 be a maximally extended geodesic curve in (R2, g)341

parametrized over R. Then, there holds342

lim
t→±∞

|γ(t)| = +∞.343

Clearly, γ has infinite length if distg (0,γ(t)) becomes unbounded as t→±∞. And this344

is true because345

distg (0,γ(t)) =
∫ γ(t)

0
eu(r)dr346

by definition. □347
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In view of Lemma A.1 above, if u is any solution to (1.6), then by (1.7) we know that 348

(R2, e2uδ) is incomplete. 349

Appendix B. Example of a conformal metric whose volume is infinity 350

In this appendix, we provide a precise example of a conformal metric u whose volume 351

vole2uδ(R2) = +∞. It seems that such an example is known among experts, but we 352

cannot find any reference for it. So we decide to write it down for convenience. 353

The conformal metric we present here actually belongs to a larger class of solutions 354

due to Gui and Li, see [GL23, equation (1.4)]. Indeed, let 355

usol(x1,x2) = log
( 2ex1

1+ e2x1

)
in R2, 356

which corresponds to [GL23, equation (1.4)] with t = 0. By direct verification, usol solves 357

∆usol + e2usol = 0 in R2. 358

In fact, usol can be rewritten as 359

usol(x1,x2) = log(sech(x1)) 360

and notice that log(sech(t)) is a solution to the PDE in 1D, namely the following ODE 361

u′′ + e2u = 0 in (0,+∞). 362

This solution is bounded from above by 0, but does not decay to −∞ at infinity. In fact, 363

it is constant in the x2-direction. See [EGLX22, Theorem 1.6] for further information 364

on this special solution. Since usol does not depend on x2, we immediately have 365∫
R2

e2usol(x1,x2)dx1dx2 = +∞ 366

as claimed. 367

Remark B.1. Obviously, the function usol still solves 368

∆usol + e2usol = 0 in Rn
369

for any n ≥ 3. It is clearly non-radial and bounded from above by 0. It now follows 370

from a non-existence result in [EGLX22, Lemma 4.1], without any calculation, that 371∫
Rn

e2usol(x)dx = +∞ 372

with n ≥ 3. This provides us an example in higher dimensional case. 373
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