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Abstract. We study how the properties of being reduced, an integral domain, and normal,
behave under small perturbations of the defining equations of a noetherian local ring. It is
not hard to show that the property of being a local integral domain (reduced, normal ring)
is not stable under small perturbations in general. We prove that perturbation stability
holds in the following situations: (1) perturbation of being an integral domain for factorial
excellent Henselian local rings; (2) perturbation of normality for excellent local complete
intersections containing a field of characteristic zero; and (3) perturbation of reducedness
for excellent local complete intersections containing a field of characteristic zero, and for
factorial Nagata local rings.

1. Introduction

A noetherian local ring (R,m) is said to have isolated singularity if Rp is regular for any
non-maximal prime ideal p. Let k be a field and S = k[[y1, . . . , ys]] be a power series ring
where s ≥ 1. In 1956, Samuel [30] showed that for any series f ∈ S such that S/(f) has
isolated singularity, there exists an integer N ≥ 1 such that for all δ ∈ (y1, . . . , ys)

N , there is
an automorphism of S sending f to f + δ. Thus if S/(f) is a hypersurface ring with isolated
singularity, then replacing f by an element in a sufficiently small adic neighborhood of f ,
does not affect the properties of the ring. Subsequently, many authors have considered the
behaviour of various ring- and module-theoretic properties and numerical invariants under
small perturbations; see, e.g. [5, 6, 7, 9, 11, 17, 20, 27, 31]. We have information about
the behaviour under perturbation of Hilbert–Samuel functions [20, 28, 31], homology of
complexes [9], regular sequences [17], positive characteristic singularities [6], among others.

Given noetherian local ring (R,m), we say that a ring property P is stable under per-
turbations for R (or perturbation of P holds for R) if for any regular element a such that
R/(a) satisfies P , we also have that R/(b) satisfies P for all N � 0 and all b ∈ a + mN ,
i.e., for all b lying in a sufficiently small neighborhood of a. We say that the property P
is stable under perturbations for a class C of noetherian local rings (resp., for all noetherian
local rings), if P is stable under perturbations for every noetherian local ring (R,m) in C
(resp. for every such ring). As proved in [20, Theorem 3.5], the transformations sending
R/(a) to R/(a + δ) where δ is a sufficiently small error, preserves the Hilbert–Samuel func-
tion of R/(a), namely the Hilbert function of the associated graded ring grm(R/(a)). Not all
ring-theoretic properties behave alike under perturbations and many basic questions remain
open. For instance, in a recent work on F -singularities in positive characteristics [6], De
Stefani and Smirnov showed the stability of F -rational singularities, as well as some subclass
of F -injective singularities under perturbations. On the other hand, they exhibited in [6,
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Example 5.3] that F -purity and (strong) F -regularity are not stable under perturbations. It
is not clear whether F -injectivity always perturbs.

In this note, we look at very basic properties of rings: integrality (being a domain),
reducedness and normality, and ask how they behave under fine perturbations. As far as we
know, this problem was first proposed by L. Duarte in his Ph.D. thesis [7, Question 5.2.2].
It is not hard to show that these questions generally have a negative answer. In fact, there
exists a regular local ring (R,m), a non-zerodivisor a such that R/(a) is a domain, however
arbitrarily small perturbations of it need not be domains (see Example 2.7). Using a classical
construction of Nagata, we also produce a normal local domain R/(a) whose arbitrarily small
perturbations may fail to be normal (see Example 3.5 and also Remark 3.6 on the instability
of reducedness). As a consequence, we get negative answers to the last part of [7, Questions
5.2.1 and 5.2.2]. In all these examples, the ring R is regular but not m-adically complete, so
we are naturally led to the following

Question 1.1. Let (R,m) be a complete noetherian local ring, and a ∈ m a regular element.
Suppose R/(a) is an integral domain (res. reduced, normal ring). Is it true that R/(a + δ)
is an integral domain (res. reduced, normal ring) for all N � 0 and all δ ∈ mN?

We do not know the full answer to this question. On the other hand, using strong Artin
approximation, a recent generalization of Samuel’s work [12], and various Bertini-type the-
orems, we prove several results supporting a positive answer for it.

Main Theorem. The following statements hold true.

(1) Perturbation of integrality holds for excellent factorial Henselian local rings, in partic-
ular, for complete regular local rings (see Theorem 3.1 and Corollary 3.2 for details).

(2) Perturbation of normality holds for excellent local complete intersections that contain
a field of characteristic zero (Theorem 3.8).

(3) Perturbation of reducedness holds for excellent local complete intersections that contain
a field of characteristic zero and for factorial Nagata local rings(Theorems 3.17 and
3.19).

Note that Theorem 3.1 answers affirmatively a question in Duarte’s thesis [8, Question
5.2.3]. Note also that in our main results, the base ring R is usually “nice” but not necessarily
complete. At the moment, we do not know whether perturbation of integrality holds for m-
adically complete local complete intersections, even those that contain a field.

Our results on the perturbation stability of normality and reducedness (Theorem 3.8 and
Theorem 3.17) are consequences of a more general statement.

Theorem 1.2 (= Theorem 3.9). Let (R,m) be an excellent local complete intersection that
contains a field of characteristic zero. Let a ∈ m be a regular element such that R/(a)
satisfies Serre’s regularity condition (Rν) for some non-negative integer ν. Then there exists
N ≥ 1 such that for every δ ∈ mN , R/(a+ δ) also satisfies (Rν).

Since we will encounter types of rings such as (quasi-)excellent, Nagata, and Henselian
ones quite often in this note, we recall their definitions in Section 2. In Section 3, we display
examples on the instability of (normal) integral domains, thereby answering in the negative
[6, Question 6.1]. We also provide the proofs of our main results in this section, hoping to
inspire further study on the tantalizing Question 1.1.
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2. Background

Let P be a given property of noetherian local rings. We say that the property P is stable
under perturbations (or perturbation of P holds) for a noetherian local ring (R,m) if for any
non-zerodivisor a ∈ m such that R/(a) satisfies P , then R/(a+ δ) satisfies P for all N � 0
and all δ ∈ mN . Similarly, we define when P is stable under perturbations for a class of
(resp. for all) noetherian local rings. Related to the notion of stability under perturbations,
we record the well-known fact that regular sequences perturb; see [9, Corollary 1] and [17].

Lemma 2.1. Let (R,m) be a noetherian local ring, and a ∈ m an R-regular element. Then
there exists an N ≥ 1 such that for all δ ∈ mN , a+ δ is R-regular.

We say that deformation of P holds for a local ring (R,m) if R satisfies P , as soon as there
exists an R-regular element a ∈ m such that R/(a) satisfies P . Define in a similar manner
when deformation of P holds for all local rings. Perturbation and deformation are closely
related as shown in [6, Theorem 2.4]. In some sense, perturbation of P can be regarded as
an m-adic analogue of deformation.

Theorem 2.2 (De Stefani and Smirnov [6, Theorem 2.4]). Let P be a property of local rings
such that:

(i) if a local ring (R,m) satisfies P, and T is a variable, then R[T ](m,T ) satisfies P; and,
(ii) if (R,m)→ (S, n) is faithfully flat, and S satisfies P, then so does R.

If perturbation of P holds for all noetherian local rings, so does deformation of P.

Recall that for an non-negative integer ν, a noetherian ring A satisfies Serre’s regularity
condition (Rν) if Ap is a regular local ring for any p ∈ Spec(A) with ht p ≤ ν. The ring A
satisfies Serre’s condition (Sν) if depthAp ≥ min{ν, dimAp} for any prime ideal p ∈ Spec(A).
Recall the following fundamental facts.

Lemma 2.3 (See [23, §23] and [10, Theorem 11.5]). Let A be a noetherian ring. The
following statements hold.

(i) A is reduced if and only if it satisfies both (R0) and (S1).
(ii) (Serre’s normality criterion) A is normal if and only if it satisfies both (R1) and (S2).

We will employ the next deformation result quite often. For a proof of part (ii), see [15,
Theorem, pp. 439-440]. Part (iii) is contained in [3, Lemma 0]. See also the much more
general and sweeping result of Li [19, Theorem 1.4].

Proposition 2.4. Let (R,m) be a local ring and let a ∈ m be a non-zerodivisor.

(i) If R/(a) is an integral domain, then so is R.
3



(ii) If R/(a) is normal, then so is R.
(iii) More generally, if R/(a) satisfies Serre’s conditions (Rν) and (Sν+1), then R also

satisfies both (Rν) and (Sν+1).
(iv) If R/(a) is reduced, then so is R.

Remark 2.5. (1) Given a noetherian local ring (R,m), we say that a property Q of principal
ideals of R is stable under perturbations if any principal R-ideal (a) generated by an R-regular
element, with the property Q, there exists N ≥ 1 such that for all δ ∈ mN , the ideal (a+ δ)
also satisfies Q.

In this language, the part concerning integral domains in Question 1.1 can be rephrased as
follows: Let (R,m) be a complete local ring. Then is the property of being a principal prime
ideal stable under perturbations?

The following example shows that the property of being an irreducible (or primary) prin-
cipal ideal is not stable under perturbations.

Let R = k[[x, y]] be the ring of formal power series over a field k with chark 6= 2. We have
(x2) is an irreducible ideal. However for all δ = −y2n, n ≥ 1, as (x2−y2n) = (x+yn)(x−yn),
(x2 − y2n) is not even primary.

(2) Similarly, one can define the ideal-theoretic version of deformation. Given a noetherian
local ring (R,m), we say that a property Q of ideals of R is stable under deformations if
for any R-ideal I and any element x ∈ R that is (R/I)-regular, such that I + (x) has the
property Q, then I also has property Q.

Thus Proposition 2.4 implies that the property of being a radical (prime) ideal is stable
under deformations. On the other hand, the following example shows that the property of
being an irreducible (or primary) ideal is not stable under deformations.

Let R = k[[x, y]] and I = (xy). Then a = x + y is a non-zerodivisor on R/I. Moreover
I + (x+ y) = (x+ y, x2) is an irreducible ideal of R. However, I is not every primary.

The authors of [6] asked if the converse of Theorem 2.2 also holds true.

Question 2.6 ([6, Question 6.1]). Let P be a property of local rings that satisfies the as-
sumptions of Theorem 2.2. Are deformation and perturbation of P equivalent?

The following example provides a negative answer to this question. The example also
shows that the integrality property is generally unstable under perturbations.

Example 2.7. Let k be a field of characteristic 0. Note that the element 1 +x is not a square

in k[x](x) since otherwise 1 + x =
P 2

Q2
for some P,Q ∈ k[x], so 2 degP = 1 + 2 degQ, which

is impossible. However in k[[x]] there exists an element u = 1 + a1x + a2x
2 + · · · such that

u2 = 1 + x, thanks to the Taylor expansion of (1 + x)1/2. Let R = k[x, y](x,y). We have
a = x2 + x3 − y2 is an irreducible polynomial in k[x, y], so R/(a) is a domain. Taking the
(x, y)-adic completion, we have

x2 + x3 − y2 = (ux)2 − y2 = (ux+ y)(ux− y),

which is reducible as a power series. For each N ≥ 2, set

b1,N = x+ a1x
2 + · · ·+ aN−1x

N + y ∈ k[x, y],

b2,N = x+ a1x
2 + · · ·+ aN−1x

N − y ∈ k[x, y].
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It is easy to check that a = b1,Nb2,N − δN with δN ∈ (x, y)N+1R. Hence for every N ≥ 1 we
have an element δN ∈ (x, y)N+1R such that a+ δN is reducible.

Corollary 2.8. There exists a property P of local rings that satisfies the assumptions of
Theorem 2.2 such that deformation and perturbation of P are not equivalent.

Proof. Let P be the property of “integrality”. It is easy to see that P satisfies the assumptions
of Theorem 2.2. It follows from Proposition 2.4 that deformation of P holds for local rings,
but perturbation of P does not hold in general for local rings according to Example 2.7. �

We will see from Example 3.5 that the property of “normality” also satisfies the assump-
tions of Theorem 2.2, but deformation holds for normality while perturbation does not.

Next, let us recall the notions of quasi-excellent, excellent and Nagata rings, following the
Stacks Project [32, 33].

Definition 2.9. Let k be a field, and A be a k-algebra.

(1) We say that A is geometrically normal over k, if for every field extension k′ of k,
k′ ⊗k A is a normal ring. Equivalently, A is geometrically normal over k if k′ ⊗k A is
a normal ring for every finitely generated field extension k′ of k.

(2) We say that A is geometrically regular over k if for every finitely generated field
extension k′ of k, k′ ⊗k A is a regular ring.

If (R,m) is a local ring, let R̂ be the m-adic completion of R, and the formal fiber of R

over p ∈ Spec(R) is defined as R̂⊗R κ(p), where κ(p) := Rp/pRp denotes the residue field of
Rp.

Definition 2.10 (G-rings). A ring R is called a G-ring if R is noetherian and for every

prime ideals q ⊆ p, the formal fiber of Rp over qRp, namely R̂p ⊗Rp κ(q), is geometrically
regular over κ(q).

For a ring S, the regular locus of Spec(S) is

Reg(Spec(S)) = {q ∈ Spec(S) | Sq is a regular local ring}.
The singular locus Sing(Spec(S)) of Spec(S) is the complement of Reg(Spec(S)) inside
Spec(S).

Definition 2.11. Let R be a noetherian ring, and X = Spec(R). We say that R is a J-2
ring if for any finite type R-algebra S, the regular locus Reg(Spec(S)) is an open subset of
Spec(S).

Now we come to the following crucial notions.

Definition 2.12 (Quasi-excellent and excellent rings). Let R be a ring. We say that R is
quasi-excellent if R is noetherian, a G-ring, and J-2 ring. We say that R an excellent ring,
if R is quasi-excellent, and universally catenary.

Remark 2.13. By [33, Lemma 15.52.2, Tag 07QU and Lemma 15.52.3, Tag 07QW], the
following types of rings are excellent:

(1) fields, Z,
(2) complete noetherian local rings,
(3) Dedekind domains with fraction field of characteristics zero,
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(4) localizations of a finite type algebra over an excellent ring.

The following lemma follows from the definition of quasi-excellent rings.

Lemma 2.14. Let (R,m) be a quasi-excellent noetherian local ring. Let ν ≥ 0 be an integer.

Then R satisfies (Rν) if and only if R̂ satisfies (Rν).

Proof. Since R is quasi-excellent, it is a G-ring, so the formal fibers R̂ ⊗R κ(p) are regular

for all p ∈ Spec(R). In particular, all the formal fibers satisfy (Rν). Since R → R̂ is a
flat morphism, by the base change result for the condition (Rν) [4, Proposition 2.2.21], R

satisfies (Rν) if and only if R̂ does. �

Recall that an N-2 ring (or Japanese ring) is an integral domain R such for every finite
field extension L of the fraction field Q(R) of R, the integral closure of R in L is R-finite.
A ring R is said to be Nagata if R is noetherian and for every prime ideal p the ring R/p is
N-2 ([32, Definition 10.162.1] and [22, Definition 31.A]).

Remark 2.15. By [32, Section 162], examples of Nagata rings include:

(1) fields, Z,
(2) complete noetherian local rings,
(3) Dedekind domains with fraction field of characteristic zero,
(4) localizations of a finite type algebra over a Nagata ring.

While perturbation of integral domains fails in general, fortunately, we can prove that
perturbation of integrality holds for excellent factorial Henselian local rings (e.g. formal power
series rings over fields). The key technique is a version of Artin approximation theorem
([1, 13, 25, 26]).

Definition 2.16 (Henselian rings). A noetherian local ring (R,m,k) is called Henselian if
for every monic polynomial f ∈ R[T ] and every root a0 ∈ k of f := f + mR[T ] ∈ k[T ] such

that a0 is not a root of the derivative f
′

(namely f
′
(a0) 6= 0), there exists an a ∈ R such

that f(a) = 0 and a0 = a+ m.

Remark 2.17. Note that by [32, Lemma 10.153.9, Tag 04GM and Lemma 10.153.10, Tag
06RS], the class of Henselian local rings contains complete local rings and artinian local
rings and the rings of algebraic (convergent) power series over (valued) fields.

The version of Artin approximation that we will use in this note is

Theorem 2.18 (Strong Artin approximation, [13, Corollary 3.17]). Let (R,m) be an ex-
cellent Henselian local ring. Assume that r, s ≥ 1 are integers, f1, . . . , fr ∈ R[y] :=
R[y1, . . . , ys] are polynomials in the indeterminates y1, . . . , ys with coefficients in R. Denote
f(y) = (f1(y), . . . , fr(y)) ∈ R[y]⊕r (finite Cartesian product). Then there exists a function
β : N −→ N with the property: for every c ∈ N and every ȳ ∈ Rs such that f(ȳ) ∈ (mβ(c))⊕r,
there exists ỹ ∈ Rs such that f(ỹ) = (0, 0, . . . , 0)︸ ︷︷ ︸

r times

and ỹ − ȳ ∈ (mc)⊕r.

We also recall the notions of analytically unramified/irreducible local rings.

Definition 2.19. Let (R,m) be a noetherian local ring. We say that R is analytically

unramified if R̂ is a reduced ring. We say that analytically irreducible if R̂ is an integral
domain.
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Remark 2.20. Following from [33, Lemma 15.52.5, Tag 07QV], any quasi-excellent ring is
Nagata. By [32, Lemma 10.162.13, Tag 0331], any Nagata local domain is analytically
unramified. Hence any quasi-excellent local domain is analytically unramified.

Moreover, combining the last statement with [32, Lemma 10.162.10, Tag 032Y], we see
that any quasi-excellent reduced local ring is analytically unramified.

An important fact is that quasi-excellent normal local domains are analytically irreducible.
While we will not use this result explicitly in the sequel, we record it to showcase the relevance
of (quasi-)excellency to our study of normality in this paper.

Theorem 2.21 (See [29, Corollaire, page 99], [2, Theorem 2.3]). Let (R,m) be noetherian
local domain such that its formal fibers are geometrically normal (e.g., R is quasi-excellent).

Then the number of minimal primes of the m-adic completion R̂ equals exactly the number
of maximal ideals of the integral closure R.

If moreover (R,m) is a quasi-excellent noetherian local domain, then R is analytically
irreducible if and only if R is a (noetherian) local ring. In particular, any quasi-excellent
normal local domain is analytically irreducible.

3. Perturbations of (normal) domains and reduced rings

Our first main result provides a partial positive answer on the perturbation of integrality
when R is an excellent factorial Henselian local ring.

Theorem 3.1. Let (R,m) be an excellent factorial Henselian local ring. Let a ∈ m be a
regular element such that R/(a) is an integral domain. Then there exists N ≥ 1 such that
R/(a+ δ) is a domain for all δ ∈ mN .

Proof. Since R is a factorial domain, it suffices to show that if a ∈ m, a 6= 0 is irreducible
then so is every sufficiently small perturbation a+ δ of it.

Since R is excellent Henselian, applying Theorem 2.18 for f(y1, y2) = y1y2− a in R[y1, y2],
there exists a function β : N −→ N such that: For all c ∈ N, for all ȳ = (ȳ1, ȳ2) ∈ R2 such
that f(ȳ) ∈ mN , where N = β(c), there exists ỹ ∈ R2 such that f(ỹ) = 0 and ỹ− ȳ ∈ (mc)⊕2.

We will show that a + δ is irreducible for all δ ∈ mN , where N := β(1). Assume by
contradiction that, a+ δ is not irreducible for some δ ∈ mN . Then

a+ δ = ȳ1ȳ2 for some ȳ1, ȳ2 ∈ m.

This implies that
f(ȳ1, ȳ2) = ȳ1ȳ2 − a = δ ∈ mN .

Then there exist y = (y1, y2) ∈ R2 such that f(y1, y2) = 0 and y− ȳ ∈ m⊕2. This means that
a is reducible, which is a contradiction. This completes the proof. �

An immediate corollary is the following positive answer to a question of Duarte [8, Question
5.2.3].

Corollary 3.2. Let R be a complete regular local ring, e.g. a power series ring k[[y1, . . . , ys]]
over a field k. Let a ∈ m be a regular element such that R/(a) is an integral domain. Then
we can find an N ≥ 1 such that R/(a+ δ) is a domain for every error term δ ∈ mN .

Proof. This follows from Theorem 3.1 since any regular local ring is factorial, and any com-
plete noetherian local ring is Henselian. �
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Let us recall the notion of abstract local complete intersections [4, Definition 2.3.1].

Definition 3.3. Let (R,m) be a noetherian local ring. We say R is a complete intersection
if there exists a regular local ring (S,mS) and an S-regular sequence x1, . . . , xc in mS such

that the m-adic completion of R satisfies R̂ ∼= S/(x1, . . . , xc).

In view of Corollary 3.2, it seems to be natural to ask whether integrality perturbs for
m-adically complete, local complete intersections.

Question 3.4. Let (R,m) be an m-adically complete, local complete intersection. Let a ∈ m
be a regular element such that R/(a) is an integral domain. Is it true that there exists N ≥ 1
such that for all δ ∈ mN , R/(a+ δ) is also an integral domain?

We do not know the answer to this question. On the other hand, we will prove in Theo-
rem 3.8 that normality perturbs for excellent local complete intersections containing a field
of characteristic zero.

A natural question is whether perturbation of normality always holds for local rings. We
provide a negative answer to this question in the following example, based on a classical
construction of Nagata. We are largely influenced by the exposition of Heinzer, Rotthaus
and S. Wiegand [14, Example 4.15].

Example 3.5 (Nagata’s example). Let k be a field of characteristic zero. We start with the
power series ring k[[x, y]]. Let τ ∈ xk[[x]] be the following element that is transcendental over
k(x, y):

τ = ex − 1 =
∞∑
n=1

xn

n!
.

Let f := (y + τ)2, and consider the rings

A = k(x, y, f) ∩ k[[x, y]] and R = A[z](x,y,z).

Denote a = z2 − f ∈ R. We claim that the following statements hold true.

(1) R is a 3-dimensional regular local ring with the unique maximal ideal m = (x, y, z)R.
Moreover, R is not excellent.

(2) a is R-regular and R/(a) is a normal domain.
(3) For each n ≥ 1, there exists δn ∈ mn such that R/(a+ δn) is not a domain, hence not

normal.

Proof. We first note that A is identical to the following ring in [14, Proposition 6.19]:

A′ = k(x, y, f) ∩ k[y](y)[[x]].

Indeed, clearly A′ is contained in A. Conversely, any element p ∈ A can be written as a
power series in x:

p = a0(y) + a1(y)x+ a2(y)x2 + · · · , where ai(y) ∈ k[[y]] for each i.

To prove A ⊆ A′, it remains to establish the next
Observation: We have ai(y) ∈ k[y](y) for each i ≥ 0.
Proof of the observation: Indeed, it is harmless to assume that a0(y) 6= 0, as otherwise

we may replace p by p/x ∈ A. Note that each element of k[x, y, f ] ⊆ k[y][[x]] has the form
g(x) = g0(y) + g1(y)x+ g2(y)x2 + · · · , where gi(y) ∈ k[y].
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Now p belongs to k(x, y, f) means that p =
h(x)

g(x)
, where g(x), h(x) ∈ k[y][[x]], and g(x) 6= 0.

Write h(x) = h0(y) + h1(y)x+ h2(y)x2 + · · · , where hi(y) ∈ k[y]. Now since pg(x) = h(x) ∈
k[y][[x]], clearing common powers of x, we may assume that g0(y) 6= 0. Comparing the two

sides of the last equation and arguing by induction, this yields ai(y) ∈ k[y]

[
1

g0(y)

]
for every

i ≥ 0. In particular, for all such i,

ai(y) ∈ k[y]

[
1

g0(y)

]
∩ k[[y]] ⊆ k[y](y),

as desired. Return now to the claims (1)–(3).
For (1): By [14, Proposition 6.19], A = A′ is a 2-dimensional regular local ring with the

maximal ideal (x, y)A. Hence R is a 3-dimensional regular local ring with the maximal ideal
(x, y, z)R. Per [14, Remark 4.16], R/(z) ∼= A is not an excellent ring, so by Remark 2.13,
neither is R.

For (2): By [24, Example 7, pp. 209–211],

D =
A[z]

(z2 − f)A[z]

is a 2-dimensional normal local domain. In particular, the unique maximal ideal of D is
(x, y, z)D, hence

R/(a) =
A[z](x,y,z)

(z2 − f)A[z](x,y,z)
∼= D(x,y,z)D

∼= D

is a 2-dimensional normal domain. In particular, a is R-regular.
For (3): For each n ≥ 1, write f = (yn + xn+1un)2, where yn ∈ k[x, y] ⊆ A, un ∈ k[[x, y]]

are given by

yn = y + x+
x2

2!
+ · · ·+ xn

n!
, un =

∞∑
i=0

xi

(i+ n+ 1)!
.

We note that f = y2n+xn+1un(2yn+xn+1un) = y2n+xn+1vn, where vn := un(2yn+xn+1un) ∈
k[[x, y]]. Since

vn =
f − y2n
xn+1

∈ k(x, y, f) ∩ k[[x, y]] = A,

the element δn = xn+1vn belongs to mn+1. Thus

a+ δn = z2 − f + xn+1vn = z2 − y2n = (z − yn)(z + yn)

is a product of two elements in m. In particular, R/(a + δn) is not a domain. Being a
noetherian local ring, the last ring therefore cannot be normal. �

Remark 3.6. Keep the notations as in Example 3.5. Per [14, Remark 4.16], (A, (x, y)A) is a

2-dimension regular local domain with Â = k[[x, y]]. Moreover, A/(f) is an integral domain.
We show that there exist arbitrarily small perturbations of A/(f) that are not reduced.

As in Example 3.5, vn ∈ A, so δn = xn+1vn ∈ (x, y)n+1. Now

f − δn = y2n ∈ (x, y)2

so A/(f − δn) is not reduced. Thus reducedness is generally unstable under perturbations.
9



In view of Example 3.5 in which R is regular local but not excellent, the most optimistic
question about perturbation of normality seems to be

Question 3.7. Let (R,m) be an excellent local ring. Suppose a ∈ m is a regular element
such that R/(a) is a normal ring. Does there exist an N ≥ 1 such that for all δ ∈ mN , the
ring R/(a+ δ) is also normal?

We answer Question 3.7 positively when R is an excellent complete intersection that
contains a field of characteristic zero. More generally, we have

Theorem 3.8. Let (R,m) be an excellent local complete intersection that contains a field
of characteristic zero. Let a ∈ m be a regular element such that R/(a) is a normal domain.
Then there exists N ≥ 1 such that for every δ ∈ mN , R/(a+ δ) is again a normal domain.

Because of Serre’s normality criterion (Lemma 2.3) and the fact that Cohen–Macaulay
local rings always satisfy (Sν) for every ν, Theorem 3.8 is an immediate consequence of the
following stability result for the regularity condition (Rν).

Theorem 3.9. Let (R,m) be an excellent local complete intersection that contains a field
k of characteristic zero. Let a ∈ m be a regular element such that R/(a) satisfies Serre’s
condition (Rν) for some non-negative integer ν. Then there exists N ≥ 1 such that for every
δ ∈ mN , R/(a+ δ) also satisfies (Rν).

There are two main ingredients in the proof. The first result, due to Greuel–Pham [12],
generalizes Samuel’s theorem [30] from hypersurfaces to complete intersections over a field.
Before stating the result of Greuel–Pham in the generality that is suitable for our purpose,
we have the following remark.

Remark 3.10 (On two notions of “isolated singularities”). Let k be a perfect field. Let I be
a proper ideal of S = k[[y1, . . . , ys]] that is minimally generated by f1, . . . , fc. Let h be the

height of I. Let Ih

([
∂fi
∂xj

])
be the ideal of h× h minors of the Jacobian matrix

[
∂fi
∂xj

]
of

I, and let j(I) = I + Ih

([
∂fi
∂xj

])
be the Jacobian ideal of I. Assume further that S/I is

equidimensional, namely for every minimal prime p ∈ Min(I), we have dim(S/p) = dim(S/I).
(1) With the above assumptions, for any prime ideal P ∈ Spec(S) containing I, the

following statements are equivalent:

(i) (S/I)P is a regular local ring;
(ii) P does not contain j(I).

So the last statement can be rephrased as

Sing(Spec(S/I)) = V (j(I)/I).

For the equivalence of statements (i) and (ii), see [18, Corollary 3.14(2)(iii)] and [35, Section
4].

(2) In particular, consider the local ring (R,m) := (S/I, (y1, . . . , ys)/I). Then the following
statements are equivalent:

(i) (R,m) is an isolated singularity, namely Sing(Spec(R)) ⊆ {m};
(ii) j(I) contains a power of (y1, . . . , ys).

10



Several authors use condition (ii) as the definition of isolated singularity ; this is the case
with the notion of isolated complete intersection singularity [12, p. 198, lines 13–16]. So for
complete intersections that are quotients of formal power series rings over a perfect field, our
notion of “isolated singularities” is compatible with that of [12].

(3) If k is not perfect, the two notions of isolated singularities are distinct in general. For
example, for a prime p, let k = Fp(t) and I = (xp1 − tx

p
2) ⊆ S = k[x1, x2]. Letting R = S/I,

then Sing(Spec(R)) = {m} but j(I) = I is not (x1, x2)-primary.

Here is a version of Greuel–Pham’s [12, Theorem 4.6(2)] that we will use; note that we
require k to be a perfect field.

Theorem 3.11. Let k be a perfect field. Let I be a proper ideal of S = k[[y1, . . . , ys]] that is
minimally generated by f1, . . . , fc. If either

(i) dimS/I = 0, or
(ii) dim(S/I) > 0, and S/I is an isolated complete intersection,

then there exists N ≥ 1 such that

S/I ∼= S/(f1 + δ1, . . . , fc + δc)

for all elements δ1, . . . , δc ∈ (y1, . . . , ys)
N .

Remark 3.12. Note that by the remark in Problem 4.7 in the same paper, the implication
(iii) =⇒ (i) in [12, Theorem 4.6(2)], which is the statement of Theorem 3.11, is always valid
even without k being infinite.

The second main ingredient in the proof of Theorem 3.9 is the following result on the
relationship between a ring R and a relative hypersurface R[t1, . . . , tn]/(F ), where F ∈
R[t1, . . . , tn]. In such a situation, we denote by IF the ideal of R generated the coefficients of
F . We are mostly interested in the case F = t1x1 + · · ·+ tnxn, where x1, . . . , xn ∈ R generate
an m-primary ideal, in which IF = (x1, . . . , xn). The study of such relative hypersurfaces
has been taken up by Hochster [16]. The following statement is a Bertini-type theorem for
the (Rs) property, proved by Trung [34, Page 222–223] and rediscovered in [21, Lemma 10].

Lemma 3.13. Let (R,m) be a noetherian local ring satisfying (Rν) such that dimR ≥ ν+2.

If m = (x1, . . . , xn), then
R(t1, . . . , tn)

(t1x1 + · · ·+ tnxn)
still satisfies (Rν). Here R(t1, . . . , tn) denotes

the localization of the ring R[t1, . . . , tn] at the ideal mR[t1, . . . , tn].

We also record a criterion for a relative hypersurface section to be reduced and irreducible.

Lemma 3.14 ([34, Korollar 2.3]). Let R be a noetherian domain. Let n ≥ 1 an integer,
F ∈ R[t1, . . . , tn] such that degF ≥ 1. Denote by Q(R) the field of fractions of R. Then the
following statements are equivalent:

(i) (F ) ⊆ R[t1, . . . , tn] is a prime ideal;
(ii) grade(IF , R) ≥ 2 and F is irreducible as a polynomial in Q(R)[t1, . . . , tn].

As a direct consequence of Lemma 3.14, we get

Lemma 3.15. Let (R,m) be noetherian local domain, where m 6= (0). Assume that the

elements x1, . . . , xn ∈ R generate an m-primary ideal. Then
R[t1, . . . , tn]

(t1x1 + · · ·+ tnxn)
is an integral

domain if and only if depthR ≥ 2.
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Proof. Note that for F = x1t1 + · · ·+xntn, IF = (x1, . . . , xn) is m-primary so grade(IF , R) =
grade(m, R) = depthR. Since m 6= (0), x1, . . . , xn are not all zero, so degF ≥ 1. The
conclusion follows from Lemma 3.14 since as a linear form in Q(R)[t1, . . . , tn], F is always
irreducible. �

We are ready to present the

Proof of Theorem 3.9. In the first step, we reduce to the case dimR ≤ ν+2. In fact, assume
that dimR ≥ ν + 3. Let m = (x1, . . . , xn) and let F := t1x1 + · · · + tnxn for new variables
t1, . . . , tn. Since R/(a) is Cohen–Macaulay of dimension dimR − 1 ≥ ν + 2, (F ) is a prime
ideal of (R/(a))(t1, . . . , tn) per Lemma 3.15. In particular, a, F is a regular sequence on
R(t1, . . . , tn). Since R/(a) satisfies (Rν), by the local Bertini theorem Lemma 3.13, the ring

(R(t1, . . . , tn)/(F )) /(a) ∼= (R/(a)(t1, . . . , tn)) /(F )

satisfies (Rν) as well. Note that R(t1, . . . , tn)/(F ) is again a complete intersection containing

k, that is excellent thanks to Remark 2.13. If we have proved that the ring
R(t1, . . . , tn)/(F )

(a+ δ)
satisfies (Rν), for all small δ, then being Cohen–Macaulay, the last ring satisfies both
(Rν) and (Sν+1). Then Proposition 2.4(c) implies that the conditions (Rν) and (Sν+1) are
also fulfilled by (R/(a+ δ)) (t1, . . . , tn). Descending along the flat morphism R/(a + δ) →
(R/(a+ δ)) (t1, . . . , tn), we deduce that R/(a+ δ) fulfills (Rν). Therefore we may replace R
by R(t1, . . . , tn)/(F ) and reduce the dimension of R.

Assume that dimR ≤ ν + 2 and R/(a) satisfies (Rν). Note that being a quotient of
an excellent ring, R/(a) is excellent by Remark 2.13. It follows from Lemma 2.14 that

R̂/(a) also satisfies (Rν). Since R̂ contains a field, its coefficient ring is its residue field

K = R̂/mR̂ ∼= R/m. By the Cohen structure theorem for local rings containing a field and

the fact that R̂ is a complete intersection,

R̂ ∼= S/(f1, . . . , fc),

where S = K[[y1, . . . , ys]]. We may assume that f1, . . . , fc form a regular sequence in S thanks

to [4, Theorem 2.3.3]. By abuse of notations, we regard a ∈ R ⊆ R̂ as an element of S.
Then the ring

R̂/(a) ∼= K[[y1, . . . , ys]]/(a, f1, . . . , fc)

satisfies condition (Rν) and has dimension dimR− 1 ≤ ν + 1. This implies that it has only
isolated singularity. Containing k as a subfield, K ∼= R/m has characteristic zero, and hence
is perfect, so applying Theorem 3.11 to the ideal (a, f1, . . . , fc), we get an N ≥ 1 such that

K[[y1, . . . , ys]]/(a, f1, . . . , fc) ∼= K[[y1, . . . , ys]]/(a+ δ0, f1 + δ1, . . . , fc + δc)

for all δ0, δ1, . . . , δc ∈ (y1, . . . , ys)
N . We now take any δ ∈ mNR, which again can be seen as

an element of S. Then

R̂/(a+ δ) ∼= K[[y1, . . . , ys]]/(a+ δ, f1, . . . , fc) ∼= K[[y1, . . . , ys]]/(a, f1, . . . , fc) ∼= R̂/(a),

which yields the fulfillment of (Rν) of R̂/(a+ δ). Since m-adic completion is a flat extension,
the ring R/(a+ δ) itself fulfills (Rν) for every δ ∈ mN . The proof is concluded. �

Remark 3.16. The hypothesis that R is excellent in Theorem 3.8 cannot be dropped, as we
have seen in Example 3.5, where R is a regular local ring that is not excellent.
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As a consequence of Lemma 2.3 and Theorem 3.9, we get that reducedness perturbs for
excellent local complete intersections that contain a field of characteristic zero.

Theorem 3.17. Let (R,m) be an excellent local complete intersection containing a field of
characteristic zero. Let a ∈ m be a regular element such that R/(a) is reduced. Then there
exists N ≥ 1 such that for every δ ∈ mN , R/(a+ δ) is also reduced.

Proof. The ring R/(a) is Cohen–Macaulay, so it always satisfies (Sν) for every ν. Thus R/(a)
is reduced if and only if it satisfies (R0). Everything left is to apply Theorem 3.9. �

Our next theorem claims that reducedness is stable under perturbations when R is factorial
Nagata. An element x of a local ring (R,m) is square-free if it cannot be written as x = y2z
for elements y, z ∈ R where y ∈ m.

Remark 3.18. Note that if (R,m) is a factorial local ring, then for x ∈ m, the quotient R/(x)
is reduced if and only if x is square-free.

Here comes our last main result, which is concerned with stability of reduced rings.

Theorem 3.19. Reducedness is stable under perturbations for factorial Nagata local rings.
More precisely, let (R,m) be a factorial Nagata local ring and let a ∈ m be a regular element
such that R/(a) is reduced. Then there exists N ≥ 1 such that R/(a + δ) is reduced for all
δ ∈ mN .

Proof. By Remark 3.18, we only need to show that if a is square-free, then there exists N ≥ 1
such that a+ δ is square-free for all δ ∈ mN .

We first assume that R is a complete local ring. Let us denote by

f(y) = f(y1, y2) = a− y1y22
a polynomial in R[y1, y2]. By Theorem 2.18, there exists a function β : N −→ N such that:

For all c ∈ N, for all ȳ ∈ R2 such that f(ȳ) ∈ mN , N = β(c), there exists ỹ ∈ R2 such that
f(ỹ) = 0 and ỹ − ȳ ∈ (mc)⊕2.

We will show that for N := β(1), and all δ ∈ mN , the element a+ δ is square-free. Indeed,
assume by contradiction that a + δ is not square-free for some δ ∈ mN . Then there exist
ȳ1 and ȳ2 in R such that a + δ = ȳ1ȳ

2
2. This implies that f(ȳ1, ȳ2) ∈ mN . Then there exist

ỹ ∈ R2 such that f(ỹ) = 0 and ỹ − ȳ ∈ m⊕2. It follows that a = ỹ1ỹ
2
2 is not square-free,

which is a contradiction. This gives the desired conclusion as soon as R is a complete local
ring.

Now, assume that R is a Nagata local ring and a ∈ R is square-free. We consider a as an

element in R̂ and define the number N as above. We shall show that for all δ ∈ mN , a+ δ is
square-free. Assume by contradiction that a+ δ is not square-free, then a is not square-free

in R̂ by the above argument. This together with Remark 3.18 implies that the ring R̂/(a)
is not reduced. But so R/(a) is not reduced (see, ([22, Theorem 70] or [33, Lemma 15.43.6,
Tag 07NZ]), a contradiction. This concludes the proof. �
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