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ABSTRACT. In the first part of this paper, we establish some results around generalized Borel’s Theorem. As
an application, in the second part, we construct example of smooth surface of degree d ≥ 19 in CP3 whose
complements is hyperbolically embedded in CP3. This improves the previous construction of Shirosaki where
the degree bound d = 31 was gave. In the last part, for a Fermat-Waring type hypersurface D in CPn defined
by the homogeneous polynomial

m∑
i=1

hd
i ,

where m,n, d are positive integers with m ≥ 3n−1 and d ≥ m2−m+1, where hi are homogeneous generic
linear forms on Cn+1, for a nonconstant holomorphic function f : C → CPn whose image is not contained in
suppD, we establish a Second Main Theorem type estimate:(

d−m(m− 1)
)
Tf (r) ≤ N

[m−1]
f (r,D) + Sf (r).

This quantifies the hyperbolicity result due to Shiffman-Zaidenberg and Siu-Yeung.

1. INTRODUCTION

It was conjectured by Kobayashi in 1970 [27] that a general hypersurface D in projective space CPn

of degree d large enough is hyperbolic. According to Zaidenberg [54], the expected optimal degree bound
should be d = 2n − 1. In the so-called logarithmic case, it is also anticipated that if d ≥ 2n + 1, then
the complement CPn \D is also hyperbolic. The subject of hyperbolicity has attracted much attention and
research, partly because it has been believed to be intimately related to Diophantine Geometry. For instance,
Lang conjectured that an algebraic variety VK defined over a number field K can contain only finitely many
K-rational points provided that VC is hyperbolic after some base change K ↪→ C.

Many works have been done during recent decades towards the above conjectures. Notably, these con-
jecture were confirmed under the condition that the degree of D is very high compared with the dimension.
In the case of surfaces in CP3, by studying the entire leaves of foliations on surfaces, the first proof was
given by McQuillan [30] with degree bound d ≥ 36. Demailly-El Goul [13] provided a better degree bound
d ≥ 21. Pǎun [34] employed the technique of using slanted vector field of Siu [46] together with the work of
McQuillan [31] to improve the degree bound to d ≥ 18. Subsequently, hyperbolicity of generic three-folds
in CP4 was confirmed [35, 16] with degree bound d ≥ 593.

In the case of arbitrary dimension n, by generalizing the variational approach of Clemens [9] and Voisin
[51], Siu [46] outlined a strategy which finally led to the proof of Kobayashi’s conjecture [47] with very high
degree bound d(n) ≫ 1. Many works are influenced by Siu’s program, especially the significant results of
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Diverio-Merker-Rousseau [15] on Green-Griffiths’ conjecture (see also [11, 10]). Recently, based on the
method of using Wronskian differential operators [52, 4], Brotbek gave a new proof for hyperbolicity of
high degree generic hypersurface [3]. The explicit degree bound was given shortly afterwards [14, 12]. Very
recently, Bérczi-Karwan [1] reached the degree bound of polynomial growth by an approach from geometric
invariant theory.

On the other side, in the past five decades, it has been considered a very challenging problem to construct
new examples of hyperbolic hypersurfaces of low degree in projective spaces, as the motto goes: “the lower
degree, the more difficult the hyperbolicity”. The first example of compact hyperbolic manifold due to
Brody-Green [2] is a surface in CP3 defined by the equation

zd0 + zd1 + zd2 + zd3 + (ϵ z0z1)
d
2 + (ϵ z0z2)

d
2 = 0,

where d = 2k ≥ 50 and |ϵ| is small enough. After that several hyperbolic hypersurfaces in low dimension
were constructed to improve the degree bound [32, 22, 48, 44, 43, 20, 40, 39, 42, 7, 17]. Duval [17]
constructed a sextic hyperbolic surface in CP3, which is the lowest degree found up to date. Some recent
constructions could also reach this degree bound [8, 18]. It is still not known yet whether there exists any
quintic hyperbolic surface.

Currently, there are two main methods of constructing hyperbolic hypersurfaces in projective space. The
first one is to seek them among the class of perturbations of Fermat hypersurface. This method mades use
some variants of the generalized Borel Theorem to study the degeneracy of entire holomorphic curves. The
second one is the deformation method introduced by Zaidenberg [55], whose main idea is to find hyperbolic
hypersurfaces in the linear pencil of hypersurfaces Σϵ = {s0 + ϵs = 0}, where S0 = {s0 = 0} is a singular
hypersurface, S = {s = 0} is a generic hypersurface and ϵ is small enough.

The first examples in any dimension were given by Masuda-Noguchi [29] with very large degree. Explicit
constructions with large degree were gave by Fujimoto [20, 21]. Some constructions with lower degree
asymptotic were provided by Siu-Yeung [48] with d(n) ≥ 16 (n − 1)2 and by Shiffman-Zaidenberg [41]
with d(n) ≥ 4 (n − 1)2. Currently, the best asymptotic degree bound is d ≥

(
n+2
2

)2, obtained in [24]. In
low dimension 3 ≤ n ≤ 6, example of hyperbolic hypersurface of lowest degree bound d = 2n was given
in [25].

On the other hand, example of smooth algebraic curve in CP2 of degree d ≥ 5 whose complement is
hyperbolically embedded was constructed by Zaidenberg [55] using deformation. However, in the loga-
rithmic case, from dimension n ≥ 3, this method is not effective. Examples of hyperbolically embedded
hypersurfaces were provided by Masuda-Noguchi [29] in all dimension, and by Shirosaki [44] in low di-
mension n ≤ 4 with better degree bound. Generalizing the construction of Shirosaki to arbitrary dimension,
Shiffman-Zaidenberg showed the existence of hyperbolically embedded hypersurfaces in CPn with all de-
gree d ≥ 4n2 − 2n+ 1.

Our first aim in this paper is to improve the previous degree bound d ≥ 31 for hyperbolically embedded
surfaces in CP3 by Shirosaki [44]. We first prove a Borel type result for holomorphic curves into projective
space avoiding or contained in the hypersurface defined by the homogeneous polynomials of the form

n∑
i=0

zd−δi
i Qi.

Similar results have been given in [32], [22] [50] using meromorphic connections (see also [53], [49] for
another approach via value distribution theory). Following the arguments of Green, we obtain a stronger
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degeneracy statement (see Section 2 for details). As an application, we construct a smooth algebraic surface
in CP3 of degree d for any d ≥ 19 such that its complement is hyperbolically embedded in CP3.

Theorem A. Let d ≥ 19 be an integer. There exist some nonzero complex numbers a0, a1, a2, a3 such that
the surfaceD ⊂ CP3 defined in the homogeneous coordinates [z0 : z1 : z2 : z3] of CP3 by the homogeneous
polynomial

zd0 + zd−2
1 (z21 + a0z

2
0) + zd−2

2 (z22 + a1z
2
0) + zd−2

3 (a2z
2
1 + a3z

2
2 + z23)

is smooth, and the complement CP3 \D is hyperbolically embedded in CP3.

On the other hand, in the quantitative aspect of the hyperbolicity problem, called value distribution theory
or Nevanlinna theory, one studies the frequency of impacts of entire holomorphic curves into projective
space and a family of hypersurfaces, by means of certain Second Main Theorem type estimate.

Before entering the details of the next result, we give a brief introduction to Nevanlinna theory in projec-
tive space. For a positive number r > 0, we denote by ∆r ⊂ C the disk of radius r centered at the origin.
Fix a truncation level m ∈ N∪ {∞}, for an effective divisor E =

∑
i αi ai on C where αi ≥ 0, ai ∈ C, the

m-truncated degree of the divisor E on the disk ∆r is given by

n[m](r, E) :=
∑

ai∈∆r

min {m,αi},

the truncated counting function at level m of E is then defined by taking the logarithmic average

N [m](r, E) :=

∫ r

1

n[m](t, E)

t
dt (r > 1).

When m = ∞, for abbreviation we write n(t, E), N(r, E) for n[∞](t, E), N [∞](r, E).
Let f : C → Pn(C) be an entire holomorphic curve having a reduced representation f = [f0 : · · · : fn] in

the homogeneous coordinates [z0 : · · · : zn] of Pn(C). LetD = {Q = 0} be a divisor in Pn(C) defined by a
homogeneous polynomial Q ∈ C[z0, . . . , zn] of degree d ≥ 1. If f(C) ̸⊂ D, then f∗D =

∑
a∈C orda f

∗Q
is a divisor on C. We then define the truncated counting function of f with respect to D as

N
[m]
f (r,D) := N [m]

(
r, f∗D

)
,

which measures the frequency of the intersection f(C) ∩ D. Next, the proximity function of f associated
to the divisor D is given by

mf (r,D) :=

∫ 2π

0
log

∥∥f(reiθ)∥∥d
max

∥Q∥max∣∣Q(f)(reiθ)
∣∣ dθ

2π
,

where ∥Q∥max is the maximum absolute value of the coefficients of Q and where

(1.1)
∥∥f(z)∥∥

max
:= max{|f0(z)|, . . . , |fn(z)|}.

Since
∣∣Q(f)

∣∣ ≤ (
d+n
n

)
∥Q∥max · ∥f∥dmax, we see that mf (r,D) ≥ O(1) is bounded from below by some

constant. Lastly, the Cartan order function of f is defined by

Tf (r) :=
1

2π

∫ 2π

0
log

∥∥f(reiθ)∥∥
max

dθ =
∫ r

1

dt
t

∫
|z|<t

f∗ωFS +O(1) (r > 1),

capturing the growth of the area of the image of the disks under f , with respect to the Fubini–Study met-
ric ωFS. The Nevanlinna theory is then established by comparing the above three functions. It consists
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of two fundamental theorems (for backgrounds and recent progresses in Nevanlinna theory, see Noguchi-
Winkelmann [33] and Ru [38]). The first one is a reformulation of the Poisson-Jensen formula.

First Main Theorem. Let f : C → Pn(C) be a holomorphic curve and let D be a hypersurface of degree d
in Pn(C) such that f(C) ̸⊂ D. Then one has the estimate

mf (r,D) +Nf (r,D) = d Tf (r) +O(1)

for every r > 1, whence

(1.2) Nf (r,D) ≤ d Tf (r) +O(1).

Hence the First Main Theorem provides an upper bound on the counting function in term of the order
function. The reverse direction, called Second Main Theorem, is usually much harder, and one often needs
to take the sum of the counting functions of many divisors.

Throughout this paper, for an entire curve f , by Sf (r), we mean a real function of r ∈ R+ such that

Sf (r) ≤ O(log (Tf (r))) + ϵlog r

for every positive constant ϵ and every r outside of a subset (depending on ϵ) of finite Lebesgue measure of
R+. In the case where f is rational, we understand that Sf (r) = O(1). In any case, there holds

lim inf
r→∞

Sf (r)

Tf (r)
= 0.

A family {Di}1≤i≤q of q ≥ n+ 2 hypersurfaces in CPn is said to be in general position if ∩i∈IDi = ∅
for any subset I ⊂ {1, . . . , q} of cardinality n+1. For a linearly nondegenerate entire curve f : C → Pn(C)
and for a family of q ≥ n+2 hyperplanes {Hi}i=1,..., q in general position, Cartan [6] established a second
main theorem

(1.3) (q − n− 1)Tf (r) ≤
q∑

i=1

N
[n]
f (r,Hi) + Sf (r),

which implies the defect relation
q∑

i=1

δ
[n]
f (Hi) ≤ n+ 1.

In the particular case n = 1, Cartan recovered the classical Nevanlinna’s Second Main Theorem. In the
collinear case, by a purely potential theoretic approach, a Second Main Theorem for non-constant holomor-
phic curves f in CPn and family of hypersurfaces {Di}qi=1 in general position without truncation were given
by Eremenko-Sodin [19] which implies a defect relation bounded by 2n. Assuming the algebraically non-
degenerate condition for entire curves, Ru [36, 37] obtained a defect relation bounded by n + 1 by method
from Diophantine approximation. Second Main Theorem quantifying the logarithmic Green-Griffiths and
Kobayashi conjecture were given in [26], [5], using the logarithmic jet differentials.

Currently, from dimension n ≥ 2, there are only two results about Second Main Theorem for non constant
holomorphic curve f into CPn. These are the Second Main Theorems of Eremenko-Sodin [19] and Brotbek-
Deng [5]. In these works, one either needs many targets (at least 2n + 1) or very large degree (exponential
growth compared with the dimension). Our next purpose in this paper is to seek Second Main Theorem for
non-constant entire holomorphic curves into CPn and a hypersurface in this space whose complement is
hyperbolically embedded in CPn. We shall deal with the hypersurface of Fermat-Waring type constructed
by Siu-Yeung [48] and Shiffman-Zaidenberg [41]. Here is the statement of our next result.



SOME VARIANTS OF THE GENERALIZED BOREL THEOREM AND APPLICATIONS 5

Theorem B. Let m,n, d be positive integers with m ≥ 3n − 1 and d ≥ m2 − m + 1. Let D be the
Fermat-Waring type hypersurface in CPn defined by the homogeneous polynomial

m∑
i=1

hdi ,

where hi are generic homogeneous linear forms on Cn+1. For a nonconstant holomorphic function f : C →
CPn whose image is not contained in suppD, the following Second Main Theorem type estimate holds(

d−m(m− 1)
)
Tf (r) ≤ N

[m−1]
f (r,D) + Sf (r).

Notably, this implies a defect relation involving the degree of the hypersurfaceD. It shows that the defect
of f with respect to D is small when the degree of D is large (see [50], [53], [49] for related results).

Defect relation. Let m,n, d be positive integers with m ≥ 3n − 1 and d ≥ m2 − m + 1. Let D be the
Fermat-Waring type hypersurface in CPn defined by the homogeneous polynomial

m∑
i=1

hdi ,

where hi are generic homogeneous linear forms on Cn+1. For a nonconstant holomorphic function f : C →
CPn whose image is not contained in suppD, the following defect inequality holds

δ
[m−1]
f (D) ≤ m(m− 1)

d
.

Consequently
lim
d→∞

δ
[m−1]
f (D) = 0.

From the above defect relation, and in view of the fundamental conjecture for entire curves of Griffiths,
one may expect the following

Conjecture. Let f : CPn be a nonconstant entire holomorphic curve. Let D be a generic hypersurface of
degree d > 2n. If the image of f is not contained in D, then the following defect relation holds

δf (D) ≤ 2n

d
.
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2. SOME VARIANTS OF GENERALIZED BOREL’S THEOREM

As pointed out by Shiffman in a private conversation with Siu [45], from the Cartan Second Main The-
orem with truncated counting functions, one can deduce a Second Main Theorem for algebraically nonde-
generate holomorphic curves and a family of Fermat type hypersurfaces. Using this technique, some gener-
alizations have been done recently for small perturbations of Fermat type hypersurfaces [53], [49] (see also
[50] for a geometric approach via connections). For later purpose, we present here a slightly modifications
of these results with a simplified proof.
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Proposition 2.1. Let d, n, δ0, . . . , δn be integer numbers with δi ≥ 0, n ≥ 2 and d > n(n+ 1) +
∑n

i=0 δi.
Let Qi (0 ≤ i ≤ n) be homogeneous polynomials of degree δi. Suppose that the family of hypersurfaces
{Di}0≤i≤n where Di = {zd−δi

i Qi = 0} is in general position in CPn. Let D be the hypersurface in CPn

defined by the homogeneous polynomial
n∑

i=0

zd−δi
i Qi.

Let f : C → CPn be a non-constant holomorphic curve. If there exists no nontrivial linear relation among
(zd−δi

i Qi) ◦ f , then [
d−

(
n(n+ 1) +

n∑
i=0

δi
)]
Tf (r) ≤ N

[n]
f (r,D) + Sf (r).

Proof. Since {zd−δi
i Qi}0≤i≤n is in general position, for any w ∈ Sn+1 := {w ∈ Cn+1 \ {0}, ∥w∥ = 1},

there exists at least one index i with (zd−δi
i Qi)(w) ̸= 0. Thus, by compactness property of Sn+1, there exist

constants C1, C2 > 0 such that

C1 ≤ max
0≤i≤n

∣∣(zd−δi
i Qi)(w)

∣∣ 1d ≤ C2 (∀w ∈ Sn+1).

Since zd−δi
i Qi are homogeneous of degree d, the above estimate implies

C1 ≤ max
0≤i≤n

∣∣(zd−δi
i Qi)(w)

∣∣ 1d
∥w∥

≤ C2 (∀w ∈ CPn).

Now let f = [f0 : · · · : fn] be a reduced representation of f . Setting

π : CPn → CPn, [z0 : · · · : zn] 7→ [zd−δ0
0 Q0 : · · · : zd−δn

n Qn],

g = [g0 : · · · : gn] : C → CPn, z 7→ π ◦ f(z),

where gi := (zd−δi
i Qi) ◦ f . It follows from the above estimate that

(2.1) Tg(r) = d Tf (r) +O(1).

Let {Hi}0≤i≤n+1 be the family of n+ 2 hyperplanes in CPn given by

Hi = {zi = 0} (0 ≤ i ≤ n),

Hn+1 = {
n∑

i=0

zi = 0},

which is in general position. By assumption, the map g is linearly nondegenerate. Hence, applying Cartan’s
Second Main Theorem for g and {Hi}, one receives

(2.2) Tg(r) ≤
n∑

i−0

N [n]
g (r,Hi) +N [n]

g (r,Hn+1).

For 0 ≤ i ≤ n, the curve g intersects Hi if and only if the curve f intersects Hi or Qi. Furthermore, if
f intersects such Hi, then g intersects Hi with multiplicity at least d. Hence, from these observations, one
gets

N [n]
g (r,Hi) ≤ Nf (r,Qi) +

n

d
Ng(r,Hi), (0 ≤ i ≤ n)
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which implies

N [n]
g (r,Hi) ≤ δi Tf (r) +

n

d
Tg(Hi), (0 ≤ i ≤ n),

by the First Main Theorem. Obviously, one also has N [n]
g (r,Hn+1) = N

[n]
f (r,D). Combining these facts

together with (2.1), (2.2), we receive the desired estimate. □

One can deduce immediately from Proposition 2.1 that, under the same assumptions therein, if f avoids
D, then it must be (algebraically) degenerate. By following the arguments in [28, Example 3.10.22], one
can actually obtain stronger degeneracy result.

Generalized Borel’s Theorem (logarithmic case). Let d, n, δ0, . . . , δn be integer numbers with δi ≥ 0,
n ≥ 2 and d > n(n + 1) +

∑n
i=0 δi. Let Qi (0 ≤ i ≤ n) be homogeneous polynomials of degree δi.

Suppose that the hypersurfaces Di = {zd−δi
i Qi = 0} (0 ≤ i ≤ n + 1) have empty intersection. Then, for

the collection of n+ 1 entire holomorphic functions fi (0 ≤ i ≤ n) such that
n∑

i=0

fd−δi
i Qi(f0, f1, . . . , fn)

is nowhere vanishing, there is a partition of indexes {0, . . . , n} = ∪ℓ
α=0Iα such that the followings hold

(i) fd−δi
i Qi(f0, f1, . . . , fn) ≡ 0 if and only if i ∈ I0 (of course the set I0 may be empty);

(ii) The cardinality |Iα| ≥ 2 for every 1 ≤ α ≤ ℓ, with at most one exception;
(iii) For each 1 ≤ α ≤ ℓ, for arbitrary indexes i, j ∈ Iα, there exists a constant cij ∈ C such that

f
d−δi
i Qi(f0,f1,...,fn)

f
d−δj
j Qj(f0,f1,...,fn)

= cij;

(iv)
∑

i∈Iα f
d−δi
i Qi(f0, f1, . . . , fn) ≡ 0 for all 0 ≤ α ≤ ℓ with one exception.

Proof. Consider the map f : C → CPn given as f = [f0 : · · · : fn]. Let the map g = [g0 : · · · : gn] and the
family of hyperplanes {Hi}0≤i≤n+1 be as in the proof of Proposition 2.1. Let I0 = {0 ≤ i ≤ n : gi ≡ 0}
and J = {0, . . . , n} \ I0. Suppose that |I0| = ℓ. Then the image of g lies in the subspace H = ∩i∈I0Hi

∼=
CPm−1−ℓ. By the same arguments as in the proof of Proposition 2.1, one deduces that g(C) lies in some
hyperplane of H . Next, we follow the arguments as in [28, Example 3.10.21] (see also [23]). Suppose that
gi satisfy the relation ∑

k∈K
akgk = 0,

where K ⊂ J , |K| ≥ 2 and ak ∈ C are nonzero constants. We claim that there exist two indexes i, j ∈ k
such that gi/gj is constant. Indeed, if |K| = 2, then we have nothing to prove. Otherwise, we consider the
map gK = [gk][k∈K],C → Hk

∼= CP|K|−2, where HK is the hyperplane in H defined by {
∑

k∈K zk = 0},
and the |K| hyperplanes {zk = 0}(k ∈ K). Using arguments as in the proof of Proposition 2.1, one obtains
further degeneracy. Inductively, the claim is proved.

Let ∼ be the equivalence relation on the index set J defined as i ∼ j if and only if gi/gj is constant and
let {I1, . . . , Iℓ} be the partition of J by ∼. Then for each 1 ≤ s ≤ ℓ, we pick an index is ∈ Is and put
gj = ℓjgis . Set bs =

∑
j∈Is ℓj , then

n∑
i=0

gi =
ℓ∑

s=1

bsgis .
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It suffices to prove that the set M = {s : 1 ≤ s ≤ ℓ : bs ̸= 0} consists only one elements. Indeed, if
|M | ≥ 2, then can use arguments as in Proposition 2.1 to get a nontrivial linear relation among {gs}s∈M .
Then by the above claim, there exist two indexes s1, s2 ∈ M such that gs1/gs2 is constant, contradiction.
Hence M is of cardinality 1. This finishes the proof of the Theorem. □

We can reformulate the above statement in a more geometric way as follows.

Corollary 2.2. Keeping the same assumption as in Proposition 2.1. Putting

π : CPn → CPn, [z0 : · · · : zn] 7→ [zd−δ0
0 Q0 : · · · : zd−δn

n Qn],

g = [g0 : · · · : gn] : C → CPn, z 7→ π ◦ f(z),

where gi := (zd−δi
i Qi) ◦ f . If f : C → CPn \D is a non-constant holomorphic curve avoiding D, then the

image of the composition map g is contained in a smaller linear subspace of CPn of dimension at most
[
n
2

]
.

Proof. As before, we can find a partition {I0, I1 . . . , Iℓ} of {0, 1, . . . , n}, all Ii (1 ≤ i ≤ ℓ) have cardinality
at least 2 with at most one exception, such that

(a) gi ≡ 0 for all i ∈ I0;
(b) For each 1 ≤ s ≤ ℓ, pick an index is ∈ Is, then for any j ∈ Is there exists a nonzero constant µs,j

such that gj = µs,jgis .

The image of g lies in the linear subspace defined by the equations

zj = µs,jzzs (1 ≤ s ≤ ℓ, j ∈ Is, j ̸= is); zj = 0 (j ∈ I0).

Thus {gi}0≤i≤n must satisfy at least |I0|+
∑ℓ

s=1(|Is| − 1) = n+ 1− ℓ independent linear relations. Since

|Is| ≥ 2 for at least ℓ− 1 indexes among {1, . . . , ℓ}, there holds ℓ ≤
[
n+ 2

2

]
, which implies that the image

of g is contained in a linear subspace of dimension at most
[
n+ 2

2

]
− 1 =

[
n

2

]
. □

Similarly, one can also get analog results in the compact case.

Generalized Borel Theorem (compact case). Let d, n, δ0, . . . , δn be integer numbers with δi ≥ 0, n ≥ 2

and d > (n− 1)(n+ 1) +
∑n

i=0 δi. Suppose that the hypersurfaces Di = {zd−δi
i Qi = 0} (0 ≤ i ≤ n+ 1)

have empty intersection. Then, for the collection of n+ 1 entire holomorphic functions fi (0 ≤ i ≤ n) such
that

n∑
i=0

fd−δi
i Qi(f0, f1, . . . , fn) ≡ 0,

there is a partition of indexes {0, . . . , n} = ∪ℓ
α=0Iα such that the followings hold

(i) fd−δi
i Qi(f0, f1, . . . , fn) ≡ 0 if and only if i ∈ I0 (of course the set I0 may be empty);

(ii) The cardinality |Iα| ≥ 2 for every 1 ≤ α ≤ ℓ;
(iii) For each 1 ≤ α ≤ ℓ, for arbitrary indexes i, j ∈ Iα, there exists a constant cij ∈ C such that

f
d−δi
i Qi(f0,f1,...,fn)

f
d−δj
j Qj(f0,f1,...,fn)

= cij;

(iv)
∑

i∈Iα f
d−δi
i Qi(f0, f1, . . . , fn) ≡ 0 for all 0 ≤ α ≤ ℓ.
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Corollary 2.3. Keeping the same assumption as above. Putting

π : CPn → CPn, [z0 : · · · : zn] 7→ [zd−δ0
0 Q0 : · · · : zd−δn

n Qn],

g = [g0 : · · · : gn] : C → CPn, z 7→ π ◦ f(z),

where gi := (zd−δi
i Qi) ◦ f . If f : C → D is a non-constant holomorphic curve into D, then the image of

the composition map g is contained in a smaller linear subspace of CPn of dimension at most
[
n−1
2

]
.

Remark 2.4. In the case where δ0 = · · · = δn = 0, we recover the classical Borel Theorem [23], [28].

3. EXAMPLE OF SMOOTH HYPERBOLIC SURFACE WHOSE COMPLEMENT IS HYPERBOLICALLY
EMBEDDED IN CP3

3.1. Genus of some plane algebraic curves. We collect some results about the genus of plane algebraic
curves (see [22] for explicit computations). By using the generalized Borel Theorem, these curves arise
naturally as the degeneracy locus of entire holomorphic curves avoiding the Fermat type surface given in
Theorem A.

Proposition 3.1. For arbitrary nonzero constants β, ϵ1, ϵ2 ∈ C \ {0}, the plane curve C defined in inhomo-
geneous coordinates (X,Y ) of CP2 by the polynomial

β +Xd−2(X2 + ϵ21) + Y d−2(y2 + ϵ22)

has genus g ≥ 2 when d ≥ 5.

Proposition 3.2. For arbitrary nonzero constants ϵ1, ϵ2 ∈ C \ {0} with (±iϵ1)d + (±iϵ2)d ̸= 0, the plane
curve C defined in inhomogeneous coordinates (X,Y ) of CP2 by the polynomial

Xd−2(X2 + ϵ21) + Y d−2(y2 + ϵ22)

has genus g ≥ 2 when d ≥ 4.

3.2. Construction of smooth hyperbolic surface of low degree whose complement is hyperbolically
embedded in CP3. This section is devoted to prove Theorem A. Recalling that D ⊂ CP3 is the surface
defined by the homogeneous polynomial

zd0 + zd−2
1 (z21 + a0z

2
0) + zd−2

2 (z22 + a1z
2
0) + zd−2

3 (a2z
2
1 + a3z

2
2 + z23).

Using the generalized logarithmic Borel Theorem obtained in the previous section, we will prove the hy-
perbolicity of CP3 \ D. The hyperbolicity of D can be treated by the same arguments, using the compact
version of the generalized Borel Theorem. Let f : C → CP3 \ D be a holomorphic function. We need to
prove that f is constant. As before we consider the map

π : CP3 → CP3, [z0 : z1 : z2 : z3] 7→ [zd0 : zd−2
1 (z22 + a0z

2
0) : z

d−2
2 (z22 + a1z

2
0) : z

d−2
3 (a2z

2
1 + a3z

2
2 + z23)].

By the generalized Borel Theorem, the image of f must satisfy two algebraic equations. Precisely, the
image of g := π ◦ f = [g0 : g1 : g2 : g3] : C 7→ CP3 must lie in a projective line L which is the intersection
of two planes defined by the linear polynomials of the form λizi + µjzj = 0. To get further degeneracy, we
need to study in very details all possibilities of the line L. We consider two cases:

(a) The image of g lies in some coordinate plane;
(b) The image of g does not lie in any coordinate plane.
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Let us consider the case (a). If g lands in another coordinate plane, then by Proposition 2.1, g must be
constant and so is f . Thus we can suppose that the image of g is contained in only one coordinate plane. We
treat separately the following possibilities for the position of the image of g:

(a1) The image of g lies in the plane z0;
(a2) The image of g lies in the plane zi for 1 ≤ i ≤ 2;
(a3) The image of g lies in the plane z3.

In the case (a1), one has f0 ≡ 0. Since g(C) does not lie in any other coordinate plane, we need to
consider three circumstances:

(a1.i) The image of f lies in the plane curve zd1 + zd2 = 0 and avoid zd−2
3 (a2z

2
1 + a3z

2
2 + z23);

(a1.ii) The image of f lies in the plane curve zd1 + zd−2
3 (a2z

2
1 + a3z

2
2 + z23) = 0 and avoids z2 = 0;

(a1.ii’) The image of f lies in the plane curve zd2 + zd−2
3 (a2z

2
1 + a3z

2
2 + z23) = 0 and avoids z1 = 0.

Consider the case (a1.i). The curve f(C) lies in some projective line z1 + µz2 = 0 where µd = −1. This
line intersects with zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0 at three distinct points. This forces f to be constant by the

Little Picard Theorem.
Next we consider the case (a1.ii). The plane curve zd1+z

d−2
3 (a2z

2
1+a3z

2
2+z

2
3) = 0 in the inhomogeneous

coordinate (X,Y ) is given byXd+a2X
2+a3Y

2+1 = 0. This curve is smooth and therefore, by the genus
formula, its genus is at least 2, which forces f to be constant. The case (a1ii’) could be treated similarly.

Now we consider the case (a2), and without lost of generality, we assume that g1 ≡ 0. As before, we
have three circumstances:

(a2.i) The image of f lies in the surface zd0 + zd−2
2 (z22 + a1z

2
0) = 0 and avoids the surface zd−2

3 (a2z
2
1 +

a3z
2
2 + z23) = 0;

(a2.ii) The image of f lies in the surface zd−2
2 (z22 + a1z

2
0) + zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0 and avoids the

surface z0 = 0;
(a2.iii) The image of f lies in the surface zd0 + zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0 and avoids the surface

zd−2
2 (z22 + a1z

2
0) = 0.

First we treat the case (a2.i). The image of f lies in the planes z0 = λz2 and z1 = 0 or z0 = µz1 where
λ, µ are some constants satisfying λd + a1λ

2 + 1 = 0 and µ2 + a = 0. Hence its image lies in a line
intersecting with zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0 at three distinct points, which implies that f is constant.

For the case (a2.ii), as before, the image of f lies in the plane z1 = 0 or z0 = µz1. In the first case, the
image of f also lies in zd−2

2 (z22 + a1z
2
0) + zd−2

3 (a3z
2
2 + z23) = 0. In inhomogeneous coordinates (X,Y ),

this curve is given by the equation Xd−2(X2 + a1Y
2) + a3X

2 + 1 = 0. For all but except finite choices of
a1, a3, this curve is smooth and we can use the genus formula to conclude. In the second case where f(C)
lies in the plane z0 = µz1, it must also lie in the curve zd−2

2 (z22 +a1z
2
0)+ z

d−2
3 (−a0a2z20 +a3z22 + z23) = 0.

Again, for all but except finite choices of ai, this curve is smooth and we get the constancy of f .
Finally, consider the case (a2iii). The image of f lies in the plane z1 = 0 or z0 = µz1. Furthermore, it

lies also in the plane curve zd0 + z
d−2
3 (αz20 +a3z

2
2 + z

3
3) = 0, where α ∈ C is a constant. This curve is given

in the inhomogeneous coordinate (X,Y ) as Xd+αX2+a3Y
2+1 = 0, which is of genus at least 2, which

implies that f is constant.
We now move to the case (a3). As before, we have three sub-cases:

(a3.i) The image of f lies in the surface zd0+z
d−2
1 (z21+a0z

2
0) = 0 and avoids the surface zd−2

2 (z22+a1z
2
0) =

0;
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(a3.i’) The image of f lies in the surface zd0+z
d−2
2 (z22+a1z

2
0) = 0 and avoids the surface zd−2

1 (z21+a0z
2
0) =

0;
(a3.ii) The image of f lies in the surface zd−2

1 (z21 + a0z
2
0) + zd−2

2 (z22 + a1z
2
0) = 0 and avoids the surface

z0 = 0.

In the case (a3.i) and (a3.i’), the image of f lies in a projective line or conic and avoids three points, and
hence it must be constant. In the case (a3.ii), we employ Proposition 3.2 to conclude.

Now we pass to the case (b). By the generalized Borel Theorem, we need to consider the following
circumstances:

(b1) The image of f lies in the surfaces zd0 + zd−2
1 (z21 + a0z

2
0) = 0, zd−2

2 (z22 + a1z
2
0) + αzd−2

3 (a2z
2
1 +

a3z
2
2 + z23) = 0 for α ̸= 1 and avoids the surface zd−2

2 (z22 + a1z
2
0) = 0;

(b2) The image of f lies in the surfaces zd0 + αzd−2
1 (z21 + a0z

2
0) = 0, zd−2

2 (z22 + a1z
2
0) + zd−2

3 (a2z
2
1 +

a3z
2
2 + z23) = 0 for α ̸= 1 and avoids the surface zd0 + zd−2

1 (z21 + a0z
2
0) = 0;

(b1’) The image of f lies in the surfaces zd0 + zd−2
2 (z22 + a1z

2
0) = 0, zd−2

1 (z21 + a0z
2
0) + αzd−2

3 (a2z
2
1 +

a3z
2
2 + z23) = 0 for α ̸= 1 and avoids the surface zd−2

1 (z21 + a0z
2
0) = 0;

(b2’) The image of f lies in the surfaces zd0 + αzd−2
2 (z22 + a1z

2
0) = 0, zd−2

1 (z21 + a0z
2
0) + zd−2

3 (a2z
2
1 +

a3z
2
2 + z23) = 0 for α ̸= 1 and avoids the surface zd0 + zd−2

2 (z22 + a1z
2
0) = 0;

(b3) The image of f lies in the surfaces zd0+z
d−2
3 (a2z

2
1+a3z

2
2+z

2
3) = 0, zd−2

1 (z21+a0z
2
0)+αz

d−2
2 (z22+

a1z
2
0) = 0 for α ̸= 1 and avoids the surface zd−2

1 (z21 + a0z
2
0) = 0;

(b4) The image of f lies in the surfaces zd0+αz
d−2
3 (a2z

2
1+a3z

2
2+z

2
3) = 0, zd−2

1 (z21+a0z
2
0)+z

d−2
2 (z22+

a1z
2
0) = 0 for α ̸= 1 and avoids the surface zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0;

(b3’) The image of f lies in the surfaces zd0+αz
d−2
3 (a2z

2
1+a3z

2
2+z

2
3) = 0, zd−2

1 (z21+a0z
2
0)+z

d−2
2 (z22+

a1z
2
0) = 0 for α ̸= 1 and avoids the surface zd−2

3 (a2z
2
1 + a3z

2
2 + z23) = 0;

(b4’) The image of f lies in the surfaces zd0+z
d−2
3 (a2z

2
1+a3z

2
2+z

2
3) = 0, zd−2

1 (z21+a0z
2
0)+αz

d−2
2 (z22+

a1z
2
0) = 0 for α ̸= 1 and avoids the surface zd−2

1 (z21 + a0z
2
0) = 0;

(b5) The image of f lies in the curve zd0 = αzd−2
1 (z21 + a0z

2
0) = βzd−2

2 (z22 + a1z
2
0) = 0, where

α, β ̸= 0, 1 + α−1 + β−1 = 0 and avoids zd−2
3 (a2z

2
1 + a3z

2
2 + z23) = 0;

(b6) The image of f lies in the curve zd0 = αzd−2
1 (z21 + a0z

2
0) = βzd−2

3 (a2z
2
1 + a3z

2
2 + z23), where

α, β ̸= 0, 1 + α−1 + β−1 = 0 and avoids zd−2
2 (z22 + a1z

2
0) = 0;

(b6’) The image of f lies in the curve zd0 = αzd−2
2 (z22 + a1z

2
0) = βzd−2

3 (a2z
2
1 + a3z

2
2 + z23), where

α, β ̸= 0, 1 + α−1 + β−1 = 0 and avoids zd−2
1 (z21 + a0z

2
0) = 0;

(b7) The image of f lies in the curve zd−2
1 (z21+a0z

2
0) = αzd−2

2 (z22+a1z
2
0) = βzd−2

3 (a2z
2
1+a3z

2
2+z

2
3),

where α, β ̸= 0, 1 + α−1 + β−1 = 0 and avoids z0 = 0.

By symmetry, we only need to consider the case (bi). Details of case-by-case arguments are given belows.

• In the case (b1), the curve f must lie in the plane z1 = λz0, where λ depending only on a0.
Hence f(C) must lie in the plane curve zd−2

2 (z22 + a1z
2
0) + αzd−2

3 (µz20 + a3z
2
2 + z23) = 0, where

µ = λ2a2. In the inhomogeneous coordinates (X,Y ), this curve is given by the algebraic equation
Xd−2(X2 + a1Y

2) + α(µY 2 + a3X
2 + 1) = 0. A straightforwards computation shows that this

curve has at most four ordinary singularities. Hence this curve is irreducible and has genus at least
2, which yields the constancy of f .

• The case (b2) can be treated similar as in the case (b1).
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• In the case (b3), applying Proposition 3.2, the curve zd−2
1 (z21 + a0z

2
0) + αzd−2

2 (z22 + a1z
2
0) = 0 is

either irreducible and has genus at least 2, or it has irreducible components with lines of the form
z1 + λz3 = 0 and an irreducible component of genus at least 2. Therefore we can suppose that
the image of f lies in a line of the form z1 + λz3 = 0. This implies that f(C) is contained in the
plane curve zd0 + zd−2

3 (µz21 + z23) = 0. This curve in the inhomogeneous coordinates is given as
Xd + µY 2 + 1 = 0.

• In the case (b4), we can apply directly Proposition 3.2 to get conclusion.
• In the case (b5), the image of f lies in a line and omits three distinct points there. The constancy of
f follows from the Little Picard Theorem.

• In the case (b6), the image of f lies in the plane z1 = λz0 and the algebraic curve zd0 = βzd−2
3 (µz20+

a3z
2 + z23) = 0, or Xd = β(µX2 + a3Y

2 + a3) = 0 in the inhomogeneous coordinates (X,Y ).
This curve is irreducible and has at most two ordinary singularities, and hence its genus is at least 2,
which implies the constancy of f .

• In the case (b7), the image of f lies in a plane of the form z1 = λz2 for some constant λ. Therefore it
lies also in the plane curve zd−2

1 (z21 +a0z
2
0) = βzd−2

3 (µz21 +z
2
3), or Xd−2(X2+a0Y

2)−β(µX2+
1) = 0 in the inhomogeneous coordinates (X,Y ). Straightforward computation shows that this
curve is irreducible and has genus at least 2, where concludes the constancy of f .

Remark 3.3. Similar constructions in the compact case were gave in [22], [48]. The hyperbolic surfaces
were constructed in these works are given by algebraic equations of the form

zd−2
0 (z20 + ϵ21z

d
1 + ϵ22z

2
2) + zd1 + zd2 + zd3 = 0,

where ϵ1, ϵ2 are suitable constants. Note however that the complement of these surfaces are never hy-
perbolic. Indeed, the complement of such surface contains the image of the holomorphic curve f : C →
CP3, z 7→ [0 : eφ : ψ : ϵψ], where φ,ψ are entire functions and ϵ is a d–root of −1.

4. HOLOMORPHIC CURVES INTERSECTING FERMAT-WARNING TYPE HYPERSURFACE

4.1. Counting dimension of some subvarieties of Grassmanians. Let Grm,k denote the Grassmannian of
complex codimension k subspaces of Cm. Let Qm,k denote the subspace 0k×Cm−k ⊂ Grm,k. For integers
a, b, c with 1 ≤ a ≤ c ≤ m− 1 and 1 ≤ b ≤ c ≤ a+ b, consider the set

Γm,a,b,c := {V ∈ Grm,a : dimV ∩Qm,c ≥ m− c}.
The following counting dimension result is due to Shiffman-Zaidenberg [41].

Lemma 4.1.
dimGrm,a−dimΓm,a,b,c = (m− c)(a+ b− c).

4.2. Second Main Theorem for nonconstant holomorphic curves into projective and a Fermat-Warning
type hypersurface. Let us now enter the proof of Theorem B. Let [z0 : · · · : zn], [w1 : · · · : wm] be homo-
geneous coordinates of CPn and CPm−1, respectively. Let [f0 : f1 : · · · : fn] be a reduced representation of
f . Consider the morphism

π : CPn 7−→ CPm−1, [z0 : z1 : · · · : zn] 7−→ [hd1 : hd2 : · · · : hdm],

and put g = π ◦ f : C 7−→ Pm−1, z 7−→ [gd1 : · · · : gdm], where gi := hi ◦ f . It follows from the definition
that

(4.1) Tg(r) = d Tf (r) +O(1).
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Let {Hi}1≤i≤m+1 be the family of m+ 1 hyperplanes in general position in CPm−1 given by

Hi = {wi = 0} (1 ≤ i ≤ m),

Hm+1 = {
m∑
j=1

wj = 0}.

Set I0 := {i ∈ N : 1 ≤ i ≤ m, gi ≡ 0} and assume that ℓ = |I0|. Then 0 ≤ ℓ ≤ n− 1 and the image of
g lies in the subspace H = ∩i∈I0Hi

∼= CPm−1−ℓ. Denote by J = {1 ≤ j ≤ m} \ I0, and consider the map

g̃ : C 7→ H ∼= CPm−1−ℓ, z → [gdj (z)]j∈J ,

we then still have

(4.2) Tg̃(r) = d Tf (r) +O(1).

If g̃ is linearly nondegenerate, then by applying Cartan’s Second Main Theorem for the collection of
hyperplanes {H̃j}j∈J∪{m+1}, where H̃j = Hj ∩H , one obtains

(4.3) Tg̃(r) ≤
∑
j∈J

N
[m−1−ℓ]
g̃ (r, H̃j) +N

[m−1−ℓ]
g̃ (r, H̃m+1) + Sg̃(r).

For each j ∈ J , since the multiplicity of g̃∗H̃j is at least d at every point on its support, one has

N
[m−1−ℓ]
g̃ (r, H̃j) ≤

(
m− 1− ℓ

d

)
Ng̃(r, H̃i),

which implies

N
[m−1−ℓ]
g̃ (r, H̃j) ≤

(
m− 1− ℓ

d

)
Tg̃(r) +O(1),

by the First Main Theorem. Furthermore, it is clear from the definition that

N
[m−1−ℓ]
g̃ (r, H̃m+1) = N

[m−1−ℓ]
f (r,D).

Thus it follows from (4.2), (4.3) that

(4.4)
(
d− (m− ℓ)(m− ℓ− 1)

)
Tf (r) ≤ N

[m−1−ℓ]
f (r,D) + Sf (r),

which implies the desired estimate of the Main Theorem.
Next, consider the case where the image of g lies in some hyperplane of the subspace H ∼= CPm−1−ℓ.

Suppose that the holomorphic functions gj , j ∈ J satisfy the equation

(4.5)
∑
k∈K

akg
d
k = 0,

where K ⊂ J is some subset of J with |K| ≥ 2 and where ak are nonzero complex numbers. We first prove
the following

Claim. There exist some indexes i ̸= j with i, j ∈ J such that gi/gj is constant.

Indeed, if |K| = 2, the claim follows directly from (4.5). Suppose |K| = γ ≥ 3. Consider the homo-
geneous coordinates [wk]k∈K of the linear subspace CPγ−1. Similar as in above, consider the hyperplane
HK

∼= CPγ−2 ⊂ CPγ−1 defined as
∑

k∈I akwk = 0 and the holomorphic map

gK : C 7→ HK
∼= CPγ−2, gK(z) = [gdk(z)]k∈K .
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If the image of gK doesn’t lie in some smaller linear subspace, then using ramification theorem for gK
and the family of γ hyperplanes {Hk}k∈K in HK

∼= CPγ−2, one obtains

(4.6)
∑
k∈K

(
1− γ − 2

d

)
≤ γ − 1,

contradiction. Thus gK is linearly degenerate. Inductively, the claim is proved.
Going back to the proof of the Theorem, we now follow the arguments in [28, Example 3.10.21]. Let

∼ be the equivalence relation on the index set J defined as i ∼ j if and only if gi/gj is constant and let
I := {I1, . . . , Ir} be the partition of J by ∼. For each 1 ≤ s ≤ r, suppose that |Is| = κs. For convenient,
we put |I0| = ℓ = κs and we write Is = {is,1, . . . , is,κs}. Then

gis,j = µs,jgis,1 (∀ 1 ≤ s ≤ r, ∀ 2 ≤ j ≤ κs),

for some constants µs,j ∈ C. we pick an index is ∈ Is and put gj = ℓjgis for each j ∈ Is. Set bs =

1 +
∑κs

j=2 µ
d
s,j(1 ≤ s ≤ r), then ∑

j∈J
gdj =

r∑
s=1

bsg
d
is,1 .

Now, put M = {s : 1 ≤ s ≤ r, bs ̸= 0}. Consider the case where |M | ≥ n+ 1. Similar as in above, one
considers the map

gM : C 7→ HM
∼= CP|M |−1, gM (z) = [gdis,1(z)]s∈M .

Since |M | ≥ n + 1, one has TgM (r) = d Tf (r). If gM is linearly degenerate, by the above claim, one has
gi/gj is constant for some i, j ∈ M , a contradiction. Hence gM is linearly nondegenerate, and by the same
arguments as in (4.4), one can use Cartan’Second Main Theorem for gM and for the |M | + 1 hyperplanes
{ws = 0}(s ∈M), {

∑
s∈M bsws = 0}, and one gets the desired estimate.

Now, consider the case where |M | ≤ n. For each s /∈ M , the set Is contains at least 2 indexes. The
image of g lies in the r-plane YI

µ given by equations

wis,j = µs,jwis,1 (1 ≤ s ≤ r, 2 ≤ j ≤ κs); wi0,j = 0 (1 ≤ j ≤ κ0),

where I = {I1, . . . , Ir}, µ = µs,j . Let Grm,k denote the Grassmannian of complex codimension k linear
subspace of Cm. We need to check that for generic V ∈ Grm,m−n−1, the intersection YI

µ ∩ P(V ) is at most
a point for all such above (I, µ). Indeed, by Lemma 4.1, YI

µ ∩P(V ) is either a point or empty, unless V lies
in a subvariety of Grm,m−n−1 of codimension

α = 2(m− n− r + 1).

On the other hand, since bs = 1+
∑κs

j=2 µ
d
s,j = 0 for any s ̸∈M , the µ-moduli space of the lifting ỸI

µ of
YI
µ to Cm in Grm,m−n−1 has dimension

β ≤
∑
s∈M

(κs − 1) +
∑

1≤ s≤ r, s ̸∈M

(κs − 2) =

r∑
s=1

(κs − 2) + |M | = m− κ0 − 2r + |M | ≤ m− 2r + n.

Since m ≥ 3n− 1, one has α > β. Therefore, for generic V ∈ Grm,m−n−1, the intersection YI
µ ∩ P(V )

is a point or empty for all (I, µ). Hence g is constant and so is f , a contradiction. This finishes the proof of
Theorem B.
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Remark 4.2. To get the hyperbolicity result of the complement, one only needs the condition m ≥ 2n.
However, to get Second Main Theorem estimate, in the above proof, we need the comparability between
TgM (r) and Tf (r). For this reason, we must put stronger assumption m ≥ 3n− 1.
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