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Abstract

Let X and Y be Hilbert spaces, and K : domK ⊂ X → Y a bounded lin-
ear operator. This paper addresses the inverse problem Kx = y, where exact
data y is replaced by noisy data yδ satisfying ∥yδ − y∥Y ≤ δ. Due to the ill-
posedness of such problems, we employ regularization methods to stabilize solu-
tions. While singular value decomposition (SVD) provides a classical approach,
its computation can be costly and impractical for certain operators. We explore
alternatives via Diagonal Frame Decomposition (DFD), generalizing SVD-based
techniques, and introduce a regularized solution xδα =

∑
λ∈Λ κλgα(κ

2
λ)⟨yδ, vλ⟩uλ.

Convergence rates and optimality are analyzed under a generalized source condi-
tion Mφ,E = {x ∈ domK :

∑
λ∈Λ[φ(κ

2
λ)]

−1|⟨x, uλ⟩|2 ≤ E2}. Key questions include
constructing DFD systems, relating DFD and SVD singular values, and extending
source conditions. We present theoretical results, including modulus of continuity
bounds and convergence rates for a priori and a posteriori parameter choices, with
applications to polynomial and exponentially ill-posed problems.

Key words: Ill-posed problem; frame decompostion; convergence rates; Inverse prob-

lem.

MSC 2010: 47A52; 47J06.

1 Introduction

Let X and Y be Hilbert spaces, and let K : domK ⊂ X → Y be a bounded linear

operator. In this paper, we seek a solution x ∈ X to the inverse problem defined by the

operator equation

Kx = y. (1)
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As is customary, we assume that the exact data y is unavailable, and instead, we are given

noisy data yδ with a known noise level δ. Specifically, the noise satisfies

∥yδ − y∥Y ≤ δ. (2)

Due to the inherent instability of inverse problems, even a small perturbation in the data

can lead to significant errors in the solution, rendering the numerical computation of

solutions to the inverse problem challenging. To address this issue, we employ a regular-

ization method for the system defined by equations (1) and (2). One such regularization

approach, based on filtering techniques, has been thoroughly developed in [1] and [2].

In this context, K is assumed to be a compact operator possessing a singular system

(σk, uk, vk). Consequently, K admits a singular value decomposition (SVD) of the form

Kx =
∞∑
k=1

σk⟨x, uk⟩vk,

where σk denotes the singular values, and uk and vk are singular functions satisfying

Kuk = σkvk and K∗vk = σkuk. (3)

It is well known that the SVD is a fundamental tool for solving inverse problems. The

minimum-norm least-squares solution x‡ to equation (1) is then given by the Picard

formula

x‡ := K‡y :=
∞∑
k=1

⟨y, vk⟩
σk

uk,

provided the Picard condition holds:

∞∑
k=1

|⟨y, vk⟩|2

σ2
k

<∞.

When the exact data y is replaced by the noisy data yδ with a given noise level δ, the

approximate solution takes the form

xδα := Rαy
δ :=

∞∑
k=1

σkgα(σ
2
k)⟨yδ, vk⟩uk, (4)

where α > 0, gα is a function satisfying gα(λ) → 1/λ as α → 0, and Rα represents a reg-

ularization operator for equation (1). Furthermore, the convergence rate and optimality

of this regularization are analyzed under the classical source condition x‡ = φ(K∗K)z for

some z ∈ X (see, e.g., [10]).

However, computing the SVD of an operator is often nontrivial and, in certain cases,

computationally expensive, as noted by Ebner, Goppel, and Donoho in [5], [6], and [4], re-

spectively. Additionally, SVD-based regularization may not be well-suited for a variety of

problems, as highlighted by Donoho in [4]. Thus, developing more efficient computational
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methods becomes essential. One approach is to identify a system that partially satisfies

the SVD conditions in (3). A notable development in this direction retains the second

condition, i.e., K∗vλ = κλuλ, where λ belongs to a countable index set Λ. This concept

underpins the Wavelet-Vaguelette Decomposition (WVD) in [4], and more generally, the

Diagonal Frame Decomposition (DFD) in [5], as well as the Translation-Invariant DFD

(TI-DFD) in [6]. By leveraging frame theory, such generalizations enable the construction

of an expansion analogous to the Picard formula, suggesting that regularization methods

tailored to this framework hold significant potential.

Indeed, in [5], the authors reformulate foundational concepts for DFD-based regular-

ization filtering, akin to the SVD filtering presented in [2]. To estimate regularization

errors, they adapt the source condition, assuming the solution belongs to a DFD-type

source set with a polynomial form:

Mp,E :=

{
x ∈ domK :

∑
λ∈Λ

κ−4ν
λ |⟨x, uλ⟩|2 ≤ E2

}
,

where ν, E > 0, and (uλ, vλ, κλ) constitutes a DFD of the operatorK. A similarly modified

source condition appears in [8], where the authors explore the optimality of a posteriori

regularization methods. The framework developed in [5, 8] opens up numerous application

possibilities. As this theory is still emerging, several natural questions arise:

(i) How can DFD systems be constructed for specific problems?

(ii) What is the relationship between the DFD singular values κλ and the SVD singular

values σk? How do these quasi-singular values influence the regularization of ill-posed

problems?

(iii) Can the polynomial DFD source condition be generalized to other forms, such as

logarithmic source conditions?

(iv) How does the DFD source condition relate to the classical source condition?

(v) Do a priori and a posteriori regularization methods achieve optimality?

Question (i) is particularly compelling and has been extensively explored in the field of

tomography (see [5, 8]). This problem exhibits polynomial ill-posedness, where WVD sys-

tems prove effective. In Section 4 of this paper, we examine the backward fractional prob-

lem, considering two scenarios: polynomial ill-posedness and exponential ill-posedness. In

the latter case, the WVD system appears inadequate, prompting us to propose a special-

ized DFD system.

The investigation of Question (ii) remains in its early stages. In [5, 8], it is limited to

assessing the ill-posedness of the problem Kx = y. Our paper advances this inquiry by

exploring the “sparseness” or “thickness” of the DFD singular values κλ through the set

Dλ,β = [δ∗λ, β
−1δ∗λ], where δ∗λ = |v|−1

infE
√
κ2λφ(κ

2
λ), (5)

with φ being an index function (detailed in the subsequent paragraph). This set facilitates

assertions regarding the sequential or uniform optimality of regularization methods.
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Inspired by Question (iii), we extend the results of [5, 8] to a DFD source set defined

by a general source function, rather than a polynomial one. Specifically, for a positive

constant E,

Mφ,E :=

{
x ∈ domK :

∑
λ∈Λ

[φ(κ2λ)]
−1|⟨x, uλ⟩|2 ≤ E

}
, (6)

where the index function φ satisfies conditions outlined in later assumptions. Such con-

ditions naturally arise in ill-posed problems, such as tomography with φ(µ) = µ2ν or the

backward problem with φ(µ) = (− lnµ)−p (see subsequent sections). This topic merits

further attention, and in Subsection 4.4 of our paper, we study the latter index function

φ.

To address Question (iv), we present two examples demonstrating that the classical

source condition can suffice to derive the DFD source condition. These examples illustrate

the connection between classical and DFD source conditions, though these findings are

preliminary and warrant deeper investigation in future work.

Question (v) is thoroughly explored in this paper. Building on [5, 8] and the framework

of (4), we construct a filtered regularization of the form

xδα := Rαy
δ =

∑
λ∈Λ

κλgα(κ
2
λ)⟨yδ, vλ⟩Y uλ. (7)

Additionally, we enhance the analysis by addressing a posteriori strategies, filling a gap left

by [5] and [6]. We further refine the classification of optimality properties, distinguishing

between sequential order optimality (as noted in [5, 8]) and global order optimality, the

latter of which has not been previously addressed.

In terms of structure, Section 2 reviews foundational results on frames and defines

optimal regularization. Section 3 presents the main results of this paper, including lower

bounds for the modulus of continuity of K−1 on the set Mφ,E and convergence rates for

a priori and a posteriori parameter choices. Section 4 applies these theoretical findings to

specific examples, while Section 5 provides the proofs of the main results.

2 Some basic notions and notations

2.1 Notions of frames

Letting Λ be an at most countable set of indices, we denote

l2(Λ) =

{
a = (aλ)λ∈Λ : aλ ∈ R,

∑
λ∈Λ

|aλ|2 <∞

}

with the norm ∥a∥2 =
(∑

λ∈Λ |aλ|2
)1/2

.

Before delving into the specific content of the article, we would like to recall some

results about frames in a Hilbert space K. These results can be found in [3], [5], and [8].

For convenience, let us introduce the definition of a frame.
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Definition. A sequences w = {wλ}λ∈Λ in a Hilbert subspace H ⊂ K is called a frame

over H, if and only if there exists frame bounds 0 < Aw, Bw ∈ R such that for all x ∈ H
there holds

Aw ∥x∥2K ≤
∑
λ∈Λ

|⟨x,wλ⟩K|2 ≤ Bw ∥x∥2K . (8)

If wλ0 ̸∈ span{wλ}λ ̸=λ0
for every λ0 ∈ Λ then we say that the frame is minimal.

For convenience, we denote ∥x∥w :=
√∑

λ∈Λ |⟨x,wλ⟩K|2 for every x ∈ K and

|w|inf = inf{∥x∥w : x ∈ H and ∥x∥K = 1},

|w|sup = sup{∥x∥w : x ∈ H and ∥x∥K = 1}.

If |w|inf = |w|sup, we say that the frame is tight and denote |w|fr := |w|sup = |w|inf .
From the definition, we have 0 <

√
Aw ≤ |w|inf ≤ |w|sup ≤

√
Bw and

|w|inf∥x∥K ≤ ∥x∥w ≤ |w|sup∥x∥K (9)

for every x ∈ H. For x′ ∈ K, we have

∥x′∥2w =
∑
λ∈Λ

|⟨PHx
′, wλ⟩K|2 ≤ |w|sup ∥PHx

′∥2K ≤ |w|sup ∥x′∥2K . (10)

Here PH is the orthogonal projection on H. For a given frame {wλ}λ∈Λ , one can define

the frame analysis operator F as below

F : H → l2 (Λ) , x 7→ {⟨x,wλ⟩K}λ∈λ .

And, the synthesis operator F ∗, which is given by

F ∗ : l2 (Λ) → H, (aλ)λ∈Λ 7→
∑
λ∈Λ

aλwλ.

From the inequality (8), there holds√
Aw ≤ ∥F∥ = ∥F ∗∥ ≤

√
Bw.

We can define the operator S := F ∗F , that is,

Sx :=
∑
λ∈Λ

⟨x,wλ⟩Kwλ.

It is worth noting that, in this case, the operator S is a bounded, linear, and invertible

operator. Specifically, AwI ≤ S ≤ BwI và B−1
w I ≤ S−1 ≤ A−1

w I. Therefore, if we set

wk := S−1wk then one holds

B−1
w ∥x∥2K ≤ ∥x∥2w ≤ A−1

w ∥x∥2K
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for every x ∈ H. Consequently, the set {wλ}λ∈Λ is also a frame over H. As we know,

it is referred to as the dual frame of {wk}k∈N. In that case, the analysis and synthesis

operators of this frame are as follows. The analysis operator F is defined as below

F : H → l2 (Λ) , x 7→ {⟨x,wλ⟩K}λ∈Λ

and, the synthesis operator F
∗
, which is given by

F
∗
: l2 (Λ) → H, {aλ}λ∈Λ 7→

∑
λ∈Λ

aλwλ.

From the inequalities (8), (9) there also holds√
B−1

w ≤ |w|−1
sup ≤ ∥F∥ = ∥F ∗∥ ≤ |w|−1

inf ≤
√
A−1

w .

It follows that ∥∥∥∥∥∑
λ∈Λ

aλwλ

∥∥∥∥∥
K

= ∥F ∗
({aλ})∥K ≤ |w|−1

inf

(∑
λ∈Λ

|aλ|2
)1/2

. (11)

Moreover, it can also be proved that F
∗
F = F ∗F = I, and thus, for any x ∈ H, it can

always be expressed as x =
∑

λ∈Λ xλwλ where xλ = ⟨x,wλ⟩H+aλ with a = (aλ) ∈ N(F
∗
).

Especially, we have

x =
∑
λ∈Λ

⟨x,wλ⟩Hwλ. (12)

Generally, the calculation of wλ is only easy in some special case. In fact, if {wλ} is

tight then wλ = 1
|w|fr

wλ (see, e.g., [3], chap. 5). In general, we always have {0} ⊂

N (F ∗) = N
(
F

∗
)
, and therefore, the representation of x in (12) is not unique. However,

this representation is considered the most economical according to [8]. From [5], we have

known that the frame {wλ} is the biorthonormal sequence of {wλ}, i.e. ⟨wλ, wν⟩K = δλν for

λ, ν ∈ Λ, is equivalent to {wλ} being minimal. In this case, we have xλ = ⟨x,wλ⟩H and the

expansion (12) is unique. Next, we recall the definition of diagonal frame decomposition

(see, e.g., [5]).

Definition. Let K : X → Y be bounded linear operator, and Λ is an at most countable

index set. We set (u,v,κ) = (uλ, vλ, κλ)λ∈Λ a diagonal frame decomposition (DFD) for

the operator K if the following holds

(D1) {uλ}λ∈Λ is a frame over (kerK)⊥ ⊂ X.

(D2) {vλ}λ∈Λ is a frame over ranK ⊂ Y .

(D3) (κλ)λ∈Λ ∈ (0;∞)Λ satisfies the quasi-singular relations

K∗vλ = κλuλ, for all λ ∈ Λ.
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The κλ are called the DFD singular value.

For h : R → [0,∞), x ∈ X, we define

⟨h(K∗K)x, x⟩u =
∑
λ∈Λ

h(κ2λ)|⟨x, uλ⟩Y |2.

From (D1), (D2) we can find numbers Au, Av, Bu, Bv > 0 such that

Au∥w∥2X ≤ ∥w∥2u ≤ Bu∥w∥2X ,∀w ∈ (kerK)⊥, (13)

Av∥z∥2Y ≤ ∥z∥2v ≤ Bv∥z∥2Y ,∀z ∈ rankK. (14)

From now on, we always denote by a∗ an extended real number such that a∗ > supλ κ
2
λ if

supλ κ
2
λ <∞ and a∗ = ∞ if supλ κ

2
λ = ∞.

2.2 Notions of the worst case error and optimality

Consider the problem (1) and denote the Moore-Penrose operator

K‡(z) = argmin{∥h∥X : h ∈ dom K, z ∈ rankK,K(h) = z}.

We denote the Moore-Penrose solution of (1) by x‡ = K‡y. Let an operator R : Y → X

satisfy Ry ≈ x. We say that R is an approximation method of the problem (1). Assume

that the solution x‡ of (1) belongs to a subset M ⊂ X, we recall the definition of the

worst-case error of the method R on M as below.

∆(M, δ,R) := sup
{
∥Ryδ − x‡∥ : x‡ ∈ M ∧ yδ ∈ Y ∧ ∥Kx‡ − yδ∥ ≤ δ

}
.

We say that the methodRopt : Y → X is optimal onM if ∆(M, δ,Ropt) = infR∆(M, δ,R)

and Ropt : Y → X is order optimal on M if there is a c > 0 independent of δ such that

∆(M, δ,Ropt) ≤ c infR ∆(M, δ,R). In our paper, we choose M = Mφ,E defined in (6). Let

Rα : Y → X, α > 0, be a family of bounded operators and let α∗ : (0, α0)× Y → (0,∞).

As in [1, 5], we say that (Rα, α
∗) is a regularization method if

lim sup
δ→0+

{α∗(δ, yδ) : yδ ∈ Y ∧ ∥yδ − y∥Y ≤ δ} = 0,

lim sup
δ→0+

{∥K‡y −Rα∗(δ,yδ)∥ : yδ ∈ Y ∧ ∥yδ − y∥Y ≤ δ} = 0.

The quantities α and α∗ are called the regularization parameter and the admissible pa-

rameter choice respectively.

Inspired from the classical optimal regularization theory ([10, 9]), we can classify the

order optimality for our problem.

Definition. We say that the regularization method (Rα, α
∗) is

(a) sequential order optimal if there a sequence δn → 0+ such that there exists a

constant c > 0 independent of n such that ∆(M, δn,Rα∗(δn,yδn )) ≤ c infR ∆(M, δ,R),
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(b) uniform order optimal if there is a δ0 and a constant c in dependent of δ such that

∆(M, δ,Rα∗(δ,yδ)) ≤ c infR ∆(M, δ,R) for every δ ∈ (0, δ0).

Sequential optimal regularization are studied in the recent papers [5, 6, 8], but uni-

formly optimal regularizations are not yet discussed.

3 Main results

3.1 Pointwise convergence

Let (u,v,κ) be a DFD for K and y be as in (1), we have

⟨y, vλ⟩Y = ⟨Kx‡, vλ⟩Y = ⟨x‡,K∗vλ⟩X = ⟨x‡, κλuλ⟩X for λ ∈ Λ.

Hence, from the expansion (12), the Moore-Penrose solution of (1) has the expansion

x‡ := K‡y =
∑
λ∈Λ

1

κλ
⟨y, vλ⟩Y uλ. (15)

The expansion implies y ∈ domK‡ if and only if
∑

λ

∣∣∣ ⟨y,vλ⟩Yκλ

∣∣∣2 < ∞. The stability of

solution (15) is depended on the infimum of {κλ}. In fact we have

Theorem 3.1. Assume that infλ∈Λ κλ ≥ κ0 > 0 and (2) holds. Then the operator K‡ :

rankK → X can be extended to the linear bounded operator K
‡
: Y → X which has the

formula

K
‡
h =

∑
λ∈Λ

1

κλ
⟨h, vλ⟩Y uλ, for h ∈ Y

and

∥K‡
gδ − x‡∥X ≤ |v|sup

κ0|u|inf
δ.

Remark 1. If {uλ} is tight then we obtain

x‡ := K‡y =
∑
λ∈Λ

1

κλ|u|fr
⟨y, vλ⟩Y uλ.

In the case infλ∈Λ κλ = 0, the equality (15) could be instability with respect to g.

Suggested by the classical regularization (4), we can construct the regularization solution

for the equation (1) - (2) in the form (7) where gα : [0, a∗) → R is filter functions that

satisfy

Assumption C

C1 For all α > 0, µ ∈ [0, a∗):
√
µgα (µ) <∞.

C2 There exists a constant Cg > 0 such that sup{|µgα (µ)| : α > 0, 0 ≤ µ < a∗} ≤ Cg.

C3 For all µ ∈ (0, a∗) there holds limα→0 µgα (µ) = 1.
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As shown in [5], we have

Theorem 3.2. Let Assumption C and (2) hold. Then for every α(δ) → 0 as α → 0+,

we have

lim
δ→0+

∥xδα(δ) − x‡∥X = 0.

3.2 Lower bound of worst case error

To evaluate the optimality of the proposed regularization Rα we first find a lower bound

for the worst-case error of the regularization algorithms. This will be useful for proving

the optimality of the DFD-based regularization method over the source set Mφ,E in later

theorems. It also serves as a basis for choosing appropriate regularization parameters.

Similar to [2], we shall consider the computation of the worst-case error of the reg-

ularization operator R : Y → X in the source set Mφ,E with the function φ satisfying

Assumption A1. Function φ : (0, a∗) → (0,∞) is continuous and satisfies the following

conditions

(i) limµ→0 φ (µ) = 0,

(ii) Function φ that is strictly monotone increasing in (0, a∗),

(iii) Function Θ (0, φ (a∗)] → (0, a∗φ (a∗)] is defined by Θ (µ) = µφ−1 (µ) and that is a

convex.

Here we denote φ(a∗) = limµ→a∗− φ(µ). We consider the scenario where the frame u

admits a biorthogonal sequence u = (uλ)λ∈Λ with ∀λ, ν ∈ Λ : ⟨uλ, uν⟩ = δλν . Similar to

the result about the lower bound in classical theory (see [10]), we have

Theorem 3.3. Let δ0 > 0, δ ∈ (0, δ0), β ∈ (0, 1) and let (u,v,κ) be a DFD of K such

that u is minimal and infλ∈Λ κλ = 0. Let the set Dλ,β be as in (5). For the source sets

Mφ,E defined by (6), if δ ∈
⋃

λ∈ΛDλ,β then

inf
R

∆(Mφ,E, δ,R) ≥ β|u|−1
supE

√
Θ−1 (|v|2infδ2/E2). (16)

Especially, if (0, δ0] ⊂ ∪λ∈ΛDλ,β then (16) holds for every 0 < δ ≤ δ0.

This theorem serves as a criterion for determining the order optimality of regulariza-

tions, so we will have a bit more commentary on it.

Remark 2. (i) The condition that the system {uλ} is minimal is essential in the proof of

the theorem. The investigation of the lower bound when {uλ} is not minimal is a worthy

topic of study.

(ii) To show that a regularization R : Y → X is order-optimal, we only need to verify

that

∆(Mφ,E, δ,R) ≤ CE
√

Θ−1 (|v|2infδ2/E2).
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(iii) In fact, we can prove that infR ∆(Mφ,E, δ,R) ≥ β
√
B−1

u E
√
Θ−1 (Avδ2/E2) for all

Bu, Av satisfy (13), (14). Since |u|−1
sup

√
Θ−1 (|v|2infδ2/E2) ≥

√
B−1

u E
√

Θ−1 (Avδ2/E2),

our lower bound is better.

(iv) In [5], to obtain the lower bound of the worst case error, the authors choose

δ = δλ =
√
A−1

v Eκ2ν+1
λ . The case that the mentioned paper examines corresponds to

considering the source function φ(µ) = µ2ν. In this case, we have µφ(µ) = µ2ν+1 and

δλ =
√
A−1

v E
√
κ2λφ(κ

2
λ). For β =

√
Av/|v|inf , since

√
Av ≤ |v|inf , we have 0 < β ≤ 1

and δ∗λ ≤ δλ ≤ β−1δ∗λ which gives δλ ∈
⋃

λ∈ΛDλ,β. Hence, the inequality (16) hold for the

chosen sequence (δλ)λ∈Λ.

(v) As shown in classical optimal regularization theory ([10, 9]), the optimal property

is not true if the singular values of the operator K are too sparse, e.g., limn→∞ σn+1/σn =

0. The distribution of the singular values affects the classification of the optimization

types. Similarly, the optimal result depends on the distribution of δ∗λ. In fact, we have

(0, δ0) ⊂ ∪β>0 ∪λ∈ΛDλ,β. If (0, δ0) ̸⊂ ∪λ∈ΛDλ,β for every β > 0 then the distribution of δ∗λ
is very sparse. In this case, the lower bound may be valid for only some subsequences of

δλ.

(vi) Note that, in the case of Hölder-type source condition, i.e., φ (µ) = µ2ν, µ, ν > 0,

then Θ−1(µ) = µ
2ν

2ν+1 . This gives Θ−1 (|v|infδ2/E2) = |v|
2ν

2ν+1

inf δ
4ν

2ν+1E
−4ν
2ν+1 . So we get that

inf
R

∆(Mφ,E, δ,R) ≥ β
|v|

ν
2ν+1

inf

|u|sup
δ

2ν
2ν+1E

1
2ν+1 .

A similar lower bound is stated in Theorem 3.11 in [5] with δ is in the sequence (δλ)λ∈Λ

as in Remark (ii).

(vii) In some problems, we have the logarithm source condition φ(µ) = (− lnµ)−p,

p > 0. In this case Θ(µ) = µe−µ−1/(2p)
and

√
Θ−1(µ) = φ(µ)(1 + o(1)) (see, e.g., [7]). So

inf
R

∆(Mφ,E, δ,R) ≥ β
√
B−1

u E

(
ln

(
E2

|v|2infδ2

))−p

(1 + o(1)).

3.3 Convergence rate and a priori parameter choice

Returning to the main content of this article, to extend the results of Ebner and colleagues

[5] from a polynomial source set to a more general source set, we consider a source function

φ in the set Mφ,E defined in (6). Next, we investigate issues such as the lower bound

of the worst-case error, convergence rate in both the choice of a priori and a posteriori

parameters. In particular, we have the following theorem

Moreover, the function φ and gα are also fullfilled some conditions.

Assumption A2. There are constants γ1, γ2 > 0 such that

(i) sup0≤µ<a∗

∣∣√µgα(µ)∣∣ ≤ γ1√
α
,

(ii) sup0≤µ<a∗ |1− µga(µ)|
√
φ(µ) ≤ γ2

√
φ(α).
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Next we derive convergence rates which give quantitative estimates on the reconstruc-

tion error
∥∥x‡ − xδα

∥∥
X
. Recall that, in this section, we assume that the source function φ

and the filter function gα satisfy Assumption A1 and Assumption A2.

Theorem 3.4. Let Av ∈ (0, |v|2inf). For (u,v,κ) being a DFD of K, with u as a dual

frame of u and x‡ ∈ Mφ,E. In this case, if we choose the regularization parameter as

α(δ) = α∗ (δ, yδ) := φ−1 ◦Θ−1
(
Avδ

2/E2
)
, (17)

then the following convergence rate result holds:∥∥xδα(δ) − x‡
∥∥
X
≤
√
A−1

u A−1
v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2), (18)

where Au, Bv are bounds of u and v, respectively. And γ1, γ2 be constants as in Assumption

A2. From the inequality (18) we obtain

∆(Mφ,E, δ, Rα(δ)) ≤
√
A−1

u A−1
v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2),

where Rα is defined in (7).

(i) If u is minimal then Rα(δ) is sequential order optimal.

(ii) For a fixed β ∈ (0, 1), if u is minimal and (0, δ0] ⊂
⋃

λ∈ΛDλ,β, then Rα(δ) is

uniform order optimal. Here Dλ,β is defined in (5).

Remark 3. (i) Note that, in the case φ (µ) = µ2ν , p > 0 then our result will become a

similar result to Theorem 3.8 in [5] and Theorem 2.5 in [8].

(ii) Calculating the exact number |v|inf is not easy. Therefore, choosing Av as in the

theorem will make the calculation of α(δ) more feasible. However, if Av is small, the

error will contain A−1
v and so will be large. Therefore, Av should be chosen such that

β|v|inf ≤ Av ≤ |v|inf .

3.4 Posteriori parameter choice

In this subsection, we present the results of the discrepancy between the exact solution

and the regularized solution by choosing the posterior regularization parameter according

to the Morozov principle. Specifically, the chosen parameter for posterior regularization

α following the Morozov principle [12], this principle helps find the parameter α as a

solution to the following equation

d(α) :=

(∑
λ∈Λ

∣∣⟨Kxδα − yδ, vλ⟩Y
∣∣2) 1

2

= τ
√
Bvδ with τ > 1. (19)

Let’s additionally assume that the function gα satisfies the following Assumption B1.

Assumption B1. The function gα : (0, a∗] → (0,∞) satisfies

(i) 1− µgα(µ) → ρ for ρ > 0, α → ∞ and for each µ ∈ [0, a∗),

11



(ii) gαn(µ) → gα(µ) for αn → α > 0 and for every µ ∈ [0, a∗).

Theorem 3.5. Let Assumptions C and B1 holds. Assume that 0 < τ
√
Bv < ρ

√
Av∥PrankKy

δ∥Y .
Then, there exists a constant αD(δ) such that the equation (19) holds.

Remark 4. (i) For convenience of calculation, we can choose the parameter α such that

d(α) ≥ τ ′
√
Bvδ for τ

′ > 1. Putting τ =
√
B−1

v d(α), we obtain the equation d(α) = τ
√
Bvδ

and τ > τ ′ > 1.

(ii) Using the classical Morozov principle, we can choose the parameter α satisfying d̃(α) =

τ̃ δ for d̃(α) = ∥Kxδα − yδ∥Y and τ̃ is chosen appropriately.

Next, we introduce some additional conditions suggested from [9], page 75:

Assumption B2. The function gα : (0, a∗] → R satisfies

(i) gα(µ) ≥ 0,

(ii) 0 ≤ 1− µgα(µ) ≤ gα(µ)
ℓα

with ℓα := sup0≤µ≤a∗ gα(µ),

(iii) ℓ∗
α
≤ ℓα ≤ ℓ∗

α
with constants ℓ∗, ℓ

∗ > 0.

In the following theorem, we provide a bound for ∥xδα − x‡∥X .
We have the optimality of the rule of posteriori choice of the regularization parameter

αD(δ)

Theorem 3.6. Let (u,v,κ) be a DFD of K and u be minimal. With Mφ,E defined as in

(6) and Assumption A1 simultaneously satisfying that xδα is the approximate regularization

solution as in (7) with gα satisfying Assumption B2. Moreover, assuming Assumption B1,

(35) is satisfied, and αD(δ) is chosen by the Morozov principle (19). If the function φ is

concave, then

∥xδα − x‡∥X ≤
√
A−1

u Bu(τ + 1)E
√

Θ−1 (|v|2infδ2/E2), (20)

where Au, Bu are bounds of frame u. Hence, RαD(δ) is sequential order optimal over the

set Mφ,E.

Moreover, if there exists β ∈ (0, 1) and a δ0 > 0 such that (0, δ0] ⊂ ∪λ∈ΛDλ,β then the

regularization method RαD(δ) is uniform order optimal. Here we recall that Dλ,β defined

in (5).

Note that our result will be as in Theorem 2.7 in [8] if the source function φ is replaced

by polynomial function.

4 Illustrative problems

4.1 Notations

In this section, we denote the inner product and the norm of L2(R) by ⟨., .⟩ and ∥.∥
respectively. The Fourier transform of a function f(t), t ∈ R, is defined as F(ω) =

12



∫
R f(t)e

−iω.tdt and, the Mittag-Leffler function is understood as

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, E1,1(z) = ez.

Here the notation Γ denotes the gamma function. From [11], for 0 < γ < 1, we have

c

1 + |z|
≤ |Eγ,1 (z)) | ≤

c

1 + |z|
, for z < 0, (21)

where the derivative in the equation is understood in the Caputo sense. Specifically, The

Caputo derivative is defined as:

dγ

dtγ
f(t) =

 1
Γ(1−α)

∫ t

0
(t− τ)−γ d

dτ
f(τ)dτ, 0 < γ < 1,

df
dt
, γ = 1.

4.2 Statement of the problems

We give an example to illustrate our result in previous section. In particular, consider

the backward fractional heat equation. Specifically, we find the solution at the initial

time u(x, 0) knowing that u(x, t) satisfies the heat equation. Precisely, for γ ∈ (0; 1], we

consider the equation

∂γt u(x, t)−∆u(x, t) = 0, x ∈ R, 0 < t < T (22)

subject to the final condition

u(x, T ) = θT (x), x ∈ R. (23)

Similar to the condition (2), we have to consider the problem (22) and (23) with the

unknown exact data θT replaced by noise data θδT satisfying

∥θδT − θT∥ ≤ δ.

We consider the ill-posedness of the problem. Using the Fourier transform yields the

solution to the problem yields

Fθ0 (ω) = E−1
γ,1

(
− |ω|2 T γ

)
FθT (ω) , (24)

where ω ∈ R. From the inequality (21), for γ ∈ (0, 1), the factor E−1
γ,1(−|ω|2T γ) has the

polynomial magnitude ≍ |ω|2. This term causes instability when |ω| is large. Similarly,

for γ = 1, the factor E−1
γ,1(−|ω|2T γ) has the exponential magnitude ≍ e|ω|

2T which causes

severely instability when |ω| is large. In conclusion, the problem is “polynomially” ill-

posed for γ ∈ (0, 1) and is “exponentially” ill-posed for γ = 1. These two types of ill-posed

differ in nature. Therefore, suitable regularization methods for these two cases need to

be proposed.
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We denote by K the operator such that Kθ0 = θT . Then, from the Fourier solution

(24) of the equation, we deduce that F (Kθ0) = Eγ,1

(
− |ω|2 T γ

)
Fθ0 (ω) = F (θT ) . To

find the DFD of K, we base on the following arguments (see [5]). As we have known that,

for all θ0, v0 ∈ domK, we have

⟨Kθ0,Kv0⟩ =
1

2π
⟨FKθ0,FKv0⟩ =

1

2π
⟨Eγ,1

(
− |ω|2 T γ

)
Fθ0, Eγ,1

(
− |ω|2 T γ

)
Fv0⟩.

It follows that K∗Kθ0 = F−1
(∣∣Eγ,1

(
− |ω|2 T γ

)∣∣2Fθ0) for all θ0 ∈ dom (K∗K).

To study DFD (u,v,κ) of operator K on L2 (R2). At first, we show necessary prop-

erties for v and κ in general case and after that we consider DFD for K in the case that

u is concrete systems. In fact, for each vλ ∈ ranK, because (u,v,κ) is a DFD for K, we

have vλ = κλKσλ for some σλ ∈ dom K. Moreover, from condition D3, K∗vλ = κλuλ. It

leads us to uλ = K∗Kσλ. This gives that σλ ∈ dom (K∗K). Combining with the Fourier

representation of K∗Kσλ, we have σλ = F−1
(∣∣Eγ,1

(
− |ω|2 T γ

)∣∣2Fuλ) and

Eγ,1vλ = κλKF−1
(∣∣(− |ω|2 T γ

)∣∣−2Fuλ
)
. (25)

From here, we can establish the relationship between the Fourier transform of vλ and uλ

as

Fvλ = κλE
−1
γ,1

(
− |ω|2 T γ

)
Fuλ = κλE

−1
γ,1

(
− |ω|2 T γ

)
Fuλ, (26)

where z is conjugate of z.

4.3 The fractional backward problem

We first consider the case γ ∈ (0, 1). Denote the L2(R)-wavelet orthonormal basis

ψj,k (x) = 2j/2ψ (2jx− k) , (j, k) ∈ Z2, where ψ is a mother wavelet (see, e.g., [3], chap.

15). Put Λ = Z2, λ = (λD, λT ) ∈ Z2. We consider the wavelet orthonormal basis uλ in

L2(R2) in the form

uλ(x) = ψλ(x), ∀λ = (λD, λT ) ∈ Λ, x ∈ R. (27)

From here, we construct the DFD for the operator K using the following theorem.

Theorem 4.1. Let (uλ)λ∈Λ be defined as in (27) such that supp (Fψ) ⊂ {ω ∈ R2 : au ≤ |ω| ≤ bu}
where au, bu be positive constants. Then

(a) (uλ, vλ, κλ)λ∈Z be a DFD for K where

κλ =

2−2λD , for λD ≥ 1,

1, for λD < 1.

and vλ defined as in (25).

(b) If θ0 ∈ Hp(R) then θ0 ∈ Mφ,E, where φ(µ) = µp/2 and E large enough. (c) There

exists a δ0 > 0 such that (0, δ0] ⊂ ∪λ∈ΛDλ,β for β = 22+p. Here Dλ,β is defined in (5).
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Remark 5. (i) For polynomially ill-posed problems, the WVD system can be used well.

We can see that in the tomography problem (see [5, 8]) and the fractional backward prob-

lem.

(ii) The result (b) provides a sufficient condition for the function θ0 to satisfy the DFD

source condition. The function only needs to lie in the Hilbert scales Hp(R).

From Theorem 4.1, we obtain the WVD of the operator K. In particular, that is

(uλ, vλ, κλ)λ∈Λ. This allows us to regularize the inverse problem for the fractional heat

equation with the source function φ (µ) = µp/2 and then Mφ,E becomes

Mφ,E :=

{
θ0 ∈ L2 (R) :

∑
λ∈Λ

[φ(κ2λ)]
−1⟨θ0, uλ⟩|2 ≤ E2

}
.

Using the Tikhonov regularization for gα (λ) = 1
α+λ

. Then some conditions for filter

function satisfy. The chosen {uλ} is tight, since it is orthonormal. So uλ = uλ and (7)

can be rewritten as

uδ0α :=
∑
λ∈Λ

2−2λD

α + 2−4λD
⟨θδT , vλ⟩uλ.

From the Theorem 3.4, we have the result for the choice of a priori parameter and a

posteriori parameter as the following consequence.

Theorem 4.2. For (uλ, vλ, κλ)λ∈Λ being the constructed WVD of K and θ0 ∈ Mp,E for

0 < p ≤ 4.

(a) (apriori regularizarion) For 0 < p ≤ 4, if we choose the regularization parameter

as

α = (δ/E)
2

p+2 ,

then uδ0δ is uniform order optimal and the following convergence rate result holds∥∥uδ0α − θ0
∥∥ ≤ Cδ

p
p+2E

2
p+2 ,

where Bv are bound of vj as in Theorem (4.1).

(b) (posteriori regularization) If 0 < p ≤ 2, assume that αD is chosen by the Morozov

principle (19). Then uδ0αD
is uniform order optimal over the set Mφ,E, and

∥uδ0αD
− θ0∥ ≤ Cδ

p
p+2E

2
p+2 .

Remark 6. If p = 4ν, we obtain the error stated in [5].

4.4 The backward problem of the heat equation

Put BN = {ω ∈ R :
√
N ≤ |ω| ≤

√
N + 1}, N ∈ N. From here, we construct the DFD

for the operator K using the following theorem.
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Theorem 4.3. Let (uλ)λ∈Λ defined as in (27) such that supp (Fψ) ⊂ {ω ∈ R : au ≤ |ω| ≤ bu}
where au, bu be positive constants and where λ = (λD, λT ). Put uλ,N = F−1(1BN

F(uλ)).

Then

(a) (uλ,N , vλ,N , κλ,N)λ∈Z,N∈N be a DFD for K where

κλ,N = e−NT , N ∈ N

and vλ = κλ,NF(e|ω|
2T γ

uλ,N) defined as in (25). Moreover, uλ,N is a tight frame.

(b) If θ0 ∈ Hp(R) then θ0 ∈ Mφ,E, where φ(µ) = (− lnµ)−p and E large enough.

(c) There exists a δ0 > 0 such that (0, δ0] ⊂ ∪(λ,N)∈Λ×ND(λ,N),β for β = e−T . Here we

recall D(λ,N),β is defined in (5).

Remark 7. Using the classical wavelet system as in the previous section, we cannot find

a suitable κλ. Therefore, it is necessary to construct a DFD system. There are many ways

to construct the system mentioned. However, we use a system that inherits the classical

wavelet system as presented.

From Theorem 4.3, we obtain the WVD of the operator K. In particular, that is

(uλ,N , vλ,N , κλ,N)λ∈Λ,N∈N. This allows us to regularize the inverse problem for the frac-

tional heat equation with the source function φ (λ) = (− lnλ)−p. Using the Tikhonov

regularization for gα (µ) = 1
α+µ

. Then the approximate solution can be written in the

form (7). The chosen {uλ} is a tight frame, so uλ = uλ and (7) can be rewritten as

uδ0α :=
∑
N∈N

∑
λ∈Λ

κλ,N
α + κ2λ,N

⟨θδT , vλ,N⟩uλ,N .

From the Theorem 3.4, we have the result for the choice of a priori parameter as the

following consequence. Clearly, the Assumption A1, A2, B1, B2 being satisfied, from

Theorem 3.3 and Theorem 3.6, we deduce the following consequence.

Theorem 4.4. For (uλ,N , vλ,N , κλ,N)λ∈Λ,N∈N being the constructed WVD of K and θ0 ∈
Mφ,E where φ(µ) = (− lnµ)p. If we choose the regularization parameter α = δ/E then

uδ0δ is uniform order optimal and the following convergence rate result holds∥∥uδ0α − θ0
∥∥ ≤ CE (− ln(δ/E))−p .

Remark 8. The system {uλ,N} is unlikely to satisfy the minimal property. Therefore the

optimal results in the theorems 3.3, 3.4, 3.6 cannot be applied. However, based on theorem

4.3, (b), we can obtain the optimal result for the a priori case.
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5 Proofs

5.1 Preliminary lemmas

Lemma 5.1. Let (u,v,κ) be the DFD. Assume in addition that u is a Riesz basis. Then

we have

⟨xδα, uλ⟩X = κλgα(κ
2
λ)⟨yδ, vλ⟩Y , ⟨x‡, uλ⟩X =

1

κλ
⟨y, vλ⟩Y ,

⟨Kxδα, vλ⟩Y = κ2λgα(κ
2
λ)⟨yδ, vλ⟩Y ,

⟨Kxα, vλ⟩Y = κ2λgα(κ
2
λ)⟨y, vλ⟩Y ,

⟨Kx‡, vλ⟩Y = ⟨y, vλ⟩Y .

Proof. Since ⟨uλ,uµ⟩ = δλµ, we have

⟨xδα, uλ⟩X = κλgα(κ
2
λ)⟨yδ, vλ⟩Y , ⟨x‡, uλ⟩X =

1

κλ
⟨y, vλ⟩Y

From (7), (30),(12) we have

⟨Kxδα, vλ⟩Y = ⟨xδα,K∗vλ⟩X = κλ⟨xδα, uλ⟩X = κ2λgα(κ
2
λ)⟨yδ, vλ⟩Y ,

⟨Kxα, vλ⟩Y = ⟨xα,K∗vλ⟩X = κλ⟨xα, uλ⟩X = κ2λgα(κ
2
λ)⟨y, vλ⟩Y ,

⟨Kx‡, vλ⟩Y = ⟨y, vλ⟩Y .

Lemma 5.2. Let the function φ satisfies Assumption A1 and Θ(µ) = µφ−1(µ). If φ is

concave on (0, a∗) then Θ−1(t2z) ≥ tΘ−1(z) for every t ∈ (0, 1), z ∈ (0, a∗φ(a∗)).

Proof. From the definition of the function Θ, we have Θ−1(µφ(µ)) = φ(µ). From the

concave of the function φ and limµ→0 φ(µ) = 0. It leads us to tφ(µ) ≤ φ(tµ) for t ∈
[0, 1]. Equivalently, φ−1(tφ(µ)) ≤ λt. We also have, Θ(µ) := µφ−1(µ), it follows that

Θ(tφ(µ)) ≤ t2µφ(µ). Hence, Θ−1(t2µφ(µ)) ≥ tφ(µ) = Θ−1(µφ(µ)). Putting z = µφ(µ),

we obtain the desired inequality.

5.2 Proof of Theorem 3.1

Using (11), we obtain

∥K‡yδ − x‡∥X =

∥∥∥∥∥∑
λ∈Λ

1

κλ
⟨yδ − y, vλ⟩Y uλ

∥∥∥∥∥ ≤ 1

κ0|u|inf

(∑
λ∈Λ

|⟨yδ − y, vλ⟩Y |2
)1/2

.

Combining the latter inequality with (10) yields

∥K‡yδ − x‡∥X ≤ |v|sup
κ0|u|inf

∥yδ − y∥Y ≤ |v|supδ
κ0|u|inf

.

This completes the proof of Theorem 3.1.
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5.3 Proof of Theorem 3.2

The proof of Theorem 3.2 could be seen in [5] or in the proof of Theorem 3.4 below.

5.4 Proof of Theorem 3.3.

Proof. One of the commonly used methods to find a lower bound for the worst-case error

is to compute the modulus of continuity

Ω (M, δ) = sup{∥x∥ | x ∈ M ∧ ∥Kx∥ ≤ δ}.

As is known (see, e.g. [10]), we have

∆(Mφ,E, δ,R) ≥ Ω (Mφ,E, δ) .

For any ν ∈ Λ set xν := E
√
φ (κ2ν)uν such that

⟨xν , uλ⟩ =
√
φ (κ2ν)ωλ, ωλ =

E, if λ = ν,

0, else.

By definition we have ∥ω∥2 = E and xν ∈ Mφ,E. Choosing ν ∈ Dλ,β, we can write

δ∗ν = |v|−1
infE

√
κ2νφ (κ2ν) ≤ δ and obtain

∥xν∥2 ≥
1

Bu

∑
λ∈Λ

|⟨uλ, xν⟩X |
2 =

1

Bu

φ
(
κ2ν
)
E2. (28)

Moreover, combine the Asumption A1 (ii) and the choosing of δν , then Θ (φ (κ2ν)) =

κ2νφ (κ2ν) = |v|2infδ∗2ν /E2. From here, it leads us to φ(κ2ν) = Θ−1(|v|2infδ∗2ν /E2). After that,

taking it to (28), we obtain

∥xν∥ ≥
√
B−1

u E
√
Θ−1 (|v|2infδ∗2ν /E2). (29)

On the other hand, we also have

∥Kxν∥2 ≤
1

|v|2inf

∑
λ∈Λ

|⟨Kxν , vλ⟩|2 =
1

|v|2inf

∑
λ∈Λ

κ2λ |⟨xν , uλ⟩|
2 =

1

|v|2inf
κ2νφ

(
κ2ν
)
E2 = δ∗2ν ≤ δ2.

Hence ∥Kxν∥ ≤ δ and xν ∈ Mφ,E. From the definition of Ω (Mφ,E, δν) and (29), we

deduce that

Ω (Mφ,E, δ) ≥
√
B−1

u E
√

Θ−1 (|v|2infδ∗2ν /E2).

Using Lemma 5.2 gives

Θ−1
(
|v|2infδ∗2ν /E2

)
= Θ−1

(
β2|v|2infβ−2δ∗2λ /E

2
)
≥ Θ−1

(
β2|v|2infδ2/E2

)
≥ βΘ−1

(
|v|2infδ2/E2

)
.
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5.5 Proof of Theorem 3.4.

Proof. The regularization solution for the equation (1) for the noiseless has the form

xα := Rαy =
∑
λ∈Λ

κλgα
(
κ2λ
)
⟨y, vλ⟩uλ, (30)

From the triangle inequality, it gives us

∥xδα − x‡∥X ≤ ∥xδα − xα∥X + ∥xα − x‡∥X . (31)

For the first term on the right hand side, using (30) and (7) gives

∥xδα − xα∥X =

∥∥∥∥∥∑
λ∈Λ

κλgα
(
κ2λ
)
⟨yδ − y, vλ⟩Y uλ

∥∥∥∥∥
X

.

From (13) and (10), the inequality (11) yields

∥xδα − xα∥X ≤ 1√
Au

(∑
λ∈Λ

sup
λ

(
κ2λg

2
α

(
κ2λ
)) ∣∣⟨yδ − y, vλ⟩Y

∣∣2) 1
2

≤ 1√
Au

γ1√
α

(∑
λ∈Λ

∣∣⟨yδ − y, vλ⟩Y
∣∣2) 1

2

≤
√
Bv

Au

γ1√
α
∥yδ − y∥Y ≤ γ1

√
BvA−1

u

δ√
α
. (32)

The second line is a result of utilizing Assumption A2 (i). The penultimate line is obtained

through the upper bound of the frame (vλ)λ∈Λ. Finally, the last line is due to the noise

condition (2).

For the last term in (31), using (15) and (30), it follows that

∥xα − x‡∥X =

∥∥∥∥∥∑
λ∈Λ

(
κ2λgα

(
κ2λ
)
− 1
)
⟨x‡, uλ⟩Xuλ

∥∥∥∥∥
X

≤ 1√
Au

(∑
λ∈Λ

∣∣1− κ2λgα
(
κ2λ
)∣∣2 ∣∣⟨x‡, uλ⟩X∣∣2)

1
2

≤ 1√
Au

(∑
λ∈Λ

∣∣1− κ2λgα
(
κ2λ
)∣∣2 ∣∣∣∣√φ (κ2λ)ωλ

∣∣∣∣2
) 1

2

≤ γ2√
Au

√
φ (α)

(∑
λ∈Λ

|ωλ|2
) 1

2

≤ γ2√
Au

√
φ (α)E. (33)

The second and the last lines are derived from the exact solution belonging to the source

set x‡ ∈ Mφ,E. As for the third line, it is obtained from Assumption A2 (ii).

Combining (32) and (33) yields

∥xδα − x‡∥X ≤ γ1
√
BvA−1

u

δ√
α
+

γ2√
Au

√
φ (α)E.
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From the choice of the parameter (17), the regularized parameter is chosen by α =

α∗ (δ, yδ) = φ−1 ◦ Θ−1 (Avδ
2/E2) it leads us to φ (α) = Θ−1 (Avδ

2/E2). From here, it is

easy to see that Θ (φ (α)) = Avδ
2/E2 and it leads us to δ2 = A−1

v E2Θ(φ (α)). Combine

with Assumption A1 (iii), we obtain that

δ√
α

=

√
δ2

α
=

√
A−1

v E2Θ(φ (α))

α
=
√
A−1

v E2φ (α) = E
√
A−1

v Θ−1 (Avδ2/E2).

Hence, we get that

∥xδα − x‡∥X ≤ γ1
√
A−1

u

√
A−1

v

√
BvE

√
Θ−1 (Avδ2/E2) +

γ2√
Au

E
√
Θ−1 (Avδ2/E2)

=
√
A−1

u

√
A−1

v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (Avδ2/E2)

=
√
A−1

u

√
A−1

v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2).

The above estimate completes the proof.

5.6 Proof of Theorem 3.5

Using Lemma 5.1, we obtain

d(α) =

(∑
λ

(1− κ2λgα(κ
2
λ))

2|⟨yδ, vλ⟩Y |2
) 1

2

.

We know that under the conditions (i) - (ii) of Assumption B1, the function d is continuous

and has the following results:

lim
α→0

d(α) = 0 and lim
α→∞

d(α) = ρ

(∑
λ

∣∣⟨yδ, vλ⟩∣∣2)
1
2

. (34)

We have

0 < τ
√
Bvδ < ρ

√
Av∥PranKy

δ∥ ≤ ρ

(∑
λ

∣∣⟨yδ, vλ⟩∣∣2)
1
2

. (35)

Therefore, under Assumption B1 and (34), the equation (19) has a solution α = αD(δ).

5.7 Proof of Theorem 3.6

First, with Assumption B2, using the ideas in [9], page 77, we obtain the following in-

equality

Lemma 5.3. For x ∈ X, we have

∥xδα − x‡∥2u + ℓα(∥Kxδα − yδ∥2v − ∥Kx‡ − yδ∥2v) ≤ ⟨[I −K∗Kgα (K
∗K)]x‡, x‡⟩u. (36)
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Proof of Lemma 5.3.

Proof. We claim that

|⟨xδα − x‡, uλ⟩X |2 + ℓα|⟨Kxδα − yδ, vλ⟩Y |2 − ℓα|⟨Kx‡ − yδ, vλ⟩Y |2 ≤ (1− κ2λgα(κ
2
λ))|⟨x‡, uλ⟩X |2.

(37)

Using (5.1), we can write

|⟨xδα − x‡, uλ⟩X |2 =
1

κ2λ

∣∣κ2λgα(κ2λ)⟨yδ − y, vλ⟩Y − rα(κ
2
λ)⟨y, vλ⟩Y

∣∣2
= κ2λg

2
α(κ

2
λ)|⟨yδ − y, vλ⟩Y |2 − 2gα(κ

2
λ)rα(κ

2
λ)⟨yδ − y, vλ⟩Y ⟨y, vλ⟩Y +

r2α(κ
2
λ)

κ2λ
|⟨y, vλ⟩Y |2.

On the other hand, we have

gα(κ
2
λ)rα(κ

2
λ)|⟨yδ, vλ⟩Y |2 = gα(κ

2
λ)rα(κ

2
λ)|⟨yδ − y, vλ⟩Y + ⟨y, vλ⟩Y |2

= gα(κ
2
λ)rα(κ

2
λ)(|⟨yδ − y, vλ⟩Y |2 + 2⟨yδ − y, vλ⟩Y ⟨y, vλ⟩Y + |⟨y, vλ⟩Y |2).

Adding two inequalities yield

|⟨xδα − x‡, uλ⟩X |2 + gα(κ
2
λ)rα(κ

2
λ)|⟨yδ, vλ⟩Y |2 = gα(κ

2
λ)|⟨yδ − y, vλ⟩Y |2 +

rα(κ
2
λ)

κ2λ
|⟨y, vλ⟩Y |2.

Since ℓα ≥ gα(µ) ≥ ℓαrα(µ) we obtain

gα(κ
2
λ)rα(κ

2
λ)|⟨yδ, vλ⟩Y |2 ≥ ℓα|rα(κ2λ)⟨yδ, vλ⟩Y |2 = ℓα|⟨Kxδα − yδ, vλ⟩|2,

gα(κ
2
λ)|⟨yδ − y, vλ⟩Y |2 ≤ ℓα|⟨yδ − y, vλ⟩Y |2 = ℓα⟨Kx‡ − yδ, vλ⟩|2.

Hence the inequality (37) holds. Taking the sum of the latter inequlities with respect to

λ ∈ Λ, we get (36).

Proof of Theorem 3.6.

Proof. Firstly, for every (α, λ), recalling the definition of gα, we reiterate that rα (λ) is

defined as follows:

rα(λ) = 1− λgα(λ).

Let α = αD be the regularization parameter chosen by (19). Let α = αD be the regular-

ization parameter chosen by (19). Using (10) and (2) yields

∥Kxδα − yδ∥v ≥ τ
√
Bvδ > τ

√
Bv∥Kx‡ − yδ∥Y ≥ ∥Kx‡ − yδ∥v.

We recall that ∥Kxδα − yδ∥v ≥ ∥Kx‡ − yδ∥Y ≥ ∥Kx‡ − yδ∥v. It follows that

∥xδα − x‡∥u ≤ ⟨[I −K∗Kgα (K
∗K)]x‡, x‡⟩

1
2
u = ∥ [rα (K∗K)]

1
2 x‡∥u. (38)
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Applying Lemma 5.2 for t = rα(λ) := 1− λgα(λ) give

Θ (rα(λ)φ(λ)) ≤ λr2α(λ)φ(λ). (39)

For xα be a approximate solution as in (30) in the case yδ which is replaced by exact data

y.

Using Lemma 5.1 yields

∥Kxα −Kx‡∥v =

(∑
λ∈Λ

|⟨Kxα −Kx‡, vλ⟩Y |2
)1/2

=

(∑
λ∈Λ

rα(κ
2
λ)|⟨y, vλ⟩|2

)1/2

≤

(∑
λ∈Λ

rα(κ
2
λ)|⟨yδ, vλ⟩|2

)1/2

+

(∑
λ∈Λ

rα(κ
2
λ)|⟨y − yδ, vλ⟩|2

)1/2

≤

(∑
λ∈Λ

|⟨Kxδα − yδ, vλ⟩Y |2
)1/2

+

(∑
λ∈Λ

|⟨y − yδ, vλ⟩|2
)1/2

.

Because α = αD be a solution of the equation (19), we deduce that

∥Kxα −Kx‡∥v ≤
√
Bv (τ + 1) δ. (40)

We denote ω = (ωλ)λ∈Λ with ωλ = [φ(κ2λ)]
−1/2⟨x‡, uλ⟩. Using the definition of Θ

function, a bound of frame u and the definition of Mφ,E, we get

Θ


∥∥∥[rα (K∗K)]

1
2 x‡
∥∥∥2
u

∥ω∥22

 = Θ


∑

λ∈Λ

∣∣∣⟨[rα (κ2λ)] 12 x‡, uλ⟩∣∣∣2
∥ω∥22

 = Θ

(∑
λ∈Λ rα (κ

2
λ)φ (κ2λ) |ωλ|2

∥ω∥22

)
.

Next, by the convexity of Θ, the Jensen inequality, and the inequality (39) there holds

that

Θ

(∑
λ∈Λ rα (κ

2
λ)φ (κ2λ) |ωλ|2

∥ω∥22

)
≤
∑

λ∈Λ Θ(rα (κ
2
λ)φ (κ2λ)) |ωλ|2

∥ω∥22

≤
∑

λ∈Λ κ
2
λr

2
α (κ

2
λ)φ (κ2λ) |ωλ|2

∥ω∥22

≤
∑

λ∈Λ κ
2
λr

2
α (κ

2
λ)φ (κ2λ) |ωλ|2

∥ω∥22
.

Combining the results here with inequality (40) and bound of frame u, we can infer that.

Θ


∥∥∥[rα (K∗K)]

1
2 x‡
∥∥∥2
u

∥ω∥22

 ≤
∑

λ∈Λ

∣∣⟨κλrα (κ2λ)x‡, uλ⟩∣∣2
∥ω∥2

=

∥∥Kxα −Kx‡
∥∥2
v

∥ω∥22
≤ Bv(τ + 1)2δ2

∥ω∥22
.

(41)
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From the inequality Bv ≥ 1 and the definition of the source-set Mφ,E, we deduce that√
BvA−1

v (τ + 1)E ≥ ∥ω∥u. Using the monotonicity of φ−1, a relation φ−1(λ) = 1
λ
Θ(λ)

and the estimate (41), we obtain

φ−1

(
∥rα (K∗K)]

1
2 x‡∥2u

A−1
v Bv(τ + 1)2E2

)
≤ φ−1


∥∥∥[rα (K∗K)]

1
2 x‡
∥∥∥2

∥ω∥22


=

∥ω∥22∥∥∥[rα (K∗K)]1/2 x‡
∥∥∥2
2

Θ


∥∥∥[rα (K∗K)]

1
2 x‡
∥∥∥2
u

∥ω∥22


=

∥ω∥22∥∥∥[rα (K∗K)]1/2 x‡
∥∥∥2
u

Bv(τ + 1)2δ2

∥ω∥22
=

Bv(τ + 1)2δ2∥∥∥[rα (K∗K)]1/2 x‡
∥∥∥2
u

.

Equivalently,

Θ


∥∥∥[rα (K∗K)]

1
2 x‡
∥∥∥2
u

A−1
v Bv(τ + 1)2E2

 ≤ Avδ
2

E2
.

From here, it follows∥∥∥[rα (K∗K)]
1
2 x‡
∥∥∥2
u
≤ A−1

v Bv(τ + 1)2E2Θ−1

(
Avδ

2

E2

)
.

This estimate and (38) give us the result (20). That is

∥xδα − x‡∥X ≤
√
A−1

u Bu(τ + 1)E
√
Θ−1 (Avδ2/E2) ≤

√
A−1

u Bu(τ + 1)E
√

Θ−1 (|v|2infδ2/E2).

5.8 Proof of Theorem 4.1

Proof. (a) Firstly, D1 ensures this because, as we know, (uλ)λ∈Λ forms an orthonormal

basis for L2(R2). Similarly, D3 is also considered established through the identification of

the relationship between {vλ} and {uλ} as in (25). Therefore, we only need to prove D2.

Taking any θT belonging to the range of K, it is easily seen that for each λ = (λD, λT ) ∈ Λ

then

supp (Fuλ) ⊂
{
ω ∈ R : 2λDau ≤ |ω| ≤ 2λDbu

}
.

From here, we deduce that 22λDa2uT
γ ≤ |ω|2 T γ ≤ 22λDb2uT

γ for every ω ∈ supp (Fuλ).
Using the monotonicity property of the function Eγ,1(z), we obtain

Eγ,1

(
−22λDb2uT

γ
)
≤ Eγ,1

(
− |ω|2 T γ

)
≤ Eγ,1

(
−22λDa2uT

γ
)
.

This follows that

κλE
−1
γ,1

(
−22λDa2uT

γ
)
≤
∣∣κλE−1

γ,1

(
− |ω|2 T γ

)∣∣ ≤ κλE
−1
γ,1

(
−22λDb2uT

γ
)
.
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Moreover, from the inequality (21), and κλ = 2−2λD , we can deduce

(1 + a2uT
γ)/c ≤

∣∣κjE−1
γ,1

(
− |ω|2 T γ

)∣∣ ≤ (1 + b2uT
γ)/c. (42)

We recall that uj is a frame, this means that for all θ ∈ L2 (R),

Au∥θ∥2L2(R2) ≤
∑
λ∈Λ

|⟨θ, uλ⟩|2 ≤ Bu∥θ∥2L2(R2).

Equivalently,

Au∥Fθ∥2L2(R2) ≤
∑
λ∈Λ

|⟨Fθ,Fuλ⟩|2 ≤ Bu∥Fθ∥2L2(R2). (43)

Take any θT ∈ ranK, we show that

Av∥θT∥2L2(R2) ≤
∑
λ∈Λ

|⟨θT , vλ⟩|2 ≤ Bv∥θT∥2L2(R2).

This is equivalent to proving

Av∥FθT∥2L2(R2) ≤
∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2 ≤ Bv∥FθT∥2L2(R2). (44)

And now, for every λ ∈ Λ, from (26), we have

|⟨FθT ,Fvλ⟩|2 =
∣∣κjE−1

γ,1

(
− |ω|2 T γ

)∣∣2 |⟨FθT ,Fuλ⟩|2 .
Using the inequality (42), it leads us to(

(1 + a2uT
γ)/c

)2 |⟨FθT ,Fuλ⟩|2 ≤ ∣∣κλE−1
γ,1

(
− |ω|2 T γ

)∣∣2 |⟨FθT ,Fuλ⟩|2
≤
(
(1 + b2uT

γ)/c
)2 |⟨FθT ,Fuλ⟩|2 ,

for every λ ∈ Λ. Hence,(
(1 + a2uT

γ)/c
)2∑

λ∈Λ

|⟨FθT ,Fuλ⟩|2 ≤
∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2 ≤
(
1 + b2uT

γ/c
)2∑

λ∈Λ

|⟨FθT ,Fuλ⟩|2 .

Combining with (43), we get(
(1 + a2uT

γ)/c
)2
Au∥FθT∥2 ≤

∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2 ≤
(
(1 + b2uT

γ)/c
)2
Bu∥FθT∥2.

Finally, (44) be proved for Av = ((1 + a2uT
γ)/c)

2
Au and Bv = ((1 + b2uT

γ)/c)
2
Bu.

(b) We find the source condition for the solution θ0. Naturally, we can assume that

θ0 ∈ Hp(R) for p ≥ 0. Putting

G(λD) = {ω ∈ R : 2λDau ≤ |ω| ≤ 2λDbu}, (45)

we note that suppuλ ⊂ G(λD). For λ = (λD, λT ), we can write

⟨θ0, uλ⟩ =
1

2π
⟨Fθ0,Fuλ⟩ =

1

2π

∫
R
Fθ0(ξ)Fuλ(ξ)dξ =

1

2π

∫
R
1G(λD)(ω)Fθ0(ξ)Fuλ(ξ)dξ.
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For λD > 0, using the Bessel inequality yields∑
λT∈Z

|⟨θ0, uλ⟩|2 ≤
1

2π
∥1G(λD)F(θ0)∥2 ≤ 2−2pλDω2

λD
= κpλω

2
λD
,

where

wλD
= a−p

u ∥1G(λD)(1 + ω2)pF(θ0)∥.

For λD ≤ 0, we have κλ = 1 and

⟨θ0, uλ⟩ = κ
p/2
λ ⟨θ0, uλ⟩.

Put wλ = ∥u0∥w′
λ for λD > 0 and wλ = ⟨θ0, uλ⟩ for λD ≤ 0. Direct computations yields∑

λD∈Z

κ−p
λ |⟨θ0, uλ⟩|2 =

∑
λ∈Z

|wλ|2 ≤ C∥θ0∥2Hr .

So the function θ0 ∈ Mφ,E where φ(µ) = µp/2 and E is large enough.

(c) To obtain the order optimal result, we verify the condition in Theorem 3.3. We

have δ∗λ = |v|−1
infE

√
κ2λφ(κ

2
λ) = |v|−1

infE
√
κ2+p
λ = |v|−1

infE2
−λD(2+p). Letting 0 < δ <

|v|−1
infE2

−(2+p), we can choose a λδ such that

δ∗λδ
= |v|−1

infE2
−λδ(2+p) ≤ δ ≤ |v|−1

infE2
−(λδ−1)(2+p) = 2(2+p)δ∗λδ

.

So we have δ ∈ ∪λ∈ΛDλ,2−2(1+2p) .

5.9 Proof of Theorem 4.2

The fact that the function gα satisfies Assumptions A, B, C is a known result. However,

for the convenience of the reader, we will check these assumptions.

(a) We verify that gα(µ) = 1
α+µ

and φ(µ) = µp/2 satisfy Assumptions C, A1, A2.

Direct verifying yields that Assumption C holds for gα. The index function φ satisfies

Assumption A1. We verify Assumption A2. We have

√
µgα(µ) =

√
µ

α + µ
≤

2
√
µ

√
αµ

=
2√
α
.

We verify Assumption A2 (ii). We have

|1− µgα(µ)|
√
φ(µ) =

αµp/4

α + µ
.

Put H(µ) = αµr

α+µ
, r ∈ (0, 1). We have H ′(r) = α rµr−1(α+µ)−µr

(α+µ)2
. The function attains its

maximum when r(α + µ) − µ = 0 which gives µ = α
1−r

. Choose r = p/4, we obtain

Assumption A2 (ii) Hence H(µ) ≤ Cαr. For p = 4 we have r = 1, H(α) ≤ α which give

Assumption A2 (ii).
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(b) We first consider Assumption B1. In fact we have 1 − µgα(µ) = α
α+µ

→ 1 as

α → ∞. Hence Assumption B1 (i) holds. The function gα(.) is continuous with respect

to α. Hence Assumption B1 (ii) holds.

We verify Assumption B2. In fact we have 1 − µgα(µ) = α
α+µ

. We also have ℓα =

supµ≥0 gα(µ) =
1
α
which satisfies Assumption B2 (iii) with ℓ∗ = ℓ∗ = 1. Finally, we verify

that the function φ is concave. In fact, we have φ′′(µ) = (p/2)(p/2 − 1)µp/2−2 < 0 since

0 < p ≤ 2.

(c) We have κλ,N = e−NT , φ(µ) = (− lnµ)−p. This follows that φ(κ2λ,N) = (2NT )−p.

Hence, from (5), we obtain

δ∗λ,N = |v|−1
infE

√
κ2λ,Nφ(κ

2
λ,N) = |v|−1

inf

√
(2NT )−pe−2NT .

Hence, for every δ ∈ (0, δ0) where δ0 = |v|−1
inf

√
(2T )−pe−2T we can find N0 ∈ N such that

δ∗λ,N0
≤ δ ≤ δ∗λ,N0−1. We note that

δ∗λ,N0−1 = |v|−1
inf

√
(2(N0 − 1)T )−pe−2(N0−1)T ≤ eT |v|−1

inf

√
(2N0T )−pe−2N0T = eT δ∗λ,N0

.

Hence δ ∈ [δ∗λ,N0
, β−1δ∗λ,N0

] ⊂ ∪(λ,N)∈Λ×ND(λ,N),β with β = e−T .

5.10 Proof of Theorem 4.3

(a) We claim that {uλ,N} is a frame over L2(R). For θ ∈ L2(R), we have

⟨θ, uλ,N⟩ =
1

2π
⟨F(θ),Fuλ,N⟩ =

1

2π
⟨1G(λD)1BN

F(θ),Fuλ⟩. (46)

Hence, using the Bessel inequality gives

∞∑
N=0

∑
λ∈Λ

|⟨θ, uλ,N⟩|2 =
1

2π

∞∑
N=0

∑
λ∈Λ

|⟨F(θ),Fuλ⟩|2 ≤
1

2π

∞∑
N=0

∥1BN
F(θ)∥2 = 1

2π
∥F(θ)∥2 = ∥θ∥2.

This follows that {uλ,N} is a tight frame. We find vλ,N and κλ,N such that

Fvλ,N = κλ exp(|ω|2T )F(uλ,N) = κλ1BN
exp(|ω|2T )F(uλ).

For ω ∈ BN , we have exp(NT ) ≤ exp(|ω|2T ) ≤ exp((N + 1)T ). Hence, we can choose

κλ,N = e−NT and obtain

1 ≤ κλ,N exp(|ω|2T ) ≤ eT for ω ∈ BN . (47)

We verify that {vλ,N} is a frame. We have

∞∑
N=0

∑
λ∈Λ

|⟨θ, vλ,N⟩|2 =
1

2π

∞∑
N=0

∑
λ∈Λ

|⟨κλ,Ne|ω|
2T1BN

F(θ),Fuλ⟩|2 =
1

2π

∞∑
N=0

∥κλ,Ne|ω|
2T1BN

F(θ)∥2.
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Using (47) gives

1

2π

∞∑
N=0

∥1BN
F(θ)∥2 ≤ 1

2π

∞∑
N=0

∥κλ,Ne|ω|
2T1BN

F(θ)∥2 ≤ eT

2π

∞∑
N=0

∥1BN
F(θ)∥2.

But 1
2π

∑∞
N=0 ∥1BN

F(θ)∥2 = 1
2π
∥F(θ)∥2 = ∥θ∥2. Hence {vλ,N} is a tight frame.

(b) We find the source set of our problem. Here the set G(λD) is defined in (45). For

θ0 ∈ Hp(R), we have We find the source condition for the solution θ0. As in the previous

theorem, we can assume that θ0 ∈ Hp(R) for p ≥ 0. For (λ,N) = (λD, λT , N), we can

write

⟨θ0, uλ,N⟩ =
1

2π
⟨Fθ0,Fuλ⟩ =

1

2π

∫
R
1G(λD)1BN

Fθ0(ξ)Fuλ(ξ)dξ.

Hence, for λD > 0, using the Bessel inequality yields∑
λT∈Z

|⟨θ0, uλ,N⟩|2 ≤ ∥1GD
1BN

Fθ0∥2 ≤ (1 + 22λDau)
−pω2

λD,N ,

where

ωλD,N = ∥1GD
1BN

(1 + ω2)pFθ0∥.

This follows that∑
λT∈Z

Np|⟨θ0, uλ,N⟩|2 ≤ Np∥1GD
1BN

Fθ0∥2 ≤ Np(1 + 22λDau)
−pω2

λD,N .

On the other hand, we have ⟨θ0, uλ,N⟩ ≠ 0 then BN ∩GλD
̸= ∅, which gives

√
N ≤ 2λDbu.

So we have ∑
λT∈Z

Np|⟨θ0, uλ,N⟩|2 ≤ 22pλDb2pu (1 + 22λDau)
−pω2

λD
≤ b2pu a

−p
u ω2

λD,N .

Noting that N = − 1
2T

lnκ2λ,N we have Np = 1
(2T )p

[φ(κ2λ)]
−1 and∑

λT∈Z

[φ(κ2λ)]
−1|⟨θ0, uλ,N⟩|2 ≤ (2T )pb2pu a

−p
u ω2

λD,N .

This implies that

∞∑
N=0

∑
λD∈Z

∑
λT∈Z

[φ(κ2λ)]
−1|⟨θ0, uλ,N⟩|2 ≤ (2T )pb2pu a

−p
u

∞∑
N=0

∑
λD∈Z

ω2
λD,N = (2T )pb2pu a

−p
u ∥θ0∥2Hp .

So we obtain θ0 ∈ Mφ,E where E = (2T )p/2bpua
−p/2
u ∥θ0∥2Hp , φ(µ) = (− lnµ)−p for µ ∈ (0, 1).
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5.11 Proof of Theorem 4.4

We verify that gα(µ) =
1

α+µ
and φ(µ) = (− lnµ)−p satisfy Assumptions C, A1, A2. As

shown in the proof of Theorem 4.2, Assumption C holds for gα. The index function φ

satisfies Assumption A1 (i), (ii). Using Theorem 9.1 in [10] gives that the function Θ is

convex on (0,∞) for p > 0.

Assumption A2 (i) is verified in the proof of Theorem 4.2. We verify Assumption A2

(ii). We have

|1− µgα(µ)|
√
φ(µ) =

α (− lnµ)−p/2

α + µ
.

Putting τ = α/µ, we obtain

α (− lnµ)−p/2

α + µ
=
τ(ln(τα−1))−p/2

τ + 1
.

For α < τ ≤
√
α, η ∈ (0, 1), using the inequality zη(ln z)−p/2 → 0 as z → 0, we have

τ(ln(τα−1))−p/2

τ + 1
≤ τ 1−ηαη(τα−1)η(ln(τα−1))−p/2

τ + 1
≤ Cαη ≤ C ′(− lnα)−p/2.

For τ ≥
√
α we have

τ(ln(τα−1))−p/2

τ + 1
≤ (ln(τα−1))−p/2 ≤ (ln(α−1/2))−p/2 ≤ C ln(α−1)−p/2.

Using Theorem 4.3 (ii), we can find E1 > 0 such that ME1 := {θ0 ∈ Hp(R) : ∥θ0∥Hp ≤
E1} ⊂ Mφ,E. So we have Ω (ME1 , δ) ≤ Ω (Mφ,E, δ). Using the classical results in [7, 10],

we can find a C0 > 0 such that Ω (ME1 , δ) ≥ C0 ln(E1δ
−1)−p. Hence

inf
R

∆(Mφ,E, δ,R) ≥ Ω (Mφ,E, δ) ≥ C0 ln(E1δ
−1)−p ≥ C ′E ln(Eδ−1)−p.

So, we obtain the order optimal property of our regularization.

6 Conclusion

The paper has investigated DFD regularizations in both a priori and a posteriori cases. For

the case where the {uλ} system is minimal, we have proved the seuqntial order optimality

property and the global optimality for DFD regularizations. Some issues that need to be

investigated in the future are

- Methods of constructing DFDs for ill-posed problems

- Investigation of the relationship between the classical source condition and the DFD

source condition.

- Investigation of optimality in the case where {uλ} is not minimal.

- Find the condition of the DFD singular value so that the regularization method is

uniformly optimal
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