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Abstract

In chemical and engineering sciences, most factors are quantitative, benefit-
ing from investigation at three distinct levels when studying quadratic or non-
linear relationships. Consequently, definitive screening designs (DSDs), a class of
3-level foldover designs introduced by Jones and Nachtsheim (2011), have gained
prominence over traditional 2-level designs such as fractional factorial and Plack-
ett—Burman designs.

This paper extends the framework of conference matrix-based DSDs by intro-
ducing a new class of circulant weighing matrix-based screening designs, offering
greater design flexibility. Like DSDs and the OMARS designs recently proposed by
Nunez Ares and Goos (2020), these new designs preserve orthogonality among main
effects and between main effects and second-order effects (i.e., quadratic effects and
two-factor interactions), while ensuring the absence of full aliasing among second-
order effects. We refer to these designs as OMARS designs to highlight their ability
to support both factor screening and response surface exploration in a single step.

We present a comprehensive catalog of 149 new OMARS designs with desirable

projection capability, accommodating up to 50 factors.
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1 Introduction

Screening designs are employed in the early stages of experimentation to identify the
most important factors influencing a response. These designs are cost-effective, requiring
substantially fewer runs than full factorial designs. Standard screening designs include: (i)
2-level fractional factorial designs (FFDs), (ii) Plackett—Burman designs (PBDs), and (iii)
definitive screening designs (DSDs). The first two are well-suited for qualitative 2-level
factors, while DSDs, introduced by Jones and Nachtsheim (2011), are more appropriate
for quantitative factors. For a detailed discussion on FFDs and PBDs, refer to Mee (2009)
and Plackett and Burman (1946).

A DSD is a class of 3-level screening designs whose design matrix D is structured as

follows:

D=1] o (1)

where C, the half-design fraction (HDF), is a conference matrix of order m, and 0 is
a row vector of 0’s (cf. Stylianou 2010, 2011; Xiao, Lin, and Bai 2012; Nguyen and
Stylianou 2013). Beyond pairwise orthogonal main effects (MEs), DSDs offer several key
advantages:

(i) The design is mean orthogonal, i.e., each factor has the same number of £1’s.

(ii)) When m is even, the design is saturated for estimating the intercept, m MEs, and
m quadratic effects (QEs).

(iii) The MEs are orthogonal to the second-order effects (SOEs), i.e., QEs and the

2-factor interaction effects (IEs).



(iv) The QEs can be estimated and are not fully aliased with the IEs.

(v) The IEs are not fully aliased with one another.

Note that FFDs of resolutions III and IV do not possess properties (ii)—(v). Similarly,
PBDs do not possess properties (ii)—(iv).

A conference matrix C in (1) is a special case of a weighing matrix of order m and
weight m — 1. This relationship motivated Georgiou, Stylianou, and Aggarwal (2013) to
develop a new class of 3-level weighing matrix-based screening designs by generalizing from
conference matrices to weighing matrices of the same order but with weight w < m—1. A
weighing matrix W of order m and weight w = m — s (s > 1) is an m X m square matrix
with entries in {0, £1}, where all rows and columns are pairwise orthogonal. Each row and
column contains exactly s zeros. Formally, this orthogonality condition is expressed as
WW' = (m—s)L,,, where W’ denotes the transpose of W, and I, is the identity matrix.
In this paper, we refer to our new class of designs as OMARS designs to emphasize
their ability to support both factor screening and response surface exploration in a single
step (cf. Nunez Ares and Goos, 2020; Goos, 2025). We use OMARS-s to denote an
OMARS design constructed from a weighing matrix of weight m — s, where each row and

column contains exactly s zeros. Thus, a conference matrix-based DSD corresponds to

an OMARS-1 design.

Table 1: An OMARS-3 design constructed from a weighing matrix of order seven and
weight four.

Table 1 shows an OMARS-3 design constructed from a weighing matrix of order seven

and weight four (the first seven rows) where + stands for 1 and - stands for —1.



The primary limitation of conference matrix-based DSDs is their restriction to three
mid-levels (0’s) for each factor, allowing only one zero for each HDF. While DSDs are
effective at identifying key factors efficiently, this constraint limits their ability to detect
curvature effects when there are many factors. In contrast, our newly developed OMARS
designs preserve the strengths of conference matrix-based DSDs while providing greater
flexibility, as they are not bound by the structural limitations of conference matrices.

This paper aims to identify suitable weighing matrices for constructing new OMARS
designs. Section 2 introduces circulant matrices and circulant weighing matrices derived
from circulant cores. Section 3 reviews the statistical model for an OMARS design and
projection capabilities as design selection criteria. Section 4 outlines an algorithm for
constructing new OMARS designs. Section 5 discusses newly identified OMARS designs

and provides two examples using the algorithm from Section 4. Section 6 concludes the

paper.

2 Circulant matrices and circulant weighing matrices

A circulant matrix C = (¢;;) is a square matrix of order m generated by a vector

c=(co,C1,--.,Cn_1), with the following structure:
Co €1 " Cm-1
Cm—-1 Co - Cp—2
C= (2)
Cl 62 .« .. CO

Circulant matrices possess four fundamental properties: they form a closed set under
addition and multiplication; their products commute; their transposes remain circulant;
and the product of a circulant matrix with its transpose yields a symmetric circulant

matrix.



Let the matrix A = (a;;) = C'C (= CC'’). The generating vector of the symmetric

circulant matrix A is a = (ag, a1, ..., ay_1), with each element ay:
m—1
U= Y CiC(+k) mod m- (3)
=0

The weighing matrix used for the OMARS design in Table 1 is an example of a circulant
matrix C, generated by the vector ¢ = (0+--0-0). Readers can verify that A = C'C is
the circulant matrix generated by the vector a = (4,0,0,0,0,0,0). A weighing matrix of
the same order and weight but not of the circulant type can be found on p. 27 of Ninez
Ares and Goos (2020).

A circulant weighing matrix (CWM) is characterized by its circulant structure and can
be constructed using one, two, or four circulant cores (matrices), with each core generated
by one cyclic generator. The CWM used to build the OMARS design in Table 1 is based
on a single circulant core. The following paragraphs outline the construction of CWMs of
order m and weight m — s using two and four cores. For a more comprehensive discussion,
see Kotsireas, Koukouvinos, and Seberry (2012) and Koukouvinos and Seberry (2002).

If C; and C, are two circulant (0,£1) matrices of order [ = % such that C|C; +

2

CLCy = (m — s)I;, then the following 2-core m x m CWM can be constructed:

G G
(4)
C, -C
Similarly, if C;, Csy, Cs, and Cy are four circulant (0,41) matrices of order [ = 7

such that C|C; + C,C, + C,C; + C,C, = (m — s)I;, then a 4-core m x m CWM can be

constructed as follows:



C, GCR C;R CR
~C,R C, C,R -CiR 5
~C;R -C/R C; C,R
~C,R C,R -C,R C

Here, R denotes the anti-diagonal identity matrix of order [, which features 1’s along
the anti-diagonal (running from the top-right to the bottom-left corner) and 0’s elsewhere.
Table 2 shows (a) a conference matrix of order 20 from Nguyen and Stylianou (2013),

(b) a 2-core CWM of order 20 and weight 13, and (c) a 4-core CWM of order 20 and

weight 17.
(a) (b) (c)
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Table 2: A conference matrix of order 20 and two CWMs of order 20 with weights 13

and 17 respectively.

Let C; (i = 1,...,r) be a circulant matrix associated with the generating vector c¢; =

cii—1)), where r denotes the number of cores (1, 2, or 4). The generating

6%'(1—1))- A

(Ci07 Cily v vy
vector corresponding to the circulant matrix A; = C.C; is a; = (a0, @41, - - -,
CWM with parameters (m,s) constructed from the core matrices C; using Eq. (4) or

(5) will satisfy > 7, ajo = m — s, representing the sum of the squared £1 values in the

vectors ¢;, and



Z Qi = 0, (6>
i=1

for k =1,...,1— 1. Here, the a;’s are computed using Eq. (3) for each ¢ and k. Eq. (6)
is employed to verify whether a matrix constructed from a single core, two cores as in Eq.
(4), or four cores as in Eq. (5) qualifies as a CWM.

The 4-core OMARS-3 in Table 2(c), for example, was constructed from the following
generating vectors: ¢; = (+-=-0+), ¢ = (-0-+-), c3 = (+--—-), ¢4 = (+—=0-). The
associated vectors a; are: a; = (4,1,—-3,-3,1), a, = (4,—1,1,1,—1), a3 = (5,1,1,1, 1),

a;=(4,—1,1,1,=1). Thus, 3.7 ap =17 and 3+ agx =0, for k=1,... 4.

3 The Statistical Model and Projection Capabilities
as Design Selection Criteria

Consider a CWM-based OMARS design involving m 3-level factors and n = 2m + 1
runs (assuming only one center run). The design matrix D, ., = (d;;) is constructed
using Eq. (1), with a weighing matrix W, ., = (w;;) of weight w = m — s replacing the
conference matrix C, and includes a zero-row vector 0;y,, to represent the center run.
In this paper, s is restricted to the range 1,2,...,% as designs with many zeros have
low power for detecting MEs and IEs. The statistical model for this OMARS design is

expressed as

Y, = X3, + €, (7)

where Y, is the response vector; X,,, is the expanded design matrix derived by aug-
menting D to include the terms required for the statistical model; p is the number of
parameters; (3, is the vector of fixed-effect coefficients; and €, is the error vector with

mean zero and variance-covariance matrix o2L,.



The design’s D-efficiency, which measures how well the design estimates the model

parameters (with higher values indicating better performance), is calculated as:

D = [X'’X|'" /n. (8)

We use Dyvig, Dvetqe, Dyetie, and Dgog to denote the D-efficiency when the model
includes the intercept plus: MEs, MEs + QEs, MEs + IEs, or MEs + QEs + IEs,
respectively. Recall that MEs, QEs, and IEs refer to main effects, quadratic effects, and
two-factor interaction effects, respectively.

In experimental design, a design’s projection capabilities indicate its performance when
analyzing subsets of k£ factors out of the total m factors. This is crucial for screening
experiments, where typically only a few factors are significant. Loeppky, Sitter, and
Tang (2007) introduced two metrics to evaluate these capabilities: projection estimation
capacity (PEC) and projection information capacity (PIC).

(i) For a design Dy, 5m, let Pr(Dyxm) be the number of estimable SOE models involving

k factors out of the (7;) possible models. Then PECFO® is computed as:

Pk(DnXm)

(¥)

PEC;CF = (9)

(ii) PIC?9F measures the average D-efficiency of these (T]Z) projections for the SOE
models, quantifying the precision of parameter estimation from the projected subsets.

Our methodology prioritizes design selection using the PECFOY and PIC?CF criteria.
We first identify candidate designs with PECYO values close to 1, and then, among these,
maximize PICFOE. These metrics are particularly powerful because they align with the
principle of hierarchy or effect heredity in statistical modeling. This principle recognizes
that higher-order interactions are typically meaningful only when their parent MEs are
significant, implying that not all potential IEs demand equal scrutiny. By focusing on the

design’s projection properties, we can systematically evaluate how effectively the design



performs across different factor subsets.

We set k£ = min(max(round(m/5),3),8), where k is one-fifth of m (rounded to the
nearest integer), constrained between 3 and 8. For example, our OMARS design with
34 factors and 69 runs ensures that any SOE model involving seven factors (= 34/5) or
fewer is estimable. Experimenters can select different k& values by choosing appropriate
run sizes. Section 5 provides two examples: a 15-factor OMARS design involving 37-45

runs, and a 6-factor OMARS design involving 33 runs, both with PECE9F = 1.

4 The COMARS Algorithm

The following steps describe the construction of an r-core CWM of order m = rl and
weight w = m — s, where r € {1,2,4} and s = 1,2,...,% by the COMARS algorithm
(CWM-based OMARS design generation algorithm). This CWM can then be used to
construct an OMARS-s design for m factors with n = 2m + 1 runs. In the resulting
design matrix, each column contains w entries equal to 1, w entries equal to —1, and
(2s 4 1) entries equal to 0.

1. Initialization: Create an initial matrix c of size r x [. Set the first s positions
to 0 and fill the remaining positions randomly with +1. Randomize the entire matrix.

Calculate the initial sum metric S:

S = i (i a,-k) s (10)

where the a;; values are calculated according to Eq. (3). When S reaches zero, the matrix
constructed by Eq. (2), (4) or (5) for r € {1,2,4} qualifies as a CWM.

2. 2-Exchange Optimization: Iteratively search for pairs of elements in ¢ that can
be swapped to reduce S. When an improving swap is found, execute it and update S.
Continue until either no improving swaps exist or S = 0.

3. Coordinate Optimization: If S > 0, search for individual non-zero elements



that can be flipped (from +1 to —1 or vice versa). When an improving flip is found,

execute it and update S. Continue until either no improving flips exist or S = 0.

(a) (b) (c) (d)
+-—++ ———++ —_— -
oot . s r
0---—- —-—— o= +-——=
+--0- +--0- +--0- +--0-

Table 3: Three iterations of COMARS constructing a 4-core CWM with

(m,s) = (20, 3).

For illustration, consider constructing an OMARS-3 design, as shown in Table 2(c).
Table 3(a) shows the initial 4 x 5 matrix containing 17 £1 entries and three 0s. The
counts of 1s and —1s need not be equal. Initially, a = (17,6,4,4,6) with S = 104.
Table 3(b) shows the first iteration: swapping elements at positions (1,1) and (2,4) yields
a = (17,2,2,2,2) with S = 16. In Table 3(c), the second iteration swaps elements at
positions (1,4) and (3,1), yielding a = (17,0, 2,2,0) with S = 8. The final iteration, shown
in Table 3(d), flips the sign of the element at position (1,1), resulting in a = (17,0, 0,0, 0)
with S = 0. This confirms that the vectors in this matrix can construct a 4-core CWM
with (m, s) = (20, 3).

Remarks

1. Step 2 implements the interchange algorithm from Nguyen (1996). Step 3 uses
the coordinate-exchange algorithm, proposed by Kounias and Chadjipantelis (1983) and
further developed by Meyer and Nachtsheim (1995).

2. The three steps of the COMARS algorithm constitute a single try. For each
try that yields a valid CWM, we sequentially apply three selection criteria. The first
condition is that max(rqq, rqr, ) < 1, where rqq, rqr, 'n denote the maximum absolute
correlations among QEs, between a QE and an IE, and among IEs, respectively, helps
prevent perfect aliasing. Second, Dygiqr > 0, where Dygiqr is the D-efficiency of the

ME+QE model, ensures that the model is estimable. Third, the constraint vqr < c,

10



where vgr denotes the maximum variance among estimated QEs, is introduced to avoid
ill-conditioned designs that yield unstable QE estimates. The cutoff ¢ = 1 is chosen
empirically for normalized design matrices (—1,0,+1 coding).

Only designs that satisfy all three conditions are subjected to the computation of
PEC}F and PIC;°F, where k = round(m/5), bounded between 3 and 8 or user-defined.
The design that sequentially maximizes PECEOE and PICEOE is selected.

3. For large m and k, calculating PEC5°F and PICSOF for all possible (T:) SOE models

is computationally infeasible. Therefore, we sample Zpa/ B* @) projections onto k
k

1+(Z2pq/E?)/

factors, where Z = 1.96 (95% confidence level), p = ¢ = 0.5 (maximum variability),
E = 0.01 (1% margin of error), and () is the population size. This sampling approach
provides results with 95% confidence level and 1% margin of error, allowing us to draw

statistically valid conclusions about the properties of all possible k-factor projections while

keeping the computational effort manageable. For instance, when m = 42 and k = §,

42

8) = 118,030, 185, we only need to examine 9,603 samples instead of the entire

where (
population.

4. For designs involving fewer factors m’ < m, the COMARS algorithm randomly
selects m’ columns from the full design of mf actors before computing the quality measures

described in Remark 2 and selecting the final design. This random selection approach is

most likely suboptimal (cf. Vazquez et al., 2019).

5 Results and Discussion

5.1 New OMARS Designs

The Appendix presents quality measures and generating vectors for the HDF of the
CWDM-based OMARS designs using one, two, and four generators (cores). Each OMARS
design is characterized by (r,m,s), where r is the number of cores, m is the number of

factors, and s is the number of zeros per column and per row in the CWM. The number

11



of runs is n = 2m + 1 (including one center run), except for two OMARS designs marked
with I: (r,m,s) = (1,7,3) and (1,31, 15), which have two center runs. These two designs,
along with (r,m,s) = (1,13,4), achieve rqq = 0, satisfying the orthogonality of QEs.

Quality measures include Dyg and Dygiqr (D-values for the ME and ME + QE
models), 7qq, Tqr, 71, and PECEOF and PIC;. Here, k = round(m/5), bounded between
dand 8 k=3 form < 17; k=4 for 18 < m < 22; k=5 for 23 < m < 27; k = 6 for
28 <m < 32; k=7for 33 <m <37; and k = 8 for m > 38.

The Appendix presents 149 CWM-based OMARS designs: seven single-core, 52 two-
core, and 90 four-core designs. OMARS designs with s > 1 typically show higher Dypiqr
compared to those with the same m and s = 1, though they often exhibit higher correlation
values (rqq, rqi, ri). However, increasing s toward 3 does not necessarily guarantee
improved Dygyqr and projection capability, as illustrated, for example, by OMARS-2
designs with (m, s) = (26, 1), (26,8),...,(26,13), and by OMARS-4 designs with (m, s) =

(36,1), (36,3), ..., (36, 18).

5.2 Example 1: OMARS Designs for a large number of factors

Ahuja, Ferreira, and Moreira (2004) employed a 20-run Plackett—Burman design (PBD)
to screen components affecting growth. They then applied response surface methodology
to optimize a growth medium for the shipworm bacterium, Teredinobacter turnirae, specif-
ically targeting its aggregated morphology. Their study examined 18 medium components
(factors), including NaCl, KC1, MgSO,- TH,0O, and NH,Cl (detailed in their Table 1). The
experimental design, comprising both the PBD and its folded variant, is presented in their
Table 2 (see also Mee 2009, Section 11.1). Of the 18 factors studied, 15 were tested at two
levels (with the high level set at four times the low level), while three factors maintained
constant levels throughout the experiment.

As an alternative to the 15 columns (columns 2-16) of the conference matrix of order

20 in Table 2(a), Table 4 presents HDF's of four additional candidate OMARS designs for

12



15 factors, all achieving PECSO® = 1. These designs were generated by the COMARS
algorithm (see Remark 4, Section 4). OMARS-1 and OMARS-5 were derived from 2-core

CWNMs of order 18 and 22, respectively, while OMARS-6 and OMARS-7 are derived from

4-core CWMs of order 20.
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Table 4: Four candidate screening designs as represented by their HDFs.

Table 5 presents the quality measures for these designs. In this table, PICEOF rep-
resents the average of the D-efficiencies of the ( ) = 3003 SOE models on five factors.
Figure 1 displays the dot plots of these D-efficiencies. The DSD and OMARS-1 exhibit
higher PICEO¥ and Dy values and smaller rqp values, but significantly larger vqg values
compared to the other OMARS designs.

The average maximum vqr and v across the (155) SOE models on five factors are
(1.081, 1.243, 0.711, 0.655, 0.371) and (0.068, 0.084, 0.385, 0.572, 0.142), respectively.
Users prioritizing QEs should consider OMARS-5, while those focusing on IEs may prefer

the DSD or OMARS-1.
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Table 5: Quality measures of 15-factor candidate DSD and OMARS designs with
PECZOF = 1

Design n DME DME+QE UME UVQE TQQ rQ1 11 PIC?OE
DSD 41 0931 0.238 0.026 0.472 0.281 0.200 0.444 0.397
OMARS-1 37 0.924 0.249 0.029 0472 0.275 0.213 0.375  0.392
OMARS-6 41 0.699  0.317  0.036 0.327 0.549 0.671 0.700 0.332
OMARS-7 41 0.652  0.329  0.038 0.242 0.472 0.648 0.750  0.305
OMARS-5 45 0.769  0.355 ~ 0.029 0.155 0.278 0.425 0.500 0.390
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Figure 1: Dot plots showing D-efficiencies of 3003 SOE models on five factors from the

five designs in Table 5.

5.3 Example 2: OMARS Designs for Six Factors

Nufiez Ares and Goos (2020) introduced the term OMARS designs, along with a
construction method and an extensive catalog of designs for 3-7 factors. In addition to
the key properties shared with DSDs and those proposed in this paper, these designs also

satisfy a specific sparsity property, which ensures that the number of zeros n)'® is identical

across all ME columns, and the number of zeros n{\° is identical across all IE columns.
Our OMARS designs with r = 1 (i.e., a single circulant core) or with s = 1 always satisfy

this sparsity property, whereas those with » > 1 and s > 1 may not.

Table 6 presents the HDF's of five screening designs for six factors in 33 runs (including
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one center run) with PECEOF = 1: the DSD contains six columns of a conference matrix
of order 16 in Nguyen and Stylianou (2013); the EFFEX design, provided by a reviewer,
was produced by the EFFEX software (https://www.effex.app/); bd.6.32.4.8.4 was
obtained from https://bitbucket.org/josenunezares/omars/, OMARS-2a was con-
structed by the COMARS algorithm with the constraint Dyg, g > 0; and OMARS-2b

was also constructed by the COMARS algorithm, but with the constraint Dygiqr > 0.

DSD EFFEX bd.6.32.4.8.4 OMARS-2a OMARS-2b
—————————— 0- -0+—+- ++0+-+

— oot -——-0+ —+0--- -Q++-+
At —t— oIt -=0-++ +-t——= —F+-—+
== +—-0 ——I;—— ++—+-0 —++-+0
oA =t -0———- ——=0++

Qt;:tl —H+0- ——+++0 +90—++ +—+9—+
4t —Q+—+- —Q—+++ —t— O++++—
+—+++0 —O0++++ —0++-+ ——+-0 ++—+0—
——= —-+-—-0 —t—— +——0-— —t -
—t——t+ —+=0++ —+-0—— e e
+-0——- -+Q+-+ —t+—F+- O—++—+ ———+0+
+++0—- —+0++- -+0+—+ ++-=0+ 0-+——-
—— 10— —++-0+ —++—++ o i Z04+4+——
+——+++ —++0-- —++0+- ++—++- —+0+++
-0+—++ Q—+—++ Q——+-+ O++++- +—+++0
—F—+-- O-++-+ 0-—++- +-++0- ++-——+

Table 6: Five candidate designs as represented by their HDF's.

Table 7 shows the quality measures of the designs in Table 6. In this table, PICZO¥

6

5) = 6 models on five factors. Figure

represents the average of the D-efficiencies of the (
2 displays the dot plots of these D-efficiencies. Similar to the previous example, the DSD
displays higher PICEOE, Dyig, and Dygiig values as well as lower rqp values. Among
the last four designs, the EFFEX design and OMARS-2b outperform the other two with
respect to PICSOF values. Although the PICECE value of OMARS-2b surpassed that of
the EFFEX design (0.390 vs. 0.384), users might opt for the latter as it can estimate both
the ME + IE and ME + QE models.

The average maximum vgr and v across (g) SOE models involving five of the six
factors are (2.006, 2.212; 3.19, 3.215, 2.045) and (0.098, 0.489, 0.526, 0.405, 0.232), re-
spectively. Users prioritizing QEs should consider the DSD, the EFFEX design, and the

OMARS-2b design, while those focusing on IEs may prefer the DSD.
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Table 7: Quality measures of 6-factor candidate designs involving 33 runs with PE

SOE _
CS h—

1
DesignT (ng/[E, TL%)E) DME DME+IE UME VIE rQQ Q1 1 PICEOE
DSD (2, 4) 0.922 0.771 0.033 0.057 0.267 0.229 0.286 0.392
EFFEX (4, 8) 0.869 0.699 0.036 0.078 0.057 0.396 0.333 0.384
bd.6.32.4.8 (4, 8) 0.869 0.581 0.036 0.238 0.057 0.396 0.333  0.365
OMARS-2a (4, 8) 0.869 0.611 0.036 0.442 0.057 0.396 0.333 0.374
OMARS-2b (4, 8) 0.869 - 0.036 - 0.057 0.396 0.333  0.390

T Except for OMARS-2b, all designs were constructed under the constraint Dygy g > 0.
The (Dyp+qr, vqr) values for the DSD and the remaining designs are (0.287, 0.443) and

(0.358, 0.239), respectively.
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Figure 2: Dot plots showing D-efficiencies of six SOE models involving five factors for the

five designs in Table 6.

6 Conclusions

This paper introduces a new class of CWM-based OMARS designs that complement

the existing OMARS designs and the conference matrix-based DSDs in the literature.

The COMARS algorithm outlined in Section 4 was used to construct 149 new OMARS

designs with desirable projection capability, as detailed in the Appendix. Notably, this

includes designs for some odd numbers of factors (see the first seven DSDs with r = 1

in the Appendix) and multiple solutions for 22 and 34 factors in this Appendix. Along
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with the existing conference matrix-based DSDs and the OMARS designs in the EFFEX
software, these new designs for a larger number of factors offer researchers increased
flexibility in their design choices.

The COMARS algorithm, detailed in Section 4, showcases notable computational
efficiency. Constructing the 149 OMARS designs listed in the Appendix took over a day,
with the bulk of the time spent computing the (PEC{OE PICOF) pairs rather than the
designs themselves. On an iMac with an M1 chip, the COMARS algorithm generates
1,000 single-core OMARS designs with (m, s) = (13,4) in under half a second, producing
72 designs with PECSOF = 1. In contrast, constructing 10,000 2-core OMARS designs
with (m,s) = (34,14) on the same machine takes less than 10 seconds, yet only 12 of
these achieve PECSOF = 1. This highlights the growing difficulty of identifying OMARS
designs with desirable projection capability as the dimensions increase.

Designs like DSDs, OMARS designs, and the 2-level orthogonally minimally aliased
designs (Nguyen, Pham, and Vuong 2023) are all examples of minimally aliased designs,
as advocated by Jones and Nachtsheim (2011), Ninez Ares and Goos (2020), and Goos
(2025). They preserve orthogonality among MEs and between MEs and SOEs, while
eliminating full aliasing among SOEs.

Data from OMARS designs with complex aliasing patterns can be analyzed using
procedures by Hamada and Wu (1992), Vazquez, Schoen, and Goos (2021), and Hameed,
Ninez Ares, and Goos (2023). Analyses typically rely on effect sparsity (assuming few fac-
tors affect the response) through a two-stage approach: screening for main and quadratic
effects, then fitting SOE models with significant terms. The standard technique combines
forward stepwise regression with effect heredity, though all-subsets regression and regu-
larization methods (LASSO, Ridge, Elastic Net) are also used. These leverage OMARS
designs’ advantages: unbiased main effects, projection capability, minimal runs, quadratic
effect estimation, and near-orthogonality, with implementation in the Design-Expert, Ef-

fex, JMP, Minitab, and R packages.
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OMARS designs and DSDs with a large number of factors and runs may require

blocking, a topic recently addressed by Nunez Ares and Goos (2023).
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Appendix: New OMARS designs with one, two and four circulant coref}

r m s Dug DME+QE T™QQ TQI @ TII PIC§0E§ Generating vector(s)

17 3 0.577 0.386 0.071 0.518 0.5 0.307 (3) 0-0--+0

1 7t 3 0.545 0.379 0.0 0.5 0.5 0.297 (3) 0-0--+0

1 13 4 0.686 0.399 0.0 0.471 0.5 0.42 (3)  —++++0-+-00+0

1 21 5 0.754 0.384 0.023 0.428 0.583 0.432 (4) +--+00-+0++----=+-0-0

1 31 6 0.799 0.365 0.031 0.492 0.65 0.407 (6) ++-00++0+0+-==+-0-—++++=-0+—+++-

1 31 15 0.519 0.361 0.016 0.252 0.25 0.23%(6) 0--+--0-+00-++0000--0+0+00-000~

1 31f 15 0.511 0.359 0.0 0.25 0.25 0.23%(6) 0--+--0-+00-++0000--0+0+00-000~

2 10 1 0.869 0.323 0.222 0.312 0.75  0.445 (3) —+-——;++-0-

2 14 1 0903 0.277 0.256 0.249 0.5 043 (3)  —=—==—t+=—+;++--0--

2 14 4 0.707 0.352 0.356 0.463 0.875 0.416 (3) -——+++=+;00++0+0

2 18 1 0923 0.245 0.275 0.213 0.375 0.42 (4)  —=—++++——t+;++=+0+—++

2 18 5 0.716 0.292 0.741 0.54 0.8 0.382 (4) +0-+--==0;0-+++-+00

2 22 5 0.765 0.347 0.278 0.425 0.5 0.429 (4) =-000-0+=0-=;+===+=++—++

2 22 6 0722 0.278 0.298 0.588 0.6 0.412 (4) +--+0+----- ;0+000+-+0--

2 22 9 0.592 0.262 0.275 0.604 0.577 0.339 (4) =-+++0+-0+-0;0-000--0-0+

2 24 7 0704 0.31 0.424 0.506 0.8 0.368 (5) 0-0+0+-++-—=;0+—+++00-++0

2 24 11 0.544 0.256 0.508 0.573 0.75 0.257 (5) +++-0000-0+0;0-0+--0-00+-

2 26 1 0.945 0.204 0.293 0.172 0.417 0.407 (5) ==—++—t=—tt=——==;—+++=-0—+++—++

2 26 8 0.689 0.247 0.386 0.481 0.772 0.361 (5) +-000+0++00~+;00+=+-==== -

2 26 9 0.652 0.272 0.477 0.512 0.6 0.342 (5) 0--0-+-0+0-0-; 0—++++--0+-00

2 26 10 0.615 0.298 0.369 0.502 0.671 0.321 (5) +0+0+++--0+-+;0+-+0000+00-~

2 26 13 0.504 0.264 0.359 0.476 0.667 0.24 (5)  0-0+++-+0+000;00-00--0+00+-

2 28 10 0.642 0.321 0.206 0.56 0.8 0.294 (6) +++++-+-000+--;-0-+00-0+0-00-

2 28 11 0.607 0.285 0.312 0.483 0.671 0.27 (6)  0-+--000+0-00+; -0~+-0++00++++

2 30 5 0.825 0.268 0.778 0.502 0.6 0.395 (6) O=+=+=0=++====+; Ot+++++=-=0+=0+-

2 30 10 0.665 0.273 0.419 0.509 0.617 0.318 (6) ++0+=0+++==+-=0;-=0-+-0000+-00-

2 30 12 0.6 0.305 0.356 0.466 0.6 0.275 (6) +00-0+0-+0++000; —==+00++-+0++0+

2 30 13 0.568 0.319 0.336 0.461 0.6 0.255 (6) =0+0-00000+0+-=;+=+00-+0-+00+++

2 30 14 0.536 0.261 0.474 0.513 0.866 0.23 (6) -0-0+0-0++0+-+-;000-000-+0---00

2 32 7 0.775 0.269 0.48 0.491 0.667 0.39 (6)  ——++—+=+000++++=; 0++0+++—++-0+-0-

2 32 14 0.564 0.291 0.253 0.446 0.75 0.257 (6) ++000000++00+-0-;0--0-0-0~++0+-—+

2 32 15 0.533 0.276 0.383 0.497 0.8 0.238 (6) 000-+00+=+++00--;0000-+-=-0+0--0-0

2 34 9 0.731 0.236 0.307 0.476 0.667 0.319 (7) -——+++=—+=++-++00+0;-——+++000-+-00--0

2 34 14 0.589 0.302 0.428 0.498 0.6 0.232 (7) +-+-000+-0++----0;0-0+-000---0-000+

2 34 16 0.532 0.258 0.394 0.492 0.6 0.195 (7) +-+-00++0--0--0-0;000000+0+000+-—++

2 34 17 0.503 0.275 0.42 0.482 0.667 0.177 (7) 00+0+-0+-0+0-0000;----00++-0-+00-00

2 3 7 0.799 0.236 0.832 0.437 0.667 0.359%(7) —=0++-0-0++0+-=0-0;++—+++++—t—+=—++0—
2 36 10 0.719 0.269 0.337 0.517 0.6 0.326 (7) 0+0+00-0+=+==++0=0; =0+++++0+—+0++——+=
2 36 11 0.692 0.284 0.365 0.504 0.589 0.309 (7) =000=+++0==0+=0+=+;00=0+==++++++-+0+0
2 36 16 0.557 0.268 0.336 0.526 0.676 0.222 (7) =+-0000+00++0++000;-0-0+-0++-==+0+0-0
2 38 9 0.759 0.237 0.581 0.558 0.727 0.277*(8) =-=0++000+-0—+-—+-—+;+—+-====000-+++---0
2 38 12 0.682 0.26 0.422 0.552 0.625 0.238%(8) 0-0-0-+0000++-=++-0; ——+—+ ++00+-00-—
2 38 13 0.657 0.224 0.483 0.542 0.63 0.223*(8) ++0+0+++-+0~+-0+--=;0---+00-+00-0--0+00
2 38 18 0.528 0.232 0.457 0.559 0.667 0.154*(8) =+00+0+-00+-=0++0+-;0+0+0+00+000-00-0++

1The run size n of each design is 2m + 1 (one center run), except for those marked with f, which have two center runs.
§ The number in parentheses is k for which PECEOE =1;if 0.99 < PEC%OE <1, PIC%OE is followed by an asterisk (*).

When m > 28, a sample from (Z‘) projections on to k factors is selected to compute (PEC%OE,PICEOE) (see Section 4).
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Appendix: New OMARS designs with one, two and four circulant coref}

r m s Dug DuMeE+QE TQQ TQl T PICEOE§ Generating vector(s)

2 40 3 0.916 0.203 0.687 0.288 0.588 0.351%(8) +=——++=++0++—t+=———t=;+++—tt=——+0+—+++++--0

2 40 11 0.722 0.241 0.393 0.498 0.8 0.279 (8) --00-0++0+-+0-00+-=0; —=+0+-——+—++-0--==+0

2 40 14 0.649 0.239 0.504 0.541 0.668 0.234 (8) ++-+—++++-—-0--+0+-0;-0+-00-0+0-00--000-0

2 40 15 0.625 0.283 0.359 0.432 0.571 0.225 (8) 0+00++0+-0-+++00000-;0=+====0+=0—++=-++0-0

2 40 20 0.502 0.285 0.21 0.444 0.5 0.155 (8) -0000-0+00000-++0-0~-;=0-+-0-00-=+0++-000-

2 42 13 0.688 0.274 0.457 0.466 0.632 0.275 (8) +-=0+==+00+=0+++++=-0=;0-0+=++++-00+00-+0++0

2 42 16 0.619 0.227 0.406 0.472 0.625 0.233 (8) =++++0-++00++-+0--00+;-00-0+0---0+0+0000+-+

2 42 17 0.596 0.257 0.263 0.468 0.571 0.223 (8) 00----0+0++-0-000-0-0;+00+0-=0+--00+—+-++-0

2 44 19 0.569 0.258 0.369 0.484 0.667 0.214 (8) =-00-0-+00++-==+00000-0;-+-0++0+++000-+0-0-++0

2 46 5 0.884 0.202 0.794 0.378 0.667 0.391 (8) +++————+—++—+++0+—++0—+;0—+—+ O——+++——+0—++-
2 46 20 0.566 0.254 0.302 0.517 0.571 0.22 (8)  0+-+---0-00--+0-000--++;-0-+0-00+0+00+00-0+0+0~
2 46 21 0.545 0.24 0.298 0.425 0.6 0.207 (8) +00-+-0--00-=+--00++00-;+0-0000+0-+0+0-0-0+++00
2 48 23 0.522 0.23 0.422 0.415 0.667 0.196 (8) =--00+0+-00+0-000-=+=-0+==;0-00+=+++000+000-++000-0
2 50 21 0.581 0.235 0.433 0.402 0.544 0.242 (8) O0+0++=++0-——=0+++-+0+-++0;00-+0-+000-0000--+00-000+
2 50 25 0.502 0.202 0.445 0.451 0.617 0.189 (8) 0-0-0-0+++-00+0+-+0-0+0-0;00+-000+00+0000~++0+++0-0
4 12 1 0.889 0.298 0.242 0.275 04 0.438 (3) ++-;-——;-—+;+0-

4 16 3 0.799 0.294 0.637 0.571 0.8 0.445 (3) +---;-0-0;-+--;+--0

4 16 5 0.683 0.306 0.364 0.64 0.667 0.415 (3) +0-0;++-0;0---;+-0-

4 20 3 0.837 0.272 0.655 0.471 0.735 0.434%(4) +=+0+;=0=++;++++=;—+++0

4 20 5 0.743 0.304 0.752 0.719 0.8 0.405*(4) 0-00-;+++==;+++—+;+-00-

4 20 9 0.553 0.278 0.766 0.47 0.667 0.291 (4) +-00-;-0+0-;00000;-+---

4 24 3 0.862 0.253 0.667 0.408 0.889 0.419*%(5) -0-+0-;+ t—;——+--0;+ +

4 24 7 0.704 0.31 0.424 0.506 0.8 0.368 (5) =+000+;++0==0; +++=++;0+0—+-

4 24 10 0.584 0.279 0.333 0.577 0.667 0.288 (5) +0000-;00-0+=;===++=;0+0+0+

4 28 3 0.881 0.238 0.674 0.365 0.727 0.397 (6) ===+==0;++=——==+;+=+0++=;—++0—++

4 28 6 0.779 0.267 0.203 0.446 0.75 0.368 (6) 000+0++; ==+++++; =0=—++=;+=+=0+—

4 28 7 0.745 0.274 0.819 0.568 0.869 0.346 (6) =+=0+++;+00-0++;+00=++0; ++—+++—

4 28 9 0.676 0.248 0.526 0.628 0.694 0.307 (6) ++--—+-;0-0---0;0+00-+0;-+++-00

4 28 10 0.642 0.321 0.206 0.614 0.667 0.294 (6) -+--—++;0---000;-+00++0;0+-0+0+

4 28 11 0.607 0.238 0.604 0.604 0.75 0.262 (6) =-00++0-;000++00;—++=+++;00+0+—+

4 28 12 0.573 0.237 0.43 0.462 0.8 0.228 (6) =--0---+;0+-+00-;0000000;-0-=+++

4 28 13 0.538 0.247 0.578 0.531 0.75 0.216 (6) =-+++-00;000-00-;+0-0---;00+0+-0

4 28 14 0.503 0.25 0.438 0.53 0.875 0.189*(6) =+=-=+++;00++0+0;0-0-000;0+0000~

4 32 3 0.895 0.224 0.68 0.333 0.769 0.42 (6)  =+0-==0-;++++—t=—;—++—++——; —+—+-—=0

4 32 5 0.835 0.251 0.343 0.499 0.636 0.413 (6) +0-0-=+0;+0+++—++;——+++—=0; ——++—+—+

4 32 7 0.775 0.277 0.48 0.491 0.667 0.39 (6)  O++=++-=;000-+0++;—===++—+; 0-=—+-0-

4 32 9 0.715 0.304 0.339 0.579 0.625 0.36 (6) —=0+-=0+;0-=+-+00;+-0—++++;0-+0++0+

4 32 10 0.685 0.297 0.407 0.563 0.75 0.341 (6) 0---+000; 0+++00+=; —++==+=+; 0+++0-0+

4 32 11 0.655 0.273 0.327 0.635 0.667 0.32 (6) ---0000-; +++-—++-;00+0+-0-; -+0-0-0+

4 32 13 0.594 0.294 0.394 0.563 0.559 0.279 (6) O0+-+0+++;+0-0+000;++-+000~-;0++0-0-~

4 32 14 0.564 0.277 0.253 0.509 0.625 0.257 (6) 0-00-0--;+0-=+++-;0+0+0-0-;0-+00-00

4 32 15 0.533 0.269 0.383 0.555 0.671 0.235 (6) +0-+--+0;00++00++;00+0+-0-;00--0+00

4 36 1 096 0.173 0.305 0.143 0.706 0.369*(7) t—++-0+; t——+++; + R e

4 36 3 0907 0.213 0.684 0.308 0.667 0.394 (7) ===+=—t==;=0=t+++++=;++0—+=+—+;++-—++-0-

1The run size n of each design is 2m + 1 (one center run), except for those marked with f, which have two center runs.
§ The number in parentheses is k for which PECEOE =1;if 0.99 < PEC%OE <1, PIC%OE is followed by an asterisk (*).

When m > 28, a sample from (Z‘) projections on to k factors is selected to compute (PEC%OE,PICEOE) (see Section 4).
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Appendix: New OMARS designs with one, two and four circulant coref}

r m s Dug DuMeE+QE TQQ TQl T PICEOE§ Generating vector(s)
36 5 0.853 0.232 0.786 0.454 0.692 0.383 (7) +-—+=——==;==+0-=0++;+++-0-=0+; +—+-0—+-~
36 7 0.799 0.25 0.497 0.611 0.727 0.365 (7) =+0—++==+;00-+0-00+; ——+++-==0; +++—+—+++
36 9 0.746 0.274 0.288 0.59 0.7 0.341 (7) ++00+++0-;000—++++0; —+—+++—+—; 0—+++-0+-
36 10 0.719 0.322 0.198 0.603 0.667 0.328 (7) 0-+0+0+0+;=000+==++; —==+++—+=; ++0++0+-0
36 11 0.692 0.284 0.365 0.588 0.75 0.31 (7)  +++0—+=-=+;+-00-+-00; ++0-+0+-0;0----0-0+
36 13 0.638 0.323 0.293 0.6 0.714 0.277 (7) ==+==++--;00--000+-;-+0+0-0-0;---0000-+
36 14 0.611 0.295 0.373 0.586 0.667 0.257 (7) +-++-=-00;-0000+0-0;0++0++0+-;=+-000+--
36 15 0.584 0.265 0.233 0.58 0.667 0.241 (7) +0+-0--0-;00---+-=0;++000-000;0+--+0-0+
36 16 0.557 0.281 0.336 0.576 0.671 0.22 (7)  +-00-++0-;0-00+0000; -0+0+++-0;-==+--000
36 17 0.53 0.259 0.427 0.524 0.667 0.202 (7) 0+00+00+0;—+++-—+-0;++00+--00;0-0000-0-
36 18 0.503 0.24 0.535 0.523 0.667 0.184 (7) 00-+00-+0;0+-+0++--;-00000---;-00-000+0
40 3 0.916 0.203 0.687 0.288 0.941 0.351%(8) ==0+===0=;—=—t=—+dtt+; ——t++=—+0—+; —————+—+—+
40 5 0.867 0.226 0.79 0.419 0.733 0.344 (8) =O++=40=+=;—=++0===t=;+=t++=0===; O —++—++++

40 7 0.819 0.237 0.509 0.555 0.769 0.329 (8) =00-=00=+=;+=0=+=++=0;++++0=——+=; —++———t———

(
(
(
(

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 40 9 0.77 0.242 0.862 0.553 0.667 0.304 (8) ==+-0-=—=+=;+0-=++-00-;—+0—+-+0-=;00++++-0--

4 40 10 0.746 0.323 0.286 0.612 0.727 0.298 (8) 0+0++0+0+—;+-—++--000; t+—+-+;0-++0-0---

4 40 11 0.722 0.275 0.393 0.623 0.8 0.282 (8) ++—-—+-=++;-=+0000—+-;---0+-00-0; 0-+--0-0+-

4 40 13 0.673 0.257 0.444 0.667 0.75 0.253 (8) +000-0+0++;+=+00+0+==;+=+++=00++; +0++0-+0-~

4 40 14 0.649 0.308 0.355 0.656 0.778 0.24 (8)  -00+0-0-00; =+0++=0+0+; =++-000-==; O++=-0-=—+~

4 40 15 0.625 0.28 0.477 0.566 0.75 0.225 (8) +++-00+++=;++-0-0+0+0;0+0-0-+0+0; ++00+--+00

4 40 17 0.576 0.272 0.509 0.549 0.73 0.196 (8) +00+-0+00+;++000000~+;+00-+0+0-0; ++++0+—+-~

4 40 18 0.551 0.29 0.393 0.546 0.6 0.182 (8) +0+-0-++0+;00-0-00000; -=0+0-0-+-; =0+--000++

4 40 19 0.527 0.266 0.484 0.545 0.8 0.168 (8) +-0-++++-0;0+0+0-0+00;000++00+-+;0000-0++0+

4 40 20 0.502 0.232 0.407 0.497 0.8 0.152 (8) ++=+0+-0++;-0+0+000-0;+00-0000-~; 00+0-00-0+

4 44 1 0967 0.156 0.31  0.128 0.667 0.359 (8) —t=—tt—t===;ttttt——d—t=————d———tt— —ttt———+-0+
4 44 3 0923 0.195 0.69 0.271 0.632 0.384 (8) ++0+++=———t+;—t——t—dttt; —0=—t—t=——t; +t=—t+—+0-—
4 44 5 0.879 0.27 0.378 0.391 0.706 0.383 (8) =+++=—==+=+;0-0-=0-==00; —+=—+=—tt++—; +—++—+———++
4 44 6 0.857 0.221 0.279 0.45 0.728 0.376 (8) 0++-0+-0+00; Ot 4= ——t—tttt—tt; ++———+

4 44 7 0.835 0.225 0.84 0.512 0.645 0.365 (8) +-—=+0++++=;0+0—++++++—;000+—+—++—+; —+0++——++4
4 44 8 0.813 0.241 0.418 0.577 0.643 0.359 (8) —+-==0+—+++;+0++0+-+000; ++--0-—+=—+; 0—+ +
4 44 9 0.791 0.248 0.331 0.502 0.667 0.347 (8) —+==+=—+++=;+0+===0++0—; 0++++0+0-0+; —+-+0-0--—+
4 44 10 0.769 0.278 0.252 0.577 0.667 0.34 (8)  ++==—4+++++;000-++==+-0; 0+-0=++0+—+; +--00+-—+0~
4 44 11 0.747 0.277 0.29 0.604 0.696 0.326 (8) O0-+0++-0-==;==+=++-0+00;00+=+000++=; +++++—tt++-=
4 44 13 0.702 0.282 0.256 0.583 0.696 0.299 (8) 0+---00+-+0;-=00-00++=+; =0+—+=——++—;+0+0-0+0+++
4 44 14 0.68 0.272 0.386 0.572 0.667 0.285 (8) 0+-0+0++0++;=-=+00++000; ++=-—++—+=+—;0+000+++--0
4 44 15 0.658 0.268 0.485 0.563 0.667 0.271 (8) 00+0--0-+0-;0+0-=+-0-++;00+--—==+-0; 0++00++0—+-
4 44 16 0.636 0.252 0.422 0.621 0.707 0.256 (8) =--0-0-+0-00;0+---0000+=;0+===++++=+; 0++00+-0+-0
4 44 17 0.614 0.278 0.413 0.579 0.65 0.243 (8) 0-+0+00-00+;+0000+++0+=;=++-0+0~-===; ++00-+0-+-0
4 44 18 0.591 0.268 0.445 0.569 0.802 0.228 (8) +=+0==+==0-;+++-000000+;+00-0-0+0-=;-00-+00+++0
4 44 19 0.569 0.27 0.369 0.565 0.714 0.214 (8) +=+++===0+0;++0+++0000-;0-00+-00-00;0+-0-00-0+-
4 44 20 0.547 0.254 0.457 0.521 0.772 0.198 (8) =0++-00+00+;00000000+0+; 0++++=++-00; -0-+--00+++
4 44 21 0.524 0.264 0.37 0.52 0.676 0.186 (8) +-0000--==+;0+0+0+0+-—+;+0-00+0++0-;00-00000-+0
4 44 22 0.502 0.24 0.438 0.519 0.667 0.173 (8) 00+0--0++0+;000+000000~; ==+-0000-+=; ~==0+0-+-00
4 48 3 0.929 0.187 0.692 0.257 0.619 0.405 (8) ++—++—t=t=++;+++0-====0==; —=——t+=—+—t+; +=—F++=+++-+0

1The run size n of each design is 2m + 1 (one center run), except for those marked with f, which have two center runs.
§ The number in parentheses is k for which PECEOE =1;if 0.99 < PEC%OE <1, PIC%OE is followed by an asterisk (*).

When m > 28, a sample from (Z‘) projections on to k factors is selected to compute (PEC%OE,PICEOE) (see Section 4).
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Appendix: New OMARS designs with one, two and four circulant coref}

r m s Dug DuMeE+QE TQQ TQl T PICEOE§ Generating vector(s)

4 48 5 0.889 0.214 0.385 0.367 0.632 0.406 (8) +0—+=t+=——4=;+==+0=+0==0+; ++++tt+—t———; +++tt—+—++0-
4 48 7 0.848 0.249 0.527 0.477 0.706 0.396 (8) +--=0-=+-=0-;+—+——+4 +=;0+——++=—0—++;0-0-0——+++++
4 48 9 0.808 0.277 0.345 0.462 0.667 0.381 (8) t+t——+—++—; ++0— 0--0;--000-+-+-==; +==0++-+0-0-
4 48 10 0.787 0.269 0.271 0.527 0.8 0.368 (8) +++0+=+++-00; —++++=———F=—+; —+==0==+0+0—; 00+—+++0-+0~
4 48 11 0.767 0.278 0.254 0.596 0.714 0.358 (8) =+=—4===+=4=;++0+++-00+-0; +0+++0=+=0==; =0+00-0++++-
4 48 12 0.747 0.248 0.353 0.579 0.815 0.343 (8) +==0+-=-0+0+0;—=—++=+=====;+0=+00+-0-=+; +-00-++-0-+0
4 48 13 0.726 0.285 0.334 0.523 0.667 0.333 (8) -—0-—+0+-==+;+0-=0++0+++=;-0-0+0++0-0+; ++000—++—+—+
4 48 14 0.706 0.267 0.213 0.602 0.667 0.321 (8) +00-0+=++++0;-00+-0=0-++0; +—+++++——+—+; ++0--+00-+00
4 48 15 0.686 0.313 0.336 0.525 0.727 0.309 (8) =--+000-+-000;00000—+++++=;0-0-=0+==0+=; —+————+++—+—
4 48 17 0.645 0.275 0.52  0.598 0.667 0.281 (8) O++++———++—+;0++-++-000+0;+00-0-+00+0+; +0+0+-0++-00
4 48 18 0.625 0.273 0.476 0.591 0.674 0.266 (8) 0---+00-+0-+;0-++000-0-00;-=0-+00+===+; 0—+++0+0++0~
4 48 19 0.604 0.289 0.4 0.589 0.75 0.254 (8) ++00--00+-00;=+=+0+-===0-;0000+0-++=0+; +++000+-+0-0
4 48 20 0.584 0.25 0.352 0.544 0.75 0.238 (8) O0=+-=++00++0;+000-000-0-0; -====+0000~+; 00--0-+0+-—+
4 48 21 0.563 0.294 0.253 0.506 0.617 0.228 (8) +000-00++00-;~-0-0+-0+0-0+;-00000~+++++;++0-0+-+0+0+
4 48 22 0.543 0.262 0.492 0.504 0.667 0.212 (8) --00-00--+0+;+00--+-00-0-;+0-0+0000+00;-000-0—+++++
4 48 23 0.522 0.243 0.422 0.503 0.8  0.199 (8) =-+0--+00--0+;+0+-+--0-000;0+0-00++++00;+0-00-0000-0
4 48 24 0.502 0.271 0.34 0.537 0.8 0.184 (8) 0--0-+-00+00;000+00-00000 ; ++-=+0+00+0-;0-0~==0+0+-~

tThe run size n of each design is 2m + 1 (one center run), except for those marked with f, which have two center runs.

§ The number in parentheses is k for which PECYOF = 1; if 0.99 < PEC{OF < 1, PICSOF is followed by an asterisk (*).

When m > 28, a sample from (7,?) projections on to k factors is selected to compute (PEC%OE, PIC%OE) (see Section 4).
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