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Abstract

We establish a type of Lojasiewicz inequality for the Fubini-Study
distance in the projective space P™(C) and give its applications to
Nevanlinna theory.
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1 Introduction

The Lojasiewicz inequality [15] gives an upper bound for the Euclidean dis-
tance of a point to the nearest zero of a given real analytic function. Let
f U — R be a real analytic function on an open set U in R". If the zero
locus Z of f is not empty, then for any compact set K in U, there exist
positive constants o and C' such that, for all z € K

dist(z, 2)* < C|f(z)].

Each complex analytic set Z C C" defining by complex analytic functions
fi,- -, fr can be viewed as a real analytic set in R?*" defined by f := | fi|* +
-+++ | fx|*. Thus the Lojasiewicz inequality applies to complex analytic sets
too.

If the defining equations f; are polynomials one would like to estimate
the exponent « in terms of degrees of the polynomials. The problem of



determining the sharpness of the Lojasiewicz exponent is a hard problem
and has an answer only in the case of two variables [5, 9, 13].

If the set K is not compact, the classical Lojasiewicz inequality does
not necessarily hold. There are various versions of the classical Lojasiewicz
inequality on non-compact domains. For example, Kurdyka and Spodzieja
[14] showed that for each polynomial f € Rxy,...,x,] of degree d, there
exists a positive constant ¢ such that

dist(zx, Z d(6d=3)""!

The cases of algebraic sets in R™ and in C" have been intensively studied,
for example, in [1, 6, 8, 14] for the real case, and in [2, 3, 4, 11, 17] for the
complex case. It seems that the difference in method and result between
these cases mainly comes from the fact that a polynomial has more complex
zeros than real ones.

In this paper we shall examine the case of algebraic sets in the complex
projective space P™(C) with the Fubini-Study distance. As a corollary, we
also obtain that the complement of the e—neighborhood of a hypersurface in
P™(C) does not contain any non-constant entire curves. It is worth notic-
ing that, the connection between small and big Picard theorems, Montel’s
theorem and hyperbolicity has been seen. In the dimensional one case, for
three distinct points a,b, ¢ in P}(C), we have that every holomorphic map
f:C— PYC)\ {a,b,c} is constant (Small Picard Theorem); every holo-
morphic map g from a punctured disk A\ {0} into P}(C) \ {a,b,c} can be
extended to a holomorphic map from A into P'(C) (Big Picard Theorem);
and the space of holomorphic maps Hol(A, P(C) \ {a,b,c}) is relatively
compact in Hol(A, PY(C)) (Montel’s Theorem). In the general case, the
pair (P'(C), P(C) \ {a,b,c}) is replaced by (X,Y’), where Y is a submani-
fold of a complex manifold X. The relation between the above theorems and
Kobayashi hyperbolicity is as follows: the big Picard theorem is true if X is
hyperbolic and Y = X or Y is relatively compact and hyperbolically embed-
ded in X; the true of Montel’s theorem for the pair (X,Y) is equivalent to
that Y is hyperbolically embedded in X. In the case Y = X is a compact
manifold, then all three theorems are equivalent to the hyperbolicity of X.
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2 Preliminaries

We define an equivalence relation on C"*!'\ {0} by declaring that two non-
zero vectors @ and ¥ in C"! are equivalent if there exists a non-zero com-
plex scalar ¢ such that W = ¢. The set of all such equivalence classes is
denoted by P"(C) and is called the complex projective space of dimension n.

The class containing a non-zeo vector (wy,...,w,) € C*"™ is called a point
in P"(C) and denoted by (wp : -+ : wp).

The Fubini-Study metric is given in homogeneous coordinates w = (wy :
- twy) by

- (dw, dw)(w,w) — |(w, dw)|?
(w,w)’
where <-, > stands for the standard Hermitian product in C**!.
If i and ¥ are two unit vectors in C™*! representing points U, V

in P"(C) then the Fubini-Study distance dps(U, V') between the two these
points is

ds

drs(U,V) = | AT

For each positive constant € and each non-empty subset S C P"(C), the
e—neighborhood of S, denoted by S, is the set of points whose Fubini-Study
distance to S is less than e.

Let f be a holomorphic mapping of C into P"(C), with a reduced repre-

sentation f := (fy:---: f,). The characteristic function T(r) of f is defined
by
1 27 1 27
o i0 4 i0
7y(r) i= 5= [loglstre”)db — - [ log | 5(e")db. r > 1.
0 0

where || f|| := max{|fol,...,|fnl}

Let v be a divisor on C. The counting function of v is defined by

v(z
N,(r) := /log Mdt, r>1.
1



For a meromorphic function ¢ (# 0, % oo) denote by (¢)o the zero divisor of
@, and set N, (1) := N(,),(r). We have the following Jensen’s formula for the
counting function:

1 2 )

Ny(r) = Ni(r) = — / log |<p(rew)| do + O(1).
¥ 27T 0

Let @ be a homogeneous polynomial in Clz, ..., z,]. f Q(f) == Q(fo, ..., fn) #

0, the counting function Ny(r, Q) of f for @) is defined by

Ny(r, Q) == Nop)(r).

3 Estimates of the distance from a point two
a subvariety

We begin with the linear case, which will be used later as a lemma in the
non-linear case. The following formula was showed in [10] for the case of
hyperplanes.

Theorem 3.1. Let p(ag : -+ : a,) be a point in P"(C) and « be a sub-
space of P™"(C) of dimension m, generated by m + 1 points p1(poo : -+ :
pOn)a <. 7p1(pm0 ceee pmn) Then

dFS(p Oé): ”7/\%/\/\29—)711“ (21)
PR A APl

where P = (ag,...,a,) and Dl = (pio, - - -, pin) are vectors in C™H1.

Proof. By changing the coordinates if necessary, we may assume that

a={(wy: 1wy € P(C):wpi1 =+ =w, =0}.
Then p; = (pios - - - Pim, 0, ...,0). Denote by (€5, ...,e,) the standard or-
thonormal basis of C"*1. Each point w(wg : =+ : wp : 0+-+: 0) € a (Jwol|* +
-+ |wm|? = 1) corresponds to an unit vector @ = (wp, . . .,wm,0,...,0) €



C™*!, and we have

1
dps(p,w) = WH? A ﬁ”

1
~ ?H (a0€ + - - @ny) A (w08 + - + W) |
| DT SRR SRR
+ Z (aswy, — akws)es A €l ‘
0<s<k<m
. 1/2
= ] < Z |agw;* + Z |aswr —akws|2> (2.2)
m+1<t<n,0<i<m 0<s<k<m

1/2
1
> apw;|?
2 2 ')

m~+1<t<n,0<i<m

1/2

1
= o (omia P o4 lanl®)? (Jwol® + - - + |wm]?)

2\1/2

1
=y Ut o)

Now we take w = (ag: -+ :@ap:0:---:0) € a and

_( Qo Ay,
- (laol + - fam ) (laol” - Jam[?)2

Then, by (2.2) we have

1 | |2 1/2
ata;

d = E 1t

FS(pMU) || || ( Z’I’L |a5|2>

0,...,0) € C"*,

mA1<t<n, 0<i<m &= s=m+1
1
= = (lamir P+ -+ [an?)
17|
Therefore
1 1/2



We have

n m m
B AR A AR (zﬂ A (zp%) Aeee A (&m)
VAN

n

_>
= Z a; det(pst)o<s,t<m €1
i=m-+1

Therefore

)1/2

1T ADG A ADmll = |det(Pat)o<s t<m (lamei” + - + lan]?

1/2
— B A Abll - (Jama [+ + lan]?) 2

Combining with (2.3), we have

dFS(p Oé) _ |’?/\17()>/\Ap—>m”
’ I 16 A A Pl

]

Remark 3.2. If « is a hyperplane generated by a linear form L(xq, ..., x,) =
boxo + - -+ + bpxy,, then (2.3) can be written as

_ |L(p)| '
[P0l - ([bo]? + - -+ + [ba[*) /2

dFS(p7 CY)

Corollary 3.3. Let « be a subspace of dimension m (0 < m < n — 1)
in P"(C), and let p be a positive constant. Let f be an entire curve f in
P"(C) \ . Then the following assertions hold:

a) If m < n—1, then for each set of (m+1) independent points po, . . ., Pm
in a,

Tynpon-npm (1) = Ty(r) + O(1).
b) If m =n —1 then f is a constant curve.

Proof. Assume that « is generated by m+1 points po(poo : =+ : Don)s - - - s P (Pmo
“++ ! Dmn). We do with a reduced representation (fy : --- : f,) of f. Set

Pl = (Dios - -+ pin) € C1, and for each z € C, set f(2) = (fo(2),..., fu(2)) €
crtl.



Case 1: m <n — 1. By Theorem 3.1, we have

TG AT A AR

p < dps(f(2), 0) = |
" SN IR A AR

Therefore

log|F() AT A -+ Al > log | FZ)l +1og (o 1B A~ ATl

Then by integrating, we get

1 27 _ 1 27 )
—/ log || f(re™) A B A+ A pulldf > —/ log || f(re”)||d0 + O(1).
21 J, 21 Jo

Then

Tinpon-npm (1) 2 Ty (r) + O(1). (2.4)

On the other hand,

n+1>1/2

1f(2) Apo A= Apml| < ILF(2)]- ||po||---Ilpmll(m+ ]

Then by integrating, we get

1 2

. 1 [ .
Py log || f(re®Y Apo A -+ A pp|df < —/ log || f(e")||df + O(1).
T Jo=0 21 Jo=o

Then

Tinpon-npm (r) < Ty(r) + O(1).
Combining with (2.4), we have

Tinpon-rpm (1) = Tp(r) + O(1).

Case 2: m = n—1. Denote by det <f(zb, ]70), e ,]ﬁ) the determinant of the

matrix of coordinates of vectors f(z ;, }73, ey p_>m By Theorem 3.1 we have

et (FG3,78,-.52)| 2 pIF I 1T A= AT



Then
tog [det (F(0, 78, 7m) | 2 log 1 (2) | + log pl[7 A -+~ A 52|

Therefore, by integrating and by using Jensen’s Lemma, we get that
Nf(?”, O_/) = Ndet(ﬁz_s,ﬁo) ..... m) (T) Z Tf(?“) + O(l)

On the other hand, N(r,a) = 0. Hence, f is a constant curve.
We have completed the proof of Corollary 3.3 O

The following example shows that the assertion b) in Corollary 3.3 is not
valid to the case where m < n — 1.

Example 1: « == {(wo : -+ : wy) € P*(C) : wpy1 = -+ = w, = 0}, and
f=0:---:0: fing1 : -+ : fn) is an arbitrary nonconstant curve in the
subspace = {(wp : -+ 1 wyp) € P"(C) : wy = -+ = w,, = 0}. It is easy to

see that dps(pa,ps) = 1 for all points p, € a, pg € [, hence, dps(e, ) =1
and dps(f(z),a) =1, for all z € C.

For m + 1 points ao, ..., a, in P*(C), we denote by drg(ay,...,a,) the
minimum of the Fubini-Study distances from each point to the subspace
generated by these m other points.

Lemma 3.4 ([10], Corollary 14). Let Py(woo @+ : Won)s -+ Pn = (Wno =+ -
Wnn) be n+ 1 independent points in P™(C). Then

\det (P, ..., P,)]

%s(Poy ..., Py) <
" [Boll -~ - [Pl

ngS(-POa"‘aPn%

where || Pj|| = (Jwjol> + -+ + \wjn\Z)% and det(Py, ..., Py) = det(w;i)o<i j<n-

Corollary 3.5. Let fO, ..., f™ be (m+1) entire curves in P*(C), and let
be a subspace of dimension (n —m — 1) in P"(C) (n > 2,1 <m <n—1).
Assume that there is a positive constant p such that for all z € C,

a) dps(f°(2), ... f™(2)) = p;

b) The Fubini-Study distance between a and (f°(z), ..., f™(2)) is not less
than p.

Then f°,..., f™ are constant curves.



Proof. Assume that « is generated by (n — m) independent points p;(pio :
<+ pin),i=m+1,...,n. For each 2z € C, it is clear that f°(z),..., f™(z),
Pmils - - -, Pn are independent.

Claim: There exists a positive constant ¢ such that

drs(f(2), ..., f™(2), Pmgty - - Dn) > €,

for all z € C.
Indeed, otherwise there is a subsequence {z;} C C, such that

kli_glodFS(fo(Zk% EIRI) fm(zk)7pm+1a s 7pn) =0.

We may assume (by replacing by subsequences if necessary) that each se-
quence {f*(zx} (1 =0,...,m) converges to a point p; in P"(C). Then

dps(Pos - - - Pm) = ]}Lrgo drs(f(2k)s -, f™(z1)) > p.

Therefore, po, ..., pn are independent. Furthermore, by assumption b), dis-
tance between o and <p0, e ,pm> is not less than p. Therefore, a and <p0, s ,pm>
have no common point. Therefore, po, ..., p,r1 are dependent. This contra-
dicts to the fact that

dFS(pOa cee 7pn+1) = klg{olo dFS(fO(Zk)a cee 7fm(zk)7pm+17 cee 7pn+1) = 0.

Let (f&:---: f!) be a reduced representation of f* (i =0,...,m). Set
folz)  filz) .. filz)
by | B G )|
Pim+1)0 Pm+1)1 " Plm+1l)n
Pno Pn1 T Pnn

From the claim and by Lemma 3.4, we have

D(2) -
[T TG Tl loall =

Then

log |D(2)| > log | f(=)[|+-- —+log || /™ (2)]|-+10g [pms]|+ - ~—+log ||pa[+n log .
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Hence, by integrating and by using Jensen’s Lemma we get that
0= Np(r) >Ts(r)+---+Tm(r)+ O(1).
This implies that f9 ..., f™ are constant curves. O

The following example points out the necessity of assumption a) in Corol-
lary 3.5.

Example 2: o = {(wy : -+ 1 wp) € P"(C) : wyg = -+ = wy, = 0}, and
f°, ..., f™ are arbitrary nonconstant curves in 3 := {(wg : -+ : w,) € P*(C) :
Wmi1 = -+ = wy = 0}. We have dpg(a, B) = 1 and <f0(z), o ,f”(z)> C 5,

for all z € C. Hence, the distance between o and (f°(z),..., f™(2)) is not
less than 1.

The following example shows that condition b) cannot be replaced by the
condition b’): The Fubini-Study distance from each point f%(z),..., f™(z)
to « is not less than a constant positive p, for all z € C.

Ezample 3: ov:={(wp: -+ :wy) € P"(C) :wg =+ = wy, =0}, and
ffz)=(1:0 0),
Fiz)=(0:1 0),
Y 2)=0:---:0:1: 0 :---:0),
f™(z) =(z: ziz:l4+z:2:0:---:0),
S(l:---:1:1: 1 :0:0:---:0),
TO:---:0:0: 1 :0:0:---:0).

Denote by A the straight line passing through two points S and T. Then
S(f™) = A\{S}. For each point M € A, it is clear that M, f°(z),..., f™ ()
are projective independent, and hence, dps(f°(2),..., f™ 1(z), M) > 0. On
the other hand, A is compact, and f°,..., f™ ! are constant. Hence, there
is a positive constant p such that dps(f°(2),..., ™ (z), M) > p, for all
M € A. This implies that f°, ..., f™ satisfy condition a).

We have A Na = @. Hence, dps(f"(2),a) > drs(A,a) > 0. There-
fore, the Fubini-Study distance from each point f°(z),..., f™(z) to « is not
less than ¢ := min{drs(A, a),drs(f°(2), @), ..., drs(f™ *(2),a)} > 0. Then

condition b’) is satisfied.

10



Theorem 3.6. Let D be an irreducible hypersurface of degree d in P"(C),
defined by a homogeneous polynomial @ € Clxy,...,x,], deg@ = d. Then
there exists a positive constant ¢ such that

|Q(p)]
¢ [|pll?

for all point p = (ag : --- : a,) € P*(C), where ||p|| = |ag|> + - -+ + |an|*)/?,
Q(p) = Q(a07 s 7an)'

Proof. For a generic point S, each straight line A passing through S will
meet D at d points P,..., P; include multiplicites. We fix a such point
S ¢ D. We may assume (by changing the coordinates if necessary) that
S(1:0:---:0). Since S ¢ D, the coefficient ¢ of z¢ in Q is different from
0. Now we consider a generic point p(ag : --- : a,) # S(1 : 0 : ---:0).
Then the straight line A passing through S and p meets D at d points
Pag+ 2z a1 :...,a,),...,Pi(ag+ zq : a1 = -+ : a,) (with multiplicites),
where 21, ..., zq are d roots of the polynomial R(z) := Q(ag + 2,a1,- - ,ay).
We can write R(2) = c¢(z—21) -+ - (2— Zd). Denote by (€7, ..., &) the standard
orthonormal basis of (C”Jrl Set ? ao, ooy an), P =(ag+ zj,a1, ... a,) €

Ctl, j=1,...,d. Then P =7 —|—zjeo For j =1,...,d, we have

17 A B

dps(p, D) <dps(p, Fj) = ——=

dios(p, D) < (2.5)

17017,
:H?A%%
171 HP;H
szalel ANeg+ -+ zjanen AEg||
FIRED
(a2 + -+ aal) V2
= ell(a0+ 52 +larP + -+ lan?) 72
Il
STl
Then
y : _lallzl RO QW)
Ars(p: D) < [ desen P) S S = (o = o e 29

for all generic point p # S. Then by the continuity, (2.5) holds for all p. [

11



Corollary 3.7. Let D be a hypersurface in P"(C), and let € be a positive
constant. Then every entire curve f in P"(C)\ D, is constant.

Proof. Let f be an entire curve in P"(C)\ D,, with a reduced representation
f="fo: - fu). Assume that D is defined by a homogeneous polynomial
Q € Clxo,...,x,), deg@ = deg D. By the assumption and by Lemma 3.6,
there exists a positive constant ¢ such that

e < atg(s).0) < IO

for all z € C. Hence

deg Qlog || f(2)| <log|Q(f(2))| + O(1).

Hence, by integrating and by using Jensen’s Lemma, we get that
1 27 » 1 2w »
deg @ -Ty(r) = deg@- | o~ | loglf(re")[[d0 + o— | log|| f(e™)]|d0
T Jo 21 Jo

1 [ ,
<5n [ toslatstren)ids + o)
2 Jo
= N¢(r,Q) + O(1).
On the other hand, &f N D = &. Hence,
deg Q- T¢(r) < Ng(r, Q)+ O(1) = O(1).
This implies that f is constant. O]

Lemma 3.8. Let € be a positive constant, let A be a point and H be a
hyperplane in P*(C), A & H. There exists a positive constant ¢ (depending
on A, H,€) such that for two arbitrary distinct points p,q in P"(C), if the
Fubini-Study distance from A to the straight line pq (passing through p and q)
is not less than €, then dps(p,q) < c-dps(p',q'), where p', ¢’ are, respectively,
images of p,q by the central projection from A onto the hyperplane H.

Proof. We may assume (by changing the coordinates if necessary) that A(1 :
0:---:0). Assume that H has equation

H:xg—ajx1— - —apx, =0.

12



Assume that p(po : -+ : pa) and gqo : -+ : a), where [pof2 + -+ + [p[2 =

|gol* + -+ +]gn|* = 1. Then p/(a1py + -+ appn i p1: -+ pn), ¢ (g +- -+
UnGn  G1 : * - ¢n). Denote by (e_0>, ce e_,z) the standard orthonormal basis
of C"*1. Set T = (po, .-, 0n), T = (G0, - - -, qn) € T,

We have

1/2
drs(p,q) = < Z |pig; _iji’2> (2.7)

0<i<j<n

By the assumption and by Theorem 3.1, we have

_l@A?rdl

€ S drs(Apd) = =)

1/2
(Z1<z‘<j<n pig; — qu¢|2)
= (2.8)

1/2
<20<i<a‘<n pig; — iji|2)

We have

n =7 n = n — n —
(ko awpr)es + 200y pied) A (20 asas)e + 3271 46|

.
st 0) = TS s + o e o ) + S 42
<Zl<i<j<n Ipig; — iji|2> v
(00 amil® + Sy ) (100 a2 + X0y [paf2)?

. <21<i<j<n pigj — iji|2)1/2
T aal?) (S0 ) (00 )

) 1/2
S <21<i<]‘<n Ipiq; — psil )
IR T o CE T s o [

>

Combining with (2.7) and (2.8), we get that

> €
N (] O R e [ b

dFS(p/7 q’) drs <p7 Q)-

This completes the proof of Lemma 3.8. O]
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Lemma 3.9. Let V C P"(C) be an irreducible subvariety of degree d. Then
there exist finitely many homogenous polynomials Q1, . .., Qm in Clzg, ..., x,]
of degree at most d, vanishing on V and a positive constant p such that

1Q;(p)]

— <71 K
p-||p||dee®s A m} (2.9)

ths(p, V) < max {

for all point p = (ag : - - : a,) € P*(C), where ||p|| = |ag|> + - -+ + |an|*)/?,
Q;(p) = Qj(ag; - .-, an).

Proof. We consider a generic projection P defined by a subspace L; C P™(C),
from P™(C)\ L; into a subspace Ly, where dim L1 = n—dim V-1, L1NV = &,
dim Ly = dimV, Ly N Ly = @. For each point p € P*(C) \ L;, denote by
(Ly,p) the subspace generated by Li U {p}. Then P(p) is the intersection
point of <L1,p> and Lo. The restriction Py : V — Ly is finite of degree d
and surjective.

Claim: Then there exist finitely many homogenous polynomials @1, ..., Q,
in Clxo, ..., z,] of degree at most d, vanishing on V' and a positive constant
¢ such that for all generic point p = (ag: -+ : a,) € P*"(C)\ (L UV),

. . |Q;(p)] :
min{dg(p, Pj) : 1 < j < s} < max{w c1<j<my, (2.10)

where {P;,..., P} == (L1,p) NV =P, (P(p)) (as sets), s < d.
We prove the claim by induction on the codimension of V. If codimV = 1,
then V is an irreducible hypersurface generated by a single homogeneous

polynomial @ € C[xy,...,x,] of degree d. In this case, s = d and by (2.6),
there is a positive constant ¢ such that

d
min{dbs(p, Pj): 1 <j <d} < HdFS'(pa P;)
=1

j
L ool
c-pl
all point p = (ag : -+ : an) € P"(C)\ L.
In the case where codimV > 1, we fix d + 1 generic points Ag,..., Ay in

Ly, and a hyperplane H containing Ls, but not passing through any point
A;.

14



We now prove that there is a positive constant e such that for each straight

line A having nonempty intersection with V| there exists at most one point
A; (0 < i < d) such that dpg(A;, A,) < €. Indeed, otherwise, there exist
two points A;,, A;, (0 < i3 < s < d) such that for each positive integer
n, there is a straight line A, satisfying A, NV # & and dps(A4;,,A,) <
L dps(Aiy, Ay) < 2. For each n, take a point X,, € ANV. Then {A,}
converges to the straight line A;, A;, (passing through A;,, A;,). On the other
hand, A, meets V for all n, hence, A; A;, also meets V. This is impossible
by the fact that L; NV = & and A; A, C L.
By the above argument, there exists a positive constant €, such that for each
point P; (1 < j < s), there exists at most one point A; (0 < j” < d) which
satisfies dpg(Aj, pP;) < €. On the other hand, s < d + 1, hence, there exists
ip € {0,...,d} (depending on p) such that

drs(Aig, pPy) > ¢, (2.11)

for all j € {1,...,s}.
Let L} = L1NH and denote by V', p', P/, ..., P. the images of V.p, P, ..., P,
respectively, by the central projection from A;, onto hyperplane H. In sub-
space H = P""!(C), we have {P{,...,P.} = (L{,p') N V'. We may assume
that H : xyg = 0, Ajy(ag @ -+ : ay), ag # 0. Then the central projection
from A;, onto hyperplane H = P"(C) sends each point X(zy: ---: z,) €
P(C)\ {Ao} to the point X'(wy — Stwp @ -+ 1w, — $2wy) € P"‘l((C)
By induction hypothesis, there are m homogeneous polynomials @, ..., Q).
in Clxy,...,x,] of degree at most d, vanishing on V' such that

[ 1<) < m}, (2.12)

forall p = (ap : -+ : ay) € P*(C) \ (L1 UV), and hence, p’ = (a1 — £tao :
Day — S2ag) € P 1(@) \ (LjuV).
Denote by Brs(A;,,€) the open ball of radius €, centered at A;,. Let h :

P™(C) — R be the continue function which sends each point X (wg : -+ - : wy,)
to the value

min{d%4s(p/,P)): 1 <i< s} <m

1/2
<|C<J1 — g—éw0|2 + -+ |Wn — z—ZWQP)

(o2 + -+ -+ feon[2) "2
It is clear that A(X) = 0 if and only if X = A, . Therefore

c1 = min{h(X): X € P"(C) \ Brs(Ai,,€)} > 0.
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On the other hand, dps(A;,,p) > drs(A;,, pPj) > €. Hence,

1/2
(lCLl — g—;CLQ’Q + -+ |CLn — z—’;a0|2>

= h(p) = a1 (2.13)
(laof2 + -+ + |an[2)"?

Set Q;j(zo, ..., xn) = Qj(x1 — 120, ..., Tn — $270) € Clzo, ..., x,]. Since @}

vanish on V', we have that (); vanish on V. Therefore, by (2.13)

@ _ Qi) _ Qi)
Hp/HdegQ;- ||p/||deng (Cl . Hp”)deng

(2.14)

for all j € {1,...,m}.
By Lemma 3.8 and by (2.11), there exists a positive constant ¢y such that

dFS<p7 PZ) < Ca - dFS(p/7 ‘F)i/>7 (215)

forall i € {1,...,s}.
From (2.12), (2.14), (2.15), we get the claim.
By the claim and by the fact that d%4(p,V) = min{d%4(p, P;) : 1 < j < s},

we get (2.9) for all p = (ag : -+- : a,) € P*(C)\ (L UV). Hence by the
continuity, (2.9) holds for all p € P"(C). O
Let @ = {Q1, ..., Qn} be aset of m homogeneous polynomials in Clxy, . . ., z,].
Denote by d; the degree of ();, and assume that dy > dy > --- > d,,,. Let M
denote the maximal homogeneous ideal; that is, M = (zq,...,z,). Set
Ng = min {eo +e1degP; + -+ + esdeg Ps }
(0,1, P15..-,Ps)
where the minimum is taken over all set {eq,...,es Py, ..., Ps} satisfying
that eg is a nonnegative integer, e; ..., e, are positive integers, Py, ..., Ps are
homogeneous prime ideals containing the homogenous ideals Z = (Q1, ..., Qm),
and

MOPY P C(Qus -, Q)
- If all d; are different from 2, then by ([12], Theorem 1.5), we have
di---d, if m<n

N,
- Qﬁg dy-dpyy-dy if m>n>1
°6 di+d, —1im>n=1
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Removing the assumption that all d; are different from 2, by ([16], Corollary
1.4), we have

No dy---dy if m<n+1
<
deg VI di-dy-dy if m>n+1

- If all d; are not less than 3, then by (2], Theorem 1 and Remark 2), we
have that Ng < dy - - - dwin{n,mi—1 * dm-

We would like to note that a “primary decomposition” version of the
Nullstellensatz also has been given by Ein and Lazarsfeld [7].

Theorem 3.10. Let Q = {Q1,...,Qmn} be a set of m homogeneous polynomi-
als in Clxg, . .., x,] such that the common zero set V-.C P™(C) of these poly-
nomials is nonempty, degV = d. Then there is a positive integer N < Nog
and a positive constant ¢ such that
1Q;(p)] :

¢ [plee@s <Jsm}
for all plag : -+ + an) € P*(C), where ||p|| = |ao* + -+~ + |as[*)'/?, Q;(p) =
Qj(a(), N ,(ln).

Proof. Let ey be a nonnegative integer, ey, ..., es be positive integers, and let
P1,...,Ps be homogeneous prime ideals containing the homogenous ideals

1= (Ql, c ,Qm), such that ey + e deg’Pl + ... —I—esdegPs :NQ and
MEOP P C Qs Q). (2.16)

Denote by Z; the irreducible variety defined by P;. We have V = Z; U
-+ U Zs. By Lemma 3.9, for each i € {1,...,s}, there exist finitely many
homogenous polynomials Q;1, ..., Qim, in Clzo,...,x,] of degree at most
deg Z; (= degP;), vanishing on Z; and a positive constant C; such that

M ISk Smy

forall p=(ag : ---: an) € P"(C). Therefore, there exists a positive constant
C such that

drs(p, V) < max{

dse" (p, Z;) < maX{

s

dpgesPitresdese vy < T dps™ (0, Z:)

i=1
oo Tesl
S e e

1<k1<m1,...,1<k5<m3} (217)
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forall p=(ap : ---: a,) € P*(C). For each k = (ky,...,ks) (1 < k; < my)
and each ¢ € {0,...,n}, by Lemma 2.16, we have

zy° - HQ%Z € (Q1,...,Qm).
i—1

Therefore, we can write

S m

€0 € __

oy 1_[@;.C = E Pt Qj,
i=1 j=1

where Py € Clzg,...,x,| is a homogeneous polynomial of deg Py = €o +
epdeg Qup, + -+ - + e deg Qp, — deg Q.

On the other hand, for each j € {1,...,m}, there is a positive constant C
such that

| Pt ()] :
||p||60+61degQ1k1+"'+esdengks_deng A
forall p=(ag:---:a,) € P"(C).
Hence,
S m
|a£|80 Hini(p) < ZCJ/ . Hp||eo+e1 deg Qg +-+es degQSkS_dengle(p”.
i=1 j=1
for all £ € {0,...,n}.
This implies that
S m
[T @ ()] < (1) 3 € fplfor o Qe e @une s Qs ).
i=1 j=1

Then

3 (117G 10,0

&l

C. ||p||2;z1€id3gQiki

i=1

Combining with (2.17), there exists a positive constant ¢ such that

" (n+1)0C - |Q;
d;lsdeg'pl_i_“.-&-es deg Ps (p’ V) g Z ( ) 7 |Qj (p)l

. deg Q;
20 [l
Q)| :
émax{W 1<] <m}
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