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31 SVD-based techniques to achieve stable selutions. Our approach introduces a reg-

32 ularization solution through filter-based metheds, and we establish comprehensive

33 theoretical results on convergence rates and optimality under a generalized source

34 condition. These findings are applied tosthe fractional backward problem, specif-
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37 singular values, and extending existing source conditions for optimal regularization
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pie 1 Introduction
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49 Let X and Y.be real or<complex Hilbert spaces, and let K : X — Y be a bounded linear
g? operator. In this paper, we seek a solution x € X to the inverse problem defined by the
52 operatorfequation

53 _

” Kz =y. (1)
gg Asjis customary, we assume that the exact data y is unavailable, and instead, we are given
57 noisy.data 4° with a known noise level §. Specifically, the noise satisfies

58

59 Iy = ylly <6. (2)
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Due to the inherent instability of inverse problems, even a small perturbation in the data
can lead to significant errors in the solution, rendering the numerical computation of
solutions to the inverse problem challenging. To address this issue, we employ a tegular-
ization method for the system defined by equations and . One such regularization
approach, based on filtering techniques, has been thoroughly developed in [23] and {10].
In this context, K is assumed to be a compact operator possessing a,singular, system

(ug, vy, ox). Consequently, K admits a singular value decomposition (SVD)ef the form

oo
Kz = Z o1, ug) x Uk,
k=1
where the symbols o5, denote the singular values, and u, and vgmare singular functions
~

satisfying

Ku, = opv, and Kru, = opuf. (3)

It is well known that the SVD is a fundamental tool forssolving inverse problems. The
minimum-norm least-squares solution z to equation is thén given by the Picard

formula

<y7 Uk>Y

T Up,
Ok &

NE

zh = Kiy =

provided the Picard condition holds:

When the exact data y is replaced by the noisy data y° with a given noise level §, the

approximate solution takes the form

2 = Ray” =D 01ga(0) (1, vi)y s, (4)
N k=1

where a > 0. We define gq as the filter function, which has the property g,(A) — 1/\ as
a — 0 (see, e.g., [10,125;23],26;83]). In this context, R, serves as a regularization operator
for equation . Furthermoze, the convergence rate and optimality of this regularization
are analyzed under the classical source condition 27 = p(K*K)z for some z € X (see,
e.g., [18, 30]) «Recently, Hofmann et al. introduced the concept of the variational source
condition (VSC)fas an alternative to the classical source condition (see [I7]). However,
these investigations fall outside the scope of this paper, so we do not delve deeper into
them.

@Computingthe SVD of an operator is often nontrivial and, in certain cases, compu-
tationally expensive, as noted by Ebner, Goppel, and Donoho et al. in [7], [I4], and [5],
respectively. Additionally, SVD-based regularization may not be well-suited for a variety
of problems, as highlighted by Donoho in [5]. Thus, developing more efficient computa-

tional methods becomes essential. One approach is to identify a system that partially
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satisfies the SVD conditions in . A notable development in this direction retains the
second condition, i.e., K*vy = k)uy, where X\ belongs to a countable index set A. This
concept underpins the Wavelet-Vaguelette Decomposition (WVD) in [5], and more,géner-
ally, the Diagonal Frame Decomposition (DFD) in [7], as well as the Translation-Invariant
DFED (TI-DFD) in [14]. By leveraging frame theory, such generalizations enablé the con-
struction of an expansion analogous to the Picard formula, suggesting that regularization
methods tailored to this framework hold significant potential. This topic‘has only been
developed in the last few years, and related papers are still very rare. ,/Among them, we
would like to introduce two papers: [7] and [2I]. In particular, thesrecent paper [21]
contains many ideas that can be further developed. Our paper is inspired by [7, 21] and
the closely related book [I0]. Therefore, we frequently reference'these \documents in our
discussions.

To regularize the solution of in the DFD setting, numerous.anethods have been
proposed. Specifically, learned filter methods are employed in [9], while the ¢! -Tikhonov
method is presented in [II]. Furthermore, in [12], thesauthers developed sparse reg-
ularization through operator-adapted frame thresholding. Ewen with the emergence of
these very new methods, the filter function appreach remains an active area of research.
A generalized filter-based formulation was proposed bysEbner and Haltmeier (see [8])
in which the coefficient o, '(y, v),)y in thie,Picard formula is replaced by the filter term
K5 "ok, (¥°, va)y) which could be nonlinear with respect to (y°,v))y. Indeed, in [7], the
authors reformulate foundational concepts fors\DFD-based regularization filtering, akin to
the SVD filtering presented in [10]. The quantity ~, is not a singular value. Therefore,
it is generally not bound by the conditiomyx, > 0, and we can typically assume k) is
a complex number. For the scope,of this paper, we will limit our discussion to linear
filter-based methods where @g(ky, (2w )y) is a linear function of (y°,vy\)y (see, e.g.,
[7, 21, (19}, 20, 28, 35]). N

To estimate regularizationrrofs in the linear filter-based method, the aforementioned
papers (specifically 4paper |[7})._adapt the SVD source condition, assuming the solution
belongs to a DFD-type source set with a polynomial (or Hélder) form:

M.—= {mEX:<m,u,\>X:/i§”w>\V)\€Aand Z|MA|2§PQ}, (5)
AEA
where p, p> 0and (uy, vy, k) constitutes a DFD of the operator K. A similarly modified
source gondition, for complex scenarios appears in [21], where the authors explore the
optimalitynof asposteriori regularization methods. The framework developed in [7), 21]
opéns up Aumerous application possibilities. As this theory is still emerging, several
natural questions arise:
(i) How can DFD systems be constructed for a specific operator K?

(i1) What is the relationship between the DFD singular values ) and the SVD singular
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values 0,7 How do these quasi-singular values influence the regularization of ill-posed
problems?

(iii) To what extent can the regularization theory for polynomial DFD sourgedcon-
ditions be generalized to include non-polynomial forms, specifically logarithmic souree
conditions for complex scenarios?

(iv) How does the DFD source condition relate to the classical sourge condition?

(v) Do a priori and a-posteriori regularization methods achieve optimality?

Question (i) is particularly compelling and has been extensively explored in the field
of tomography (see [7, 21} 28]), photoacoustic tomography ([11, 12]), atmospheric tomog-
raphy ([19, B5]). This problem exhibits polynomial ill-posedness, (where W.VD systems
prove effective. In Section 4 of this paper, we examine the backsvard fr\actional problem,
considering two scenarios: polynomial ill-posedness and exponential ill-posedness. In the
latter case, the WVD system appears inadequate, prompting us.to propose a specialized
DFD system.

The investigation of Question (ii) remains in its early, stages< In [7, 21], it is limited
to assessing the ill-posedness of the problem Kx = y.. Our paper advances this inquiry by

exploring the “sparseness” or “thickness” of the DFD singular values k) through the set
L

Dys = [65,67165], where 05= \/]ra2®(|ka)2),

with @ referred to as a source function (detailéd in the subsequent paragraphs). This
set facilitates assertions regarding thessequential or uniform optimality of regularization
methods. A new DFD quasi-minimal property is also proposed by us to ease the mini-
mality requirement of frames4n,certain scenarios.

Motivated by question (iii) «we must devise a method for constructing the filter func-
tion and defining the source function that allows for adapting classical regularization
theory to the complex framework.iWe first consider the ideas to construct a general filter
function. From Picard’s formiila, to stabilize the solution, common ideas are of using the
relation 1/0), & 03g.(07), wheteg,(\) — 1/ as @ — 07. Hubmer et al. [21] use a similar
idea for the case where oy >0 is replaced by k) € C: they substitute 1/ky by rxga(K3),
where ¢, : C — C satisfies, g,(A) — 1/X as @ — 0. This definition works perfectly well
for the case when ks a'positive real number. However, when k) is a complex number,
SVD filter functions 1 such.as the Tikhonov filter, Landweber filter - are difficult to apply
directly. Fhus, an_approach to constructing filter functions is required to directly apply
classical SVD filters to the complex scenario. This paper aims to accomplish this.

Subsequently, we explore generalizations of the source function definition. In [21], the
authors used the source set corresponding with the source function p(u) = p”. As
with thesfilter function, this power source function is well-defined if x is a non-negative
real.number. However, if p is a complex number, then p” is a multi-valued function,

making it difficult to define the function well and to extend it to other functions like the

4
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logarithm in complex framework. To overcome this difficulty, we revisit the SVD source
function in 7, 21]. This function is defined on (0, 00), and we can write p” = |u|” for every
i > 0. The two formulas are equivalent when p is a non-negative real number. However,
the latter formula seems more suitable for generalizing to complex p, since, as discussed,
p” is then a multi-valued function with respect to p. To address this, rather than selecting
the general source function ¢ : C — C, we will restrict our focus to fungtions of the form
o(n) = ®(|u|), where ® : (0,00) — (0,00) is a positive real-valued function., Using this
idea, we extend the results of [2I] (and [7]) to a DFD source set defined by asgeneral

source function, rather than a polynomial one. Specifically, for a positive constant F,

Mg g = {x € X Y [@(|mal)] " , un) x| S EQ}J\ (6)
AEA

where the “source” function ® satisfies conditions detailed misubsequent assumptions.

Such conditions naturally arise in ill-posed problems, such as tomography with ®(u) =

|
topic merits further attention, and in Subsection 4.4 of our paper, we study the latter

|* or the backward problem with ®(u) = (— In |u|)FPi(see subsequent sections). This
index function .

To address Question (iv), we present two examples de’monstrating that the classical
source condition can suffice to derive the DED souree.condition. These examples illustrate
the connection between classical and DFD source conditions, though these findings are
preliminary and warrant deeper investigation in future work.

Question (v) is thoroughly explored. in this paper. Investigations into this topic can
be found in [7, 11, 2I]. In [IZ], the authors studied the optimal problem with a source
condition in Besov spaces. Similarly, a spectral source condition was the subject of study
in both [7] and [21I]. Inspired by Hubmer et al.’s work [21], which assessed the optimal
convergence rates of a-posterioriregularization under a polynomial source condition, our
paper addresses a significant{gap: the optimal a-posteriori convergence rates for non-
polynomial source ¢omditionsshave not yet been investigated. To assess the optimality
of the regularizations, wetextended the findings of [7] and derived a lower bound on the
worst-case error for the general source function. Our proof refined the condition that
the frame be minimal. We instead demonstrated the results for frames satisfying a more
general property, provisienally termed DFD quasi-minimal. Moreover, we enhance the
existing analysis by specifically addressing a-posteriori strategies, a gap left by [7, 21] and
[14]. We further refine the classification of optimality properties, distinguishing between
sequentiaborder optimality (as noted in 7, 21]) and global order optimality, the latter of
which has siot been previously explored.

Structurally, Section 2 provides a review of foundational results on frames and intro-
duces the concept of optimal regularization. Section 3 is dedicated to the paper’s core

findings, encompassing lower bounds for the modulus of continuity of K=! on the set
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My g, along with convergence rates for both a priori and a-posteriori parameter selec-
tions. Section 4 illustrates these theoretical findings through specific examples and their
corresponding numerical experiments. Finally, Section 5 contains the long and teehnical

proofs of the main results.

2 Some basic notions and notations

2.1 Notions of frames

For z € C, we denote its conjugate by Z, its modulus by |z| and it§ real part by Re z.
We also have the equality |21 + 25|* = |21]* & 2Re 2123 + |22|%. Letting A be an at most

countable set of indices, we denote ~

I*(A) = {a = (a))ren : ax € (C,Z lay]? < oo}

AEA

with the norm [Jall = (3",ca |aA|2)1/2.

Before delving into the specific content of the_article, we would like to recall some
results about frames in a Hilbert space H. These results,can be found in [2], [7], and [21].

For convenience, let us introduce the definition of a frame

Definition 1. A sequence w = {wy}rea o a Hilbert subspace H C H is called a frame
over H, if and only if there exist frame bounds 0 < A, B, € R such that for all z € H
there holds

A lellg, < > 1) ul* < By ||z, (7)
AEA

If wy, & span{w)\}/\i/\o for every Ao € Aithen we say that the frame is minimal.

From now on, we denofe ||z]fuli= \/ZAeA [z, w\)|? for every x € H and

|W g =dnf{||z]|, : * € H and ||z|y = 1},

(Wisip = sup{|[z]lw : z € H and ||lz|» = 1}.
If |Wint = |W|sups We say that the frame is tight and denote |W|g 1= |[W|sup = [Wlint .
From the definition, wehave 0 < /A, < [Wlint < [W|sup < /B, and
(Whntllzll2 < [[#]lw < [Wlsupll#[5 (8)
forfevery z.€ H. For 2’ € H, we have

2 2 2
1211% = D (Pua’, wahul” < Wl | Pl < [Wlup 115 (9)
A€A
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Here Py is the orthogonal projection on H. For a given frame {w)}reca , one can define

the frame analysis operator F' as below
F-H—=1A), o= {(z,0)n}cn-
and, the synthesis operator F*, which is given by

F il (A) = H,  (ax)ren = ) ayun,
XeA

From the inequality , there holds

VA < |F| = [[F7]| < v/ Bu.

We can define the operator S := F*F', that is, o
Sz = Z(x, Wx)H W
AEA

It is worth noting that, in this case, the operator S is‘arbounded, linear, and invertible
operator. Specifically, A,I < S < B,[ and B,'I,< S~ <A . Therefore, if we set

~ -1 ~ ~
wy = S 'wy, W = {Wx}aea, then
. 4

— 2 y 2
B, lzlly, <=l < A" (5,

for every € H. Consequently, the set {w,}xen is also a frame over H. As we know,
it is referred to as the dual frame of {wy}ren. In that case, the analysis and synthesis

operators of this frame are as follows. Lhe analysis operator F is defined as below
FZH—)ZQ (A), [EP—>{<JI,{E>\>H}>\GA
and, the synthesis operator F *, which'isrgiven by

N N
EFr: lg (A) — H, {(]J)\})\GA — Za)\w,\.
AEA

From the inequalities , there also holds

VBAS [wloy,  IF)| = [F7)] < [wiif < VA

sup inf —

It follows that

g a\wy

AEA

1/2
= |1F*({a})ll < Wik (Z IaA|2> ~ (10)

A€A

H

Moreover, it can also be proved that F*F = F*F = I, and thus, for any = € H, it can
always be expressed as = ), ., T \wy where x) = (z, wy)m +ay with a = (ay) € N(F™).
Especially, we have

Tr = Z<ZE,ZU)\>HU7>\. (11)

AEA
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Generally, the calculation of w), is only easy in some special cases. In fact, if {w,} is

tight then wy, = ——w, (see, e.g., [2], chap. 5). In general, we always have {0} C

[wler
N(F*)=N (ﬁ’*), and therefore, the representation of x in is not unique. However,
this representation is considered the most economical according to [21]. From [7], we have
known that the frame {w,} is the biorthonormal sequence of {w, }, i.e. (wy, w, ) = 0y, for
A, v € A, is equivalent to {w,} being minimal. In this case, we have x) =z, w))mand the
expansion is unique. Next, we recall the definition of diagonal frame deeompositien
(see, e.g., [21]).

Definition 2. Let K : X — Y be a bounded linear operator, and A is an at most countable
index set. We define (u,v,K) = (ux, U, k) cp @S a diagonal frame decomposition (DFD)
for the operator K if the following conditions hold ~

(D1) {uy}tren is a frame over (kerK)" C X.
(D2) {vxr}rea is a frame over ranK C Y.
(D3) (ka)yen € (C\ {0V satisfies the quasi-singular relations

K vy = Ryuy, for all.X G’A.

The k) values are called the DFD singularwalues.
Remark 1. We can replace conditions (D1), (D) with
(D1)’ {ux}rea is a frame over X,

(D2)’ {va}aea is a frame ovénYy.

Here Xy and Yy are (closed) subspaces.of Hilbert spaces X and Y, respectively, such that
(kerK)L C Xo and ranK C Y. If the frames are chosen in this manner, ky may be
equal to 0. As suggestedfin [21], utilizing conditions (D1)’ and (D2)’ often allows for
the selection of more managéable frames {uy} and {v\}, thereby significantly streamlining
the computational procedure. A detailed discussion regarding this concept is available for

readers in [2]].
For h: R — [0,00), 2 € X, we define

WK K)z, )y = Y h(lmal)| (@, un)v [
AEA

From (D1),{(D2) we can find numbers A,, A,, By, B, > 0 such that

Aulwli < llwlli < Bullw|k Yw € (kerK)™, (12)
Allzlly < ll2l7 < Bull2l3- ¥z € ranK. (13)

From. now on, we always denote by a* an extended real number such that a* > sup, |k, |*

if sup, |r,|> < 0o and a* = oo if sup, |k,|* = oco.

8
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2.2 Notions of the worst case error and optimality

Consider the problem and denote the Moore-Penrose operator
K*(z) = argmin{||h||x : h € X,z € ranK , K(h) = z}.

We denote the Moore-Penrose solution of by " = K#¥y. Let an operator R:Y — X
satisfy Ry ~ x. We say that R is an approximation method of the problem . Assume
that the solution z' of belongs to a subset M C X, we recall the (definition of the

worst-case error of the method R on M as below.

A(M,§,R) :=sup {|Ry’ — zf||y s 2t e M Ay’ e ¥ A K= o))y < 6}

~
Worst-case error holds a vital role in optimal regularization theory. Many regularization

techniques involve a regularization parameter that balances data fidelity with solution
stability. The worst-case error framework helps in making,an informied choice of this pa-
rameter. You can analyze how the worst-case error behaves as-this parameter changes,
allowing you to select a value that minimizes the maximum possible error, thereby yielding
the most robust and accurate solution given the impiuit, uneertainties. Many classical refer-
ences discuss worst-case error (see, [10, 18], 25] 20, [30, 33])’ In this paper, we extensively
refer to the worst-case error from [7] and{[33]. Drawing/on the aforementioned worst-case
error concept, the previously mentioned decuments provide the following definition for

the optimality of an approximationsmethod:

Definition 3. We say that the method Ry : Y — X is optimal on M if A(M, 6§, Rop) =
infg A(M,§,R) and Ry : Y =5.X is order optimal on M if there is a constant ¢ > 0
independent of & such that A(M, 0, Rgy) < cinfg A(M, 4§, R).

In our paper, we choose/M =Mg ¢ defined in @ and R is in a regularization method.
To assist our readers, we willlnow recall the concept of regularization method. Let R, :
Y — X, a > 0, be afamily of:bounded operators and let a* : (0,ap) x Y — (0,00). As

in [7, 10], we say that.(Rapa*) is a regularization method if

fsup{a”(6.5°) : v’ €V Ay —ylly <6} =0,

6—0+
lim sup{ [ Ky — Ro-5y0)llx 0 4" €Y Ally* —ylly <5} =0.
50,
The quantities @ and o* are called the regularization parameter and the admissible pa-
rameter choicerespectively. In the framework, our goal of finding R,,; now reduces to
determining the parameter o* that optimizes A(Mg g, 6, Ry). Inspired by the classical
optimakzegularization theory ([30, 33]), we can classify the order optimality for our prob-

lem.
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Definition 4. Let M C X. We say that the regularization method (Rq, a*) is
(a) sequential order optimal on M if there is a sequence 8, — 07 such that there exists
a constant ¢ > 0 independent of n such that A(M, 6,, Ryx(s, 4ony) < cinfr A(M, 6z, R),
(b) uniform order optimal on M if there is a §y and a constant ¢ independent ofd
such that A(M, 0, Ry« (s5,45)) < cinfr A(M, 6, R) for every § € (0,6).

Sequential optimal regularization is studied in the recent papers [7i14] 21], but, uni-

formly optimal regularizations have not been discussed yet.

3 Main results

In this section, we aim to provide an overview of the main result$ of the.paper. Therefore,
only a few brief proofs will be presented immediately after the theorem statements. The-
orems without immediate proofs are those with lengthy and technically involved proofs.
These proofs will be deferred to the final section.
3.1 Pointwise convergence
Let (u,v, k) be a DFD for K and y be as in (1], we have §

(y, o)y = (Kol 0))y = (2, K oa) @& (2h, Fatig) = s (2, up)x for Xe A (14)

Hence, from the expansion , the Moore-Penrese solution of has the expansion

1
t.= Kip= — Uy. 1
z Y Z Fox (y, va)vux (15)
Aed
2
The expansion implies that y gdomK* if and only if >, % < 0.

Remark 2. (i) If {uy} is tightthen we obtain

1
.yt
=Ky = E (Y, va)y Uy.
£ ralulg )

(11) If {up} is a framesoverithe whole X then the latter equation can be replaced by

1 ~
al = Kiy = Z —(y, va) vy

KX
AEA k3 £0

The stability of solution depends on the infimum of {|x,|}. In fact we have

Theorem 3.1.°Let (uy, vy, kx)rea be a DFD as in Definition @ We have the equivalence
of the following two conditions:

(1) infyep |ka] > 0,

(it )the operator K* : ranK — X is bounded and

¢ Il

> 0. 16
TN (16)

10
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Remark 3. Our result constitutes an advancement upon those established by [7]. The
condition that ||vy|ly is bounded below implies the condition [16 Specifically, since (uy)

is a frame, we have ||uy||% = [{(ux, ur)3 < a2 lluall3. It follows that ||uy|lx <p|d]sup-

sup

Consequently, if infyep ||oa|ly > 0, then

f llually _ infaea |lually
MeA [Junllx T supyeqa [|uallx

> 0.

Proof. (i) = (i) : If inf,, ep || > Ko > 0 then we obtain, in view of (LQ)); that

1 . |V ]su
—(h (h, 2 < 2R
Z /€A< onY i v /€0|u|mf (Z’ oarv| ) Y /€0|u|ian Iv

AEA AEA

K]y =

~
for every h € ranK, i.e., the operator K* : ranK — X is bounded. From the condition

(D3) of the DFD, we have
- lloally 2 fluallx infdeal.

It follows that
f Joally

red [luallx I

mf [Exh >0

(i1) = (i) : We verify that ranK = rank. Choosing4/, € ranK, we can find y,, € ranK
such that lim, s |yn — vo|ly = 0. Denote @, =K*y,. We have

2 = 2l x = K@ =mm)llx < 1K 19n — ymlly-

Because (y,) converges in rank,, the latteriinequality implies that (x,) converges to an
element z; in (kerK)*t. We cansdeduce that Kz = yp, i.e. yo € ranK.
Since ranK = ranK, the operator K" (kerK)* — ranK is bijective. Here the restric-

tion of the operator K to (kerk)L i§ still denoted by K. We deduce that K~! = K* :
ranK — (kerK)* is bounded: Hence we have &y (K*)*uy = vy which implies

poal- | (K[| luallx > floally-

It follows that

loally
mf kAl > H(Ki) I” 1,\eA [[unllx -0

This cempletes the proof of Theorem [3.1] O

If infxen [#2] = 0, the solution x' of equation can be unstable. As mentioned in
Introduction, we present here the idea to obtain our filter functions. Suggested by the

equation ([L5)), we can rewrite

zh *Kiy—z y,UA yUy.
AeA

11
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Hence, we just need to choose a real function g, : (0,00) — R such that g,(x) — 1/p as
a — 0 to be a filter function. Building the latter ideas, and the framework of , we

construct a filtered regularization of the form
= Ray’ =Y Fagal|mal) (4, v2)viin (17)
AEA

where {@y}xea is the dual frame of {uy}rep. This regularization formula is entirely
compatible with the complex framework and allows us to use SVD regularizationprinciples
for this new improvement. The functions g, : [0,a*) — R will be chosen as,standard filter
functions (see, e.g., [10] 18 23, 25| 30], B3]) that satisfy

Assumption C
(C1) For all >0, p € [0,a%): \/liga (1) < 00,
(C2) There exists a constant Cy; > 0 such that sup{|ug, ()] : @>.0,0 < p < a*} < C,,
(C3) For all p € (0,a*) there holds lim, 0 iga (1) =A-
To illustrate, we can list the three commonly used filtering functions as such:
(o + p)™! Tikhionov filter,

ga(p) = 1 X ,00) (£1) Truncated filter,
(1 — (1 — 7p)¥), Landweber filter,
where 0 < T7a* < 1 (see, e.g., [10, 23,25, B3]y and x(oo) (1) = 1if 1t > @, X[a,00) (1) = 0 if

i < . For the sake of conciseness in the expressions, we will introduce common notations
(see, e.g., 211 B3]) in the definition.below.

Definition 5. We denote r,(fi)= 1—iga (1), p() = SUP,e0.0v) Ta (1), €() = SUD e (0.0%) Ga (1),
_ >
L(a) = sup,e(o.av) v/I9alp) and

1/2
do(h) = <Z(Ta(|/i>\|2))2\<h,v>\>y\2> for every h €Y.

AEA

From Assumption C2, we obtain 0 < p(a) < max{Cy, 1}. For convenience, we show
here some properties of the function d,. We note that d, satisfies the triangle inequality
do(h + 2) <'dyo(h) + d.(z) for every h,z € Y. Moreover,

do(h) < p(@)[V]sup|[blly < p(a)V/ Bollblly < max{Cy, 1}/ By[|h]ly for h e Y. (18)

The inequality can be verified briefly as follows

dal)’ = ral(|ml) [ o)y P < 2() Y (b, oa)y P < 02 (@) V2, 1]

AEA AEA

As shown in [7], we have

12



Page 13 of 47 AUTHOR SUBMITTED MANUSCRIPT - IP-104922.R2

1
2
2 Theorem 3.2. Let Assumption C and hold. If
5
6 a(d) — 0 and 6L(a(d)) = 0 as § — 0,
7
g then limg_,o+ ng(é) —af||x = 0.
10 . .
1 Remark 4. Using Assumption C, we have L(a) = \/ga(pt)\/119a(p) < Cy\/(d).
12 Hence, if 6+/4(a) — 0 (condition in [21]) then 0L(5) — 0 (condition in {F]) as & — 0.
/ 1
12 Thus, we employ a condition analogous to the one found in [7].
15
16 The proof of Theorem could be seen in [7, 21]. For the convenience of our readers,
1; however, we will provide the main ideas of the proof here.
;g Proof. In line with , the regularization solution for equation with noiseless data
21 is given by:
22 _ ~
23 To = Ry = Z KXxGo (|"‘€A|2) (Y.) v Un. (19)
24 AEA
25 The triangle inequality yields
26
27
28 lzg = 2"llx < [l — ol Fllza 5 llx (20)
29
30 For the first term on the right hand sidegusing and gives
31
32
33 ||$i —Tollx = Zﬁxga (1"%[2) <96 — Y, Ux)y Uy
34 AeA X
35
g? From and (9), the inequality yields
38 1
39 5 1 2 2 2 s 2
40 7o — zallx < (ZSUP (|/1A| 9o (|’<A| )) \(y - ?J,UA>Y‘
41 VAu \ 13 >
42 3
L(o) 2
< Y=y, )y

: 1o -
45
46 B, | By
47 < A_uL(a)Hy(S —ylly < A_UCSL(O‘)- (21)
48
:g For the last term in , using , , it follows that
51
gg = 2Tlx = | (I5alga (I6a?) = 1) (2, un) x i
54 A€A X
55 2
56 < L S ra () [ [, un)x | 2 . (22)
57 VA AeA
58
59 Here, the function 7, () is defined in ([5). From and (22)), using the Lebesgue domi-
60

nated convergence theorem, we can obtain our result. O]

13
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3.2 Lower bound of worst case error

To assess the optimality of an approximation method, our initial thought is often to
directly compute Aj(M,0) = infr A(M,d,R), where R : Y — X represents.any
approximation method. However, this calculation is infeasible because R can'be,any
mapping-linear or nonlinear-that we simply cannot control.

Therefore, we need a different approach. For suggestions, we can draw upon concepts
within an SVD framework (see, e.g., [10, 23| B0]). If we can identify a funetion ¥(¢)
such that C¥(9) < Aip(M, ) (for some constant C' > 0), and subsequently find an
approximation method R* : Y — X where A(M, 0, R*) < C"¥(9) (for another constant
C’ > 0), this establishes the following relationship:

CU(6) < MM 6) < AM,5,RY) < U5 |
In this scenario, we can prove that R* is order optimal. Buildingon this idea, we will
evaluate the optimality of the proposed regularization R, by first finding a lower bound
for the worst-case error. This will be crucial for proving thewoptimality of the DFD-based
regularization method over the source set Mg g in latex theorems. It also provides a basis
for choosing appropriate regularization parameters. .

Similar to [18, 30], we shall consider the computation of the worst-case error of the
regularization operator R, : ¥ — X in the source set Mg g with the function ® satisfying
Assumption A1l. Function @ : (0,a*) — (0y00)4s continuous and satisfies the following

conditions

(i) lim, o ® (1) = 0,

(ii) Function @ is strictly increasingion (0, a*),

(iii) Function © : (0, ® (a* )20, a* P (a*)], given by © (u) = pd®~! (1), is convex.

Here we denote ®(a*) = lim, £ .« @(1). As demonstrated by the optimal approach in the
SVD context, the funetion O(@) = u® ' (u) is crucial in optimal regularization theory
for inverse problems. It helps‘determine the optimal regularization parameter a by link-
ing it to the smeothness of the true solution (represented by ®) and the problem’s SVD
structure (represented.by ). This function balances data fidelity (=< ¢/+/«) and solution
regularity (=< @), often appearing in analyses of optimal convergence rates (see the
proof of Theorem . Furthermore, © is used to represent lower bounds of regulariza-
tions, providing theoretical limits on the achievable accuracy. This function is extensively
discussed impnumerous papers on optimal regularization, such as those by [I8] B0] and
the references therein. Key properties of this function include its monotonicity and the
identityn@(P(z)) = 2®(z), which highlights its fundamental relationship with the function
®rand the spectral parameter p. Deriving from the results in an SVD context, we can

infer that the lower bound we are looking for is of the form =< /©~1(C§?).

14
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Even when utilizing tools as found within an SVD framework, it remains challenging
to establish a lower bound result for the worst-case error. This difficulty arises because the
frames do not possess characteristics analogous to the eigenvectors of the SVD gystem.
While [7] achieved this by assuming the strong condition that the frame u is minimal
(which consequently guarantees a biorthogonal sequence 1 = (uy)y with (uy, @,) = O,
for all \,v € A), our paper endeavors to reduce the restrictiveness of this condition. In

fact, we define a new kind of frames

Definition 6. Let (uy, vy, ky) be a DFD frame of K: X — Y. For m,fm € R such that

0 < my, <m*, we denote I, m» = {un : |KA| < My or |ky| > m*}. df there iswa constant

Q > 1 such that I\él,@h-ql # {0} for every X\ € A then we say that the frame u = (uy)rea
is DFD quasi minimal (with respect to Q). ~

Remark 5. (i) If u is minimal then u is DFD quasi minimabawith _respect to Q = 1. In
fact, for every Ao € A, we have uy, & span{uy : A # A\o}. Lhoose Q= 1, TingLlragl = {uy :
|Kal # |Raglt C {ur : A # Ao} Hence I\txo\,l'ﬂol D {uy 1A gt # {0}

(i1) There are many frames that are DFD quasi minimal but not minimal. Later in the

paper, we will demonstrate such an example. Nevertheless, for the reader’s convenience,
we also offer a straightforward example here. We chooseX =Y = (*(N), ex = (0;1)jen-
For x = () jen we denote K(x) = ( Lt > . Choose

JeN

ViH

u = (607 €0, €1, €1, €2, €2,

Y

)
VvV = (607607617617627627 . ) )

Il 1 1
ka1, — = — ).
V2 V2 V3B
It is clear that u is not minimal. Moreover, Ié+1),1/27(j+1),1/2 D {e;} forall j € N. Hence,
u is DFD quasi minimal with respectdo Q) = 1.

From the tools previously mentioned, we can derive a lower bound result that is

comparable to the one in SVD theory [18] 30]. In fact, we have

Theorem 3.3. Let 09 >0, € (0,9y), S € (0,1),Q > 1, let (u,v,K) be a DFD of K and
let the source sets Mg i define by (@ . Put

Dys =058 103],  where 05 = |Vint| T QEV/[1a[2®(|ria[?). (23)

Assume'that

(a) infycq [ra] =0,

(b) u iss DFD quasi minimal with respect to Q.
If 6€Uycp Das then

2 2 2
i%fA(Mq,,E,a, R) > |u|;l;E\/@—1 (M) (24)

QQEQ

15
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In addition, if © satisfies the condition
O (cp) |

0<u<i£1’6fq>(a*) o-1(1) :=n(c) > 0 for every c € (0,1), (25)
then
- BN o (VB
lng(Mq)’E’é’ R) Z Y (@ ’u’supE S} ! T . (26)

Especially, if (0,0 C Uyen Das then holds for every 0 < § < dg.

The proof of this theorem involves many technical details and is quiteslengthy, so we
are moving it to Section 5| This theorem serves as a criterion for determining the order

optimality of regularizations, so we will have a bit more commentary.on it.

Remark 6. (i) The condition that the system {uy,} is DFD ‘quasi mz\'m'mal s essential
in the proof of the theorem. The investigation of the lower bound when {u,} is not DFD
quasi minimal is a worthy topic of study.

(ii) To show that an approximation method R Y =X isorder-optimal, we only need
to verify that

A(Mo.s,0,R) < CEy/O- oiylheg?/Q* ).
. 4
(111) In fact, we can prove that infr A(Me g, 4 R) = \/Blle\/@—l (B2A,0% Q2 E?)
for all B,, A, satisfy (12)), (13)). Since

uloh By /O (B2Iv 2,52/ Q2 E2) 30/ B E\/61 (524,82 QP E?),

our lower bound 1is better.
(iv) In [7], to obtain the“lower bound of the worst case error, the authors choose
§ = 0y = \JASLERYT. Theseasesthat the mentioned paper ezamines corresponds to

considering the source functiop.® () = fi%, Q = 1. In this case, we have p®(u) = p2+*

and 0y = /A;TE\/|kAP@([raPYomtor 8 = VA,/|V|nt, since VA, < |V|ne, we have
0 < B <1 and &5 <6y <705 which gives Oy € Uyep Dag- Hence, the inequality
hold for the chosen sequence (8x)xe -

(v) As shown intelassicat.optimal reqularization theory ([30,33]), the optimal property
is not true if thessingularwalues of the operator K are too sparse, e.g., lim, o 0py1/0, =
0. The distribution of.the singular values affects the classification of the optimization
types. Similarlyf thel optimal result depends on the distribution of 05. In fact, we have
(0,60) CAIgoo UseaDrs- If (0,00) & Uysep Das for every 8> 0 then the distribution of

X 1s very sparse. In this case, the lower bound may be valid for only some subsequences
of 0x>

(vi) Note that, in the case of Holder-type source condition, i.e., ® () = u*, u,v > 0,
then OTL(t) = 1. For ¢ € (0,1), we have

O~ (cp)
O~ ()

2v
= c2+1 > (),

16
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i.e., the condition holds in this case. Specifically, we have O~ (|v]i,0?/E?) =
|v |2”+152V+1 B, So we get that

inf

2u+1 2v+1
ian(M<I>,E,5, R) > (ﬁ) ’V’mf Dhinf s5077 +1E2u+1
R Q |u|sup

A similar lower bound is stated in Theorem 3.11 in [7] with 0 is in the sequénee (dx)ren
as in Remark (ii).
(vii) In some problems, we have the logarithmic source condition ®(p) = (=ln p)™,

p > 0. Direct computation yields ©(p) = pe "™ and /O~ (1) = )k + o(1)) (see,
e.g., [18]). So

inf A(Ms,p, 6, R) > VB'E (ln<| QQ?§52))_p(1+m))

inf

Since o1 2
- +
o) _ Pen) oy §
O~ () *(n)
we can verify directly the condition (25)) of © to obtain a stmilar form of the inequality
).
(viii) If ® is concave then Lemmal5.9 implies that y
O~ (cp)
O~ ()

e., the condition holds.

> /o ¢ € (0,1),

3.3 Convergence raterand a priori parameter choice

Returning to the main content/of thisarticle, to extend the results of Ebner and colleagues
[7] from a polynomial souree:sét to a more general source set, we consider the source
function ® as in the definition/of the set Mg g defined in @ Next, we investigate issues
such as the lower beund of the worst-case error, convergence rate in both the choice of a
priori and a-posteriori pazameters.

Our initial focus is on, the convergence rate of regularization when selecting a priori
parameters. Achieving optimal order estimates necessitates the following assumptions for
the source function ® and the filter function g,, which parallel those found within the
SVD framework (see; e.g., 26l 33]).

Assumption A2. There are constants y;, s > 0 such that

\/ﬁga(ﬂ)‘ < \’}_1&’
To(i)] V(1) < 72/ P(a).

Erom Assumption A2, we derive convergence rates which give order optimal estimates

(i) SUPo<;i<a*

(11) Sup0§u<a*

on the reconstruction error ||x‘; = xTH x

17
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Theorem 3.4. Let A, € (0,|v|2;). For (u,v,K) being a DFD of K, with u as a dual

inf

frame of u and z' € Mg . In this case, if we choose the reqularization parameter as
a(d) =a* (6,y°) =0 o0 ! (A,0%/E?), (27)
then the following convergence rate result holds:

l36) = 27l < VATAT (1v/Bu +72v/Ay) ByJO71 (VI 02/ E2) N, (28)
where Ay, B, are bounds of w and v, respectively, and vi,ve are constants as imAssumps
tion A2. From the inequality we obtain

A(MCI),E7 (57 Ra(5)) S V A;lA;l (71 V Bv + /72\//4_'0) E\/@_l (|V|i2nf62/E2>7

where R, is defined in . Moreover, ~

(a) If u is DFD quasi minimal and © satisfies the condition then R, (s is sequen-
tial order optimal.

(b) For a fized 5 € (0,1), if u is DFD quasi minimal,}© satisfies and (0,0o] C
Usea Dags then Ros) is uniform order optimal. Herd Dy gyis defined in (23)).

Remark 7. (i) Note that, for ® (n) = p® with v >0, eur result aligns with Theorem 3.8
in [7] and Theorem 2.5 in [2]]. o

(ii) In the case of polynomial and logarithmic seurces, the concave condition of ® can
be relazed.

(111) Calculating the exact number |v|is 48 notieasy. Therefore, choosing A, as in the
theorem will make the calculation“of c(8)mmore feasible. However, if A, is small, the
error will contain A;' and so will be large. Therefore, A, should be chosen such that
BIv]int < Ay < |Vlins

Proof. From the triangle inequality, forw, defined in (19)), we have
|28 = M2, — zallx + l|7a — 21x. (29)

For the first term on, the right hand side, using and Assumption A2 (i) gives
o
g — Zallx <m BvAﬁlﬁ- (30)

Denote wy = /®(Jk,|?) A{x", uy)x. For the last term in , combining and ,

we obtain

1 3
2o —#fx < T (Z 11— [kalPga (15a2) \<$T7UA>X\2>

%o\ eA

< 7x (Z 1= m Py (12 P) [ wmmf)
V2 2 : Y2
< Ve (%w) < Ve (@E. (31)

18
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The third line is obtained from Assumption A2 (ii) and the condition z' € Mg g.
Combining and yields

0 V2
0 _ally < y/B,AZl—
||xa T ||X_'Yl vy, \/a+\/A—u

Based on the parameter choice , the regularization parameter is selected as a =
o (0,y°) = @' o ©7' (A,6%/E?). This implies that ® (o) = O~ (4,6%/E?). From.the
latter equality, it follows that © (® (o)) = A,6?/E?, which yields 6* = A, "E20 (@ ().

In combination with Assumption A1 (iii), we obtain that

f \F \/ A, BP0 (@) _ a5 (o) = £v/ANS T (A EP).

~

Hence, we get that
l2d —atlx < nvATVATVBEVO T (A,02/E?) + ];_UW@* (A0 /)
= VATVAT (/B + 1aV/A ) B0 A2 )
< VATVAT (VB + 1/ Ag) By [0 (V102 B).

The above estimate completes the proof. O

3.4 A-posteriori parameter choice

In this subsection, we present the results of the discrepancy between the exact solution and
the regularized solution. To achieve this; apreliminary idea to accomplish this is to apply
the Morozov discrepancy principle, which involves considering the equation ||Kz? —1°|ly =
78 where 7 > 1. However, calciilatingy||Kz°, — ¢°||y is computationally intensive because
it requires knowing {u, }, {v,\}.\Therefore, we will try to find an alternative formula. We

have

Kz <wlly = 1Kzo — Pzt IV + | P v 13-

We know that || P

ranKLy(S“Y S Hy(S - yHY S 0 and

‘V‘Sup Z| Lo ranKy UA>Y|2 < HKI’ ranKy HY < ’V’mf Z‘ Lo ranKy /U)\>Y’2
AEA AEA

For better insight, we willlexamine the special case where the frame {u,} is minimal and
satisfies {u,,, u) )=, for all \,v € A. Using Lemma [5.1] (see Section 5) yields

(Kl — Pz’ )y = (Kad — v, o)y = Kz, va)y — (°, o\)y
= (|kal2ga(82]?) = D@, 00)y = —ra(|mAl) (¥, va)y-

Hence

D K — Py’ o)y ? =) (ra(lma)? 10 vy P = da(y°)*.

AEA AEA

19
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From the above suggestions (see also [21]), we will use the expression d,(y°) (defined
in Definition [5) to replace |Kz? — ¢°||y, even if u is not minimal. Specifically, the
regularization parameter « is selected based on the Morozov principle [26], which provides

a criterion for choosing a by solving the equation

do(y°) = 7/ B,0 with 7> 1. (32)

Let’s additionally assume that the function g, satisfies the following Assumption B1.

Assumption B1. The function g, : (0,a*] — (0, 00) satisfies
(i) limg_ sy~ 7o) = p(p) > p > 0 for a p > 0, and for each ;€ [0,a"),

(ii) 9o, () = ga(p) for a,, — a > 0 and for every p € [0,a*).

~

Theorem 3.5. Let 7> 1,6 >0, Kal =y €Y, y # 0 and Assumptions C and B1 hold.

Assume that
0 < /By < pv/ Ay || Pt (33)
Then, there exists a constant ap(d) such that the,equation holds. In addition, if
7 > max{Cy, 1} and we have the following assumptions:
(a) ro(p) # 0 for every a > 0, € (0, a*], y
(b) there are a C, > 0 and an oy > Ofsuch that

() sup (ra(p))?u®(p) & Coifor every 0 < a < ag

pe(a,a*)

and
lim (o) (@) n® (1) = 0 for every pu € (0,a"),

a—0t

then HxiD(é)—xTHx — 0 asd —# 0". Here, as defined in Deﬁm’tion@ {(a) = Sup,e(0,4+) Ga (1)

Remark 8. (i) Since lim§ o Tv/Bgd = 0, lims o pv/A || Proe?®lly = llylly > 0, the
condition holds for every 6 small enough.

(ii) For convenience of caleulation, we can choose the parameter a such that d,(y°) >
7'\/B,S for 7 > lanButting.©= /B, d,(y°), we obtain the equation d,(y°) = 7/B,6
and 7 > 7' > 1.

(111) Numerous filtersisatisfy the assumption (a), particularly those for which the filter
function g, Strictly decreases as the variable o increases (e.g., Tikhonov and Landweber
filters). Imustark.contrast, truncation filters, unexpectedly, do not satisfy this condition.
Although, investigating this phenomenon is compelling, a comprehensive exploration lies
outside the purview of the current discussion.

(iv) To‘ebtain optimal results under a polynomial source condition, the authors in [21|]

made useof assumptions

al/+1/2

Ira(p)| < C’W, ) <ca™t, ®(u)=p*, ¢,C v, u>0. (34)

20
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In this case, we have

2y+1
0(@) (ra(p)*u@(n) < cCa™* ug,,ﬂuu = ca® for all i € (0,a).

Hence, the assumption (b) holds. This shows that our condition is encompassed by the
condition in [21]. Therefore, to prove the convergence (without requiring optimality) of

the a-posteriori method, our relaxed condition can be used.

Proof. We know that under the conditions (i) - (ii) of Assumption B1, the funetion d,(y)

is continuous with respect to o and has the following results:

ili%d( ) =0 and h(n,}),d >p<2‘y Ux Y‘) (35)

On the other hand,

1
2

0 < 7v/Bub < pv/Au|| Pt lly < p <Z l(y‘;,w)xff) : (36)
A

Therefore, under Assumption B1 and (35), the equation has a solution a = ap(9).

We consider the second part of the theorem. To this end, in view of Theorem [3.2] we

. 4
lim ap(8) = 0, lim /20 (3)) =

0—0t

Step 1. Prove that ap(d) — 0 as § — 0.
For a proof by contradiction, suppose there is a sequence {0,} such that ¢, — 0 and
ap(d,) — o > 0. We have

daD(5) (y) < daD( ( )+ daD (y ) ) Co.
Since dop(5,)(Y°") = 7V By, l6ttingm,— oo, we obtain d,-(y) = 0, i.e.,

PN

AEA

have to verify

)y, va)y [ =0.

From the assumption (a), ©ne has r,-(|xx|?) # 0 for all A € A, and thus [{y,vy)| = 0
for every A € A. Sincey € ranK, we obtain y = 0, a contradiction. Hence, we have
lim5_>0+ OzD(5) = 0.
Step 2. Prove that lims o+ 0+/¢(ap(8)) = 0.

In this step, we will write ap(d) as ap for brevity. Using Lemma and the condition
zt € Mg f yields

Vi = > Uap)(rap (|52]*)*[(y, va)y [

AEA
, U
_ ZE(O‘D)(“D(|“A|2))2|“*|2®<|M|2)'@(MAF)]_I —<y,€A>Y
AEA ’
(y, va)y ol ?
<G, Z (Jra)) | —C Z (I£al*)] 7“A>X’ < GE.
AeA ACA

21
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Hence, using (b) and the Lebesgue dominated convergence theorem gives limgs_,g+ £(0)da,(5)(y) =
0. On the other hand, from the triangle inequality and , we obtain

Aoy (Y) = day (yé) — day, (96 -9) > (T\/B_v — max{Cy, 1}|v|sp)0
> (17 — max{Cy, 1)/ Byé.

It follows that

0 < (7 — max{Cy, 1)/ B,/ L(ap(6)) < /€(ap(8))dap s (y) — 0fds & =0
Hence lims o+ 6+/¢(ap(d)) = 0. Applying Theorem (3.2 and Remark @ gives

||:1ciD(5) —2'|x = 0asé— 0"
[l

Next, we will introduce some additional conditions, imspired by»[33], page 75. These
assumptions are crucial for establishing the theoreticalsresults _that follow, particularly
regarding the optimality and convergence rates of our regularization method.

Assumption B2. The function g, : (0, a*] —dR satisfies

(i) gali) = 0, 4

(i) 0 < 7o) < g;(—g;) with ((a) := SUD(< 10" ga(1t),

(ili) & < /¢(a) < £ with constants@epé:> 0.

Conditions on the filter function g, are fumdamental in the analysis of a-posteriori reg-
ularization methods. They are crucial for proving convergence rates and deriving error
estimates. Similarly, in the gork bysHubmer et al. [21], the authors also utilized a
comparable condition (see Remark [9] (1) below).

With these critical assumptions in place, particularly Assumption B2 regarding the
filter function g¢,, we ean mow establish key properties of our regularization approach.
The following theorem provides a bound for the error ||z? — z'||x and demonstrates the

optimality of the a-posteriori choice rule for the regularization parameter ap(0).

Theorem 3.6anlet (u, vsk) be a DFD for the operator K. With Mg g defined as in (@
and AssumptiondA 1 &imultancously satisfying that x° is the approzimate regularization
solution aswn with g, satisfying Assumption B2. Moreover, assuming Assumption
B1, (@) is satiSfied, and ap(8) is chosen by the Morozov principle (39). If the function

d isceoncave, then

20,5 — @' llx < [ulif /AT Bu(r + 1)E\/@‘1 (V1550 E2), (37)

where A, , B, are bounds of frame u. Hence, if, in addition, the frame {uy} is DFD quasi

optimal then

22
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(i) Ra,(5) is sequential order optimal over the set Mg g .
(i) Moreover, if there exists f € (0,1) and a &g > 0 such that (0,00] C Uyep Dag

then the regularization method R, ) is uniform order optimal. Here we recall that{D g

defined in ([23)).

Due to the specialized nature and length of this theorem’s proof, we have moved it to
Section [5f to maintain a coherent flow in the main presentation. Note that our result-will

be as in Theorem 2.7 in [21] if the source function ® is replaced by polynemiakfunction:

Remark 9. (i) While Tikhonov filter is shown to satisfy AssumptiondB2 (aswerified later
in this paper), truncated filtering fails to meet this condition. Nevertheless,\by adjusting
the truncated filter to use go(p) = we can deriwe a filter that fulfills Assumption
B2.

(i1) In the framework of polynomial source functions, the conditionsprovided by [21] of-

1
max{an}

fer an alternative to our Assumption B2 (see ) Notably, their assumption is expressed
in terms of the source function, contrasting with ourdfilter-centric approach. Further, a
compelling direction for future work is to generalize the assumptions from [21] to cover
the arbitrary source function case.

(111) Just as in Remark 7, we will illustrate that Assumption (b) in Theorem|[3.5 relazes
Assumption B2 when the filter function ga() is strietly decreasing with respect to . This
will prove that the condition in Theorem 18usensible if optimal rate is not demanded.
In fact, if Assumption A2 (i) and Assumption, B2 (ii), (iii) hold then

Ua)(ra(p))?u®(p) < Ua) (g;(g;)) u® () < vf@(u)@ < 7@ (a*)l,

With the limit in Assumption((b) in Theorem it 1s more difficult to verify. However,
if 9o is a strictly decreasingsfunction’ of the variable p (e.g., Tikhonov and Landweber
filters), then we can chedk thi§ condition. In this case, put p, = g,'(v/«) then we have

lim,_,o+ tta = 0. Moweover

7%¢(Ma)£;17 = fhas

{()(ralp))? =
(@) (ralp)) 1P (p) < Vaar (@ )z, 0 < < .

Hence, lim, o+ () @ (10))> 1@ (1) = 0 for every p € (0,a*). In the case where a* = oo,
the evaluations remain feasible if we alter the condition in Theorem slightly. Never-

theless, we will'not delve into the specifics of this issue.

4, Illustrative problems

Innthis Section, to provide a clear overview of the theory’s application, we will consolidate

all proofs into the final Section.
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4.1 Statement of the problems

We give an example to illustrate our results in previous section. For v € (0, 1], we consider

the fractional heat equation

Ofu(x,t) — Uge(2,t) =0, x e R0 <t < T. (38)
Here
v ) r(11—7) fot(t - T)_V%(T)dﬂ 0<vy<1,
dt’ v=1

and I'(2) = fooo t*~le~tdt is the Gamma function. The equation (38))is vital across diverse
fields. They are used in image processing (denoising, restoration); finance (option pric-
ing, volatility), medical imaging (tomography), environmental modeling\(pollutant source
identification), and material science (parameter identification, non-déstructive testing)
(see, e.g., [6, 106, 22, 27, B32]).

In this part, we consider the backward problems which aim to6 find initial conditions
from future observations. They are crucial for understanding,system history but are ill-
posed, meaning solutions can be unstable, non-existent, or non-unique. This ill-posedness,
especially with fractional time derivatives modeling/anomalous diffusion, presents signif-
icant inverse problem challenges that neeessitate specialized regularization techniques.
Specifically, we find the solution at the initialitime u(z,0) = 6y(x) knowing that u(z,t)
satisfies the equation subject to the final condition

u(z, TY= 0r(x), z € R. (39)

Similar to the condition (2)),swe have to consider the problem (B8)-(89) with the

unknown exact data 67 repladed by noisy data 63 satisfying
|0}, — 01 < 6.

Fractional backwardyproblems have been a very active area of research in recent years
(consult [4, 24, 34] and the references within it). Our paper’s presentation of fractional
backward problems will provide illustrations of the polynomial and non-polynomial source

conditions previously discussed in the theoretical part.

4.2 The ill-posed nature and Operator form of the problem

We can use thé Fourier transform to solve the equation . Here, we recall that the
Fowriét transfofm of a function f(x), z € R, is defined as F f =[x f(x)e ™" dx. We
denote thefinner product of f,g in L*(R) by (f,g) = [5 f( dx and the LQ(R)—norm
by [[Flh=A/{f, f). We also define the Hilbert scales by

Hr(®) = {1 (R): [ (14 WPPIFf@)Pds < 0

24
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1
2
2 Taking the Fourier transform of both sides of yields
Z 0} Fu(w, t) + w? Fu(w,t) = 0.
; Solving the fractional differential equation (see, [15, 27]) gives Fu(w,t) = E, 1 (—w?*¥)Fu(w,0)
9 where E,1(2), z € C is the Mittag-Leffler function
10 o0 n
z

13
14 Using the Fourier form of the solution formula, we get
15
16 For (W) =E, 1 (= |w]*T7) Fby (w), weR. (40)
1; Equation (40) will be employed to discuss the ill-posedness of the problem. In fact, we
19 can rewrite as N
20
21 Fby (w) = B3 (— |’ T7) For (w), d&R. (41)
22
23 We first consider the case 0 < v < 1. From [15, B1], for®.< v < 1, there are constants
24 ~ ~
25 ¢, ¢, 0 <c<c, such that
26 c c

- < |E < fi < 0. 42
;; 1+|Z|_| %1<Z)|—1+'z|? or z ( )
29 Consequently, the factor E}(—|w|*T") has a polynomial’behavior as w — oo of order
2(1) |w|?. This leads to instability as |w| incredses. Next, foréy = 1, the factor £} (—|w|*T") =
32 elPT The exponential growth of this factor leads to severe instability as |w] is large. In
;i conclusion, the problem is polynomially ill-posed for v € (0, 1) and exponentially ill-posed
35 for v = 1, with these two types of ill-pesedness being fundamentally different in nature.
g? Therefore, suitable DFD regularization methods need to be developed for each.
38 Throughout the rest of this,subsection, we will introduce the operator form of the
23 problem and explicitly show how v, 1S represented in terms of u, in this particular case.
41 From (40), we can write Ky =¥@pwlhiere K : L*(R) — L*(R),
42
43 Kh = FM(E, 1(—|w*T"))Fh) for every h € L*(R). (43)
44
45 By the definition of K we claim that K* = K. In fact, we have
46 1 1
47 (Kh, vo) = o—(FKh, Fuo) = (., (= |w|?T7) Fh, Fuo)
48

1 3 1 2

gg —= %(}"90, E’771 (- ‘W‘ T'y)./—'.U0> = %<.Fh, E’y,l (— |w| T’y) .FUO>
g; = (h, Kuy) for every h,vy € L*(R).
;31 It follows that K* = K. Now, we suppose (uy, Uy, kx)rea 18 @ DFD system of the operator
55 K on"I? (R)ySince K* = K, we obtain
56
57 FK*vy = FKuy = [E, 1 (—|w]*T7)] Foy.
58
59 Erom the definition, we have K*v, = R u,. Combining two latter equations yields
60

Fuy = RA[EBy 1 (—|w]*T)] " Fuy. (44)
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4.3 The fractional backward problem

We consider the case v € (0,1). Denote the L?(IR)-wavelet orthonormal basis by 17" (z) =
2112 (29x — k), (j,k) € Z*, where v is a mother wavelet (see, e.g., [2, B]). Put A = Z2,

A = (Ap, M\r) € Z2. We consider the wavelet orthonormal basis u, in L*(R) in theform
’LL/\(ZL‘) = @DA(Q?), VA = ()\D,)\T) e AN xeR. (45)
From here, we construct the DFD for the operator K using the following theorem.

Theorem 4.1. Let (uy)xen be defined as in such that supp (F) € {w e R a, < |w| < by}
where a,, b, be positive constants. Then
(a) (ux,vx, Kx)y\ez2 be a DFD for K where ~

2_2)\D7 fOT' )\D > 17

1, for Ap < 1,

R) =

and vy = FaF H([Ey 1 (—|w*T7)| 71 Fy?).
(b) 0y € Mg g for every 6y € HP(R) (p > 0), where'®(11) = /2 and E large enough.
(¢) There exists a 8y > 0 such that (0, 8] G U,&y Dxg’for 8 =273 Here D)4 is

defined in ([23)).

Remark 10. (i) For polynomially ill-posed problems, the WVD system can be used well.
We can see that in the tomography problems \(see [7, [21]) and the fractional backward
problem.

(11) The result (b) provide$ asufficient condition for the function 6y to satisfy the DFD

source condition. The functionsonly meeds to lie in the Hilbert scales HP(R).

From Theorem [4.1 wesobtain, the WVD of the operator K. In particular, that is
(ux,Ux, K2) ep- This allows us tofregularize the inverse problem for the fractional heat

equation with the séur€e funetion ® (1) = p?/? and then Mg i becomes

AEA

Mo = {90 c L*(R): Z[@(mﬁ)]—lueo,m)y? < EQ} :

To regularize the problemy we use the Tikhonov filter g, (\) = a+r/\ The chosen {u,} is

tight, sineerit is orthonormal. So %y = uy and can be rewritten as

5 5 270 s
uhy = Ra(09) =) m% UA) U
NeA

The source function ¢ and the filter function g, satisfy Assumptions C, A1, A2, Bl, B2

(see the proof of Theorem [£.2). Hence, from Theorems [3.3] [3.4] [3.6]

we obtain the result for both a priori and a-posteriori parameters.
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Theorem 4.2. Let (uy, vy, ka)aea be as in Theorem and 6y € Mo g for ®(n) =
pP2p > 0.
(a) (a priori regularizarion) For 0 < p <4, if we choose the regularization parameter

o= a(8) = (§/E)7e

then Ry is uniform order optimal and the following convergence rate@esult holds
5 P2
ae) = bof| < Co7==E3,

(b) (a-posteriori reqularization) If 0 < p < 2, assume that ap is ¢hosen by the Morozov
principle . Then R, ) s uniform order optimal over the setdMe,r, and

~

4005 — Boll < Covrz Erre.

Remark 11. If p = 4v, we obtain the error stated in [7}:

4.4 The classical backward problem

Put By = {w € R: VN < |w| < VN +1}, NEN, krom here, we construct the DFD

for the operator K using the following theorem?:

Theorem 4.3. Let (uy)xen be defined as'in (48]) such that
supp (F) C e R a, < |w| < b,}

where a,,b, are positive constants and where N = (Ap, Ar). Put uyy = F 1 (1p,F(uy)).
Then
(a) (UnN, VAN; FAN) \ez2 ven 15 @ DED for K where

N
Ry N = G_NT, N eN

and vy = m,N.F_l(e|“’|2Tu>\7N) defined as in . Moreover, uy n is tight and DFD quasi
manimal.

(b) 6y € Mag for every 8, € HP(R), where ®(u) = (—Ilnp)™P,p > 0 and E large
enough.

(¢) There egists a 6o >0 such that (0,d0] C U yyeaxn Doun,s for B = e~T. Here we
recall D@ Ny g s defined in (23)).

Remark 12. Using the classical wavelet system as in the previous section, we cannot find
a suitable &). Therefore, it is necessary to construct a suitable DFD system. There are
many ways to construct the system mentioned. However, we use a system that inherits

the classical wavelet system as presented.
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From Theorem [4.3] we obtain the WVD of the operator K. In particular, that is
(UnNs UAN, FAN) yep nven:  Lhis allows us to regularize the inverse problem for the frac-

tional heat equation with the source function ® (\) = (—InA)"P. Using the Tikhonov
1

atp’

form ([I7). The chosen {u,} is a tight frame, so u, = u, and can be rewritten as

NeN AeA

regularization for g, (1) = Then the approximate solution can be written in the

The Assumptions Al, A2, B1, and B2 are shown to hold for the Tikhonov filter

Ja(p) = m and the source function ® () = (—1In p)P, as detailed i the final part of our
paper. From Theorem [3.3] [3.4 and Theorem [3.6] we deduce the fellowing consequence.
~

Theorem 4.4. let (uy n,Ua N, KAN)reA,Nen be as in Theorem and 0y € Mg p where

() = (=Inp)?, p>0.
(a) (a priori regularization) If we choose the regularization parameter o = §/E then

R sy 1s uniform order optimal and the following convergence rate result holds

|0 — 0o]| < CE (- (s /B)) "
L
(b) (a-posteriori reqularization) Let 0 < a* < et and 0 < p <1In(a*)"* — 1. Assume

that ap is chosen by the Morozov principle @) Then R, ) ts uniform order optimal

over the set Mg g, and
1400 (5) — Bafh< OB~ In(5/E))™"

Remark 13. (i) While the system {u, n} is unlikely to satisfy the minimal property, its

DFD quasi minimal nature allows thesapplication of the optimal results from Theorems

and 74 N

(ii) Condition 0 < af < e ' can be mitigated, but since this is just an illustrative

example, we will not go. into the details.

4.5 Numerical simulation

4.5.1 Scheme of simulation

Step 1. Data Generation

We comnsider thefollowing initial value problem:

Ru(x,t) — uge(z,t) =0, z€R, 0<t<T,
u(z,0) = by(x), r € R.

From ([#1)), it readily follows that the solution can be expressed as
Or(z) = F ' (Eya(=|w]?T7) - Foo(w)), ze€R.

28
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In order to facilitate numerical computation, we restrict our attention to functions 6,
exhibiting rapid decay to zero. Given this formulation, our primary focus lies in the
efficient numerical evaluation of the Fourier transform. Let A, B € R with A <aBgand
assume that f(x) = 0 for ¢ (A, B). Define the spatial domain and parameters by

considering the interval [A, B], partitioned into a vector of L evenly spaced points
L
X = [xi]i:h

where x is a vector of length L, with each element z; = A + (i — 1)Adifor i = 1, L, and
the spacing is given by
Ar = B—_A
L—-1
Due to the length of the paper, in the numerical examples, we restrict our consideration
to the case v € (0, 1), specifically v = 0.8 and final time T"= 1 in the tests. Compute
2m

the Fourier transform Ffy(w) and frequencies w; = 22%; (i — Z)or i = 1, L using the

function ft by fft ([I]). Then, define the auxiliary array

z = [Zi]iL:h

where z is a vector of length L, with each element 2; = —TwiPT 7 for i = 1, L. Calculate
the Mittag-Leffler values with MATLAB!sml matrix ({13]) as

Ey. = ml matrix(zyv,1),

where E, is a vector of length L, with each element F., (i) = ml matrix(z;,~,1). Apply-
ing a threshold (107'Y) to avdidinear-zero values, and obtain their element-wise inverses

1
Eval ‘

Eval,inv =
N
The Eyainy is used to compute vy, and vy in Step 2. The solution at time 7' is then

computed by multiplying the characteristic function with the Mittag-Lefler term in the

frequency domain,

Or(zi) = ]:_l(Eml(—\wz”QTv) 'feo(wi»a 1=1,L

and applying thednvetse Fourier transform with ift_by_fft ([1]) to obtain 61 (x). Finally,

adding Gaussian, noise yields the data

05-(z;) = O7(z;) + d*randn(L), i=1,L.
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a. Oo(z) = X[-22(7) b. Oo(x) = x(-1,(2)(1 — |z]) calo(?) = =

Figure 1: Comparison of the exact data f7(x) and its noisy countespart 65.(x) at t = T
with level noise 0 = 0.01, derived from different 0y(z).

Step 2. Wawvelet transform

Let J denote the initial resolution level and J, sethe maximal resolution level employed
in this analysis. We adopt the Daubechies wavelet ©f ordér 4 (db4) with the fixed filter
length M = 8, chosen for its orthogonality and compact support characteristics, which
render it particularly advantageous for Diserete Fourier Decomposition (DFD) within
the framework of ill-posed inverse problems:\The scaling function ¢(x) and the wavelet

function ¢ (x) are rigorously defined by the'following two-scale relations:
M-1 M-1
$x) =V2>  hpd@z —m), ¥(x)=V2)  gn o2z —m),
m=0 m=0

where the sequence {h,, } 25" eomprises the low-pass filter coefficients associated with
o(x), and {g,,}}=} denotes the corresponding high-pass filter coefficients, derived from
{hm} via the relation

gm = <_1)mthlfm> m = 07 M—1.
The wavelet basis functions at scale j and position k are defined by

G* () = 23 §(2w — k), WH(x) = 23 (Px — k),

for Kk = 0,27 —11,7 = J, Jnax where these functions form an orthonormal basis of the
Hilbert space L*(R). These coefficients are available in standard wavelet toolboxes, such
as MATLAB’s wfilters(’db4’) or wavefun functions [3] 29].

According to Theorem the regularized basis functions vy, parametrized by

A ={=Lk): k=0,27 -1}, A:={A=(,k): k=0,2 -1, =J, Jmax}
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1

2

2 are constructed as

5 _ -1

6 o, = K(J) - F 7 ([Bya (= WPT)] - Fo )

7

8 . _ -1

9 U\ = /‘9(]) L F ([E%l( - ‘W‘ZTV)} J‘"W) )

10

1 where x; are given in Theorem Consequently, for each regularization parameter a,

12 the reconstructed initial condition is expressed as

13

14 s 9—-2J -2j

12 up(x) = > m<0T7U/\J> ur, () + m(%ﬂ@ ux(z),
AJEAL AEAS

17

12 where uy, () = ¢M(x),ur(x) = *(z). Now, we proceed to the next, step of optimal

20 regularization.

;; Step 3. Optimal regularization

23 To determine the optimal regularization parameter agp; in acecordance with the Mo-

;‘5‘ rozov discrepancy principle, we select a such that it satisfies theequation

26

i da(ug) = Y (rallmn, )05, va)F + Yofra IMI (07, v P = 79,

29 )\JEAl >\€A2

30 where 7 > 1. Using the obtained a.p, the reconstructed solution is recalculated as

31

32 s 2—2J s 2—2j

33 Ug ot (T) = m(‘%vw UMEESY PR (07, v) ur(z)

34 AsEA,  OP AEAy OPt

35

36 Finally, the L?-norm of the reconstruetion error is computed and reported as

37

38 1/2
39 EI"I"OI'LQ = (Z (90(1‘0 — ugppt(xi)f Al’) y

i

41 N

fé providing a quantitative validation of the regularization method’s effectiveness in address-
44 ing the fractional backward problem.

45

23 4.5.2 Examples

22 This subsectiomshoweases three distinct numerical experiments, each employing a unique
50 initial condition to test the robustness of our regularization framework. We explore a dis-
g; continuousrand non-differentiable characteristic function, a continuous yet non-differentiable
53 triangular function, and a smooth function that is both continuous and differentiable.

gg Test 1.;Weatilize 0y(r) = x[-2,2 (), the characteristic function defined over the inter-
56 val [—2, 2], 4which belongs to L?(R). The effectiveness of the regularization is meticulously
g; evaluatedthrough the error profiles presented in Figures 2.

59

60
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NNNNNNNNN

a. d =102 b. § =10~ c. =106 d. L? error

Figure 2: Comparison of the regularized solutions and exact solutions for the eharacteristic
function at noise levels 6 = 1072,107%,107°, along with their respective,exror plots.

Test 2. We implement a triangular function expressed as@p(x)s= x[-11)(2)(1 — |z])

with the regularization precision quantified by the errorsishowcased’in Figures 3.

i

NNNNNNNNNN

a. d =102 a. 6 =104 a. 0 = 1076 d. L? error

Figure 3: Comparison of regularized solutions and exact solutions for the triangular func-
tion at § = 1072,107%,107% along,with their respective error plots.

Test 3. We employ a smoo{h function defined by y(x) = 1/(1 + z?), and assess the

regularization performanc¢e through the error metrics illustrated in Figures 4.

NNNNNNNNN

a. 6 =102 a. 0 =10"* a. § =106 d. L? error

Figure 4: Comparison of regularized solutions and exact solutions for the smooth function
at 0.= 1072%,107*,107% along with their respective error plots.
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1
2
2 S N U B (S 107 | 1074 | 1079 | 10°6
5 Abs  Re | Abs  Re | Abs Re | Abs Re | Abs Re |  Abs Re
6 1] 1.9992 0.9996 | 1.9696 0.9848 | 0.308684 0.154342 | 0.2003  0.10015 | 0.14793 0.073965 | 0.081661 0.040831
7 2 | 12476 1.5270 | 1.2379 15160 | 0.76031  0.9313 | 0.10276  0.1258 | 0.010454  0.0128 | 0.008208 001016
8 3 | 0.81575 0.6506 | 0.78415 0.6255 | 0.73114  0.5836 | 0.076911 0.06134 | 0.020003 0.01596 | 0.0078846 0.00629
9
10 Table 1: Comparison of the absolute (Abs) and relative (Re) L? errors of the regularized
11 solutions for the three test cases at different noise levels §.
12
13
14 Comment of the Tests: Table [I| has demonstrated that a result of the theory is
12 plausible: the quality of signal recovery directly depends on the smeothness of the sig-
17 nal. The DFD method proved effective across all three scenarios; but the best results
12 were achieved with smooth functions, with slightly poorer performanceior functions with
20 sharp edges or discontinuities. The selection of these three examples served as a relatively
;; comprehensive test, showing that the proposed method not onlynworks under ideal condi-
23 tions (smooth functions) but is also capable of handling more complex signals, which are
;g common in real-world applications.
26 On the other hand, when compared to the total variation method (see [34]), a method
;é developed specifically for reconstructing discontinious eriginal functions, we find that
29 the convergence results are comparable. Conversely, when comparing our results with
2(1) the Tikhonov method (see [36]), the DED method results are similar in the case of
32 smooth functions but significantly improve the results at points of discontinuity and non-
;i smoothness. These comparisons allew_us to affirm that the DFD method improves upon
35 previously published signal recovery results.
36
37
38 5 Proofs
39
p 5.1 Prelimi 1
41 . reliminary leminas
42
43 Lemma 5.1. Let (u,v,k).bé the DFD for the operator K. Then
44
45 t _
(2" un)x = —(y, o)y

46 R
2; Assume in addition that @ is minimal. Then we have
49 5 — 2Y/, .8
50 <xa7u)\>X == I{Aga(|/{)\| )<y av)\>Ya
51 5 5
52 (K, va)y = [ma2ga([Ra*) (", va) v,
5 (Ko, ox)y = I aal?) (s wn)y-
gg Proof. Thesfirst equality is verified in (14)). If u is minimal, since (u,,uy) = J,, for every
57 v, V&, we have
58
59 5 _ 2 5 ~ — 2 1
60 <ZL’a,U)\>X = Zﬁuga(|"{u| )(y 7UV>YUV>U)\ = K'Agoz(|'%/\| )(y 7UA>Y-

vEA
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From (17), (19),(11) we obtain

(K2, v\)y = (22, K v\) x = ra(zd, un) x = [al2ga ([l (@0, va)y,

(Ko, 0))y = (Ta, K*0)) x = 82 (Ta, un)x = [Ka]*ga([82]?) (Y, v2) v
[

Lemma 5.2. Let t € (0,1) and let the function ® satisfy Assumption ATsand O(ph=
pu® (). If @ is concave on (0,a*) then

(i) Ot (1)) < p®(p), for every pu € (0,a*),

(ii) @71 (t?2) > tO~1(2) for every z € (0,a*®(a*)).

Proof. From the definition of the function ©, we have © ! (u®(f)) =®(). The concavity
of the function ® combined with the condition lim,_,o ® (1) =0,implies that t®(u) < O (tu)
for ¢t € [0,1]. Equivalently, ®~(t®(u)) < At. We also have, ©(pu)u= u®~*(u), it follows
that ©(t®(n)) < t*u®(p). Hence, O (#2ud(u)) > tP(w), = 10~ (u®(n)). Putting
z = u®(p), we obtain the desired inequality.

[

5.2 Proof of Theorem [3.3l

Proof. One of the commonly used methods to find a lower bound for the worst-case error

is to compute the modulus of continuity
Q (M, 0) = sup{||zllxe.| z € M A ||Kz||y < 6}.
As is known (see, e.g. [10] B0])we have

AMg 50, R) > Q (Mg g, 0) .

The proof is divided into two steps.

Step 1. Construct an element x, € X,v € A such that z, € [\tuLlelf z, € Mo g
and | Kz, ||y < 6.

Since 0 € gy Das we can find an index v € A such that 0 € D, g. For such the index
v € A, becausge that fione | # 0, we can choose 2, € I | o, such that |2, ]| x = [u|5, B
Setting x, :=\/® (|ry|?) 2y we obtain z, € [\tul,Q\ml' We claim that z, € Mg g and that
Kz, [[y=<0.

We fixst verify that x, € Mg g. In fact, since 2z, L uy for |ky| < |k, | or |ky| > Q|k.],
we ©Obtain

O (k) vy ur) x s i ] < JRal < Qs

0, else.

<CL’,,, U)\>X =
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Hence, using the inequality ®(|x,|?) < ®(|k,|?) for |ky| < |k, | gives

YoR(mP e ux P= 0 Y [@UmP)] TRk (2w

A€A lkw | <|rx|<Qlru|

< Z| ZV7UA>X |2 < |u|sup||zl/||§( S E2‘
A€A

oNOYTULT D WN =

11 Hence, x, € Mg g.

Next, we verify that ||Kz,|y < 4. In fact,

14 9 1

15 1Kz, [ly < WZKK%,’UA NI Z!m\ (2, un) |

inf \ep Vlius AEA

17 K O (|x, |2
. D B[ |:% > ool | )

19 inf AEA inf [w | <]KA|SQlRyfat T

21 <

1
- ‘V| Z’ ZV’u/\ X|2 ‘ 2 QQ’K;VP(D( )|u’supHZVH§(

mf AEA inf

24 N |2 Q*|k|*® (|ku|?) E*.

inf

26 From the definition of D, 5 in and the condition ¢ € D, 3, we obtain

28 0, <6 < 7165 where 6 = [V[ i QEV |k, PB(|r?) = Wi QEVO(D(IkA[?)).  (46)
30 Hence | Kz, |3 < 6% < 62

32 Step 2. Prove the lower bound for 2 (Mo g3d)

Using the constructed x,, we will find a lower bound for 2 (Mg g,d,). Since z, €
35 Mo g, [|[Kz,|| < 0, the definition of O(Ms £, 6) yields

37 Q(Me,p,0) > [[Zallx = vV O(m)lallx = vV Ok ) ulg, B. (47)
39 We will find a lower bound for \/®(|&p}?). From (46, we have

41 O (@ (|6 ) w0,/ QB > V[ 570/ Q*E?.

43 Since the function @ is inereasing we obtain

45 O (s |*) > ©7 (IV[5,8%0%/Q°E?) .

Hence
1 AV B0 R) > QMo z,6) > Blulohy /01 (81v[2,02/Q2E?).
51 Finally, if ©'satisfies the condition then we obtain

53 (v 0% QP E?) >n<ﬁ—> F(IvI0?/E?) .

02
Combining the two latter inequalities with (A7) yields

57 /
52
gg A(M'i) E75 R) > Q<M‘I> E7 > E|u|sup Q2 \/@ ! |V|1nf62/E2)'
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5.3 Proof of Theorem [3.6]

First, with Assumption B2, using the ideas in [33], page 77, we obtain the following results

Lemma 5.3. We denote
ex = mga(|/w| )(y 7UA>Y - K_A@’w)Y'

Then 2%, — ' = >, exli. Moreover, we have

> el + )@ ’) = lly — 112 < (I — K'Kga (K'K)Ja!, 7). (48)
AeA
~
Proof of Lemma [5.3l

Proof. We recall that r,(u) =1 — puga(p). We claim that

(o — 2t w)x P + L)l {[rallma®) (5, va) ¥ (M@ — v, va)y [
< (1= [maPga(lmal) e’ ua) x . (49)

We can write y

1
kx|

= [aaPgalmal®)(y = v, va) v 200 (8 )ra (kA )Re (5° =y, 0a)y (v, va)y

2
lexl” = 5P ga(|EAl) (10 — v uaa=— ra([R2?) (y, va) v |

On the other hand, we have

da(|mal)ra([mal) (0 oz ga ([ oa*)ra (|l — v, vy + (g, oa)y

= ga(\/fAIQ)Ta(|HA’2)(|<Z/6 — gyon)y|* + 2Re (CU(S — ¥, oy (Y, 0n)y + (Y ua)v]?).
Combining two equalities,yields

ra(l%a?)

‘HA’Q ’<y7UA>Y‘2'

[exl” + ga (g (IiAlYY”, vy I = gallmal)y” =y, va)v[* +
Since £(a) = ga(pt) > €()rn (1) we obtain

ga([FalP)ra(lma) (Y’ oy [F = (e ra(lmal?)(y°, vahy %,

ga(lRa) (" =y, o)y [ < L) [(y" =y, i)y .

Hence the inequality holds. Taking the sum of the inequalities with respect
to A € A, we get (48). O

Proof of Theorem [3.6l
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Proof. Let a@ = ap be the regularization parameter chosen by . Using @ and
yields

do(y’) = 7V Bod > 7V Bully = ¢ lly > [ly — ¢l
Hence, from Lemma [5.3| we obtain
1
S leal < ([ - K'Kgo (K'K)| 2!, 21 = || [ra (K'K)]? .. (50)
AEA

Using the triangle inequality gives

Qap() (V) < dape)(¥°) + dape)(y — ¥°) < dapy(¥°) + vV Bolly — v 3

Since @ = ap is a solution of the equation (32)), we deduce that ~

1/2
(zrsznw,me) < VB (- 4% 61)

A€A

We denote

W = (w)\))\EA with wy = [(I)(‘HAIQ)]¥1/2<$T,U,\>X.

Using the definition of Mg g, we obtain |wll; < E. Compﬁting directly yields

H[?”a (K*K)]% ! 2 (ZAEA '([Ta (\/ﬂ|2)]% 9€T,UA>X‘2

e vl = @
|3 w13
_ o Sren o (1a%) @ (Jal’) fr )
Jlw[|3

Applying Lemma for t = ro(p) := 1% pga(p) gives
N
O (ra(1) @ (1)) < pra (1) (). (52)
Combining the convexity. of ©, the Jensen inequality, and the inequality , we obtain

. (erArawﬂmmﬂ% w?) < Daa O () @ (1)) e

PE w13

2 2
2aendfrre (sal”) @ ([5a*) lwal™ _ Doaea loal’ra ([5a*) @ (Kal?) |wa]

Jlw[]3 - w13

Using the latter results, the inequality and the bound of frame u, we can infer that

1 2
* Pl
e GRS 5 ara (maP) st sl Bt + 1782

B w13 Tl

o

(53)

w13
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From the inequality B,A;! > 1 and the definition of the source-set My g, we deduce that
V/BoA (T +1)E > ||lwl|s. Using the monotonicity of &, the relation ®~1(\) = $O(\)
and the estimate (53)), we obtain

N o (KK |||
q)l(rm(K K)| x*nu) oo [N K

U

AIB, (T +1)°E? |3

el )
| o (502 foz lll3
i3 B,(t+1)?*  B,(r+1)%’
B 2 2 - 5.
H [ro (K*K)]"/% 2t [|wl|3 H (o (K*K) 2 I?H
Equivalently,
2
[ra (KK)]2 xTH A2
® u v :
ASIB,(r +1)2E2 | F2
From here, it follows
@
etk A,
- leal? < |l (K'K) 2 a0 A7 Bl 12570 ( 2 ) |

A€A

This estimate and give us the zesult (37)s From Lemma[5.3] we obtain

1/2
> eata|| ©lul (Z w)
X

AEA AEA

< (it VA B. (7 + 1) E/67T (4,57 E?)
< I B, (7 + 1B JO1 (V2,02 E2).

Iz — 2¥l|x =

5.4 Proof of Theorem [4.1]

Proof. (a) (DI} holdssbécause {uy}rea is an orthonormal basis for L?(R). (D3) is also
established by the relationship between {v,} and {u,} shown in (44). Therefore, we only
need to gheck (D2)¢ For each A = (Ap, A\r) € A, we can verify directly that

supp (Fuy) C {w eR:2q, < |w| < 2/\Dbu} _

From here, we deduce that 22*Pa2T7 < |w[> T < 222 PB2T7 for every w € supp (Fuy).

Using the monotonicity property of the function E. ;(z), we obtain
E,1 (—22002T) < B,y (—|w[*T7) < B, 1 (—2%2a2T7) .

38
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This follows that
faBL1 (—222a2T7) < |kaES g (= WP T7)| < maES 1 (—22P02T7).
Moreover, from the inequality , and k) = 272*7 we can deduce
(14 aT) /e < |mES ] (— wf T7)| < (1+82T7)/c. (54)
We recall that {uy} is a frame, this means that for all § € L* (R),

AJIOIF <10, w) | < Bullo)”
AEA
Equivalently, ~

AJIFON* <D [(FO, Fun)? < BJ|FO) (55)
AEA

Taking any 67 € ranK, we show that there are A,, B, satisfying

Allbrl? < Y [0z, ) S BI07IE.

AEA
This is equivalent to proving v
A|FOr))? < Y [(FOmF on) € B, [|For | (56)
AEA

In fact, for every A € A, from ((44))we have
2
|<f8T,F’U)\>|2 — ‘Ii)\E,;i (— |W‘2T7)‘ |<f8T,fu/\>|2 .
Using the inequality , it follows that

AS
(1 +a2T) /)2 [(Flr, Fr)|* < |maB L (— |w]* T7) | |(Fbr, Fuy)?
< (L4 62T) /) |(For, Fu)|?,

for every A € A. Hence;

((1 1@ T0),/2) 7S " [(For, Fun)|* < 3 [(Fr, Fon) |’

AEA AEA

< (1+ 0217/ ST [(For, Fun)l.
AEA

Combining, with , we get

(1 Ha2T7)/2)* A FOr? < S 1(Fbr, Fu)[* < (1 + 8217 /c)’ Bu|lForl*.
AEA

Binally, is proved for A, = ((1+ aiT”)/E}Q A, and B, = ((1+ biT”’)/g)2 B..
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(b) We find the source condition for the solution 6. Naturally, we can assume that
6y € HP(R) for p > 0. Putting

G(\p) = {w € R: 2*7q, < |w| < 27D, }, (57)
we note that supp(uy) C G(Ap). For A = (Ap, Ar), we can write
<90,U)\> <./_"90,./_"U,\ /./—"90 .FU)\ )df

= %/R1G(>\D)(w)f90<§>fu)\(£)d£~

For Ap > 0, using the Bessel inequality yields

~

1 _
> o, un)]* < %HlG(AD)J—:(eo)HQ < 27T NSRS,
AT EZ

where
Wy, = 0,7 [1app) (1 4+ w?PF ().

Hence

Yo D Iml b w) P < D AR Lol

ADEZy AT €EZ ADEZy

Here Z, = {2z € Z:z > 0}. For A\p < 0, we have k), = 1 and
(O83u) = <72 (0o, uy).

Direct computations yields

7> w00 <> 100, un)* < Cllbol 3o )

ApEZ_ Nr€EZ \EZ?
N

Here Z_ = {z € Z : z < 0}. S6 the function 6y € Mg p where ®(u) = p?/? and E is large
enough.

(¢) To obtain the order optimal result, we verify the conditions in Theorem [3.3] We

have 0% = |v| LB/ [sAPR([rA2) = [V|otEy/ Ky = |v]| B2 AP+ Letting 0 < § <
|v|ot E2-3+P) we can choose a \; such that

Tpo—2s(2+p) <6< |V|;%E2—()\5—1)(2+p) — 2(2+p)5;6_

inf

0x; = ¥l

So we have § €{J,cp Dy o-cin -

40
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5.5 Proof of Theorem 4.2

The fact that the function g, satisfies Assumptions A, B, C is a known result. However,
for the convenience of the reader, we will check these assumptions.

(a) We verify that g.(u) = a+ru and ®(p) = pP/? satisfy Assumptions C, Ay, A2
Direct verifying yields that Assumption C holds for g,. The index function,® satisfies

Assumption Al. We verify Assumption A2. We have

VE 2y 2
a4 \/_ va

We verify Assumption A2 (ii). We have

P4
ra(1)|/®() = .

a—+ W

Vitgo(p) =

Put H(u) = S—ﬁ, r € (0,1). We have H'(r) = a%. The function attains its

maximum when (o + p) — p = 0 which gives p =%, "Choeodse r = p/4, we obtain
Assumption A2 (ii) Hence H(u) < Ca”. For p = 4 we have #= 1, H(a) < « which give
Assumption A2 (ii).

(b) We first consider Assumption B1. In fact wé have ro(y) = o > lasa— o
Hence Assumption B1 (i) holds. The funetion g, (.)'is.continuous with respect to o. Hence
Assumption B1 (ii) holds.

We verify Assumption B2. As known, ro (/)= 5. We also have {(«) = sup,,5¢ ga (1) =
L which satisfies Assumption B2 (iii) with £,=¢* = 1. Finally, we verify that the function

® is concave. In fact, we haves®” (1) = (p/2)(p/2 — 1)P/?>~2 < 0 since 0 < p < 2.

5.6 Proof of Theorem 4.3

(a) The proof is divided into threaistéps.
Step 1. Prove that {uxf} is a tight frame over L*(R).
For § € L?(R), we have

(0, un ) — %we),m,m _ %(1%?(9),}"%). (58)

Hence, using/the Parseval equality gives

ZZ|9U,\N == ZZ|13N ), Fup)?

N=0 AeA N 0 AeA

- 2 2 2
= ZHlBN OI" = 7THf( )™= 16117,

This follows that {uy n} is a tight frame.
Step 2. Check to ensure that {uy} is DFD quasi minimal.
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For every (v, Ny) € Z? x N, we choose Q = 1 and

]‘Hu,Nova‘Nu,N()' = I"iu,NO7Q’iu,NO = IENOT,GNOT

={uxn: A€ 72, N € N, RN < e MNT or RAN > e_NOT} = {u, n : NFEWN, }.

We have Fuy y = 15,0 € I,

obtain

Qryn for N # No. Since By N By, = () for N £ Ny, we

v,Ng>»

1
%<1BN¢A, gy ¥") =0 for N # No.

which follows I L

<UA,N7 uV,N0> =

Hence u, n, € I # (. We conclude that {uy v} is

Ky, Ng,@Kv,Ng

DFD quasi minimal.

v,No @Kv, Ny

Step 3. Prove that {v\n} is a frame
We recall Fuyy = ki exp(|w]2T) F(usn) = kalp, exp(|w|>T) F (). It follows that

SN 10 o)’ = % SN [mawe s, FO)Fuy)|?

N=0 \eA N=0 AeA

1 o0
= 5= > lImawe L lLs, FlO)).
N=0

For w € By, we have exp(NT) < exp(|w|*T) <lexp@N'#1YT). Hence, since sy y = e N7
we obtain
1 < ranvexp(Jw[*T) e’ for w € By. (59)

Using gives

o Z e, FO)* < &= Z e T 1, F(O)]? < o0 Z e, FO)I*.

" N=o
But 5= >N o ey F(O)]1? = 5=l F(0)[I2= [|0]]>. Hence {vy n} is a frame.

N
(b) We find the sourcé condition for the solution #y. As in the previous theorem, we
can assume that 6y € HP(R) for p > 0. For (A, N) = (Ap, Ar, N), we can write

1 1 _
(0o, uxinn= %(FQOaFU/O = 2—/ Laop) Ly FOo(§) Fua(§)dE.
R

™

Hence, for Ap >:0, using the Bessel inequality yields

> o, exn) P < [lap Loy Fool* < (14270 a,) 7w}, v
AT EZ

where
wAD,N = HlelBN(l +w2)p]—"90H.

It follows that

> N(Bo, uaw)* < N?[|1a, Ly Fool” < NP(1+ 2P a,) 7wy, v
AT EZL
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On the other hand, we have (0, uy ) # 0 then By NG\, # 0, which gives VN < 2'0p,,.

So we have

Z Np|(6’0,u)\’N)|2 < 22kabip(1 + QZADau)_pw/Q\D’N < bipa;pwiDW.
AT EZ

oNOYTULT D WN =

1? Noting that N = —5=In k3 v, we have N? = (2})1, [®(|rx|?)]! and

13 D @m0, ua ) ® < @T)PbPa ey, v
14 AT€EZ

16 It implies that

o Z D D [@(ma)] T G ua ) < (27) pbz”a*pz > wigh < REEb |60l

20 N=0Ap€Z \r€Z N=0\Ap€eZ

% So we obtain 6y € Mgz where E = (2T)7200an™>||60||%, Bl = (—Inp)~? for p €
23 (0,1).

25 (c) We have |pan| = man = e N, ®(u) = (—Anp)g2. Tefollows that ®(k3 y) =
;? (2NT)7P. Hence, from (23)), we obtain 0} y = V[, By/63 yP(R3 ) = [VIni v/ (2NT)Pe2NT,
28 Hence, for every 6 € (0, dy) where dy = |v|; i1/ (2T) Pex?Tgwe can find Ny € N such that

O Ny <0 <03 ,—1- We note that

03 N1 = [Viuf \/ (2(No = DT)7Pe2MN0 B! V]t v/ (2NoT) Pe=2M0T = €75} .
Hence 5 E [5§7N076_15§\7N0] C U(}\,N)GAXN D()\,N),ﬂ Wlth 5 — e_T.

37 5.7 Proof of Theorem 4.4

39 We verify that g,(n) = # and ®(u) = (—Inp) " satisfy Assumptions C, A1, A2, BI,
41 B2. As shown in the proef ef Theorem [4.2] Assumptions C, B1, B2 hold for g,. The
index function ® satisfies Assumptions Al (i), (ii). Using Theorem 9.1 in [30] gives that
44 the function © is convex on (0300) for p > 0, i.e. Assumptions A1 (iii) holds.

Assumption A2(i).1s Verified in the proof of Theorem [1.2] We verify Assumption A2

47 (ii). We have
49 —Inp)™?
50 [ra(mw)[v/® Py

52 Putting# = o/, we obtain

gg a(—ln,u)*p/2 B 7(In(ra~1))P/?
56 atp T+1 '

58 For ov&r'< /o, n € (0,1), using the inequality z7(In z)"?/2 — 0 as z — 0, we have

60 7(In(ra~1)) P2 < a0 (ra ) (In(Ta™t)) 7P/2

< Ca" < C'(~Ilna) P2
T+1 - T+1 =M= ( na)
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For 7 > y/a we have

r(In(ra~1)) P/

1 < (In(ra )72 < (In(a~Y%))™?/? < Cln(a™t) 772
-

Finally, to apply Theorem|3.6{we show that ®(1) is concave. We have ®'(p) = %(— In ) 7=

and ®"(u) = L (—1In p) P2 (lnp+p+1) < 2(—In )P 2(lna*+p+1) < 0. Hence ®(p)
is concave.
Since Assumptions C, A1, A2, B1 and B2 hold, we obtain the order optimalproperty

of our a priori and a-posteriori regularization.

6 Conclusion

~

The paper has investigated DFD regularizations in both a priori and a-posteriori cases.
For the case where the {u)} system is DFD quasi minimal, we have proved the sequential
order optimality property and the global optimality for DFDiregularizations. Some issues
that need to be investigated in the future are

-Methods of constructing DFDs for ill-posed problems

-Investigation of the relationship between the classical gource condition and the DFD
source condition.

-Investigation of optimality in the case where {ux} is not DFD quasi minimal.

-Find the condition of the DFD singular, value so that the regularization method is
uniformly optimal.
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