
Inverse Problems
     

ACCEPTED MANUSCRIPT

Regularization of inverse problems by filtered diagonal frame
decomposition under general source
To cite this article before publication: Dang Duc Trong et al 2025 Inverse Problems in press https://doi.org/10.1088/1361-6420/ae1998

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar
technologies, are reserved..

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for
reuse under a CC BY-NC-ND 4.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 147.251.163.138 on 01/11/2025 at 12:08

https://doi.org/10.1088/1361-6420/ae1998
https://creativecommons.org/licences/by-nc-nd/4.0
https://doi.org/10.1088/1361-6420/ae1998


Regularization of Inverse Problems by Filtered
Diagonal Frame Decomposition under general source

Dang Duc Trong1,2, Nguyen Dang Minh3, Luu Xuan Thang4, Luu Dang Khoa1,2

October 8, 2025

1 Faculty of Maths and Computer Science, University of Science, Ho Chi Minh City,

Viet Nam.
2 Vietnam National University, Ho Chi Minh City, Viet Nam.
3 Faculty of Fundamental Science, Ho Chi Minh City Open University, Viet Nam.
4 Faculty of Natural Science, University of Khanh Hoa, Viet Nam.

Abstract

This paper addresses the ill-posed inverse problem Kx = y in real or complex
Hilbert settings, where data y is contaminated by noise. We propose regulariza-
tion methods utilizing Diagonal Frame Decomposition (DFD) as a generalization of
SVD-based techniques to achieve stable solutions. Our approach introduces a reg-
ularization solution through filter-based methods, and we establish comprehensive
theoretical results on convergence rates and optimality under a generalized source
condition. These findings are applied to the fractional backward problem, specif-
ically examining DFD system construction, relationships between DFD and SVD
singular values, and extending existing source conditions for optimal regularization
in polynomially and exponentially ill-posed scenarios.

Key words: Ill-posed problem; frame decomposition; convergence rates; Inverse prob-

lem.
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1 Introduction

Let X and Y be real or complex Hilbert spaces, and let K : X → Y be a bounded linear

operator. In this paper, we seek a solution x ∈ X to the inverse problem defined by the

operator equation

Kx = y. (1)

As is customary, we assume that the exact data y is unavailable, and instead, we are given

noisy data yδ with a known noise level δ. Specifically, the noise satisfies

∥yδ − y∥Y ≤ δ. (2)

0Corresponding author: Nguyen Dang Minh, minh.nd@ou.edu.vn
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Due to the inherent instability of inverse problems, even a small perturbation in the data

can lead to significant errors in the solution, rendering the numerical computation of

solutions to the inverse problem challenging. To address this issue, we employ a regular-

ization method for the system defined by equations (1) and (2). One such regularization

approach, based on filtering techniques, has been thoroughly developed in [23] and [10].

In this context, K is assumed to be a compact operator possessing a singular system

(uk, vk, σk). Consequently, K admits a singular value decomposition (SVD) of the form

Kx =
∞∑
k=1

σk⟨x, uk⟩Xvk,

where the symbols σk denote the singular values, and uk and vk are singular functions

satisfying

Kuk = σkvk and K∗vk = σkuk. (3)

It is well known that the SVD is a fundamental tool for solving inverse problems. The

minimum-norm least-squares solution x† to equation (1) is then given by the Picard

formula

x† := K‡y :=
∞∑
k=1

⟨y, vk⟩Y
σk

uk,

provided the Picard condition holds:

∞∑
k=1

|⟨y, vk⟩Y |2

σ2
k

<∞.

When the exact data y is replaced by the noisy data yδ with a given noise level δ, the

approximate solution takes the form

xδα := Rαy
δ :=

∞∑
k=1

σkgα(σ
2
k)⟨yδ, vk⟩Y uk, (4)

where α > 0. We define gα as the filter function, which has the property gα(λ) → 1/λ as

α → 0 (see, e.g., [10, 25, 23, 26, 33]). In this context,Rα serves as a regularization operator

for equation (1). Furthermore, the convergence rate and optimality of this regularization

are analyzed under the classical source condition x† = φ(K∗K)z for some z ∈ X (see,

e.g., [18, 30]). Recently, Hofmann et al. introduced the concept of the variational source

condition (VSC) as an alternative to the classical source condition (see [17]). However,

these investigations fall outside the scope of this paper, so we do not delve deeper into

them.

Computing the SVD of an operator is often nontrivial and, in certain cases, compu-

tationally expensive, as noted by Ebner, Göppel, and Donoho et al. in [7], [14], and [5],

respectively. Additionally, SVD-based regularization may not be well-suited for a variety

of problems, as highlighted by Donoho in [5]. Thus, developing more efficient computa-

tional methods becomes essential. One approach is to identify a system that partially
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satisfies the SVD conditions in (3). A notable development in this direction retains the

second condition, i.e., K∗vλ = κλuλ, where λ belongs to a countable index set Λ. This

concept underpins the Wavelet-Vaguelette Decomposition (WVD) in [5], and more gener-

ally, the Diagonal Frame Decomposition (DFD) in [7], as well as the Translation-Invariant

DFD (TI-DFD) in [14]. By leveraging frame theory, such generalizations enable the con-

struction of an expansion analogous to the Picard formula, suggesting that regularization

methods tailored to this framework hold significant potential. This topic has only been

developed in the last few years, and related papers are still very rare. Among them, we

would like to introduce two papers: [7] and [21]. In particular, the recent paper [21]

contains many ideas that can be further developed. Our paper is inspired by [7, 21] and

the closely related book [10]. Therefore, we frequently reference these documents in our

discussions.

To regularize the solution of (2) in the DFD setting, numerous methods have been

proposed. Specifically, learned filter methods are employed in [9], while the ℓ1 -Tikhonov

method is presented in [11]. Furthermore, in [12], the authors developed sparse reg-

ularization through operator-adapted frame thresholding. Even with the emergence of

these very new methods, the filter function approach remains an active area of research.

A generalized filter-based formulation was proposed by Ebner and Haltmeier (see [8])

in which the coefficient σ−1
k ⟨y, vk⟩Y in the Picard formula is replaced by the filter term

κ−1
λ φα(κλ, ⟨yδ, vλ⟩Y ) which could be nonlinear with respect to ⟨yδ, vλ⟩Y . Indeed, in [7], the

authors reformulate foundational concepts for DFD-based regularization filtering, akin to

the SVD filtering presented in [10]. The quantity κλ is not a singular value. Therefore,

it is generally not bound by the condition κλ > 0, and we can typically assume κλ is

a complex number. For the scope of this paper, we will limit our discussion to linear

filter-based methods where φα(κλ, ⟨yδ, vλ⟩Y ) is a linear function of ⟨yδ, vλ⟩Y (see, e.g.,

[7, 21, 19, 20, 28, 35]).

To estimate regularization errors in the linear filter-based method, the aforementioned

papers (specifically paper [7]) adapt the SVD source condition, assuming the solution

belongs to a DFD-type source set with a polynomial (or Hölder) form:

M :=

{
x ∈ X : ⟨x, uλ⟩X = κ2µλ wλ ∀λ ∈ Λ and

∑
λ∈Λ

|wλ|2 ≤ ρ2

}
, (5)

where µ, ρ > 0 and (uλ, vλ, κλ) constitutes a DFD of the operator K. A similarly modified

source condition for complex scenarios appears in [21], where the authors explore the

optimality of a-posteriori regularization methods. The framework developed in [7, 21]

opens up numerous application possibilities. As this theory is still emerging, several

natural questions arise:

(i) How can DFD systems be constructed for a specific operator K?

(ii) What is the relationship between the DFD singular values κλ and the SVD singular

3
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values σk? How do these quasi-singular values influence the regularization of ill-posed

problems?

(iii) To what extent can the regularization theory for polynomial DFD source con-

ditions be generalized to include non-polynomial forms, specifically logarithmic source

conditions for complex scenarios?

(iv) How does the DFD source condition relate to the classical source condition?

(v) Do a priori and a-posteriori regularization methods achieve optimality?

Question (i) is particularly compelling and has been extensively explored in the field

of tomography (see [7, 21, 28]), photoacoustic tomography ([11, 12]), atmospheric tomog-

raphy ([19, 35]). This problem exhibits polynomial ill-posedness, where WVD systems

prove effective. In Section 4 of this paper, we examine the backward fractional problem,

considering two scenarios: polynomial ill-posedness and exponential ill-posedness. In the

latter case, the WVD system appears inadequate, prompting us to propose a specialized

DFD system.

The investigation of Question (ii) remains in its early stages. In [7, 21], it is limited

to assessing the ill-posedness of the problem Kx = y. Our paper advances this inquiry by

exploring the “sparseness” or “thickness” of the DFD singular values κλ through the set

Dλ,β = [δ∗λ, β
−1δ∗λ], where δ∗λ ≍

√
|κλ|2Φ(|κλ|2),

with Φ referred to as a source function (detailed in the subsequent paragraphs). This

set facilitates assertions regarding the sequential or uniform optimality of regularization

methods. A new DFD quasi-minimal property is also proposed by us to ease the mini-

mality requirement of frames in certain scenarios.

Motivated by question (iii), we must devise a method for constructing the filter func-

tion and defining the source function that allows for adapting classical regularization

theory to the complex framework. We first consider the ideas to construct a general filter

function. From Picard’s formula, to stabilize the solution, common ideas are of using the

relation 1/σk ≈ σkgα(σ
2
k), where gα(λ) → 1/λ as α → 0+. Hubmer et al. [21] use a similar

idea for the case where σk > 0 is replaced by κλ ∈ C: they substitute 1/κλ by κλgα(κ
2
λ),

where gα : C → C satisfies gα(λ) → 1/λ as α → 0+. This definition works perfectly well

for the case when κλ is a positive real number. However, when κλ is a complex number,

SVD filter functions - such as the Tikhonov filter, Landweber filter - are difficult to apply

directly. Thus, an approach to constructing filter functions is required to directly apply

classical SVD filters to the complex scenario. This paper aims to accomplish this.

Subsequently, we explore generalizations of the source function definition. In [21], the

authors used the source set (5) corresponding with the source function φ(µ) = µν . As

with the filter function, this power source function is well-defined if µ is a non-negative

real number. However, if µ is a complex number, then µν is a multi-valued function,

making it difficult to define the function well and to extend it to other functions like the

4
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logarithm in complex framework. To overcome this difficulty, we revisit the SVD source

function in [7, 21]. This function is defined on (0,∞), and we can write µν = |µ|ν for every
µ > 0. The two formulas are equivalent when µ is a non-negative real number. However,

the latter formula seems more suitable for generalizing to complex µ, since, as discussed,

µν is then a multi-valued function with respect to µ. To address this, rather than selecting

the general source function φ : C → C, we will restrict our focus to functions of the form

φ(µ) = Φ(|µ|), where Φ : (0,∞) → (0,∞) is a positive real-valued function. Using this

idea, we extend the results of [21] (and [7]) to a DFD source set defined by a general

source function, rather than a polynomial one. Specifically, for a positive constant E,

MΦ,E :=

{
x ∈ X :

∑
λ∈Λ

[Φ(|κλ|2)]−1|⟨x, uλ⟩X |2 ≤ E2

}
, (6)

where the “source” function Φ satisfies conditions detailed in subsequent assumptions.

Such conditions naturally arise in ill-posed problems, such as tomography with Φ(µ) =

|µ|2ν or the backward problem with Φ(µ) = (− ln |µ|)−p (see subsequent sections). This

topic merits further attention, and in Subsection 4.4 of our paper, we study the latter

index function Φ.

To address Question (iv), we present two examples demonstrating that the classical

source condition can suffice to derive the DFD source condition. These examples illustrate

the connection between classical and DFD source conditions, though these findings are

preliminary and warrant deeper investigation in future work.

Question (v) is thoroughly explored in this paper. Investigations into this topic can

be found in [7, 11, 21]. In [11], the authors studied the optimal problem with a source

condition in Besov spaces. Similarly, a spectral source condition was the subject of study

in both [7] and [21]. Inspired by Hubmer et al.’s work [21], which assessed the optimal

convergence rates of a-posteriori regularization under a polynomial source condition, our

paper addresses a significant gap: the optimal a-posteriori convergence rates for non-

polynomial source conditions have not yet been investigated. To assess the optimality

of the regularizations, we extended the findings of [7] and derived a lower bound on the

worst-case error for the general source function. Our proof refined the condition that

the frame be minimal. We instead demonstrated the results for frames satisfying a more

general property, provisionally termed DFD quasi-minimal. Moreover, we enhance the

existing analysis by specifically addressing a-posteriori strategies, a gap left by [7, 21] and

[14]. We further refine the classification of optimality properties, distinguishing between

sequential order optimality (as noted in [7, 21]) and global order optimality, the latter of

which has not been previously explored.

Structurally, Section 2 provides a review of foundational results on frames and intro-

duces the concept of optimal regularization. Section 3 is dedicated to the paper’s core

findings, encompassing lower bounds for the modulus of continuity of K−1 on the set

5
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MΦ,E, along with convergence rates for both a priori and a-posteriori parameter selec-

tions. Section 4 illustrates these theoretical findings through specific examples and their

corresponding numerical experiments. Finally, Section 5 contains the long and technical

proofs of the main results.

2 Some basic notions and notations

2.1 Notions of frames

For z ∈ C, we denote its conjugate by z, its modulus by |z| and its real part by Re z.

We also have the equality |z1 ± z2|2 = |z1|2 ± 2Re z1z2 + |z2|2. Letting Λ be an at most

countable set of indices, we denote

l2(Λ) =

{
a = (aλ)λ∈Λ : aλ ∈ C,

∑
λ∈Λ

|aλ|2 <∞

}

with the norm ∥a∥2 =
(∑

λ∈Λ |aλ|2
)1/2

.

Before delving into the specific content of the article, we would like to recall some

results about frames in a Hilbert space H. These results can be found in [2], [7], and [21].

For convenience, let us introduce the definition of a frame

Definition 1. A sequence w = {wλ}λ∈Λ in a Hilbert subspace H ⊂ H is called a frame

over H, if and only if there exist frame bounds 0 < Aw, Bw ∈ R such that for all x ∈ H
there holds

Aw ∥x∥2H ≤
∑
λ∈Λ

|⟨x,wλ⟩H|2 ≤ Bw ∥x∥2H . (7)

If wλ0 ̸∈ span{wλ}λ̸=λ0
for every λ0 ∈ Λ then we say that the frame is minimal.

From now on, we denote ∥x∥w :=
√∑

λ∈Λ |⟨x,wλ⟩H|2 for every x ∈ H and

|w|inf = inf{∥x∥w : x ∈ H and ∥x∥H = 1},

|w|sup = sup{∥x∥w : x ∈ H and ∥x∥H = 1}.

If |w|inf = |w|sup, we say that the frame is tight and denote |w|fr := |w|sup = |w|inf .

From the definition, we have 0 <
√
Aw ≤ |w|inf ≤ |w|sup ≤

√
Bw and

|w|inf∥x∥H ≤ ∥x∥w ≤ |w|sup∥x∥H (8)

for every x ∈ H. For x′ ∈ H, we have

∥x′∥2w =
∑
λ∈Λ

|⟨PHx
′, wλ⟩H|2 ≤ |w|sup ∥PHx

′∥2H ≤ |w|sup ∥x′∥2H . (9)

6
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Here PH is the orthogonal projection on H. For a given frame {wλ}λ∈Λ , one can define

the frame analysis operator F as below

F : H → l2 (Λ) , x 7→ {⟨x,wλ⟩H}λ∈Λ ,

and, the synthesis operator F ∗, which is given by

F ∗ : l2 (Λ) → H, (aλ)λ∈Λ 7→
∑
λ∈Λ

aλwλ.

From the inequality (7), there holds√
Aw ≤ ∥F∥ = ∥F ∗∥ ≤

√
Bw.

We can define the operator S := F ∗F , that is,

Sx :=
∑
λ∈Λ

⟨x,wλ⟩Hwλ.

It is worth noting that, in this case, the operator S is a bounded, linear, and invertible

operator. Specifically, AwI ≤ S ≤ BwI and B−1
w I ≤ S−1 ≤ A−1

w I. Therefore, if we set

w̃λ := S−1wλ, w̃ = {w̃λ}λ∈Λ, then

B−1
w ∥x∥2H ≤ ∥x∥2w̃ ≤ A−1

w ∥x∥2H

for every x ∈ H. Consequently, the set {w̃λ}λ∈Λ is also a frame over H. As we know,

it is referred to as the dual frame of {wk}k∈N. In that case, the analysis and synthesis

operators of this frame are as follows. The analysis operator F̃ is defined as below

F̃ : H → l2 (Λ) , x 7→ {⟨x, w̃λ⟩H}λ∈Λ

and, the synthesis operator F̃ ∗, which is given by

F̃ ∗ : l2 (Λ) → H, {aλ}λ∈Λ 7→
∑
λ∈Λ

aλw̃λ.

From the inequalities (7), (8) there also holds√
B−1

w ≤ |w|−1
sup ≤ ∥F̃∥ = ∥F̃ ∗∥ ≤ |w|−1

inf ≤
√
A−1

w .

It follows that ∥∥∥∥∥∑
λ∈Λ

aλw̃λ

∥∥∥∥∥
H

= ∥F̃ ∗({aλ})∥H ≤ |w|−1
inf

(∑
λ∈Λ

|aλ|2
)1/2

. (10)

Moreover, it can also be proved that F̃ ∗F = F ∗F̃ = I, and thus, for any x ∈ H, it can

always be expressed as x =
∑

λ∈Λ xλw̃λ where xλ = ⟨x,wλ⟩H+aλ with a = (aλ) ∈ N(F̃ ∗).

Especially, we have

x =
∑
λ∈Λ

⟨x,wλ⟩Hw̃λ. (11)

7
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Generally, the calculation of w̃λ is only easy in some special cases. In fact, if {wλ} is

tight then w̃λ = 1
|w|fr

wλ (see, e.g., [2], chap. 5). In general, we always have {0} ⊂

N (F ∗) = N
(
F̃ ∗
)
, and therefore, the representation of x in (11) is not unique. However,

this representation is considered the most economical according to [21]. From [7], we have

known that the frame {w̃λ} is the biorthonormal sequence of {wλ}, i.e. ⟨wλ, w̃ν⟩H = δλν for

λ, ν ∈ Λ, is equivalent to {wλ} being minimal. In this case, we have xλ = ⟨x,wλ⟩H and the

expansion (11) is unique. Next, we recall the definition of diagonal frame decomposition

(see, e.g., [21]).

Definition 2. Let K : X → Y be a bounded linear operator, and Λ is an at most countable

index set. We define (u,v,κ) = (uλ, vλ, κλ)λ∈Λ as a diagonal frame decomposition (DFD)

for the operator K if the following conditions hold

(D1) {uλ}λ∈Λ is a frame over (kerK)⊥ ⊂ X.

(D2) {vλ}λ∈Λ is a frame over ranK ⊂ Y .

(D3) (κλ)λ∈Λ ∈ (C \ {0})Λ satisfies the quasi-singular relations

K∗vλ = κλuλ, for all λ ∈ Λ.

The κλ values are called the DFD singular values.

Remark 1. We can replace conditions (D1), (D2) with

(D1)’ {uλ}λ∈Λ is a frame over X0,

(D2)’ {vλ}λ∈Λ is a frame over Y0.

Here X0 and Y0 are (closed) subspaces of Hilbert spaces X and Y , respectively, such that

(kerK)⊥ ⊂ X0 and ranK ⊂ Y0. If the frames are chosen in this manner, κλ may be

equal to 0. As suggested in [21], utilizing conditions (D1)’ and (D2)’ often allows for

the selection of more manageable frames {uλ} and {vλ}, thereby significantly streamlining

the computational procedure. A detailed discussion regarding this concept is available for

readers in [21].

For h : R → [0,∞), x ∈ X, we define

⟨h(K∗K)x, x⟩u =
∑
λ∈Λ

h(|κλ|2)|⟨x, uλ⟩Y |2.

From (D1), (D2) we can find numbers Au, Av, Bu, Bv > 0 such that

Au∥w∥2X ≤ ∥w∥2u ≤ Bu∥w∥2X ,∀w ∈ (kerK)⊥, (12)

Av∥z∥2Y ≤ ∥z∥2v ≤ Bv∥z∥2Y ,∀z ∈ ranK. (13)

From now on, we always denote by a∗ an extended real number such that a∗ > supλ |κλ|2

if supλ |κλ|2 <∞ and a∗ = ∞ if supλ |κλ|2 = ∞.

8
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2.2 Notions of the worst case error and optimality

Consider the problem (1) and denote the Moore-Penrose operator

K‡(z) = argmin{∥h∥X : h ∈ X, z ∈ ranK,K(h) = z}.

We denote the Moore-Penrose solution of (1) by x† = K‡y. Let an operator R : Y → X

satisfy Ry ≈ x. We say that R is an approximation method of the problem (1). Assume

that the solution x† of (1) belongs to a subset M ⊂ X, we recall the definition of the

worst-case error of the method R on M as below.

∆(M, δ,R) := sup
{
∥Ryδ − x†∥Y : x† ∈ M ∧ yδ ∈ Y ∧ ∥Kx† − yδ∥Y ≤ δ

}
.

Worst-case error holds a vital role in optimal regularization theory. Many regularization

techniques involve a regularization parameter that balances data fidelity with solution

stability. The worst-case error framework helps in making an informed choice of this pa-

rameter. You can analyze how the worst-case error behaves as this parameter changes,

allowing you to select a value that minimizes the maximum possible error, thereby yielding

the most robust and accurate solution given the input uncertainties. Many classical refer-

ences discuss worst-case error (see, [10, 18, 25, 26, 30, 33]). In this paper, we extensively

refer to the worst-case error from [7] and [33]. Drawing on the aforementioned worst-case

error concept, the previously mentioned documents provide the following definition for

the optimality of an approximation method:

Definition 3. We say that the method Ropt : Y → X is optimal on M if ∆(M, δ,Ropt) =

infR∆(M, δ,R) and Ropt : Y → X is order optimal on M if there is a constant c > 0

independent of δ such that ∆(M, δ,Ropt) ≤ c infR∆(M, δ,R).

In our paper, we choose M = MΦ,E defined in (6) and R is in a regularization method.

To assist our readers, we will now recall the concept of regularization method. Let Rα :

Y → X, α > 0, be a family of bounded operators and let α∗ : (0, α0) × Y → (0,∞). As

in [7, 10], we say that (Rα, α
∗) is a regularization method if

lim sup
δ→0+

{α∗(δ, yδ) : yδ ∈ Y ∧ ∥yδ − y∥Y ≤ δ} = 0,

lim sup
δ→0+

{∥K‡y −Rα∗(δ,yδ)∥X : yδ ∈ Y ∧ ∥yδ − y∥Y ≤ δ} = 0.

The quantities α and α∗ are called the regularization parameter and the admissible pa-

rameter choice respectively. In the framework, our goal of finding Ropt now reduces to

determining the parameter α∗ that optimizes ∆(MΦ,E, δ,Rα). Inspired by the classical

optimal regularization theory ([30, 33]), we can classify the order optimality for our prob-

lem.
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Definition 4. Let M ⊂ X. We say that the regularization method (Rα, α
∗) is

(a) sequential order optimal on M if there is a sequence δn → 0+ such that there exists

a constant c > 0 independent of n such that ∆(M, δn,Rα∗(δn,yδn )) ≤ c infR ∆(M, δn,R),

(b) uniform order optimal on M if there is a δ0 and a constant c independent of δ

such that ∆(M, δ,Rα∗(δ,yδ)) ≤ c infR ∆(M, δ,R) for every δ ∈ (0, δ0).

Sequential optimal regularization is studied in the recent papers [7, 14, 21], but uni-

formly optimal regularizations have not been discussed yet.

3 Main results

In this section, we aim to provide an overview of the main results of the paper. Therefore,

only a few brief proofs will be presented immediately after the theorem statements. The-

orems without immediate proofs are those with lengthy and technically involved proofs.

These proofs will be deferred to the final section.

3.1 Pointwise convergence

Let (u,v,κ) be a DFD for K and y be as in (1), we have

⟨y, vλ⟩Y = ⟨Kx†, vλ⟩Y = ⟨x†,K∗vλ⟩X = ⟨x†, κλuλ⟩X = κλ⟨x†, uλ⟩X for λ ∈ Λ. (14)

Hence, from the expansion (11), the Moore-Penrose solution of (1) has the expansion

x† := K‡y =
∑
λ∈Λ

1

κλ
⟨y, vλ⟩Y ũλ. (15)

The expansion implies that y ∈ domK‡ if and only if
∑

λ

∣∣∣ ⟨y,vλ⟩Yκλ

∣∣∣2 <∞.

Remark 2. (i) If {uλ} is tight then we obtain

x† := K‡y =
∑
λ∈Λ

1

κλ|u|fr
⟨y, vλ⟩Y uλ.

(ii) If {uλ} is a frame over the whole X then the latter equation can be replaced by

x† := K‡y =
∑

λ∈Λ,κλ ̸=0

1

κλ
⟨y, vλ⟩Y ũλ.

The stability of solution (15) depends on the infimum of {|κλ|}. In fact we have

Theorem 3.1. Let (uλ, vλ, κλ)λ∈Λ be a DFD as in Definition 2. We have the equivalence

of the following two conditions:

(i) infλ∈Λ |κλ| > 0,

(ii) the operator K‡ : ranK → X is bounded and

inf
λ∈Λ

∥vλ∥Y
∥uλ∥X

> 0. (16)

10

Page 10 of 47AUTHOR SUBMITTED MANUSCRIPT - IP-104922.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Remark 3. Our result constitutes an advancement upon those established by [7]. The

condition that ∥vλ∥Y is bounded below implies the condition 16. Specifically, since (uλ)

is a frame, we have ∥uλ∥4X = |⟨uλ, uλ⟩|2X ≤ |u|2sup∥uλ∥2X . It follows that ∥uλ∥X ≤ |u|sup.
Consequently, if infλ∈Λ ∥vλ∥Y > 0, then

inf
λ∈Λ

∥vλ∥Y
∥uλ∥X

≥ infλ∈Λ ∥vλ∥Y
supλ∈Λ ∥uλ∥X

> 0.

Proof. (i) ⇒ (ii) : If infκλ∈Λ |κλ| ≥ κ0 > 0 then we obtain, in view of (10), that

∥K‡h∥X =

∥∥∥∥∥∑
λ∈Λ

1

κλ
⟨h, vλ⟩Y ũλ

∥∥∥∥∥
X

≤ 1

κ0|u|inf

(∑
λ∈Λ

|⟨h, vλ⟩Y |2
)1/2

≤ |v|sup
κ0|u|inf

∥h∥Y

for every h ∈ ranK, i.e., the operator K‡ : ranK → X is bounded. From the condition

(D3) of the DFD, we have

∥K∗∥.∥vλ∥Y ≥ ∥uλ∥X inf
λ∈Λ

|κλ|.

It follows that

inf
λ∈Λ

∥vλ∥Y
∥uλ∥X

≥ 1

∥K∗∥
inf
λ∈Λ

|κλ| > 0.

(ii) ⇒ (i) : We verify that ranK = ranK. Choosing y0 ∈ ranK, we can find yn ∈ ranK

such that limn→∞ ∥yn − y0∥Y = 0. Denote xn = K‡yn. We have

∥xn − xm∥X = ∥K‡(yn − ym)∥X ≤ ∥K‡∥.∥yn − ym∥Y .

Because (yn) converges in ranK , the latter inequality implies that (xn) converges to an

element x0 in (kerK)⊥. We can deduce that Kx0 = y0, i.e. y0 ∈ ranK.

Since ranK = ranK, the operator K : (kerK)⊥ → ranK is bijective. Here the restric-

tion of the operator K to (kerK)⊥ is still denoted by K. We deduce that K−1 = K‡ :

ranK → (kerK)⊥ is bounded. Hence we have κλ(K
‡)∗uλ = vλ which implies

|κλ|.∥(K‡)∗∥.∥uλ∥X ≥ ∥vλ∥Y .

It follows that

inf
λ∈Λ

|κλ| ≥ ∥(K‡)∗∥−1 inf
λ∈Λ

∥vλ∥Y
∥uλ∥X

> 0.

This completes the proof of Theorem 3.1.

If infλ∈Λ |κλ| = 0, the solution x† of equation (15) can be unstable. As mentioned in

Introduction, we present here the idea to obtain our filter functions. Suggested by the

equation (15), we can rewrite

x† := K‡y =
∑
λ∈Λ

κλ
|κλ|2

⟨y, vλ⟩Y ũλ.
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Hence, we just need to choose a real function gα : (0,∞) → R such that gα(µ) → 1/µ as

α → 0+ to be a filter function. Building the latter ideas, and the framework of (4), we

construct a filtered regularization of the form

xδα := Rαy
δ =

∑
λ∈Λ

κλgα(|κλ|2)⟨yδ, vλ⟩Y ũλ (17)

where {ũλ}λ∈Λ is the dual frame of {uλ}λ∈Λ. This regularization formula is entirely

compatible with the complex framework and allows us to use SVD regularization principles

for this new improvement. The functions gα : [0, a∗) → R will be chosen as standard filter

functions (see, e.g., [10, 18, 23, 25, 30, 33]) that satisfy

Assumption C

(C1) For all α > 0, µ ∈ [0, a∗):
√
µgα (µ) <∞,

(C2) There exists a constant Cg > 0 such that sup{|µgα (µ)| : α > 0, 0 ≤ µ < a∗} ≤ Cg,

(C3) For all µ ∈ (0, a∗) there holds limα→0 µgα (µ) = 1.

To illustrate, we can list the three commonly used filtering functions as such:

gα(µ) =


(α + µ)−1 Tikhonov filter,

µ−1χ[α,∞)(µ) Truncated filter,

µ−1(1− (1− τµ)1/α) Landweber filter,

where 0 < τa∗ < 1 (see, e.g., [10, 23, 25, 33]) and χ[α,∞)(µ) = 1 if µ ≥ α, χ[α,∞)(µ) = 0 if

µ < α. For the sake of conciseness in the expressions, we will introduce common notations

(see, e.g., [21, 33]) in the definition below.

Definition 5. We denote rα(µ) = 1−µgα(µ), ρ(α) = supµ∈(0,a∗) rα(µ), ℓ(α) = supµ∈(0,a∗) gα(µ),

L(α) = supµ∈(0,a∗)
√
µgα(µ) and

dα(h) =

(∑
λ∈Λ

(rα(|κλ|2))2|⟨h, vλ⟩Y |2
)1/2

for every h ∈ Y.

From Assumption C2, we obtain 0 ≤ ρ(α) ≤ max{Cg, 1}. For convenience, we show

here some properties of the function dα. We note that dα satisfies the triangle inequality

dα(h+ z) ≤ dα(h) + dα(z) for every h, z ∈ Y . Moreover,

dα(h) ≤ ρ(α)|v|sup∥h∥Y ≤ ρ(α)
√
Bv∥h∥Y ≤ max{Cg, 1}

√
Bv∥h∥Y for h ∈ Y. (18)

The inequality can be verified briefly as follows

dα(h)
2 =

∑
λ∈Λ

rα(|κλ|2)2|⟨h, vλ⟩Y |2 ≤ ρ2(α)
∑
λ∈Λ

|⟨h, vλ⟩Y |2 ≤ ρ2(α)|v|2sup∥h∥2Y .

As shown in [7], we have
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Theorem 3.2. Let Assumption C and (2) hold. If

α(δ) → 0 and δL(α(δ)) → 0 as δ → 0+,

then limδ→0+ ∥xδα(δ) − x†∥X = 0.

Remark 4. Using Assumption C, we have L(α) =
√
gα(µ)

√
µgα(µ) ≤

√
Cg

√
ℓ(α).

Hence, if δ
√
ℓ(α) → 0 (condition in [21]) then δL(δ) → 0 (condition in [7]) as δ → 0.

Thus, we employ a condition analogous to the one found in [7].

The proof of Theorem 3.2 could be seen in [7, 21]. For the convenience of our readers,

however, we will provide the main ideas of the proof here.

Proof. In line with (17), the regularization solution for equation (1) with noiseless data

is given by:

xα := Rαy =
∑
λ∈Λ

κλgα
(
|κλ|2

)
⟨y, vλ⟩Y ũλ. (19)

The triangle inequality yields

∥xδα − x†∥X ≤ ∥xδα − xα∥X + ∥xα − x†∥X . (20)

For the first term on the right hand side, using (19) and (17) gives

∥xδα − xα∥X =

∥∥∥∥∥∑
λ∈Λ

κλgα
(
|κλ|2

)
⟨yδ − y, vλ⟩Y ũλ

∥∥∥∥∥
X

.

From (12) and (9), the inequality (10) yields

∥xδα − xα∥X ≤ 1√
Au

(∑
λ∈Λ

sup
λ

(
|κλ|2g2α

(
|κλ|2

)) ∣∣⟨yδ − y, vλ⟩Y
∣∣2) 1

2

≤ L(α)√
Au

(∑
λ∈Λ

∣∣⟨yδ − y, vλ⟩Y
∣∣2) 1

2

≤
√
Bv

Au

L(α)∥yδ − y∥Y ≤
√
Bv

Au

δL(α). (21)

For the last term in (20), using (15), (19), it follows that

∥xα − x†∥X =

∥∥∥∥∥∑
λ∈Λ

(
|κλ|2gα

(
|κλ|2

)
− 1
)
⟨x†, uλ⟩X ũλ

∥∥∥∥∥
X

≤ 1√
Au

(∑
λ∈Λ

∣∣rα (|κλ|2)∣∣2 ∣∣⟨x†, uλ⟩X∣∣2)
1
2

. (22)

Here the function rα(µ) is defined in (5). From (21) and (22), using the Lebesgue domi-

nated convergence theorem, we can obtain our result.
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3.2 Lower bound of worst case error

To assess the optimality of an approximation method, our initial thought is often to

directly compute ∆inf(M, δ) := infR∆(M, δ,R), where R : Y → X represents any

approximation method. However, this calculation is infeasible because R can be any

mapping-linear or nonlinear-that we simply cannot control.

Therefore, we need a different approach. For suggestions, we can draw upon concepts

within an SVD framework (see, e.g., [10, 23, 30]). If we can identify a function Ψ(δ)

such that CΨ(δ) ≤ ∆inf(M, δ) (for some constant C > 0), and subsequently find an

approximation method R∗ : Y → X where ∆(M, δ, R∗) ≤ C ′Ψ(δ) (for another constant

C ′ > 0), this establishes the following relationship:

CΨ(δ) ≤ ∆inf(M, δ) ≤ ∆(M, δ, R∗) ≤ C ′Ψ(δ).

In this scenario, we can prove that R∗ is order optimal. Building on this idea, we will

evaluate the optimality of the proposed regularization Rα by first finding a lower bound

for the worst-case error. This will be crucial for proving the optimality of the DFD-based

regularization method over the source set MΦ,E in later theorems. It also provides a basis

for choosing appropriate regularization parameters.

Similar to [18, 30], we shall consider the computation of the worst-case error of the

regularization operator Rα : Y → X in the source set MΦ,E with the function Φ satisfying

Assumption A1. Function Φ : (0, a∗) → (0,∞) is continuous and satisfies the following

conditions

(i) limµ→0 Φ (µ) = 0,

(ii) Function Φ is strictly increasing on (0, a∗),

(iii) Function Θ : (0,Φ (a∗)] → (0, a∗Φ (a∗)], given by Θ (µ) = µΦ−1 (µ), is convex.

Here we denote Φ(a∗) = limµ→a∗− Φ(µ). As demonstrated by the optimal approach in the

SVD context, the function Θ(µ) = µΦ−1(µ) is crucial in optimal regularization theory

for inverse problems. It helps determine the optimal regularization parameter α by link-

ing it to the smoothness of the true solution (represented by Φ) and the problem’s SVD

structure (represented by µ). This function balances data fidelity (≍ δ/
√
α) and solution

regularity (≍
√

Φ(α)), often appearing in analyses of optimal convergence rates (see the

proof of Theorem 3.4). Furthermore, Θ is used to represent lower bounds of regulariza-

tions, providing theoretical limits on the achievable accuracy. This function is extensively

discussed in numerous papers on optimal regularization, such as those by [18, 30] and

the references therein. Key properties of this function include its monotonicity and the

identity Θ(Φ(z)) = zΦ(z), which highlights its fundamental relationship with the function

Φ and the spectral parameter µ. Deriving from the results in an SVD context, we can

infer that the lower bound we are looking for is of the form ≍
√

Θ−1(Cδ2).
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Even when utilizing tools as found within an SVD framework, it remains challenging

to establish a lower bound result for the worst-case error. This difficulty arises because the

frames do not possess characteristics analogous to the eigenvectors of the SVD system.

While [7] achieved this by assuming the strong condition that the frame u is minimal

(which consequently guarantees a biorthogonal sequence ũ = (ũλ)λ with ⟨uλ, ũν⟩ = δλν ,

for all λ, ν ∈ Λ), our paper endeavors to reduce the restrictiveness of this condition. In

fact, we define a new kind of frames

Definition 6. Let (uλ, vλ, κλ) be a DFD frame of K : X → Y . For m∗,m
∗ ∈ R such that

0 < m∗ ≤ m∗, we denote Im∗,m∗ = {uλ : |κλ| < m∗ or |κλ| > m∗}. If there is a constant

Q ≥ 1 such that I⊥|κλ|,Q|κλ| ̸= {0} for every λ ∈ Λ then we say that the frame u = (uλ)λ∈Λ

is DFD quasi minimal (with respect to Q).

Remark 5. (i) If u is minimal then u is DFD quasi minimal with respect to Q = 1. In

fact, for every λ0 ∈ Λ, we have uλ0 ̸∈ span{uλ : λ ̸= λ0}. Choose Q = 1, I|κλ0
|,|κλ0

| = {uλ :

|κλ| ̸= |κλ0|} ⊂ {uλ : λ ̸= λ0}. Hence I⊥|κλ0
|,|κλ0

| ⊃ {uλ : λ ̸= λ0}⊥ ̸= {0}.
(ii) There are many frames that are DFD quasi minimal but not minimal. Later in the

paper, we will demonstrate such an example. Nevertheless, for the reader’s convenience,

we also offer a straightforward example here. We choose X = Y = ℓ2(N), ek = (δjk)j∈N.

For x = (xj)j∈N we denote K(x) =
(

xj√
j+1

)
j∈N

. Choose

u = (e0, e0, e1, e1, e2, e2, . . .) ,

v = (e0, e0, e1, e1, e2, e2, . . .) ,

κ =

(
1, 1,

1√
2
,
1√
2
,
1√
3
,
1√
3
, . . .

)
.

It is clear that u is not minimal. Moreover, I⊥
(j+1)−1/2,(j+1)−1/2 ⊃ {ej} for all j ∈ N. Hence,

u is DFD quasi minimal with respect to Q = 1.

From the tools previously mentioned, we can derive a lower bound result that is

comparable to the one in SVD theory [18, 30]. In fact, we have

Theorem 3.3. Let δ0 > 0, δ ∈ (0, δ0), β ∈ (0, 1), Q ≥ 1, let (u,v,κ) be a DFD of K and

let the source sets MΦ,E define by (6) . Put

Dλ,β = [δ∗λ, β
−1δ∗λ], where δ∗λ = |vinf |−1QE

√
|κλ|2Φ(|κλ|2). (23)

Assume that

(a) infλ∈Λ |κλ| = 0,

(b) u is DFD quasi minimal with respect to Q.

If δ ∈
⋃

λ∈ΛDλ,β then

inf
R

∆(MΦ,E, δ,R) ≥ |u|−1
supE

√
Θ−1

(
β2|v|2infδ2
Q2E2

)
. (24)
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In addition, if Θ satisfies the condition

inf
0<µ<a∗Φ(a∗)

Θ−1(cµ)

Θ−1(µ)
:= η(c) > 0 for every c ∈ (0, 1), (25)

then

inf
R

∆(MΦ,E, δ,R) ≥

√
η

(
β2

Q2

)
|u|−1

supE

√
Θ−1

(
|v|2infδ2
E2

)
. (26)

Especially, if (0, δ0] ⊂
⋃

λ∈ΛDλ,β then (24) holds for every 0 < δ ≤ δ0.

The proof of this theorem involves many technical details and is quite lengthy, so we

are moving it to Section 5. This theorem serves as a criterion for determining the order

optimality of regularizations, so we will have a bit more commentary on it.

Remark 6. (i) The condition that the system {uλ} is DFD quasi minimal is essential

in the proof of the theorem. The investigation of the lower bound when {uλ} is not DFD

quasi minimal is a worthy topic of study.

(ii) To show that an approximation method R : Y → X is order-optimal, we only need

to verify that

∆(MΦ,E, δ,R) ≤ CE
√

Θ−1 (β2|v|2infδ2/Q2E2).

(iii) In fact, we can prove that infR∆(MΦ,E, δ,R) ≥
√
B−1

u E
√
Θ−1 (β2Avδ2/Q2E2)

for all Bu, Av satisfy (12), (13). Since

|u|−1
supE

√
Θ−1 (β2|v|2infδ2/Q2E2) ≥

√
B−1

u E
√

Θ−1 (β2Avδ2/Q2E2),

our lower bound is better.

(iv) In [7], to obtain the lower bound of the worst case error, the authors choose

δ = δλ =
√
A−1

v Eκ2ν+1
λ . The case that the mentioned paper examines corresponds to

considering the source function Φ(µ) = µ2ν, Q = 1. In this case, we have µΦ(µ) = µ2ν+1

and δλ =
√
A−1

v E
√

|κλ|2Φ(|κλ|2). For β =
√
Av/|v|inf , since

√
Av ≤ |v|inf , we have

0 < β ≤ 1 and δ∗λ ≤ δλ ≤ β−1δ∗λ which gives δλ ∈
⋃

λ∈ΛDλ,β. Hence, the inequality (26)

hold for the chosen sequence (δλ)λ∈Λ.

(v) As shown in classical optimal regularization theory ([30, 33]), the optimal property

is not true if the singular values of the operator K are too sparse, e.g., limn→∞ σn+1/σn =

0. The distribution of the singular values affects the classification of the optimization

types. Similarly, the optimal result depends on the distribution of δ∗λ. In fact, we have

(0, δ0) ⊂
⋃

β>0

⋃
λ∈ΛDλ,β. If (0, δ0) ̸⊂

⋃
λ∈ΛDλ,β for every β > 0 then the distribution of

δ∗λ is very sparse. In this case, the lower bound may be valid for only some subsequences

of δλ.

(vi) Note that, in the case of Hölder-type source condition, i.e., Φ (µ) = µ2ν, µ, ν > 0,

then Θ−1(µ) = µ
2ν

2ν+1 . For c ∈ (0, 1), we have

Θ−1(cµ)

Θ−1(µ)
= c

2ν
2ν+1 > 0,
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i.e., the condition (25) holds in this case. Specifically, we have Θ−1 (|v|infδ2/E2) =

|v|
2ν

2ν+1

inf δ
4ν

2ν+1E
−4ν
2ν+1 . So we get that

inf
R

∆(MΦ,E, δ,R) ≥
(
β

Q

) 2ν
2ν+1 |v|

ν
2ν+1

inf

|u|sup
δ

2ν
2ν+1E

1
2ν+1 .

A similar lower bound is stated in Theorem 3.11 in [7] with δ is in the sequence (δλ)λ∈Λ

as in Remark (ii).

(vii) In some problems, we have the logarithmic source condition Φ(µ) = (− lnµ)−p,

p > 0. Direct computation yields Θ(µ) = µe−µ−1/(2p)
and

√
Θ−1(µ) = Φ(µ)(1+ o(1)) (see,

e.g., [18]). So

inf
R

∆(MΦ,E, δ,R) ≥
√
B−1

u E

(
ln

(
Q2E2

|v|2infβ2δ2

))−p

(1 + o(1)).

Since
Θ−1(cµ)

Θ−1(µ)
≍ Φ2(cµ)

Φ2(µ)

µ→0+−→ 1

we can verify directly the condition (25) of Θ to obtain a similar form of the inequality

(26).

(viii) If Φ is concave then Lemma 5.2 implies that

Θ−1(cµ)

Θ−1(µ)
≥

√
c for c ∈ (0, 1),

i.e., the condition (25) holds.

3.3 Convergence rate and a priori parameter choice

Returning to the main content of this article, to extend the results of Ebner and colleagues

[7] from a polynomial source set to a more general source set, we consider the source

function Φ as in the definition of the set MΦ,E defined in (6). Next, we investigate issues

such as the lower bound of the worst-case error, convergence rate in both the choice of a

priori and a-posteriori parameters.

Our initial focus is on the convergence rate of regularization when selecting a priori

parameters. Achieving optimal order estimates necessitates the following assumptions for

the source function Φ and the filter function gα, which parallel those found within the

SVD framework (see, e.g., [26, 33]).

Assumption A2. There are constants γ1, γ2 > 0 such that

(i) sup0≤µ<a∗

∣∣√µgα(µ)∣∣ ≤ γ1√
α
,

(ii) sup0≤µ<a∗ |rα(µ)|
√

Φ(µ) ≤ γ2
√

Φ(α).

From Assumption A2, we derive convergence rates which give order optimal estimates

on the reconstruction error
∥∥xδα − x†

∥∥
X
.
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Theorem 3.4. Let Av ∈ (0, |v|2inf). For (u,v,κ) being a DFD of K, with ũ as a dual

frame of u and x† ∈ MΦ,E. In this case, if we choose the regularization parameter as

α(δ) = α∗ (δ, yδ) := Φ−1 ◦Θ−1
(
Avδ

2/E2
)
, (27)

then the following convergence rate result holds:∥∥xδα(δ) − x†
∥∥
X
≤
√
A−1

u A−1
v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2), (28)

where Au, Bv are bounds of u and v, respectively, and γ1, γ2 are constants as in Assump-

tion A2. From the inequality (28) we obtain

∆(MΦ,E, δ, Rα(δ)) ≤
√
A−1

u A−1
v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2),

where Rα is defined in (17). Moreover,

(a) If u is DFD quasi minimal and Θ satisfies the condition (25) then Rα(δ) is sequen-

tial order optimal.

(b) For a fixed β ∈ (0, 1), if u is DFD quasi minimal, Θ satisfies (25) and (0, δ0] ⊂⋃
λ∈ΛDλ,β, then Rα(δ) is uniform order optimal. Here Dλ,β is defined in (23).

Remark 7. (i) Note that, for Φ (µ) = µ2ν with ν > 0, our result aligns with Theorem 3.8

in [7] and Theorem 2.5 in [21].

(ii) In the case of polynomial and logarithmic sources, the concave condition of Φ can

be relaxed.

(iii) Calculating the exact number |v|inf is not easy. Therefore, choosing Av as in the

theorem will make the calculation of α(δ) more feasible. However, if Av is small, the

error will contain A−1
v and so will be large. Therefore, Av should be chosen such that

β|v|inf ≤ Av ≤ |v|inf .

Proof. From the triangle inequality, for xα defined in (19), we have

∥xδα − x†∥X ≤ ∥xδα − xα∥X + ∥xα − x†∥X . (29)

For the first term on the right hand side, using (21) and Assumption A2 (i) gives

∥xδα − xα∥X ≤ γ1
√
BvA−1

u

δ√
α
. (30)

Denote ωλ =
√

Φ(|κλ|2)−1⟨x†, uλ⟩X . For the last term in (29), combining (15) and (19),

we obtain

∥xα − x†∥X ≤ 1√
Au

(∑
λ∈Λ

∣∣1− |κλ|2gα
(
|κλ|2

)∣∣2 ∣∣⟨x†, uλ⟩X∣∣2)
1
2

≤ 1√
Au

(∑
λ∈Λ

∣∣1− |κλ|2gα
(
|κλ|2

)∣∣2 ∣∣∣√Φ (|κλ|2)ωλ

∣∣∣2) 1
2

≤ γ2√
Au

√
Φ (α)

(∑
λ∈Λ

|ωλ|2
) 1

2

≤ γ2√
Au

√
Φ (α)E. (31)
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The third line is obtained from Assumption A2 (ii) and the condition x† ∈ MΦ,E.

Combining (30) and (31) yields

∥xδα − x†∥X ≤ γ1
√
BvA−1

u

δ√
α
+

γ2√
Au

√
Φ (α)E.

Based on the parameter choice (27), the regularization parameter is selected as α =

α∗ (δ, yδ) = Φ−1 ◦ Θ−1 (Avδ
2/E2). This implies that Φ (α) = Θ−1 (Avδ

2/E2). From the

latter equality, it follows that Θ (Φ (α)) = Avδ
2/E2, which yields δ2 = A−1

v E2Θ(Φ (α)).

In combination with Assumption A1 (iii), we obtain that

δ√
α

=

√
δ2

α
=

√
A−1

v E2Θ(Φ (α))

α
=
√
A−1

v E2Φ (α) = E
√
A−1

v Θ−1 (Avδ2/E2).

Hence, we get that

∥xδα − x†∥X ≤ γ1
√
A−1

u

√
A−1

v

√
BvE

√
Θ−1 (Avδ2/E2) +

γ2√
Au

E
√

Θ−1 (Avδ2/E2)

=
√
A−1

u

√
A−1

v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (Avδ2/E2)

≤
√
A−1

u

√
A−1

v

(
γ1
√
Bv + γ2

√
Av

)
E
√

Θ−1 (|v|2infδ2/E2).

The above estimate completes the proof.

3.4 A-posteriori parameter choice

In this subsection, we present the results of the discrepancy between the exact solution and

the regularized solution. To achieve this, a preliminary idea to accomplish this is to apply

the Morozov discrepancy principle, which involves considering the equation ∥Kxδα−yδ∥Y =

τδ where τ > 1. However, calculating ∥Kxδα − yδ∥Y is computationally intensive because

it requires knowing {ũλ}, {vλ}. Therefore, we will try to find an alternative formula. We

have

∥Kxδα − yδ∥2Y = ∥Kxδα − PranKy
δ∥2Y + ∥P

ranK
⊥yδ∥2Y .

We know that ∥P
ranK

⊥yδ∥Y ≤ ∥yδ − y∥Y ≤ δ and

|v|−1
sup

∑
λ∈Λ

|⟨Kxδα−PranKy
δ, vλ⟩Y |2 ≤ ∥Kxδα−PranKy

δ∥2Y ≤ |v|−1
inf

∑
λ∈Λ

|⟨Kxδα−PranKy
δ, vλ⟩Y |2.

For better insight, we will examine the special case where the frame {uλ} is minimal and

satisfies ⟨uν , ũλ⟩ = δνλ for all λ, ν ∈ Λ. Using Lemma 5.1 (see Section 5) yields

⟨Kxδα − PranKy
δ, vλ⟩Y = ⟨Kxδα − yδ, vλ⟩Y = ⟨Kxδα, vλ⟩Y − ⟨yδ, vλ⟩Y

= (|κλ|2gα(|κλ|2)− 1)⟨yδ, vλ⟩Y = −rα(|κλ|2)⟨yδ, vλ⟩Y .

Hence ∑
λ∈Λ

|⟨Kxδα − PranKy
δ, vλ⟩Y |2 =

∑
λ∈Λ

(rα(|κλ|2))2|⟨yδ, vλ⟩Y |2 = dα(y
δ)2.
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From the above suggestions (see also [21]), we will use the expression dα(y
δ) (defined

in Definition 5) to replace ∥Kxδα − yδ∥Y , even if u is not minimal. Specifically, the

regularization parameter α is selected based on the Morozov principle [26], which provides

a criterion for choosing α by solving the equation

dα(y
δ) = τ

√
Bvδ with τ > 1. (32)

Let’s additionally assume that the function gα satisfies the following Assumption B1.

Assumption B1. The function gα : (0, a∗] → (0,∞) satisfies

(i) limα→(a∗)− rα(µ) = ρ(µ) ≥ ρ > 0 for a ρ > 0, and for each µ ∈ [0, a∗),

(ii) gαn(µ) → gα(µ) for αn → α > 0 and for every µ ∈ [0, a∗).

Theorem 3.5. Let τ > 1, δ > 0, Kx† = y ∈ Y , y ̸= 0 and Assumptions C and B1 hold.

Assume that

0 < τ
√
Bvδ < ρ

√
Av∥PrankKy

δ∥Y . (33)

Then, there exists a constant αD(δ) such that the equation (32) holds. In addition, if

τ > max{Cg, 1} and we have the following assumptions:

(a) rα(µ) ̸= 0 for every α > 0, µ ∈ (0, a∗],

(b) there are a Cp > 0 and an α0 > 0 such that

ℓ(α) sup
µ∈(a,a∗)

(rα(µ))
2µΦ(µ) ≤ Cp for every 0 < α ≤ α0

and

lim
α→0+

ℓ(α)(rα(µ))
2µΦ(µ) = 0 for every µ ∈ (0, a∗),

then ∥xδαD(δ)−x†∥X → 0 as δ → 0+. Here, as defined in Definition 5, ℓ(α) = supµ∈(0,a∗) gα(µ).

Remark 8. (i) Since limδ→0 τ
√
Bvδ = 0, limδ→0 ρ

√
Av∥PrankKy

δ∥Y = ∥y∥Y > 0, the

condition (33) holds for every δ small enough.

(ii) For convenience of calculation, we can choose the parameter α such that dα(y
δ) ≥

τ ′
√
Bvδ for τ ′ > 1. Putting τ =

√
B−1

v dα(y
δ), we obtain the equation dα(y

δ) = τ
√
Bvδ

and τ > τ ′ > 1.

(iii) Numerous filters satisfy the assumption (a), particularly those for which the filter

function gα strictly decreases as the variable α increases (e.g., Tikhonov and Landweber

filters). In stark contrast, truncation filters, unexpectedly, do not satisfy this condition.

Although investigating this phenomenon is compelling, a comprehensive exploration lies

outside the purview of the current discussion.

(iv) To obtain optimal results under a polynomial source condition, the authors in [21]

made use of assumptions

|rα(µ)| ≤ C
αν+1/2

µν+1/2
, ℓ(α) ≤ cα−1, Φ(µ) = µ2ν , c, C, ν, µ > 0. (34)
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In this case, we have

ℓ(α)(rα(µ))
2µΦ(µ) ≤ cCα−1α

2ν+1

µ2ν+1
µµ2ν = cα2ν for all µ ∈ (0, a∗).

Hence, the assumption (b) holds. This shows that our condition is encompassed by the

condition in [21]. Therefore, to prove the convergence (without requiring optimality) of

the a-posteriori method, our relaxed condition can be used.

Proof. We know that under the conditions (i) - (ii) of Assumption B1, the function dα(y)

is continuous with respect to α and has the following results:

lim
α→0

dα(y
δ) = 0 and lim

α→(a∗)−
dα(y

δ) ≥ ρ

(∑
λ

∣∣⟨yδ, vλ⟩Y ∣∣2)
1
2

. (35)

On the other hand,

0 < τ
√
Bvδ < ρ

√
Av∥PranKy

δ∥Y ≤ ρ

(∑
λ

∣∣⟨yδ, vλ⟩Y ∣∣2)
1
2

. (36)

Therefore, under Assumption B1 and (35), the equation (32) has a solution α = αD(δ).

We consider the second part of the theorem. To this end, in view of Theorem 3.2, we

have to verify

lim
δ→0+

αD(δ) = 0, lim
δ→0

δ
√
ℓ(αD(δ)) = 0.

Step 1. Prove that αD(δ) → 0 as δ → 0+.

For a proof by contradiction, suppose there is a sequence {δn} such that δn → 0 and

αD(δn) → α∗ > 0. We have

dαD(δ)(y) ≤ dαD(δ)(y
δ) + dαD(δ)(y − yδ) ≤ Cδ.

Since dαD(δn)(y
δn) = τ

√
Bvδn, letting n→ ∞, we obtain dα∗(y) = 0, i.e.,∑

λ∈Λ

rα∗(|κλ|2)2|⟨y, vλ⟩Y |2 = 0.

From the assumption (a), one has rα∗(|κλ|2) ̸= 0 for all λ ∈ Λ, and thus |⟨y, vλ⟩| = 0

for every λ ∈ Λ. Since y ∈ ranK, we obtain y = 0, a contradiction. Hence, we have

limδ→0+ αD(δ) = 0.

Step 2. Prove that limδ→0+ δ
√
ℓ(αD(δ)) = 0.

In this step, we will write αD(δ) as αD for brevity. Using Lemma 5.1 and the condition

x† ∈ MΦ,E yields√
ℓ(αD)dαD

(y) =
∑
λ∈Λ

ℓ(αD)(rαD
(|κλ|2))2|⟨y, vλ⟩Y |2

=
∑
λ∈Λ

ℓ(αD)(rαD
(|κλ|2))2|κλ|2Φ(|κλ|2).[Φ(|κλ|2)]−1

∣∣∣∣⟨y, vλ⟩Yκλ

∣∣∣∣2
≤ Cp

∑
λ∈Λ

[Φ(|κλ|2)]−1

∣∣∣∣⟨y, vλ⟩Yκλ

∣∣∣∣2 = Cp

∑
λ∈Λ

[Φ(|κλ|2)]−1
∣∣⟨x†, uλ⟩X∣∣2 ≤ CpE.
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Hence, using (b) and the Lebesgue dominated convergence theorem gives limδ→0+ ℓ(α)dαD(δ)(y) =

0. On the other hand, from the triangle inequality and (18), we obtain

dαD
(y) ≥ dαD

(yδ)− dαD
(yδ − g) ≥ (τ

√
Bv −max{Cg, 1}|v|sup)δ

≥ (τ −max{Cg, 1})
√
Bvδ.

It follows that

0 ≤ (τ −max{Cg, 1})
√
Bvδ

√
ℓ(αD(δ)) ≤

√
ℓ(αD(δ))dαD(δ)(y) → 0 as δ → 0+

Hence limδ→0+ δ
√
ℓ(αD(δ)) = 0. Applying Theorem 3.2 and Remark 4 gives

∥xδαD(δ) − x†∥X → 0 as δ → 0+.

Next, we will introduce some additional conditions, inspired by [33], page 75. These

assumptions are crucial for establishing the theoretical results that follow, particularly

regarding the optimality and convergence rates of our regularization method.

Assumption B2. The function gα : (0, a∗] → R satisfies

(i) gα(µ) ≥ 0,

(ii) 0 ≤ rα(µ) ≤ gα(µ)
ℓ(α)

with ℓ(α) := sup0≤µ≤a∗ gα(µ),

(iii) ℓ∗
α
≤ ℓ(α) ≤ ℓ∗

α
with constants ℓ∗, ℓ

∗ > 0.

Conditions on the filter function gα are fundamental in the analysis of a-posteriori reg-

ularization methods. They are crucial for proving convergence rates and deriving error

estimates. Similarly, in the work by Hubmer et al. [21], the authors also utilized a

comparable condition (see Remark 9 (ii) below).

With these critical assumptions in place, particularly Assumption B2 regarding the

filter function gα, we can now establish key properties of our regularization approach.

The following theorem provides a bound for the error ∥xδα − x†∥X and demonstrates the

optimality of the a-posteriori choice rule for the regularization parameter αD(δ).

Theorem 3.6. Let (u,v,κ) be a DFD for the operator K. With MΦ,E defined as in (6)

and Assumption A1 simultaneously satisfying that xδα is the approximate regularization

solution as in (17) with gα satisfying Assumption B2. Moreover, assuming Assumption

B1, (36) is satisfied, and αD(δ) is chosen by the Morozov principle (32). If the function

Φ is concave, then

∥xδαD(δ) − x†∥X ≤ |u|−1
inf

√
A−1

u Bu(τ + 1)E
√
Θ−1 (|v|2infδ2/E2), (37)

where Au, Bu are bounds of frame u. Hence, if, in addition, the frame {uλ} is DFD quasi

optimal then
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(i) RαD(δ) is sequential order optimal over the set MΦ,E.

(ii) Moreover, if there exists β ∈ (0, 1) and a δ0 > 0 such that (0, δ0] ⊂
⋃

λ∈ΛDλ,β

then the regularization method RαD(δ) is uniform order optimal. Here we recall that Dλ,β

defined in (23).

Due to the specialized nature and length of this theorem’s proof, we have moved it to

Section 5 to maintain a coherent flow in the main presentation. Note that our result will

be as in Theorem 2.7 in [21] if the source function Φ is replaced by polynomial function.

Remark 9. (i) While Tikhonov filter is shown to satisfy Assumption B2 (as verified later

in this paper), truncated filtering fails to meet this condition. Nevertheless, by adjusting

the truncated filter to use gα(µ) =
1

max{α,µ} , we can derive a filter that fulfills Assumption

B2.

(ii) In the framework of polynomial source functions, the conditions provided by [21] of-

fer an alternative to our Assumption B2 (see (34)). Notably, their assumption is expressed

in terms of the source function, contrasting with our filter-centric approach. Further, a

compelling direction for future work is to generalize the assumptions from [21] to cover

the arbitrary source function case.

(iii) Just as in Remark 7, we will illustrate that Assumption (b) in Theorem 3.5 relaxes

Assumption B2 when the filter function gα(µ) is strictly decreasing with respect to µ. This

will prove that the condition in Theorem 3.5 is sensible if optimal rate is not demanded.

In fact, if Assumption A2 (i) and Assumption B2 (ii), (iii) hold then

ℓ(α)(rα(µ))
2µΦ(µ) ≤ ℓ(α)

(
gα(µ)

ℓ(α)

)2

µΦ(µ) ≤ γ21Φ(µ)
1

αℓ(α)
≤ γ21Φ(a

∗)ℓ−1
∗ .

With the limit in Assumption (b) in Theorem 3.5, it is more difficult to verify. However,

if gα is a strictly decreasing function of the variable µ (e.g., Tikhonov and Landweber

filters), then we can check this condition. In this case, put µα = g−1
α (

√
α) then we have

limα→0+ µα = 0. Moreover

ℓ(α)(rα(µ))
2µΦ(µ) ≤

γ21Φ(µα)ℓ
−1
∗ , µ ≥ µα,

√
αa∗Φ(a∗)ℓ−1

∗ , 0 < µ < µα.

Hence, limα→0+ ℓ(α)(rα(µ))
2µΦ(µ) = 0 for every µ ∈ (0, a∗). In the case where a∗ = ∞,

the evaluations remain feasible if we alter the condition in Theorem 3.5 slightly. Never-

theless, we will not delve into the specifics of this issue.

4 Illustrative problems

In this Section, to provide a clear overview of the theory’s application, we will consolidate

all proofs into the final Section.
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4.1 Statement of the problems

We give an example to illustrate our results in previous section. For γ ∈ (0, 1], we consider

the fractional heat equation

∂γt u(x, t)− uxx(x, t) = 0, x ∈ R, 0 < t < T. (38)

Here

∂γt f(t) :=

 1
Γ(1−γ)

∫ t

0
(t− τ)−γ df

dτ
(τ)dτ, 0 < γ < 1,

df
dt
, γ = 1,

and Γ(z) =
∫∞
0
tz−1e−tdt is the Gamma function. The equation (38) is vital across diverse

fields. They are used in image processing (denoising, restoration), finance (option pric-

ing, volatility), medical imaging (tomography), environmental modeling (pollutant source

identification), and material science (parameter identification, non-destructive testing)

(see, e.g., [6, 16, 22, 27, 32]).

In this part, we consider the backward problems which aim to find initial conditions

from future observations. They are crucial for understanding system history but are ill-

posed, meaning solutions can be unstable, non-existent, or non-unique. This ill-posedness,

especially with fractional time derivatives modeling anomalous diffusion, presents signif-

icant inverse problem challenges that necessitate specialized regularization techniques.

Specifically, we find the solution at the initial time u(x, 0) = θ0(x) knowing that u(x, t)

satisfies the equation (38) subject to the final condition

u(x, T ) = θT (x), x ∈ R. (39)

Similar to the condition (2), we have to consider the problem (38)-(39) with the

unknown exact data θT replaced by noisy data θδT satisfying

∥θδT − θT∥ ≤ δ.

Fractional backward problems have been a very active area of research in recent years

(consult [4, 24, 34] and the references within it). Our paper’s presentation of fractional

backward problems will provide illustrations of the polynomial and non-polynomial source

conditions previously discussed in the theoretical part.

4.2 The ill-posed nature and Operator form of the problem

We can use the Fourier transform to solve the equation (38). Here, we recall that the

Fourier transform of a function f(x), x ∈ R, is defined as Ff(ω) =
∫
R f(x)e

−iω.xdx. We

denote the inner product of f, g in L2(R) by ⟨f, g⟩ =
∫
R f(x)g(x)dx and the L2(R)-norm

by ∥f∥ =
√

⟨f, f⟩. We also define the Hilbert scales by

Hp(R) =
{
f ∈ L2(R) :

∫
R
(1 + |ω|2)p|Ff(ω)|2dω <∞

}
.
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Taking the Fourier transform of both sides of (38) yields

∂γt Fu(ω, t) + ω2Fu(ω, t) = 0.

Solving the fractional differential equation (see, [15, 27]) gives Fu(ω, t) = Eγ,1(−ω2tγ)Fu(ω, 0)
where Eγ,1(z), z ∈ C is the Mittag-Leffler function

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, E1,1(z) = ez.

Using the Fourier form of the solution formula, we get

FθT (ω) = Eγ,1

(
− |ω|2 T γ

)
Fθ0 (ω) , ω ∈ R. (40)

Equation (40) will be employed to discuss the ill-posedness of the problem. In fact, we

can rewrite (40) as

Fθ0 (ω) = E−1
γ,1

(
− |ω|2 T γ

)
FθT (ω) , ω ∈ R. (41)

We first consider the case 0 < γ < 1. From [15, 31], for 0 < γ < 1, there are constants

c, c̃, 0 < c < c̃, such that

c

1 + |z|
≤ |Eγ,1 (z)| ≤

c̃

1 + |z|
, for z < 0. (42)

Consequently, the factor E−1
γ,1(−|ω|2T γ) has a polynomial behavior as ω → ∞ of order

|ω|2. This leads to instability as |ω| increases. Next, for γ = 1, the factor E−1
γ,1(−|ω|2T γ) =

e|ω|
2T . The exponential growth of this factor leads to severe instability as |ω| is large. In

conclusion, the problem is polynomially ill-posed for γ ∈ (0, 1) and exponentially ill-posed

for γ = 1, with these two types of ill-posedness being fundamentally different in nature.

Therefore, suitable DFD regularization methods need to be developed for each.

Throughout the rest of this subsection, we will introduce the operator form of the

problem and explicitly show how vλ is represented in terms of uλ in this particular case.

From (40), we can write Kθ0 = θT where K : L2(R) → L2(R),

Kh = F−1((Eγ,1(−|ω|2T γ))Fh) for every h ∈ L2(R). (43)

By the definition of K, we claim that K∗ = K. In fact, we have

⟨Kh, v0⟩ =
1

2π
⟨FKh,Fv0⟩ =

1

2π
⟨Eγ,1

(
− |ω|2 T γ

)
Fh,Fv0⟩

=
1

2π
⟨Fθ0, Eγ,1

(
− |ω|2 T γ

)
Fv0⟩ =

1

2π
⟨Fh,Eγ,1

(
− |ω|2 T γ

)
Fv0⟩

= ⟨h,Kv0⟩ for every h, v0 ∈ L2(R).

It follows that K∗ = K. Now, we suppose (uλ, vλ, κλ)λ∈Λ is a DFD system of the operator

K on L2 (R). Since K∗ = K, we obtain

FK∗vλ = FKvλ = [Eγ,1(−|ω|2T γ)]Fvλ.

From the definition, we have K∗vλ = κλuλ. Combining two latter equations yields

Fvλ = κλ[Eγ,1(−|ω|2T γ)]−1Fuλ. (44)
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4.3 The fractional backward problem

We consider the case γ ∈ (0, 1). Denote the L2(R)-wavelet orthonormal basis by ψj,k (x) =

2j/2ψ (2jx− k) , (j, k) ∈ Z2, where ψ is a mother wavelet (see, e.g., [2, 3]). Put Λ = Z2,

λ = (λD, λT ) ∈ Z2. We consider the wavelet orthonormal basis uλ in L2(R) in the form

uλ(x) = ψλ(x), ∀λ = (λD, λT ) ∈ Λ, x ∈ R. (45)

From here, we construct the DFD for the operator K using the following theorem.

Theorem 4.1. Let (uλ)λ∈Λ be defined as in (45) such that supp (Fψ) ⊂ {ω ∈ R : au ≤ |ω| ≤ bu}
where au, bu be positive constants. Then

(a) (uλ, vλ, κλ)λ∈Z2 be a DFD for K where

κλ =

2−2λD , for λD ≥ 1,

1, for λD < 1,

and vλ = κλF−1([Eγ,1(−|ω|2T γ)]−1Fψλ).

(b) θ0 ∈ MΦ,E for every θ0 ∈ Hp(R) (p ≥ 0), where Φ(µ) = µp/2 and E large enough.

(c) There exists a δ0 > 0 such that (0, δ0] ⊂
⋃

λ∈ΛDλ,β for β = 2−(2+p). Here Dλ,β is

defined in (23).

Remark 10. (i) For polynomially ill-posed problems, the WVD system can be used well.

We can see that in the tomography problems (see [7, 21]) and the fractional backward

problem.

(ii) The result (b) provides a sufficient condition for the function θ0 to satisfy the DFD

source condition. The function only needs to lie in the Hilbert scales Hp(R).

From Theorem 4.1, we obtain the WVD of the operator K. In particular, that is

(uλ, vλ, κλ)λ∈Λ. This allows us to regularize the inverse problem for the fractional heat

equation with the source function Φ (µ) = µp/2 and then MΦ,E becomes

MΦ,E :=

{
θ0 ∈ L2 (R) :

∑
λ∈Λ

[Φ(|κλ|2)]−1|⟨θ0, uλ⟩|2 ≤ E2

}
.

To regularize the problem, we use the Tikhonov filter gα (λ) =
1

α+λ
. The chosen {uλ} is

tight, since it is orthonormal. So ũλ = uλ and (17) can be rewritten as

uδ0α := Rα(θ
δ
T ) =

∑
λ∈Λ

2−2λD

α + 2−4λD
⟨θδT , vλ⟩uλ.

The source function Φ and the filter function gα satisfy Assumptions C, A1, A2, B1, B2

(see the proof of Theorem 4.2). Hence, from Theorems 3.3, 3.4, 3.6,

we obtain the result for both a priori and a-posteriori parameters.
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Theorem 4.2. Let (uλ, vλ, κλ)λ∈Λ be as in Theorem 4.1 and θ0 ∈ MΦ,E for Φ(µ) =

µp/2, p > 0.

(a) (a priori regularizarion) For 0 < p ≤ 4, if we choose the regularization parameter

as

α := α(δ) = (δ/E)
2

p+2

then Rα(δ) is uniform order optimal and the following convergence rate result holds∥∥uδ0α(δ) − θ0
∥∥ ≤ Cδ

p
p+2E

2
p+2 ,

(b) (a-posteriori regularization) If 0 < p ≤ 2, assume that αD is chosen by the Morozov

principle (32). Then RαD(δ) is uniform order optimal over the set MΦ,E, and

∥uδ0αD(δ) − θ0∥ ≤ Cδ
p

p+2E
2

p+2 .

Remark 11. If p = 4ν, we obtain the error stated in [7].

4.4 The classical backward problem

Put BN = {ω ∈ R :
√
N ≤ |ω| ≤

√
N + 1}, N ∈ N. From here, we construct the DFD

for the operator K using the following theorem.

Theorem 4.3. Let (uλ)λ∈Λ be defined as in (45) such that

supp (Fψ) ⊂ {ω ∈ R : au ≤ |ω| ≤ bu}

where au, bu are positive constants and where λ = (λD, λT ). Put uλ,N = F−1(1BN
F(uλ)).

Then

(a) (uλ,N , vλ,N , κλ,N)λ∈Z2,N∈N is a DFD for K where

κλ,N = e−NT , N ∈ N

and vλ = κλ,NF−1(e|ω|
2Tuλ,N) defined as in (44). Moreover, uλ,N is tight and DFD quasi

minimal.

(b) θ0 ∈ MΦ,E for every θ0 ∈ Hp(R), where Φ(µ) = (− lnµ)−p, p > 0 and E large

enough.

(c) There exists a δ0 > 0 such that (0, δ0] ⊂
⋃

(λ,N)∈Λ×ND(λ,N),β for β = e−T . Here we

recall D(λ,N),β is defined in (23).

Remark 12. Using the classical wavelet system as in the previous section, we cannot find

a suitable κλ. Therefore, it is necessary to construct a suitable DFD system. There are

many ways to construct the system mentioned. However, we use a system that inherits

the classical wavelet system as presented.
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From Theorem 4.3, we obtain the WVD of the operator K. In particular, that is

(uλ,N , vλ,N , κλ,N)λ∈Λ,N∈N. This allows us to regularize the inverse problem for the frac-

tional heat equation with the source function Φ (λ) = (− lnλ)−p. Using the Tikhonov

regularization for gα (µ) = 1
α+µ

. Then the approximate solution can be written in the

form (17). The chosen {uλ} is a tight frame, so ũλ = uλ and (17) can be rewritten as

uδ0α := Rα(θ
T
δ ) =

∑
N∈N

∑
λ∈Λ

κλ,N
α + κ2λ,N

⟨θδT , vλ,N⟩uλ,N .

The Assumptions A1, A2, B1, and B2 are shown to hold for the Tikhonov filter

gα(µ) =
1

α+µ
and the source function Φ(µ) = (− lnµ)p, as detailed in the final part of our

paper. From Theorem 3.3, 3.4 and Theorem 3.6, we deduce the following consequence.

Theorem 4.4. let (uλ,N , vλ,N , κλ,N)λ∈Λ,N∈N be as in Theorem 4.3 and θ0 ∈ MΦ,E where

Φ(µ) = (− lnµ)p, p > 0.

(a) (a priori regularization) If we choose the regularization parameter α = δ/E then

Rα(δ) is uniform order optimal and the following convergence rate result holds∥∥uδ0α − θ0
∥∥ ≤ CE (− ln(δ/E))−p .

(b) (a-posteriori regularization) Let 0 < a∗ < e−1 and 0 < p ≤ ln(a∗)−1 − 1. Assume

that αD is chosen by the Morozov principle (32). Then RαD(δ) is uniform order optimal

over the set MΦ,E, and

∥uδ0αD(δ) − θ0∥ ≤ CE (− ln(δ/E))−p .

Remark 13. (i) While the system {uλ,N} is unlikely to satisfy the minimal property, its

DFD quasi minimal nature allows the application of the optimal results from Theorems

3.3, 3.4, and 3.6.

(ii) Condition 0 < a∗ < e−1 can be mitigated, but since this is just an illustrative

example, we will not go into the details.

4.5 Numerical simulation

4.5.1 Scheme of simulation

Step 1. Data Generation

We consider the following initial value problem:∂
γ
t u(x, t)− uxx(x, t) = 0, x ∈ R, 0 < t < T,

u(x, 0) = θ0(x), x ∈ R.

From (41), it readily follows that the solution can be expressed as

θT (x) = F−1
(
Eγ,1

(
−|ω|2T γ

)
· Fθ0(ω)

)
, x ∈ R.
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In order to facilitate numerical computation, we restrict our attention to functions θ0

exhibiting rapid decay to zero. Given this formulation, our primary focus lies in the

efficient numerical evaluation of the Fourier transform. Let A,B ∈ R with A < B, and

assume that f(x) = 0 for x /∈ (A,B). Define the spatial domain and parameters by

considering the interval [A,B], partitioned into a vector of L evenly spaced points

x = [xi]
L
i=1,

where x is a vector of length L, with each element xi = A + (i − 1)∆x for i = 1, L, and

the spacing is given by

∆x =
B − A

L− 1
.

Due to the length of the paper, in the numerical examples, we restrict our consideration

to the case γ ∈ (0, 1), specifically γ = 0.8 and final time T = 1 in the tests. Compute

the Fourier transform Fθ0(ω) and frequencies wi =
2π

B−A

(
i− L

2

)
for i = 1, L using the

function ft by fft ([1]). Then, define the auxiliary array

z = [zi]
L
i=1,

where z is a vector of length L, with each element zi = −|wi|2T γ for i = 1, L. Calculate

the Mittag-Leffler values with MATLAB’s ml matrix ([13]) as

Eval = ml matrix(z, γ, 1),

where Eval is a vector of length L, with each element Eval(i) = ml matrix(zi, γ, 1). Apply-

ing a threshold (10−10) to avoid near-zero values, and obtain their element-wise inverses

Eval inv =
1

Eval

.

The Eval inv is used to compute vλJ
and vλ in Step 2. The solution at time T is then

computed by multiplying the characteristic function with the Mittag-Leffler term in the

frequency domain,

θT (xi) = F−1
(
Eγ,1(−|ωi|2T γ) · Fθ0(ωi)

)
, i = 1, L

and applying the inverse Fourier transform with ift by fft ([1]) to obtain θT (x). Finally,

adding Gaussian noise yields the data

θδT (xi) = θT (xi) + δ*randn(L), i = 1, L.
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c. θ0(x) =
1
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Figure 1: Comparison of the exact data θT (x) and its noisy counterpart θδT (x) at t = T
with level noise δ = 0.01, derived from different θ0(x).

Step 2. Wavelet transform

Let J denote the initial resolution level and Jmax the maximal resolution level employed

in this analysis. We adopt the Daubechies wavelet of order 4 (db4) with the fixed filter

length M = 8, chosen for its orthogonality and compact support characteristics, which

render it particularly advantageous for Discrete Fourier Decomposition (DFD) within

the framework of ill-posed inverse problems. The scaling function ϕ(x) and the wavelet

function ψ(x) are rigorously defined by the following two-scale relations:

ϕ(x) =
√
2
M−1∑
m=0

hm ϕ(2x−m), ψ(x) =
√
2
M−1∑
m=0

gm ϕ(2x−m),

where the sequence {hm}M−1
m=0 comprises the low-pass filter coefficients associated with

ϕ(x), and {gm}M−1
m=0 denotes the corresponding high-pass filter coefficients, derived from

{hm} via the relation

gm = (−1)mhM−1−m, m = 0,M − 1.

The wavelet basis functions at scale j and position k are defined by

ϕj,k(x) = 2
j
2 ϕ(2jx− k), ψj,k(x) = 2

j
2 ψ(2jx− k),

for k = 0, 2j − 1, j = J, Jmax where these functions form an orthonormal basis of the

Hilbert space L2(R). These coefficients are available in standard wavelet toolboxes, such

as MATLAB’s wfilters(’db4’) or wavefun functions [3, 29].

According to Theorem 4.1, the regularized basis functions vλ, parametrized by

Λ1 := {λJ = (J, k) : k = 0, 2J − 1}, Λ2 := {λ = (j, k) : k = 0, 2j − 1, j = J, Jmax}
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are constructed as

vλJ
= κ(J) · F−1

([
Eγ,1

(
− |ω|2T γ

)]−1 · FϕλJ

)
,

vλ = κ(j) · F−1
([
Eγ,1

(
− |ω|2T γ

)]−1 · Fψλ
)
,

where κj are given in Theorem 4.1. Consequently, for each regularization parameter α,

the reconstructed initial condition is expressed as

uδ0(x) =
∑

λJ∈Λ1

2−2J

α + 2−4J
⟨θδT , vλJ

⟩uλJ
(x) +

∑
λ∈Λ2

2−2j

α + 2−4j
⟨θδT , vλ⟩uλ(x),

where uλJ
(x) = ϕλJ (x), uλ(x) = ψλ(x). Now, we proceed to the next step of optimal

regularization.

Step 3. Optimal regularization

To determine the optimal regularization parameter αopt in accordance with the Mo-

rozov discrepancy principle, we select α such that it satisfies the equation

dα(u
δ
0) =

∑
λJ∈Λ1

(rα(|κλJ
|2))2|⟨θδT , vλ⟩|2 +

∑
λ∈Λ2

(rα(|κλ|2))2|⟨θδT , vλ⟩|2 = τδ,

where τ > 1. Using the obtained αopt, the reconstructed solution is recalculated as

uδ0,opt(x) =
∑

λJ∈Λ1

2−2J

αopt + 2−4J
⟨θδT , vλJ

⟩uλJ
(x) +

∑
λ∈Λ2

2−2j

αopt + 2−4j
⟨θδT , vλ⟩uλ(x).

Finally, the L2-norm of the reconstruction error is computed and reported as

ErrorL2 =

(∑
i

(
θ0(xi)− uδ0,opt(xi)

)2
∆x

)1/2

,

providing a quantitative validation of the regularization method’s effectiveness in address-

ing the fractional backward problem.

4.5.2 Examples

This subsection showcases three distinct numerical experiments, each employing a unique

initial condition to test the robustness of our regularization framework. We explore a dis-

continuous and non-differentiable characteristic function, a continuous yet non-differentiable

triangular function, and a smooth function that is both continuous and differentiable.

Test 1. We utilize θ0(x) = χ[−2,2](x), the characteristic function defined over the inter-

val [−2, 2], which belongs to L2(R). The effectiveness of the regularization is meticulously

evaluated through the error profiles presented in Figures 2.
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Figure 2: Comparison of the regularized solutions and exact solutions for the characteristic
function at noise levels δ = 10−2, 10−4, 10−6, along with their respective error plots.

Test 2. We implement a triangular function expressed as θ0(x) = χ[−1,1](x)(1 − |x|)
with the regularization precision quantified by the errors showcased in Figures 3.
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Figure 3: Comparison of regularized solutions and exact solutions for the triangular func-
tion at δ = 10−2, 10−4, 10−6 along with their respective error plots.

Test 3. We employ a smooth function defined by θ0(x) = 1/(1 + x2), and assess the

regularization performance through the error metrics illustrated in Figures 4.
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Figure 4: Comparison of regularized solutions and exact solutions for the smooth function
at δ = 10−2, 10−4, 10−6 along with their respective error plots.
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Test
10−1 10−2 10−3 10−4 10−5 10−6

Abs Re Abs Re Abs Re Abs Re Abs Re Abs Re

1 1.9992 0.9996 1.9696 0.9848 0.308684 0.154342 0.2003 0.10015 0.14793 0.073965 0.081661 0.040831

2 1.2476 1.5270 1.2379 1.5160 0.76031 0.9313 0.10276 0.1258 0.010454 0.0128 0.008298 0.01016

3 0.81575 0.6506 0.78415 0.6255 0.73114 0.5836 0.076911 0.06134 0.020003 0.01596 0.0078846 0.00629

Table 1: Comparison of the absolute (Abs) and relative (Re) L2 errors of the regularized
solutions for the three test cases at different noise levels δ.

Comment of the Tests: Table 1 has demonstrated that a result of the theory is

plausible: the quality of signal recovery directly depends on the smoothness of the sig-

nal. The DFD method proved effective across all three scenarios, but the best results

were achieved with smooth functions, with slightly poorer performance for functions with

sharp edges or discontinuities. The selection of these three examples served as a relatively

comprehensive test, showing that the proposed method not only works under ideal condi-

tions (smooth functions) but is also capable of handling more complex signals, which are

common in real-world applications.

On the other hand, when compared to the total variation method (see [34]), a method

developed specifically for reconstructing discontinuous original functions, we find that

the convergence results are comparable. Conversely, when comparing our results with

the Tikhonov method (see [36]), the DFD method results are similar in the case of

smooth functions but significantly improve the results at points of discontinuity and non-

smoothness. These comparisons allow us to affirm that the DFD method improves upon

previously published signal recovery results.

5 Proofs

5.1 Preliminary lemmas

Lemma 5.1. Let (u,v,κ) be the DFD for the operator K. Then

⟨x†, uλ⟩X =
1

κλ
⟨y, vλ⟩Y .

Assume in addition that u is minimal. Then we have

⟨xδα, uλ⟩X = κλgα(|κλ|2)⟨yδ, vλ⟩Y ,

⟨Kxδα, vλ⟩Y = |κλ|2gα(|κλ|2)⟨yδ, vλ⟩Y ,

⟨Kxα, vλ⟩Y = |κλ|2gα(|κλ|2)⟨y, vλ⟩Y .

Proof. The first equality is verified in (14). If u is minimal, since ⟨ũν , uλ⟩ = δνλ for every

ν, λ ∈ Λ, we have

⟨xδα, uλ⟩X =

〈∑
ν∈Λ

κνgα(|κν |2)⟨yδ, vν⟩Y ũν , uλ

〉
= κλgα(|κλ|2)⟨yδ, vλ⟩Y .
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From (17), (19),(11) we obtain

⟨Kxδα, vλ⟩Y = ⟨xδα,K∗vλ⟩X = κλ⟨xδα, uλ⟩X = |κλ|2gα(|κλ|2)⟨yδ, vλ⟩Y ,

⟨Kxα, vλ⟩Y = ⟨xα,K∗vλ⟩X = κλ⟨xα, uλ⟩X = |κλ|2gα(|κλ|2)⟨y, vλ⟩Y .

Lemma 5.2. Let t ∈ (0, 1) and let the function Φ satisfy Assumption A1 and Θ(µ) =

µΦ−1(µ). If Φ is concave on (0, a∗) then

(i) Θ(tΦ(µ)) ≤ t2µΦ(µ), for every µ ∈ (0, a∗),

(ii) Θ−1(t2z) ≥ tΘ−1(z) for every z ∈ (0, a∗Φ(a∗)).

Proof. From the definition of the function Θ, we have Θ−1(µΦ(µ)) = Φ(µ). The concavity

of the function Φ combined with the condition limµ→0 Φ(µ) = 0 implies that tΦ(µ) ≤ Φ(tµ)

for t ∈ [0, 1]. Equivalently, Φ−1(tΦ(µ)) ≤ λt. We also have, Θ(µ) := µΦ−1(µ), it follows

that Θ(tΦ(µ)) ≤ t2µΦ(µ). Hence, Θ−1(t2µΦ(µ)) ≥ tΦ(µ) = tΘ−1(µΦ(µ)). Putting

z = µΦ(µ), we obtain the desired inequality.

5.2 Proof of Theorem 3.3.

Proof. One of the commonly used methods to find a lower bound for the worst-case error

is to compute the modulus of continuity

Ω (M, δ) = sup{∥x∥X | x ∈ M ∧ ∥Kx∥Y ≤ δ}.

As is known (see, e.g. [10, 30]), we have

∆(MΦ,E, δ,R) ≥ Ω (MΦ,E, δ) .

The proof is divided into two steps.

Step 1. Construct an element xν ∈ X, ν ∈ Λ such that xν ∈ I⊥|κν |,Q|κν |, xν ∈ MΦ,E

and ∥Kxν∥Y ≤ δ.

Since δ ∈
⋃

λ∈ΛDλ,β we can find an index ν ∈ Λ such that δ ∈ Dν,β. For such the index

ν ∈ Λ, because that I⊥|κν |,Q|κν | ̸= ∅, we can choose zν ∈ I⊥|κν |,Q|κν | such that ∥zν∥X = |u|−1
supE.

Setting xν :=
√
Φ (|κν |2)zν , we obtain xν ∈ I⊥|κν |,Q|κν |. We claim that xν ∈ MΦ,E and that

∥Kxν∥Y ≤ δ.

We first verify that xν ∈ MΦ,E. In fact, since zν ⊥ uλ for |κλ| < |κν | or |κλ| > Q|κν |,
we obtain

⟨xν , uλ⟩X =


√
Φ (|κν |2) ⟨zν , uλ⟩X , if |κν | ≤ |κλ| ≤ Q|κν |

0, else.
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Hence, using the inequality Φ(|κν |2) ≤ Φ(|κλ|2) for |κλ| ≤ |κν | gives∑
λ∈Λ

[Φ(|κλ|2)]−1| ⟨xν , uλ⟩X |2 =
∑

|κν |≤|κλ|≤Q|κν |

[Φ(|κλ|2)]−1Φ(|κν |2)| ⟨zν , uλ⟩X |2

≤
∑
λ∈Λ

| ⟨zν , uλ⟩X |2 ≤ |u|2sup∥zν∥2X ≤ E2.

Hence, xν ∈ MΦ,E.

Next, we verify that ∥Kxν∥Y ≤ δ. In fact,

∥Kxν∥2Y ≤ 1

|v|2inf

∑
λ∈Λ

|⟨Kxν , vλ⟩Y |
2 =

1

|v|2inf

∑
λ∈Λ

|κλ|2 |⟨xν , uλ⟩X |
2

=
Φ(|κν |2)
|v|2inf

∑
λ∈Λ

|κλ|2 |⟨zν , uλ⟩X |
2 =

Φ(|κν |2)
|v|2inf

∑
|κν |≤|κλ|≤Q|κν |

|κλ|2 |⟨zν , uλ⟩X |
2

≤ 1

|v|2inf
Q2κ2νΦ

(
κ2ν
)∑
λ∈Λ

|⟨zν , uλ⟩X |2 ≤
1

|v|2inf
Q2|κν |2Φ

(
κ2ν
)
|u|2sup∥zν∥2X

=
1

|v|2inf
Q2|κν |2Φ

(
|κν |2

)
E2.

From the definition of Dν,β in (23) and the condition δ ∈ Dν,β, we obtain

δ∗ν ≤ δ ≤ β−1δ∗ν where δ∗ν = |v|−1
infQE

√
|κν |2Φ(|κλ|2) = |v|−1

infQE
√

Θ(Φ(|κλ|2)). (46)

Hence ∥Kxν∥2Y ≤ δ∗2ν ≤ δ2.

Step 2. Prove the lower bound for Ω (MΦ,E, δ)

Using the constructed xν , we will find a lower bound for Ω (MΦ,E, δν). Since xν ∈
MΦ,E, ∥Kxν∥ ≤ δ, the definition of Ω (MΦ,E, δ) yields

Ω (MΦ,E, δ) ≥ ∥xν∥X =
√

Φ(|κν |2)∥zν∥X =
√
Φ(|κν |2)|u|−1

supE. (47)

We will find a lower bound for
√
Φ(|κν |2). From (46), we have

Θ
(
Φ
(
|κν |2

))
= |v|2infδ∗2ν /Q2E2 ≥ |v|2infβ2δ2/Q2E2.

Since the function Θ is increasing we obtain

Φ
(
|κν |2

)
≥ Θ−1

(
|v|2infβ2δ2/Q2E2

)
.

Hence

∆(MΦ,E, δ,R) ≥ Ω(MΦ,E, δ) ≥ E|u|−1
sup

√
Θ−1 (β2|v|2infδ2/Q2E2).

Finally, if Θ satisfies the condition (25) then we obtain

Θ−1
(
β2|v|2infδ2/Q2E2

)
≥ η

(
β2

Q2

)
Θ−1

(
|v|2infδ2/E2

)
.

Combining the two latter inequalities with (47) yields

∆(MΦ,E, δ,R) ≥ Ω(MΦ,E, δ) ≥ E|u|−1
sup

√
η

(
β2

Q2

)√
Θ−1 (|v|2infδ2/E2).
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5.3 Proof of Theorem 3.6

First, with Assumption B2, using the ideas in [33], page 77, we obtain the following results

Lemma 5.3. We denote

eλ = κλgα(|κλ|2)⟨yδ, vλ⟩Y − 1

κλ
⟨y, vλ⟩Y .

Then xδα − x† =
∑

λ∈Λ eλũλ. Moreover, we have∑
λ∈Λ

|eλ|2 + ℓ(α)(d2α(y
δ)− ∥y − yδ∥2v) ≤ ⟨[I −K∗Kgα (K

∗K)] x†, x†⟩u. (48)

Proof of Lemma 5.3.

Proof. We recall that rα(µ) = 1− µgα(µ). We claim that

|⟨xδα − x†, uλ⟩X |2 + ℓ(α)|⟨|rα(|κλ|2)⟨yδ, vλ⟩Y |2 − ℓ(α)|⟨y − yδ, vλ⟩Y |2

≤ (1− |κλ|2gα(|κλ|2))|⟨x†, uλ⟩X |2. (49)

We can write

|eλ|2 =
1

|κλ|2
∣∣|κλ|2gα(|κλ|2)⟨yδ − y, vλ⟩Y − rα(|κλ|2)⟨y, vλ⟩Y

∣∣2
= |κλ|2g2α(|κλ|2)|⟨yδ − y, vλ⟩Y |2 − 2gα(|κλ|2)rα(|κλ|2)Re ⟨yδ − y, vλ⟩Y ⟨y, vλ⟩Y

+
r2α(|κλ|2)
|κλ|2

|⟨y, vλ⟩Y |2.

On the other hand, we have

gα(|κλ|2)rα(|κλ|2)|⟨yδ, vλ⟩Y |2 = gα(|κλ|2)rα(|κλ|2)|⟨yδ − y, vλ⟩Y + ⟨y, vλ⟩Y |2

= gα(|κλ|2)rα(|κλ|2)(|⟨yδ − y, vλ⟩Y |2 + 2Re ⟨yδ − y, vλ⟩Y ⟨y, vλ⟩Y + |⟨y, vλ⟩Y |2).

Combining two equalities yields

|eλ|2 + gα(|κλ|2)rα(|κλ|2)|⟨yδ, vλ⟩Y |2 = gα(|κλ|2)|⟨yδ − y, vλ⟩Y |2 +
rα(|κλ|2)
|κλ|2

|⟨y, vλ⟩Y |2.

Since ℓ(α) ≥ gα(µ) ≥ ℓ(α)rα(µ) we obtain

gα(|κλ|2)rα(|κλ|2)|⟨yδ, vλ⟩Y |2 ≥ ℓ(α)|rα(|κλ|2)⟨yδ, vλ⟩Y |2,

gα(|κλ|2)|⟨yδ − y, vλ⟩Y |2 ≤ ℓ(α)|⟨yδ − y, vλ⟩Y |2.

Hence the inequality (49) holds. Taking the sum of the inequalities (49) with respect

to λ ∈ Λ, we get (48).

Proof of Theorem 3.6.
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Proof. Let α = αD be the regularization parameter chosen by (32). Using (9) and (2)

yields

dα(y
δ) = τ

√
Bvδ > τ

√
Bv∥y − yδ∥Y ≥ ∥y − yδ∥v.

Hence, from Lemma 5.3 we obtain∑
λ∈Λ

|eλ|2 ≤ ⟨[I −K∗Kgα (K
∗K)] x†, x†⟩

1
2
u = ∥ [rα (K∗K)]

1
2 x†∥u. (50)

Using the triangle inequality gives

dαD(δ)(y) ≤ dαD(δ)(y
δ) + dαD(δ)(y − yδ) ≤ dαD(δ)(y

δ) +
√
Bv∥y − yδ∥2Y .

Since α = αD is a solution of the equation (32), we deduce that(∑
λ∈Λ

r2αD
(|κλ|2)|⟨y, vλ⟩|2

)1/2

≤
√
Bv (τ + 1) δ. (51)

We denote

ω = (ωλ)λ∈Λ with ωλ = [Φ(|κλ|2)]−1/2⟨x†, uλ⟩X .

Using the definition of MΦ,E, we obtain ∥ω∥2 ≤ E. Computing directly yields

Θ


∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u

∥ω∥22

 = Θ


∑

λ∈Λ

∣∣∣⟨[rα (|κλ|2)] 12 x†, uλ⟩X∣∣∣2
∥ω∥22


= Θ

(∑
λ∈Λ rα (|κλ|2) Φ (|κλ|2) |ωλ|2

∥ω∥22

)
.

Applying Lemma 5.2 for t = rα(µ) := 1− µgα(µ) gives

Θ (rα(µ)Φ(µ)) ≤ µr2α(µ)Φ(µ). (52)

Combining the convexity of Θ, the Jensen inequality, and the inequality (52), we obtain

Θ

(∑
λ∈Λ rα (|κλ|2) Φ (|κλ|2) |ωλ|2

∥ω∥22

)
≤
∑

λ∈Λ Θ(rα (|κλ|2) Φ (|κλ|2)) |ωλ|2

∥ω∥22

≤
∑

λ∈Λ |κλ|2r2α (|κλ|2) Φ (|κλ|2) |ωλ|2

∥ω∥22
≤
∑

λ∈Λ |κλ|2r2α (|κλ|2) Φ (|κλ|2) |ωλ|2

∥ω∥22
.

Using the latter results, the inequality (51) and the bound of frame u, we can infer that

Θ


∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u

∥ω∥22

 ≤
∑

λ∈Λ

∣∣⟨κλrα (|κλ|2) x†, uλ⟩X∣∣2
∥ω∥22

≤ Bv(τ + 1)2δ2

∥ω∥22
. (53)

37

Page 37 of 47 AUTHOR SUBMITTED MANUSCRIPT - IP-104922.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



From the inequality BvA
−1
v ≥ 1 and the definition of the source-set MΦ,E, we deduce that√

BvA−1
v (τ + 1)E ≥ ∥ω∥2. Using the monotonicity of Φ−1, the relation Φ−1(λ) = 1

λ
Θ(λ)

and the estimate (53), we obtain

Φ−1

(
∥rα (K∗K)]

1
2 x†∥2u

A−1
v Bv(τ + 1)2E2

)
≤ Φ−1


∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u

∥ω∥22


=

∥ω∥22∥∥∥[rα (K∗K)]1/2 x†
∥∥∥2
u

Θ


∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u

∥ω∥22


=

∥ω∥22∥∥∥[rα (K∗K)]1/2 x†
∥∥∥2
u

Bv(τ + 1)2δ2

∥ω∥22
=

Bv(τ + 1)2δ2∥∥∥[rα (K∗K)]1/2 x†
∥∥∥2
u

.

Equivalently,

Θ


∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u

A−1
v Bv(τ + 1)2E2

 ≤ Avδ
2

E2
.

From here, it follows∑
λ∈Λ

|eλ|2 ≤
∥∥∥[rα (K∗K)]

1
2 x†
∥∥∥2
u
≤ A−1

v Bv(τ + 1)2E2Θ−1

(
Avδ

2

E2

)
.

This estimate and (50) give us the result (37). From Lemma 5.3, we obtain

∥xδα − x†∥X =

∥∥∥∥∥∑
λ∈Λ

eλũλ

∥∥∥∥∥
X

≤ |u|−1
inf

(∑
λ∈Λ

|eλ|2
)1/2

≤ |u|−1
inf

√
A−1

u Bu(τ + 1)E
√
Θ−1 (Avδ2/E2)

≤ |u|−1
inf

√
A−1

u Bu(τ + 1)E
√
Θ−1 (|v|2infδ2/E2).

5.4 Proof of Theorem 4.1

Proof. (a) (D1) holds because {uλ}λ∈Λ is an orthonormal basis for L2(R). (D3) is also

established by the relationship between {vλ} and {uλ} shown in (44). Therefore, we only

need to check (D2). For each λ = (λD, λT ) ∈ Λ, we can verify directly that

supp (Fuλ) ⊂
{
ω ∈ R : 2λDau ≤ |ω| ≤ 2λDbu

}
.

From here, we deduce that 22λDa2uT
γ ≤ |ω|2 T γ ≤ 22λDb2uT

γ for every ω ∈ supp (Fuλ).
Using the monotonicity property of the function Eγ,1(z), we obtain

Eγ,1

(
−22λDb2uT

γ
)
≤ Eγ,1

(
− |ω|2 T γ

)
≤ Eγ,1

(
−22λDa2uT

γ
)
.
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This follows that

κλE
−1
γ,1

(
−22λDa2uT

γ
)
≤
∣∣κλE−1

γ,1

(
− |ω|2 T γ

)∣∣ ≤ κλE
−1
γ,1

(
−22λDb2uT

γ
)
.

Moreover, from the inequality (42), and κλ = 2−2λD , we can deduce

(1 + a2uT
γ)/c̃ ≤

∣∣κλE−1
γ,1

(
− |ω|2 T γ

)∣∣ ≤ (1 + b2uT
γ)/c. (54)

We recall that {uλ} is a frame, this means that for all θ ∈ L2 (R),

Au∥θ∥2 ≤
∑
λ∈Λ

|⟨θ, uλ⟩|2 ≤ Bu∥θ∥2.

Equivalently,

Au∥Fθ∥2 ≤
∑
λ∈Λ

|⟨Fθ,Fuλ⟩|2 ≤ Bu∥Fθ∥2. (55)

Taking any θT ∈ ranK, we show that there are Av, Bv satisfying

Av∥θT∥2 ≤
∑
λ∈Λ

|⟨θT , vλ⟩|2 ≤ Bv∥θT∥2.

This is equivalent to proving

Av∥FθT∥2 ≤
∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2 ≤ Bv∥FθT∥2. (56)

In fact, for every λ ∈ Λ, from (44), we have

|⟨FθT ,Fvλ⟩|2 =
∣∣κλE−1

γ,1

(
− |ω|2 T γ

)∣∣2 |⟨FθT ,Fuλ⟩|2 .
Using the inequality (54), it follows that(

(1 + a2uT
γ)/c̃

)2 |⟨FθT ,Fuλ⟩|2 ≤ ∣∣κλE−1
γ,1

(
− |ω|2 T γ

)∣∣2 |⟨FθT ,Fuλ⟩|2
≤
(
(1 + b2uT

γ)/c
)2 |⟨FθT ,Fuλ⟩|2 ,

for every λ ∈ Λ. Hence,(
(1 + a2uT

γ)/c̃
)2∑

λ∈Λ

|⟨FθT ,Fuλ⟩|2 ≤
∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2

≤
(
1 + b2uT

γ/c
)2∑

λ∈Λ

|⟨FθT ,Fuλ⟩|2 .

Combining with (55), we get(
(1 + a2uT

γ)/c̃
)2
Au∥FθT∥2 ≤

∑
λ∈Λ

|⟨FθT ,Fvλ⟩|2 ≤
(
(1 + b2uT

γ)/c
)2
Bu∥FθT∥2.

Finally, (56) is proved for Av = ((1 + a2uT
γ)/c̃)

2
Au and Bv = ((1 + b2uT

γ)/c)
2
Bu.
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(b) We find the source condition for the solution θ0. Naturally, we can assume that

θ0 ∈ Hp(R) for p ≥ 0. Putting

G(λD) = {ω ∈ R : 2λDau ≤ |ω| ≤ 2λDbu}, (57)

we note that supp(uλ) ⊂ G(λD). For λ = (λD, λT ), we can write

⟨θ0, uλ⟩ =
1

2π
⟨Fθ0,Fuλ⟩ =

1

2π

∫
R
Fθ0(ξ)Fuλ(ξ)dξ

=
1

2π

∫
R
1G(λD)(ω)Fθ0(ξ)Fuλ(ξ)dξ.

For λD ≥ 0, using the Bessel inequality yields∑
λT∈Z

|⟨θ0, uλ⟩|2 ≤
1

2π
∥1G(λD)F(θ0)∥2 ≤ 2−2pλDω2

λD
= κpλω

2
λD

where

wλD
= a−p

u ∥1G(λD)(1 + ω2)pF(θ0)∥.

Hence ∑
λD∈Z+

∑
λT∈Z

|κλ|−p|⟨θ0, uλ⟩|2 ≤
∑

λD∈Z+

w2
λD

≤ C∥θ0∥2Hp(R).

Here Z+ = {z ∈ Z : z ≥ 0}. For λD < 0, we have κλ = 1 and

⟨θ0, uλ⟩ = κ
p/2
λ ⟨θ0, uλ⟩.

Direct computations yields∑
λD∈Z−

∑
λT∈Z

κ−p
λ |⟨θ0, uλ⟩|2 ≤

∑
λ∈Z2

|⟨θ0, uλ⟩|2 ≤ C∥θ0∥2Hp(R).

Here Z− = {z ∈ Z : z < 0}. So the function θ0 ∈ MΦ,E where Φ(µ) = µp/2 and E is large

enough.

(c) To obtain the order optimal result, we verify the conditions in Theorem 3.3. We

have δ∗λ = |v|−1
infE

√
|κλ|2Φ(|κλ|2) = |v|−1

infE
√
κ2+p
λ = |v|−1

infE2−λD(2+p). Letting 0 < δ <

|v|−1
infE2−(2+p), we can choose a λδ such that

δ∗λδ
= |v|−1

infE2−λδ(2+p) ≤ δ ≤ |v|−1
infE2−(λδ−1)(2+p) = 2(2+p)δ∗λδ

.

So we have δ ∈
⋃

λ∈ΛDλ,2−(2+p) .
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5.5 Proof of Theorem 4.2

The fact that the function gα satisfies Assumptions A, B, C is a known result. However,

for the convenience of the reader, we will check these assumptions.

(a) We verify that gα(µ) = 1
α+µ

and Φ(µ) = µp/2 satisfy Assumptions C, A1, A2.

Direct verifying yields that Assumption C holds for gα. The index function Φ satisfies

Assumption A1. We verify Assumption A2. We have

√
µgα(µ) =

√
µ

α + µ
≤

2
√
µ

√
αµ

=
2√
α
.

We verify Assumption A2 (ii). We have

|rα(µ)|
√

Φ(µ) =
αµp/4

α + µ
.

Put H(µ) = αµr

α+µ
, r ∈ (0, 1). We have H ′(r) = α rµr−1(α+µ)−µr

(α+µ)2
. The function attains its

maximum when r(α + µ) − µ = 0 which gives µ = α
1−r

. Choose r = p/4, we obtain

Assumption A2 (ii) Hence H(µ) ≤ Cαr. For p = 4 we have r = 1, H(α) ≤ α which give

Assumption A2 (ii).

(b) We first consider Assumption B1. In fact we have rα(µ) =
α

α+µ
→ 1 as α → ∞.

Hence Assumption B1 (i) holds. The function gα(.) is continuous with respect to α. Hence

Assumption B1 (ii) holds.

We verify Assumption B2. As known, rα(µ) =
α

α+µ
. We also have ℓ(α) = supµ≥0 gα(µ) =

1
α
which satisfies Assumption B2 (iii) with ℓ∗ = ℓ∗ = 1. Finally, we verify that the function

Φ is concave. In fact, we have Φ′′(µ) = (p/2)(p/2− 1)µp/2−2 < 0 since 0 < p ≤ 2.

5.6 Proof of Theorem 4.3

(a) The proof is divided into three steps.

Step 1. Prove that {uλ,N} is a tight frame over L2(R).
For θ ∈ L2(R), we have

⟨θ, uλ,N⟩ =
1

2π
⟨F(θ),Fuλ,N⟩ =

1

2π
⟨1BN

F(θ),Fuλ⟩. (58)

Hence, using the Parseval equality gives

∞∑
N=0

∑
λ∈Λ

|⟨θ, uλ,N⟩|2 =
1

2π

∞∑
N=0

∑
λ∈Λ

|⟨1BN
F(θ),Fuλ⟩|2

=
1

2π

∞∑
N=0

∥1BN
F(θ)∥2 = 1

2π
∥F(θ)∥2 = ∥θ∥2.

This follows that {uλ,N} is a tight frame.

Step 2. Check to ensure that {uλ} is DFD quasi minimal.
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For every (ν,N0) ∈ Z2 × N, we choose Q = 1 and

I|κν,N0
|,Q|κν,N0

| = Iκν,N0
,Qκν,N0

= IeN0T ,eN0T

= {uλ,N : λ ∈ Z2, N ∈ N, κλ,N < e−N0T or κλ,N > e−N0T} = {uν,N : N ̸= N0}.

We have Fuλ,N = 1BN
ψλ ∈ Iκν,N0

,Qκν,N0
for N ̸= N0. Since BN ∩BN0 = ∅ for N ̸= N0, we

obtain

⟨uλ,N , uν,N0⟩ =
1

2π
⟨1BN

ψλ, 1BN0
ψν⟩ = 0 for N ̸= N0.

Hence uν,N0 ∈ I⊥κν,N0
,Qκν,N0

which follows I⊥κν,N0
,Qκν,N0

̸= ∅. We conclude that {uλ,N} is

DFD quasi minimal.

Step 3. Prove that {vλ,N} is a frame

We recall Fvλ,N = κλ exp(|ω|2T )F(uλ,N) = κλ1BN
exp(|ω|2T )F(uλ). It follows that

∞∑
N=0

∑
λ∈Λ

|⟨θ, vλ,N⟩|2 =
1

2π

∞∑
N=0

∑
λ∈Λ

|⟨κλ,Ne|ω|
2T1BN

F(θ),Fuλ⟩|2

=
1

2π

∞∑
N=0

∥κλ,Ne|ω|
2T1BN

F(θ)∥2.

For ω ∈ BN , we have exp(NT ) ≤ exp(|ω|2T ) ≤ exp((N +1)T ). Hence, since κλ,N = e−NT

we obtain

1 ≤ κλ,N exp(|ω|2T ) ≤ eT for ω ∈ BN . (59)

Using (59) gives

1

2π

∞∑
N=0

∥1BN
F(θ)∥2 ≤ 1

2π

∞∑
N=0

∥κλ,Ne|ω|
2T1BN

F(θ)∥2 ≤ eT

2π

∞∑
N=0

∥1BN
F(θ)∥2.

But 1
2π

∑∞
N=0 ∥1BN

F(θ)∥2 = 1
2π
∥F(θ)∥2 = ∥θ∥2. Hence {vλ,N} is a frame.

(b) We find the source condition for the solution θ0. As in the previous theorem, we

can assume that θ0 ∈ Hp(R) for p ≥ 0. For (λ,N) = (λD, λT , N), we can write

⟨θ0, uλ,N⟩ =
1

2π
⟨Fθ0,Fuλ⟩ =

1

2π

∫
R
1G(λD)1BN

Fθ0(ξ)Fuλ(ξ)dξ.

Hence, for λD > 0, using the Bessel inequality yields∑
λT∈Z

|⟨θ0, uλ,N⟩|2 ≤ ∥1GD
1BN

Fθ0∥2 ≤ (1 + 22λDau)
−pω2

λD,N

where

ωλD,N = ∥1GD
1BN

(1 + ω2)pFθ0∥.

It follows that∑
λT∈Z

Np|⟨θ0, uλ,N⟩|2 ≤ Np∥1GD
1BN

Fθ0∥2 ≤ Np(1 + 22λDau)
−pω2

λD,N .
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On the other hand, we have ⟨θ0, uλ,N⟩ ̸= 0 then BN ∩GλD
̸= ∅, which gives

√
N ≤ 2λDbu.

So we have∑
λT∈Z

Np|⟨θ0, uλ,N⟩|2 ≤ 22pλDb2pu (1 + 22λDau)
−pω2

λD,N ≤ b2pu a
−p
u ω2

λD,N .

Noting that N = − 1
2T

lnκ2λ,N , we have Np = 1
(2T )p

[Φ(|κλ|2)]−1 and∑
λT∈Z

[Φ(|κλ|2)]−1|⟨θ0, uλ,N⟩|2 ≤ (2T )pb2pu a
−p
u ω2

λD,N .

It implies that

∞∑
N=0

∑
λD∈Z

∑
λT∈Z

[Φ(|κλ|2)]−1|⟨θ0, uλ,N⟩|2 ≤ (2T )pb2pu a
−p
u

∞∑
N=0

∑
λD∈Z

ω2
λD,N ≤ (2T )pb2pu a

−p
u ∥θ0∥2Hp .

So we obtain θ0 ∈ MΦ,E where E = (2T )p/2bpua
−p/2
u ∥θ0∥2Hp , Φ(µ) = (− lnµ)−p for µ ∈

(0, 1).

(c) We have |κλ,N | = κλ,N = e−NT , Φ(µ) = (− lnµ)−p. It follows that Φ(κ2λ,N) =

(2NT )−p. Hence, from (23), we obtain δ∗λ,N = |v|−1
infE

√
κ2λ,NΦ(κ

2
λ,N) = |v|−1

inf

√
(2NT )−pe−2NT .

Hence, for every δ ∈ (0, δ0) where δ0 = |v|−1
inf

√
(2T )−pe−2T , we can find N0 ∈ N such that

δ∗λ,N0
≤ δ ≤ δ∗λ,N0−1. We note that

δ∗λ,N0−1 = |v|−1
inf

√
(2(N0 − 1)T )−pe−2(N0−1)T ≤ eT |v|−1

inf

√
(2N0T )−pe−2N0T = eT δ∗λ,N0

.

Hence δ ∈ [δ∗λ,N0
, β−1δ∗λ,N0

] ⊂
⋃

(λ,N)∈Λ×ND(λ,N),β with β = e−T .

5.7 Proof of Theorem 4.4

We verify that gα(µ) =
1

α+µ
and Φ(µ) = (− lnµ)−p satisfy Assumptions C, A1, A2, B1,

B2. As shown in the proof of Theorem 4.2, Assumptions C, B1, B2 hold for gα. The

index function Φ satisfies Assumptions A1 (i), (ii). Using Theorem 9.1 in [30] gives that

the function Θ is convex on (0,∞) for p > 0, i.e. Assumptions A1 (iii) holds.

Assumption A2 (i) is verified in the proof of Theorem 4.2. We verify Assumption A2

(ii). We have

|rα(µ)|
√

Φ(µ) =
α (− lnµ)−p/2

α + µ
.

Putting τ = α/µ, we obtain

α (− lnµ)−p/2

α + µ
=
τ(ln(τα−1))−p/2

τ + 1
.

For α < τ ≤
√
α, η ∈ (0, 1), using the inequality zη(ln z)−p/2 → 0 as z → 0, we have

τ(ln(τα−1))−p/2

τ + 1
≤ τ 1−ηαη(τα−1)η(ln(τα−1))−p/2

τ + 1
≤ Cαη ≤ C ′(− lnα)−p/2.
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For τ ≥
√
α we have

τ(ln(τα−1))−p/2

τ + 1
≤ (ln(τα−1))−p/2 ≤ (ln(α−1/2))−p/2 ≤ C ln(α−1)−p/2.

Finally, to apply Theorem 3.6 we show that Φ(µ) is concave. We have Φ′(µ) = p
µ2 (− lnµ)−p−1

and Φ′′(µ) = p
µ2 (− lnµ)−p−2(lnµ+ p+1) ≤ p

µ2 (− lnµ)−p−2(ln a∗+ p+1) < 0. Hence Φ(µ)

is concave.

Since Assumptions C, A1, A2, B1 and B2 hold, we obtain the order optimal property

of our a priori and a-posteriori regularization.

6 Conclusion

The paper has investigated DFD regularizations in both a priori and a-posteriori cases.

For the case where the {uλ} system is DFD quasi minimal, we have proved the sequential

order optimality property and the global optimality for DFD regularizations. Some issues

that need to be investigated in the future are

-Methods of constructing DFDs for ill-posed problems

-Investigation of the relationship between the classical source condition and the DFD

source condition.

-Investigation of optimality in the case where {uλ} is not DFD quasi minimal.

-Find the condition of the DFD singular value so that the regularization method is

uniformly optimal.
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