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Abstract. Mathematical epidemiology has a long history of origin and de-

velopment. In particular, mathematical modeling and analysis of infectious
diseases has become a fundamental and indispensable approach to discovering

the characteristics and mechanisms of the transmission dynamics of epidemics,

thereby effectively predicting possible scenarios in reality, as well as controlling
and preventing diseases.

In recent decades, differential equations have been widely used to model
many important infectious diseases. The study of these differential equation

models is very useful in both theory and practice, especially in proposing

appropriate strategies for disease control and prevention. This is of great
benefit to public health and health care.

In this survey article, we review many recent developments and real-world

applications of deterministic ordinary and partial differential equations (ODEs
and PDEs) in modeling major infectious diseases, particularly focusing on

the following aspects: mathematical modeling, qualitative analysis, numerical

methods, and real-world applications. We also present and discuss some open
problems and future directions that research in differential equation models

for infectious diseases can take.

This article provides a comprehensive introduction to epidemic modeling
and insights into nonstandard finite difference (NSFD) methods.

1. Introduction5

Infectious diseases have always been a major and constant threat to public6

health. Mankind has always had to face and fight many infectious diseases with7

varying degrees of danger, such as influenza, hepatitis, Zika, malaria, measles, tu-8

berculosis, hepatitis, vector-borne diseases, Ebola, and most recently the COVID-199

pandemic.10

The well-known SIR model, proposed by Kermack and McKendrick in 192711

[252], can be considered one of the first epidemic models and is usually used to12

introduce epidemic modeling. The study of mathematical models of infectious dis-13

eases is very useful in both theory and practice, especially in proposing appropriate14
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strategies for disease control and prevention. This is of great benefit to public15

health and health care.16

It is well known that differential equations, including ordinary differential equa-17

tions (ODEs) and partial differential equations (PDEs), have several useful applica-18

tions in real life. They are widely used to describe many important phenomena and19

processes in science and engineering (see e.g. [30, 55, 78, 79, 80, 81, 82, 83, 258,20

323, 360, 454]). One of its prominent applications is the mathematical modeling21

and analysis of infectious diseases. Over the past few decades, a large number of22

differential equation models have been extensively developed to explore the trans-23

mission dynamics of major infectious diseases. These models have confirmed the24

important role of differential equations in epidemic modeling.25

Nowadays, epidemic models based on differential equations have always been an26

important and indispensable approach in modeling infectious diseases, especially in27

the context that epidemics are constantly changing and posing new challenges. For28

differential equation models of infectious diseases, the following aspects are mainly29

focused:30

• Mathematical Modeling: The use of differential equations and the founda-31

tions of mathematical epidemiology to propose mathematical models that32

describe the transmission of infectious diseases.33

• Qualitative study: Investigate mathematical properties of the proposed34

differential equation models, including existence and uniqueness of solu-35

tions, positivity and boundedness of solutions, asymptotic stability prop-36

erties, conservation laws, physical properties, and basic reproduction num-37

ber.38

• Numerical Methods: Construction of efficient numerical methods, espe-39

cially numerical methods that preserve important mathematical features40

of the proposed differential equation models.41

• Practical Applications: Applying the theoretical results to provide sce-42

narios of disease spread, to suggest anti-epidemic measures and strategies,43

to evaluate the effectiveness of vaccines and existing anti-epidemic mea-44

sures, to study the spread of computer viruses, rumors and malware on45

the Internet, and to model animal diseases. and animal disease modeling46

with applications in agriculture.47

The aim of this review article is to review many recent developments and real-48

life applications of deterministic differential equation models in modeling major49

infectious diseases, focusing mainly on the following aspects: mathematical mod-50

eling, qualitative analysis, numerical methods, and real-life applications. We also51

present and discuss some open problems and future directions that research in52

differential equation models for infectious diseases can take.53

The manuscript is expected to cover not only the latest developments in de-54

terministic ODE and PDE models for infectious diseases, but also future research55

and open problems in this area. Unlike some previous review articles (see, for ex-56

ample, [82, 84, 87, 115, 208, 315, 363, 375, 392, 514]) that focus only on the57

mathematical modeling of specific diseases, this review provides a comprehensive58

analysis of all four aspects, where the main differences are outlined as follows:59

• In the mathematical modeling aspect: The selected references are sys-60

tematically reviewed based on common and dangerous diseases. Many61

common and dangerous diseases (e.g., basic models of virus dynamics,62
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influenza, severe acute respiratory syndrome (SARS), Ebola, hepatitis B63

and C, tuberculosis, vector-borne diseases, malaria, measles, Zika virus,64

dengue fever, COVID-19 pandemic, HIV/AIDS, . . . ) have been men-65

tioned, providing readers with a comprehensive and in-depth insight into66

infectious disease modeling with applications.67

• In the qualitative study aspect: We list in detail the essential qualita-68

tive properties for the proposed models and, in particular, the tools and69

methods used in qualitative research are rigorously analyzed.70

• In the numerical methods aspect: We provide a detailed overview of nu-71

merical methods, including standard and nonstandard methods, for solv-72

ing differential equations, with an emphasis on those used to solve disease73

transmission models. This section also provides an introduction to NSFD74

methods for mathematical models arising in real-world situations and re-75

cent advances in this area.76

• In the practical application aspect: We focus on important applications77

of differential equations for infectious diseases: modeling animal diseases78

with applications in agriculture, chemostat models to represent micro-79

bial growth and competition, modeling the spread of computer viruses80

and rumors on the Internet, modeling addictions (e.g., alcohol, tobacco,81

heroin, opioids, cocaine, drug use, etc.), understanding disease dynamics82

and potential scenarios, informing data-driven public health initiatives.83

In general, this survey provides a systematic overview of infectious disease modeling84

for mathematicians, epidemiologists, and all researchers of all experience levels,85

whether they are experienced or new to the field, that can help them understand:86

• Recent advances in modeling of major diseases.87

• Methods, methodologies, approaches, and tools for modeling infectious88

diseases.89

• Techniques for extracting insights and shaping public health strategies.90

• Exciting future directions in infectious disease research.91

In addition, this manuscript provides an overview of nonstandard finite difference92

(NSFD) methods and their applications in disease modeling.93

It is important to note that there are many other types of epidemiological94

models, such as integro-differential models, delayed differential equation models,95

fractional-order and stochastic differential models (see, for example, [16, 46, 47,96

59, 90, 97, 159, 184, 352, 388, 413, 426, 460, 497, 516]). However, the97

manuscript focuses only on ODEs and PDEs because the approaches, methodolo-98

gies, and methods for constructing ODE and PDE models of infectious diseases are99

very similar. In fact, they share many common features that should be included100

in a single systematic review. The other types of epidemiological models will be101

considered in future studies.102

The outline of this article is as follows: In Section 2, we provide an overview of103

epidemic models based on differential equations, considering basic models and their104

variants and extensions. In Section 3 we focus on the qualitative analysis aspect and105

its practical applications. Numerical methods are presented in Section 4. Future106

research and open problems are discussed in Section 5. The last section contains107

concluding remarks and discussions.108
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2. Mathematical Modeling109

In this section, we review results on mathematical modeling based on deter-110

ministic ODEs and PDEs for infectious diseases.111

2.1. ODE models: Basic Epidemic Models. We start with one of the first112

and basic epidemic models introduced by Kermack and McKendrick in 1927 [252].113

For this purpose, let us consider general autonomous dynamical systems described114

by ODEs of the form115

(2.1) ẏ(t) = f
(
y(t)

)
, t > 0, y(0) = y0 ∈ Rn,

where y = [y1, y2, . . . , yn]
⊤ : [0,∞) → Rn, f = [f1, f2, . . . , fn]

⊤ : Rn → Rn and ẏ116

stands for the time derivative of y. Here it is assumed that the right-hand-side117

function f satisfies all necessary smoothness assumptions so that solutions of (2.1)118

exist and are unique (see e.g. [55, 258, 454]).119

Many mathematical models based on (2.1) have been proposed to study epi-120

demic models. In these models, diseases caused by viruses or bacteria are not121

modelled directly in the population model, but only indirectly through the number122

of infected individuals. For example, the classical SI, SIS and SIR epidemic models123

classify individuals in the population according to their status with respect to the124

disease: healthy, infected and immune. More clearly, the disease states S, I and R125

are defined as follows [30, 323]:126

• susceptible S: Individuals who are not infected but are susceptible to127

acquiring the disease and becoming contagious.128

• infected I: Individuals who have been infected, are currently contagious,129

and have the potential to spread the disease to others.130

• removed R: Individuals who have experienced the disease, recovered, and131

achieved permanent immunity, or are isolated until both recovery and132

permanent immunity are achieved.133

Models with these states are called SIR models, adapted to the characteristics of134

the infectious disease, for example:135

• SI implies the absence of any possible recovery: S → I;136

• SIS indicates the possibility of recovery, but does not guarantee immunity:137

S → I → S;138

• SIR represents a temporary state of immunity: S → I → R → S.139

One of the simplest models involves the dynamics of S−, I−, R− individuals, first140

introduced by Kermack and McKendrick in 1927 [252] (see also [323]):141

Ṡ(t) = −βI(t)S(t),

İ(t) = βI(t)S(t)− αI,

Ṙ(t) = αI(t), t > 0,

(2.2)

where142

• β is the proportionality constant (’transmission rate’);143

• α is the recovery rate;144

• βI(t) is called the force of infection.145

• βSI represents the number of new infections per unit of time (incidence).146
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Although the SIR model (2.2) looks analytically simple, finding its exact ana-147

lytical solution is an interesting problem. Some analytical techniques used to find148

the solution of (2.2) can be found in [101, 207, 261].149

It is not difficult to analyze basic mathematical properties of the Kermack-150

McKendrick SIR model [252, 323]. More clearly, it can be shown that151

lim
t→∞

S(t) = S∞ > 0, lim
t→∞

R(t) = R∞ > 0, lim
t→∞

I(t) = I∞ = 0.

The quantity S∞ is called the final size of the epidemic. In particular, the function152

I(t) of infected individuals can monotonically decrease to zero, or first monoton-153

ically increase to some maximum value Imax and then decrease to zero. Here, a154

necessary and sufficient condition for the initial increase of I(t) is easily determined155

and is given by156

S(0) >
α

β
.

On the other hand, Imax can be computed as157

Imax = −α

β
+

α

β
ln

α

β
+ S0 + I0 −

α

β
lnS0.

The quantity Imax is very useful in estimating the progression of epidemics since it158

indicates when the number of infections will begin to decline.159

Note that the Kermack-McKendrick SIR epidemic model, for example, uses160

some hypotheses:161

• Infected individuals are also infectious;162

• the total population remains constant;163

• the population experiences no births or deaths;164

• the population is closed, that is, no outside individuals enter or leave the165

population;166

• all recovered individuals have complete immunity and are impervious to167

reinfection.168

The above assumptions may seem rather restrictive, but they can be satisfied within169

certain limits. For example, several childhood diseases such as chickenpox, small-170

pox, rubella, mumps, scarlet fever, hand-foot-and-mouth disease lead to permanent171

immunity, or many vaccines can create long-lasting or even lifelong immunity [323].172

Although the Kermack-McKendrick SIR epidemic model is simple and under173

some strict assumptions, it is still appropriate and effective for modeling many174

infectious diseases. In fact, once we have given disease-specific time series data,175

the parameter estimation problem for the SIR model can be solved by compar-176

ing its solution to the given data. Examples of parameter estimation from data177

can be found in [78, 80, 323]. Recently, the Kermack-McKendrick SIR epidemic178

model was used to study and predict the transmission dynamics of the COVID-19179

pandemic [250, 268, 278, 322, 359, 442, 483].180

In [253], the limitation of the SIR model (2.2) was improved by considering181

the effect of the continuous introduction of new susceptible individuals into the182

population. However, the results presented in [253] had two important limitations.183

One was that the disease of interest was the only cause of death, and the second184

was that the age of the individuals did not affect their infectivity, susceptibility,185

or reproductive capacity. In [254], the first of the above limitations was overcome186

by the introduction of constant non-specific mortality rates, which, for the sake187
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of generality, are assumed to be different. are assumed to be different for virgins188

(individuals who have never been infected), sick, and recovered.189

In general, the classical SIR model should be adapted to the characteristics of190

each epidemic.191

2.2. Variants and Extensions of the Basic Models. The classical epi-192

demic models have played an important role in epidemic modeling. Inspired by193

basic epidemic models and principles of mathematical epidemiology, many math-194

ematical models models have been proposed and developed to study infectious195

diseases.196

There are several types of incidence, depending on the assumption made about197

the force of infection. One of the simplest forms is the mass action incidence198

or bilinear incidence function, which is f(S, I) = βSI. In the model (2.2), the199

interaction term βIS is a linearly increasing function of the number of infected200

individuals. As analyzed in [99], while this interaction term may be true for small201

I, it seems rather unrealistic that it can still hold for large I. For this reason,202

Capasso and Serio modified (2.2) by replacing the linear interaction term βIS by203

a non-linear function g(I)S, where g(I) satisfies204

(1) ∀x ∈ R+ : g(x) ≥ 0;205

(2) g(0) = 0;206

(3) ∃ c ∈ R+\{0} s.t. ∀x ∈ R+ : g(x) ≤ c;207

(4) g′(x) : R+ → R, the derivative of g, exists and is bounded on any compact208

interval of R+, with g′(0) > 0;209

(5) ∀x ∈ R+ : g(x) ≤ xg′(0), where R+ := [0,∞).210

The function g(I) takes into account the ”saturation” phenomenon or the other211

”psychological” effects. Two famous nonlinear incidence functions are the satu-212

rated incidence rate f(S, I) = βSI/(1 + γI) and the standard incidence function213

f(S, I) = βSI/(S+I). Epidemic models using generalized nonlinear incidence rate214

can be found in [165, 166, 179, 211, 231, 285, 294, 296, 329, 415, 440, 468].215

In the SIR model, it was assumed (2.2) that the rate of contacts per infective is216

proportional to the total population size N , which was widely used in all early epi-217

demic models. As mentioned in [78, 82], this assumption is quite unrealistic except218

in the early stages of an epidemic occurring within a moderately sized population.219

It is more realistic to consider a contact rate that is a non-increasing function of220

total population size. The SIR model can then be generalized by assuming that221

an average member of the population makes C(N) contacts per unit time, with222

C ′(N) ≥ 0, and defining223

β(N) =
C(N)

N
,

where β′(N) is assumed to be negative to express the idea of saturation in the224

number of contacts. The following are some special cases of C(N) that have been225

widely used in epidemic modeling with general contact rates.226

• Standard incidence: C(N) = λ;227

• Mass action incidence: C(N) = βN ;228

• Interaction of Michaelis-Menten type:229

C(N) =
aN

1 + bN
,

which was used in [147].230
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• Saturating contact rate based on a mechanistic derivation for pair forma-231

tion [209]232

C(N) =
aN

1 + bN +
√
1 + 2bN

.

• C(N) = λNα with α = 0.05 was used in [332]. It has been shown233

that this function works quite well for data on contact-borne diseases in234

medium-sized cities.235

In recent decades, the basic classical epidemic models and their variants have236

been extensively developed to describe the transmission dynamics of many major237

infectious diseases:238

• Basic virus dynamics models and outbreak spread models in epidemiology239

[36, 75, 163, 215, 370, 392, 471, 514];240

• Influenza [8, 10, 102, 198, 434];241

• Severe acute respiratory syndrome (SARS) [77, 121, 195, 229, 366,242

518];243

• Ebola [1, 65, 142, 288, 317, 364];244

• Hepatitis B and C [168, 216, 221, 319, 324, 351, 369, 393, 452, 458,245

491, 507, 515];246

• Tuberculosis [24, 72, 197, 208, 299, 361, 408, 446, 466, 469];247

• Vector-borne diseases [70, 85, 129, 236, 287, 418, 496];248

• Malaria [3, 16, 18, 175, 235, 264, 315, 368, 424, 464, 472];249

• Measles [19]250

• Zika virus [11, 177, 206, 240, 263, 310, 365, 425, 432, 493, 519];251

• Dengue fever [14, 107, 155, 239, 365, 395, 401];252

• COVID-19 pandemic [12, 17, 33, 57, 66, 119, 123, 130, 154, 222,253

250, 248, 262, 265, 268, 278, 283, 303, 314, 322, 355, 358, 359,254

367, 375, 377, 387, 403, 406, 411, 442, 456, 464, 483];255

• HIV/AIDS [169, 194, 242, 297, 305, 371, 416, 479].256

Besides, epidemic models are widely used in257

• Diabetes Mellitus [105, 361];258

• cancer: malignant invasion of tumor cells [321];259

• cervical cancer: human papillomavirus model [89];260

• animal disease modeling with applications in agriculture [2, 9, 50, 471];261

• chemostat models to represent microbial growth and competition [20, 21,262

23, 444];263

• modeling the spreading of computer viruses and rumors on the Internet264

[179, 230, 238, 292, 389, 390, 402, 404, 430, 510, 511, 512, 523,265

524];266

• modeling addictions, e.g. alcohol drinking [133, 233, 256, 257, 386,267

419, 420, 436, 495, 503, 504], tobacco [181, 284, 298, 433, 478, 485],268

heroin [125, 298, 356, 451, 498], opioids [63, 88, 95, 125, 521], cocaine269

[421, 423], drug consumption [141, 188, 486], obesity [51, 93, 164, 244,270

422], etc.271

It should be noted that the ODE models of the form (2.1) are also used in the272

context of:273

• Delayed systems [7, 104, 127, 163, 173, 174, 214, 381, 407, 445,274

474, 506];275
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• Time fractional-order systems [7, 38, 115, 313, 455, 471];276

• Stochastic Systems [29, 32, 37, 84, 92, 114, 189, 429]277

for infectious disease modeling. These extended models provide an additional pow-278

erful approach to disease analysis.279

2.3. PDE Models. In addition to ODE models of the form (2.1), PDE mod-280

els, which extend ODE models, have also been extensively studied for the analysis281

of infectious diseases [30, 79, 83, 323, 360, 427].282

More specifically, compartmental models in epidemiology can be extended by283

using spatial reaction-diffusion systems, where each compartment, representing a284

different species, is allowed to invade a spatial domain Ω ⊂ Rm (or a metric graph285

network) with a space-dependent density. The densities interact with each other286

according to the same mathematical laws as for the space-independent case, but are287

individually subject to a spatial diffusion mechanism, usually associated with the288

Laplace operator [48]. Then a system of n interacting species, each with a spatial289

density290 {
ui(x, t) : x ∈ Ω, t ≥ 0

}
, i = 1, 2, . . . , n

can be described by a system of semilinear parabolic PDEs of the form291

(2.3)
∂u

∂t
(x, t) = D∆u(x, t) + f

(
u(x, t)

)
supplied with suitable boundary conditions, whereD = diag(d1, d2, . . . , dn), f : Rn →292

R is the interaction law among the species via their densities, and293

∆u(x, t) =
∂2u

∂x2
1

(x, t) + . . .+
∂2u

∂x2
n

(x, t).

Spatial models of the form (2.3) have been used to study the transmission of in-294

fection, depending on how a particular disease is transmitted between different295

populations or subpopulations.296

Allen et al. [31] proposed an SIS reaction-diffusion model in a heterogeneous297

environment to understand the impact of spatial heterogeneity of the environment298

and movement of individuals on the persistence and extinction of a disease. This299

model is given in the form:300

∂

∂t
S(t, x) = dS∆S(t, x)− β(x)S(t, x)I(t, x)

S(t, x) + I(t, x)
+ γ(x)I(t, x), t > 0, x ∈ Ω,

∂

∂t
I(t, x) = dI∆I(t, x) +

β(x)S(t, x)I(t, x)

S(t, x)− I(t, x)
− γ(x)I(t, x), t > 0, x ∈ Ω,

(2.4)

with the coupling condition301

(2.5)
∂

∂n
S(t, x) =

∂

∂n
I(t, x) = 0,

where302

• S(t, x) and I(t, x) denote the density of susceptible and infectious individ-303

uals at location x and time t in a given spatial region Ω, which is assumed304

to be a bounded domain in Rn(n ≥ 1) with a smooth boundary ∂Ω;305

• Ω is isolated from the outside for the host, implying the homogeneous306

Neumann boundary condition; n is the outward unit normal vector on307

∂Ω, and ∂/∂n denotes the normal derivative along n on ∂Ω.308
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• dS and dI are the dispersion for susceptible and infectious individuals,309

respectively;310

• the positive functions β(x) and γ(x) are the spatially dependent trans-311

mission and recovery rates at position x ∈ Ω, respectively.312

The existence, uniqueness and asymptotic profile of the equilibria are then analyzed.313

First, a basic reproduction number is defined for this PDE-SIS model (2.4), which is314

based on the next generation approach for heterogeneous populations [145, 146].315

It is then shown that if the basic reproduction number is less than 1, a unique316

disease-free equilibrium is globally asymptotically stable and there is no endemic317

equilibrium, while if the basic reproduction number is greater than 1, the disease-318

free equilibrium is unstable and there is a unique endemic equilibrium. It is also319

pointed out that the disease-free equilibrium is always unstable for high-risk do-320

mains, and for low-risk domains, the disease-free equilibrium is stable if and only321

if infected individuals have mobility above a threshold. These results have several322

useful implications for real-world situations.323

In [383], Peng provided further understanding of how large and small diffu-324

sion rates of the susceptible and infected populations affect disease persistence and325

extinction. In another paper [384], Peng and Yi considered a more complicated326

heterogeneous environment in which the moderate risk area occurs, and dealt with327

two cases: (i) only the moderate and high risk areas exist; (ii) the low, moderate,328

and high risk areas coexist. In both works, the asymptotic profile of the positive329

steady state was rigorously investigated, and optimal strategies for eradicating the330

epidemic disease were proposed.331

In [232], Huang et al. proposed and studied two modified SIS diffusion models332

of the form (2.4) but they are associated with the Dirichlet boundary condition333

S(t, x) = I(t, x) = 0 for x ∈ ∂Ω and t > 0, reflecting a hostile environment in the334

boundary. The analysis of the basic reproduction number and a partial result on335

the global stability of the endemic equilibrium are also performed.336

In [279], a spatially diffusive SIR epidemic model with the mass action infection337

mechanism and homogeneous Neumann boundary condition was considered in the338

form339

∂

∂t
S(t, x) = kS∆S(t, x) + b(x)− β(x)S(t, x)I(t, x)− µ(x)S(t, x), t > 0, x ∈ Ω,

∂

∂t
I(t, x) = kI∆I(t, x) + β(x)S(t, x)I(t, x) +

(
µ(x) + γ(x)

)
I(t, x), t > 0, x ∈ Ω,

∂

∂t
R(t, x) = kR∆R(t, x) + γ(x)I(t, x)− µ(x)R(t, x), t > 0, x ∈ Ω,

(2.6)

with initial data340

(2.7) S(0, x) = S0(x), I(0, x) = I0(x), R(0, x) = R0(x), x ∈ Ω,

and boundary conditions341

(2.8)
∂

∂n
S(t, x) =

∂

∂n
I(t, x) =

∂

∂n
R(t, x)0,

where342

• S(t, x), I(t, x) and R(t, x) denote the populations of susceptible, infective343

and recovered individuals at position x and time t, respectively;344
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• kS , kI and kR denote the dissemination rates for susceptible, infectious345

and recovered individuals, respectively;346

• b(x), β(x), µ(x) and γ(x) denote the birth rate, the transmission rate, the347

mortality rate and the recovery rate at position x, respectively.348

By discretizing the PDE model (2.6) with respect to the space variable and con-349

structing Lyapunov functions for the corresponding ODE models, the global as-350

ymptotic stability of (2.6) has been established [279].351

In [280], the model (2.6) is extended by a new more realistic model with non-352

local diffusion.353

In a recent paper, some extensions of the classical SIR model with non-symmetric354

spatial dependence are introduced to study the spread of some diseases [461]. The355

proposed model yields a system of partial integro-differential equations. Also, two356

methods that handle the integrals of the equations have been provided.357

In addition to the above PDE models, a large number of spatial reaction-358

diffusion models of major infectious diseases such as HBV, malaria, influenza, West359

Nile virus transmission, Zika, etc. can be found in [56, 100, 118, 134, 255, 266,360

267, 290, 300, 301, 354, 405, 437, 447, 457, 482, 488, 489, 490, 502, 505,361

507, 522], in which the models proposed in [118, 255, 266, 300, 437, 482, 502,362

522] can be directly used to study the COVID-19 epidemic.363

3. Qualitative analysis and applications364

Qualitative analysis of differential equations modeling infectious diseases is very365

important since it can have many useful applications in reality, such as suggesting366

appropriate strategies for disease control and prevention; evaluating the effects of367

vaccines; waning immunity; parameter estimation problems; parameter sensitivity368

analysis and optimal control strategies (usually w.r.t. vaccination strategies, stake-369

holder decisions (wearing masks, physical isolation, curfews, etc.).370

In this section, we emphasize qualitative analytical aspects of differential equa-371

tion models and their applications, where methods, approaches, and tools used in372

qualitative analysis are discussed in detail.373

3.1. Analysis of ODE models. The first property of interest for ODE mod-374

els of infectious diseases is well-posedness, including existence, uniqueness of solu-375

tions, and continuous dependence on initial data. Well-posedness is easy to establish376

and is often automatically satisfied due to the smoothness of the right-hand-side377

functions [30, 55, 258, 454]. In general, in addition to well-posedness, qualitative378

analysis aspects of ODE models of infectious diseases focus mainly on the following379

issues.380

3.1.1. The positivity and boundedness of the solutions. Obviously, positivity381

should be an obvious property of the solutions of ODEmodels for infectious diseases,382

i.e. y(t) ∈ Rn
+ = {(y1, y2, . . . , yn) ∈ Rn|y1, y2, . . . , yn ≥ 0} for t > 0 whenever383

y(0) ∈ Rn
+. In this case, the set Rn

+ is called a positively invariant set. This384

property can be easily verified using well-known theorems on the positivity of ODEs385

[228, Lemma 1], [444]. Meanwhile, boundedness can be established on the basis of386

comparison theorems for differential equations [330]. Note that positively invariant387

sets and feasible sets of ODE models follow from their positivity and boundedness.388
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3.1.2. Conservation laws. Many ODE models in population dynamics and also389

in epidemiology can satisfy some conservation laws, such as direct, generalized and390

subconservation laws [344, 347]. Conservation laws for ODE models of infectious391

diseases can be established based on the theory of ODEs [20, 30, 258, 444, 454]392

or comparison theorems for differential equations [330].393

3.1.3. Equilibrium points. Equilibrium points of ODE models of the form (2.1)394

are solutions of the equation f(y) = 0. An equilibrium point is also called a fixed395

point, constant solution, steady state, critical point or a steady-state solution [30,396

258, 454]. In general, it is not difficult to determine the set of equilibrium points,397

except when the ODE model under consideration has high dimensions and contains398

many parameters. Two common types of equilibria are disease-free equilibrium399

(DFE) and endemic equilibrium (EE) points, which correspond to the possibility400

of the epidemic being suppressed or remaining in the community.401

3.1.4. Local asymptotic stability (LAS). An equilibrium y∗ is said to be locally402

stable if for every ϵ > 0 there exists a δ > 0 with the property that every solution403

y(t) starting from the initial condition y(0) = y0 with ∥y0 − y∗∥ < δ satisfies404

∥y(t) − y0∥ < ϵ for all t ≥ 0. It is said to be locally asymptotically stable if it is405

sable and there exists γ > 0 such that ∥y0 − y∗∥ < γ implies limt→∞ y(t) = y∗406

(see, e.g., [30, 258, 454]). The local dynamics of dynamical systems has several407

important implications in the real world. The LAS of equilibrium points can be408

studied by the Lyapunov indirect method using the Routh-Hurwitz criteria [30,409

258, 454]. This approach analyzes the LAS of an equilibrium point by considering410

the position of the eigenvalues of the Jacobian matrix evaluated at the equilibrium411

point with respect to the left-half plane. More specifically, an equilibrium point412

y∗ is locally asymptotically stable if all eigenvalues λ of the Jacobian J(y∗) =413

(∂f/∂y)(y∗) satisfy Re(λ) < 0, and it is unstable if Re(λ) > 0 for one or more of414

the eigenvalues of J . Note that the direct Lyapunov method is only applicable to415

hyperbolic equilibrium points. Here, an equilibrium point y∗ is said to be hyperbolic416

if none of the eigenvalues of the matrix J lie on the imaginary axis, and non-417

hyperbolic otherwise, cf. [454].418

3.1.5. Global asymptotic stability (GAS). An equilibrium point y∗ is said to be419

globally asymptotically stable if it is stable and globally attractive, i.e. limt→∞ y(t, y0) =420

y∗ for all initial conditions y0 (see e.g. [30, 258, 454]). The GAS analysis of equilib-421

rium points is a very important problem because it can reveal the future evolution422

of epidemics. In particular, the GAS of free-disease equilibrium points indicates423

that epidemics will be extinguished, while the GAS of endemic-equilibrium points424

indicates that epidemics will exist stably in the population. In general, the GAS425

problem is not an easy one. One of the most successful approaches to this problem426

is the Lyapunov stability theory [286, 309]. This approach requires suitable candi-427

date Lyapunov functions that must satisfy some specific conditions. In general, it428

is not easy to determine a Lyapunov function for a given dynamical system. How-429

ever, several classes of Lyapunov functions have been proposed to analyze the GAS430

of ODE models in epidemiology [98, 272, 273, 274, 374, 406, 438, 480, 508],431

where common classes of Lyapunov functions are linear, quadratic and Volterra-432

type Lyapunov functions or combinations of them. In particular, Cangiotti [98]433

provided an overview of Lyapunov functions for epidemic compartmental models.434

On the other hand, the geometric method is a remarkable approach to the435

GAS analysis of ODEs [293, 294, 295]. Also, the Poincaré-Bendixson Theorem436
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in combination with the Bendixson-Dulac Criterion is very useful in studying the437

GAS of two-dimensional dynamical systems governed by ODEs [30, 323].438

In [103], Castillo-Chavez et al. discussed some conditions that clarify the439

connections between the basic reproduction number and its relation to the GAS440

of disease-free equilibrium points of epidemiological models. Then, global stability441

conditions for disease-free equilibrium points were given, which are easy to verify.442

3.1.6. Basic reproduction number. One of the most important concerns about443

any infectious disease is its reproductive number R0, which is useful in guiding444

control strategies [145, 146, 475, 476, 477]. The basic reproduction number445

can be defined as the expected number of secondary cases produced by a typical446

infected individual during its entire period of infectiousness in a fully susceptible447

population [145]. It can also be considered as a threshold parameter for the local448

asymptotic stability of the disease-free equilibrium [475]. The basic reproduction449

number of epidemic models is very useful in guiding control strategies with the help450

of sensitivity analysis.451

3.1.7. Optimal control problems. Epidemic models based on differential equa-452

tions are often combined with optimal control strategies to find effective disease453

control measures [58, 60, 68, 86, 113, 260, 307, 432, 435, 463]. The pro-454

posed optimal control problems can be solved using Pontryagin’s maximum princi-455

ple [391].456

3.1.8. Epidemic models with effect of vaccines. It is well known that vaccines457

are effective tools to combat infectious diseases and to protect people against dis-458

ease. For this reason, epidemic models with the effect of vaccines are often con-459

sidered [8, 25, 156, 157, 163, 167, 180, 193, 196, 234, 277, 414, 439]. The460

study of vaccination models [34, 192, 363, 473] can evaluate the efficacy of certain461

vaccines and suggest effective vaccination strategies.462

3.1.9. Parameter estimation problem. ODE models for infectious diseases can463

be combined with real data of diseases to predict possible scenarios in reality. There-464

fore, the parameter estimation problem is very important to find best-fit parame-465

ters [78, 80, 323]. Following this approach, the parameter estimation problem has466

been extensively studied for several epidemic models [122, 311, 357, 397, 417],467

especially for the COVID-19 pandemic [250, 268, 307, 322, 359].468

3.1.10. Bifurcation analysis and chaos. It is well-known that bifurcation theory469

studies qualitative changes in the state of a system as a parameter is varied [106,470

282]. In general, applications of bifurcation analysis in epidemiology are very471

diverse, especially in studying the evolution and determining factors that may be472

associated with the suppression or outbreak of disease. For example, the forward473

bifurcation phenomenon, first noted by Kermack and McKendrick in [252], can474

be observed in several disease transmission models [160]. For epidemic models475

that exhibit forward bifurcation, the condition R0 < 1 is a necessary and sufficient476

condition for disease elimination [160, 199]. For many years, bifurcation analysis477

for epidemic models has been studied extensively with many useful applications,478

including forward bifurcation, backward bifurcation, Hopf bifurcation, Bogdanov-479

Takens bifurcation, saddle-node bifurcation, flip bifurcation are mainly focused [26,480

28, 54, 76, 120, 185, 202, 243, 281, 304, 327, 412, 431].481

Chaos theory has many useful applications in many fields such as physics, bi-482

ology, ecology and epidemiology, economics, etc. [73, 217, 328, 428]. In recent483
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decades, chaos theory has been developed and studied with the aim of discovering484

chaotic phenomena/dynamics, complicated or even unpredictable dynamical behav-485

ior in epidemic models [67, 74, 87, 161, 185, 190, 246, 316, 317, 318, 372, 373].486

3.2. Analysis of PDE models. In general, the qualitative analysis aspects487

for PDE models of infectious diseases are very similar to those for ODE models.488

In particular, the qualitative analysis of PDE models also focuses on well-489

posedness of mathematical models, positivity and boundedness of the solution, con-490

servation laws, equilibria and their asymptotic stability, basic reproduction numbers491

and their implications, optimal control problems, parameter estimation, vaccina-492

tion models, bifurcations and chaos [31, 56, 61, 62, 91, 108, 109, 128, 129,493

134, 158, 178, 187, 232, 241, 255, 267, 279, 280, 290, 291, 301, 306, 312,494

353, 354, 385, 405, 437, 447, 448, 450, 457, 461, 482, 487, 488, 489, 490,495

494, 502, 505, 507, 509, 517, 520, 522, 525].496

Several methods and tools used in the qualitative analysis of ODE models,497

such as basic reproduction number, Lyapunov stability theory, optimal control,498

bifurcation and chaos analysis, can be developed and extended for PDE models.499

However, the qualitative study for PDE models is more challenging due to the500

complexity of their structures.501

4. Numerical methods502

4.1. Standard and nonstandard numerical methods. It is well known503

that both ODEs and PDEs can be solved exactly only in a small number of cases,504

and that in most real-world situations it is almost inevitable to find approximate505

solutions. For this reason, numerical methods for differential equations have become506

one of the most fundamental and practically important research tasks [55, 203,507

204, 289, 443, 453, 454, 467].508

Numerical solutions for ODE models can be easily obtained using standard509

numerical methods such as the Runge-Kutta and Taylor (one-step) methods and510

multistep methods, while finite difference methods are appropriate and efficient for511

the numerical solution of PDE models [55, 203, 204, 289, 445, 453, 454, 467].512

However, mathematical models arising in real-world applications in general, and in513

infectious disease modeling in particular, often possess several essential qualitative514

features, such as positivity, boundedness, asymptotic stability properties, conser-515

vation laws, periodicity and physical properties, etc., which must be respected516

by corresponding numerical schemes. Therefore, an important requirement for517

numerical methods is that they correctly preserve the essential properties of the518

corresponding differential equations. However, it has been shown by Mickens in519

[335, 338, 342, 343, 346, 348] that standard numerical methods cannot preserve520

the mathematical properties of ODEs for all values of the temporal step size.521

In the 1980s, Mickens proposed the concept of nonstandard finite difference522

(NSFD) methods to compensate for drawbacks and shortcomings of standard nu-523

merical methods [335, 338, 342, 343, 346, 348]. One of the main and outstanding524

advantages of NSFD methods is that they can preserve essential mathematical prop-525

erties of differential equations independently of the values of the step size. Such526

NSFD methods are said to be dynamically consistent. Thus, dynamically consistent527

NSFD methods are efficient and suitable for simulating the behavior of dynamic528

differential equation models over long periods of time.529
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In addition to NSFD methods for ODEs, geometric numerical integration [96,530

191, 205] (or both [93]) and positivity-preserving Runge-Kutta methods [69, 183,531

228, 462] and modified Patankar-Runge-Kutta schemes [270, 271] have also been532

developed to construct reliable numerical methods that preserve the positivity as533

well as other dynamical properties of ODE models.534

In the next subsection, we provide an overview of NSFD methods for mathe-535

matical models of infectious diseases and their applications.536

4.2. Nonstandard finite difference methods for epidemiological mo-537

dels of infectious diseases. In numerical analysis, numerical instabilities are538

solutions of finite difference models that do not correspond to any solution of the539

counterpart differential equation [346]. Mickens, the creator of the concept of540

NSFD methods, wrote: ”Numerical instabilities are an indication that the discrete541

models are unable to model the correct mathematical properties of the solutions to542

the differential equations of interest” [335, 338, 342, 343, 346, 348]. The concept543

of NSFD schemes was first introduced by Mickens in the 1980s to overcome the usual544

numerical instabilities associated with standard finite-difference schemes [335, 338,545

342, 343, 346, 348]. A finite difference scheme is said to be nonstandard if it is546

constructed based on a set of basic rules proposed by Mickens [335, 338, 342,547

343, 346, 348]. In particular, NSFD schemes for the ODE models of the form548

(2.1) can be defined as follows.549

Consider a general finite difference scheme for (2.1) of the form550

(4.1) D∆t(yk) = F∆t(f ; yk),

where D∆t(yk) ≈ dy/dt, F∆t(f ; yk) ≈ f(y) and tk = k∆t, ∆t is the step size.551

Definition 4.1 ([39, 44, 151]). The finite difference scheme (4.1) is called an552

NSFD scheme if at least one of the following conditions is satisfied:553

• D∆t(yk) =
yk+1 − yk
ϕ(∆t)

, where ϕ(∆t) = ∆t + O(∆t2) is a non-negative554

function and is called a nonstandard denominator function;555

• F∆t(f ; yk) = g(yk, yk+1,∆t), where g(yk, yk+1,∆t) is a non-local approx-556

imation of the right-hand side of the system (2.1).557

NSFD schemes for (parabolic) PDEs [35, 111, 117, 144, 212, 249, 276, 331,558

340, 362, 379, 394], fractional-order differential equations [90], delay differential559

equations are similarly defined based on the Mickens’ methodology.560

The main advantage of NSFD schemes over standard schemes is expressed in561

the following definitions.562

Definition 4.2 ([39, 44]). Assume that the solutions of the equation (2.1)563

satisfy some property P. The numerical scheme (4.1) is said to be (qualitatively)564

stable with respect to the property P (or P-stable), if for every value of ∆t > 0 the565

set of solutions of (4.1) satisfies the property P.566

Definition 4.3 ([41, 302, 342]). Consider the differential equation dy/dt =567

f(y). Let a finite difference scheme for the equation be yk+1 = F (yk; ∆t). Let the568

differential equation and/or its solutions have the property P. The discrete model569

equation is dynamically consistent with the differential equation if it and/or its570

solutions also have the property P.571
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Nowadays, NSFD methods based on the Mickens’ methodology have become572

an efficient approach for numerically solving ODE models arising in real-world573

problems [5, 39, 40, 44, 131, 132, 135, 136, 137, 138, 139, 140, 148, 149,574

150, 151, 152, 153, 172, 200, 225, 226, 334, 335, 338, 339, 342, 343, 344,575

346, 347, 348, 350, 380, 382, 409, 410, 449, 499, 500, 501]. In particular,576

NSFD schemes have been extensively studied for epidemic models, such as577

• General epidemiological models [44, 52, 53, 110, 201, 325, 326]578

• Influenza disease [176, 245, 259];579

• Ebola [17, 45, 65, 237, 459];580

• Hepatitis B [220, 221];581

• Visceral Leishmaniasis [4, 441];582

• Malaria [43, 170];583

• Measles [13, 171];584

• Zika [310, 465];585

• COVID-19 [66, 130, 210, 213, 222, 314, 396, 403, 470];586

• Cancer: malignant invasion of tumor cells [49];587

• Computer virus propagation models [139, 218, 402].588

Compared to numerical methods for ODE models, numerical methods for PDE589

models are more challenging. Finite difference methods are one of the most common590

and efficient approaches for numerical simulation of PDEs [55, 289, 453, 467]. It591

is important to note that positivity should be an obvious property of the solutions of592

both ODE and PDE models for infectious diseases. Therefore, positivity preserving593

numerical methods are essential. To the best of our knowledge, numerical methods594

that preserve positivity and other dynamical properties for the PDE models are595

few. However, NSFD methods based on Mickens’ methodology have been shown to596

be suitable and effective for constructing such numerical methods [39, 41, 42, 112,597

126, 162, 335, 336, 337, 338, 341, 342, 343, 345, 346, 348, 349, 492]. In598

particular, dynamically consistent NSFD schemes have been applied to solve some599

PDE models of infectious diseases [182, 319, 320, 378, 393, 457, 458, 513].600

Even though NSFD methods have several advantages, most of the existing601

dynamically consistent NSFD methods are only first-order convergent [116, 124,602

131, 218, 220, 221], which can be considered as an inherent drawback of NSFD603

methods. For this reason, the problem of improving the accuracy of NSFD methods604

has attracted the attention of many researchers [22, 116, 138, 186, 219, 223, 224,605

226, 227, 269, 325, 326]. However, it is very challenging to construct dynamically606

consistent NSFD methods, especially high-order methods, for differential equations.607

In recent years, there has been an increased interest in solving PDEs using608

Deep Learning (see e.g. [64, 71, 210, 398]). More recently, in [275], a deep609

learning approach has been proposed to improve numerical methods for PDEs.610

This approach is based on an approximation of the local truncation error of the611

numerical method used to approximate the spatial derivatives of a given PDE.612

In general, the construction of numerical methods, especially those that pre-613

serve important properties of differential models, is an important problem but not614

easy to solve. In addition, high-order numerical methods are still an important615

problem that has not been fully solved, and the reduced spatial accuracy of NSFD616

methods for PDEs is still an open problem.617

NSFD methods for PDEs have lacked guaranteed first-order temporal accuracy618

and consistency for key models such as diffusion and reaction-diffusion systems. In619
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a recent paper Pasha, Nawaz and Arif [378] proposed a novel NSFD scheme that620

overcomes this limitation and guarantees first-order temporal accuracy and second-621

order spatial accuracy while preserving positivity. The question remains as to how622

one can develop compact higher-order schemes with the NSFD concept.623

5. Future research and open problems624

Although research on differential equation models for infectious diseases has625

been extensively developed over the past decades and has achieved many important626

successes, these models still need to be studied and expanded for the following627

reasons.628

First, mankind is always facing and fighting many infectious diseases, which629

are not only constantly changing but also difficult to predict, and thus always pose630

a great and constant threat to public health. In this context, the development of631

mathematical models of infectious diseases remains a fundamental and effective ap-632

proach to discover the characteristics and mechanisms of transmission of epidemics,633

and thus effectively predict possible scenarios in reality. On the other hand, as the634

existing differential equation models are built based on observations, experience,635

and understanding of the diseases, they often become outdated and therefore need636

to be updated and modified to keep up with the constant changes in epidemics.637

Therefore, in addition to building new models, improving existing models is also638

very important.639

Second, once mathematical models have been formulated, aspects of qualita-640

tive study and approximate solutions are raised. Addressing these issues is useful641

for finding appropriate strategies for disease prevention and control, as well as for642

predicting disease spread scenarios. In addition, infectious diseases often need to643

be monitored over very long periods of time. This leads to the rapid solution of644

differential equation models over long time periods. Therefore, efficient numeri-645

cal methods are urgently needed. However, the construction of efficient high-order646

numerical methods in general, and numerical methods that preserve essential qual-647

itative properties of differential equation models in particular, is still an important648

problem that has not been fully solved.649

Lastly, the practical application of mathematical models of infectious diseases650

is essential, but has not been widely used. In particular, theoretical studies should651

be combined with observed real-world epidemic data to calibrate the mathematical652

models and find optimal parameters, thereby building scenarios that better reflect653

reality and proposing appropriate anti-epidemic strategies.654

For the above reasons, differential equation models for infectious diseases need655

to be studied and developed. To achieve this, it is also necessary to develop and656

extend research methods to keep pace with the complexity of the proposed models.657

Another future direction is to use one NSFD scheme not exclusively, but as658

one element in a hybrid scheme approach, e.g. using operator splitting [13, 17],659

Chebyshev collocation [6], Hermite Polynomials [400] wavelets [399, 481] or a660

predictor corrector NSFD approach [171].661

A special challenge are mimetic / fitted operator schemes for singular perturbed662

problems, due to the necessary resolution of boundary layers having different scales,663

e.g. convection-diffusion equations [46, 47, 251], Burgers-Huxley equation [143],664

differential difference equations [381] or boundary value ODE problems [308, 376].665
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Finally, most recent research directions for NSFD schemes are integro-differential666

equations [333], the GPU acceleration of the (serial) NSFD code [247] and geo-667

metric numerical integration, symmetrization of NSFD schemes [93].668

6. Concluding remarks and discussions669

In this work, we have reviewed many but not all recent developments and670

real-life applications of deterministic ODEs and PDEs of major infectious diseases,671

mainly focusing on mathematical modeling, qualitative analysis, numerical meth-672

ods and real-life applications. We have also presented and discussed some open673

problems and future directions that research in differential equation models for674

infectious diseases can take. In the presentation, we focus only on deterministic675

differential equation models associated with the integer-order derivatives. Delayed676

models [352], stochastic models [16, 59, 388, 516], and fractional-order models,677

especially for PDEs [46, 47, 90, 460], will be considered in future work.678

All the results presented demonstrate the important role of differential equation679

models in disease modeling. Moreover, they remain an effective and indispensable680

approach to study the characteristics of infectious diseases and thereby suggest681

effective measures for disease prevention and public health protection.682
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[187] E. González, M. J. Villena, On the spatial dynamics of vaccination: A spatial SIRS-V model,1181

Computers & Mathematics with Applications 80 (2020) 733-743.1182

[188] A. Gragnani, S. Rinaldi, G. Feichtinger, Dynamics of drug consumption: a theoretical model,1183

Socio-Economic Planning Sciences 31 (1997) 127-137.1184

[189] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A Stochastic Differential Equation SIS1185

Epidemic Model, SIAM Journal on Applied Mathematics 71 (2011) 876-902.1186

[190] B. T. Grenfell, B. M. Bolker, A. Kleczkowski, Seasonality and extinction in chaotic metapop-1187

ulations, Proc. Proceedings of the Royal Society of London. Series B 259:97-103.1188

[191] V. Grimm, G. R. W. Quispel, Geometric Integration Methods that Preserve Lyapunov1189

Functions, BIT Numerical Mathematics 45 (2005) 709-723.1190
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[237] Z. Iqbal, J. E. Maćıas-Dı́az, N. Ahmed, M. A.-U. Rehman, A. Raza, M. Rafiq, A SEIR1300

model with memory effects for the propagation of Ebola-like infections and its dynamically1301

consistent approximation, Computer Methods and Programs in Biomedicine 209 (2021)1302

106322.1303

[238] Z. Iqbal, M. A.-U. Rehman, M. Imran, N. Ahmed, U. Fatima, A. Akgül, M. Rafiq, A. Raza,1304

A. A. Djuraev, F. Jarad, A finite difference scheme to solve a fractional order epidemic1305

model of computer virus, AIMS Mathematics 8 (2023) 2337-2359.1306

[239] N. Islam, J. R. M. Borhan, R. Prodhan, Application of Mathematical Modeling: A Math-1307

ematical Model for Dengue Disease in Bangladesh, International Journal of Mathematical1308

Sciences and Computing 10(1) (2024) 19-30.1309

[240] M. Jamal, S. Batool, I. Ahmed, E. Azhar, T. Nawaz, Mathematical modeling of Zika virus1310

with vertical transmission in the presence of Wolbachia-infected mosquitoes, Journal of1311

Applied Mathematics and Computing 71(1) (2025) 605-625.1312

[241] J. Jang, H.-D. Kwon, J. Lee, Optimal control problem of an SIR reaction-diffusion model1313

with inequality constraints, Mathematics and Computers in Simulation 171 (2020) 136-151.1314

[242] M. Jawaz, N. Ahmed, D. Baleanu, M. Rafiq, M. A. Rehman, Positivity preserving technique1315

for the solution of HIV/AIDS reaction diffusion model with time delay, Frontiers in Physics1316

7 (2020) 229.1317

[243] Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos, Solitons1318

& Fractals 34 (2007) 1482-1497.1319
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methods for a mathematical model for influenza disease, Mathematics and Computers in1323

Simulation 79 (2008) 622-633.1324

[246] A. Jones, N. Strigu, Is spread of COVID-19 a chaotic epidemic, Chaos, Solitons & Fractals1325

142 (2021) 110376.1326

[247] Y. Kanai, T. Hoshino, T. Ohtani, N. V. Kantartzis, GPU Acceleration of the Nonstandard1327

FDTD Method, In: 2023 International Applied Computational Electromagnetics Society1328

Symposium (ACES), pp. IEEE, 2023, pp. 1-2.1329

[248] K. N. Kavya, P. Veeresha, H. M. Baskonus, M. Alsulami, Mathematical modeling to inves-1330

tigate the influence of vaccination and booster doses on the spread of Omicron, Communi-1331

cations in Nonlinear Science and Numerical Simulation 130 (2024) 107755.1332

[249] S. Kayenat, A. K. Verma, NSFD schemes for a class of nonlinear generalised advection-1333

diffusion-reaction equation, Pramana 96(1) (2022) 14.1334



DIFFERENTIAL EQUATION MODELS FOR INFECTIOUS DISEASES 29

[250] L. Kalachev, E. L. Landguth, J. Graham, Revisiting classical SIR modelling in light of the1335

COVID-19 pandemic, Infectious Disease Modelling 8 (2023) 72-83.1336

[251] O. O. Kehinde, J. B. Munyakazi A. R. Appadu, A NSFD Discretization of Two-Dimensional1337

Singularly Perturbed Semilinear Convection-Diffusion Problems, Frontiers in Applied Math-1338

ematics and Statistics 8 (2022) 861276.1339

[252] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics,1340

Proceedings of the Royal Society of London - Series A 115 (1927) 700-721.1341

[253] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics.1342

II. - The problem of endemicity, Proceedings of the Royal Society of London - Series A 1381343

(1932) 55-83.1344

[254] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics.1345

III. -Further studies of the problem of endemicity, Proceedings of the Royal Society of London1346

- Series A 141 (1933) 94-122.1347

[255] P. G. Kevrekidis, J. Cuevas-Maraver, Y. Drossinos, Z. Rapti, G. A. Kevrekidis, Reaction-1348

diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples, Physical1349

Review E 104 (2021) 024412.1350

[256] B. Khajji, A. Labzai, A. Kouidere, O. Balatif, M. Rachik, A Discrete Mathematical Modeling1351

of the Influence of Alcohol Treatment Centers on the Drinking Dynamics Using Optimal1352

Control, Journal of Applied Mathematics 2020 (2020), Article ID 9284698.1353

[257] B. Khajji, A. Kouidere, O. Balatif, M. Rachik, Mathematical modeling, analysis and optimal1354

control of an alcohol drinking model with liver complication, Communications in Mathemat-1355

ical Biology and Neuroscience 2020 (2020) 1–29,1356

[258] H. K. Khalil, Nonlinear systems, Prentice Hall, 2002.1357

[259] M. M. Khalsaraei, A positive and elementary stable nonstandard explicit scheme for a1358

mathematical model of the influenza disease, Mathematics and Computers in Simulation1359

182 (2021) 397-410.1360

[260] M. A. Khan, S. Islam, J. C Valverde, S. A. Khan, Control strategies of hepatitis B with1361

three control variables, Journal of Biological Systems26(2018) 1-21.1362

[261] H. Khan, R. N. Mohapatra, K. Vajravelu, S.J. Liao, The explicit series solution of SIR and1363

SIS epidemic models, Applied Mathematics and Computation 215 (2009) 653-669.1364

[262] I. U. Khan, A. Hussain, S. Li, A. Shokri, Modeling the Transmission Dynamics of Coro-1365

navirus Using Nonstandard Finite Difference Scheme, Fractal and Fractional 7(6) (2023)1366

451.1367

[263] M. A. Khan, S. W. Shah, S. Ullah, J. F. Gomez-Aguilar, A dynamical model of asymp-1368

tomatic carrier zika virus with optimal control strategies, Nonlinear Analysis: Real World1369

Applications 50 (2019) 144-170.1370

[264] M. I. Khan, K. Al-Khaled, A. Raza, S. U. Khan, J. Omar, A. M. Galal, Mathematical and1371

numerical model for the malaria transmission: Euler method scheme for a malarial model,1372

International Journal of Modern Physics B 37(16) (2023) 2350158.1373

[265] O. Khyar, K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general1374

incidence rates: application to COVID-19 pandemic, Nonlinear Dynamics 102 (2020) 489-1375

509.1376

[266] K. I. Kim, Z. Lin, L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlin-1377

ear Analysis: Real World Applications 11 (2010) 313-322.1378

[267] K. Kitagawa , S. Nakaok, Y. Asai, K. Watashi, S. Iwami, A PDE multiscale model of1379

hepatitis C virus infection can be transformed to a system of ODEs, Journal of Theoretical1380

Biology 448 (2018) 80-85.1381
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[463] A. J. O. Tassé, V. B. Kubalasa, B. Tsanou, M-S. Jean, Nonstandard finite difference schemes1864

for some epidemic optimal control problems, Mathematics and Computers in Simulation 2281865

(2025), 1-22.1866

[464] S. Y. Tchoumi, M. L. Diagne, H. Rwezaura, J. M. Tchuenche, Malaria and COVID-19 co-1867

dynamics: A mathematical model and optimal control, Applied Mathematical Modelling 991868

(2021) 294-327.1869

[465] Y. A. Terefe, H. Gaff, M. Kamga, L. van der Mescht, Mathematics of a model for Zika1870

transmission dynamics, Theory in Biosciences 137 (2018) 209-218.1871

[466] J. J. Tewa, S. Bowong, S. C. O. Noutchie, Mathematical analysis of a two-patch model1872

of tuberculosis disease with staged progression, Applied Mathematical Modelling 36 (2012)1873

5792-5807.1874

[467] J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods,1875

Springer New York, 1995.1876

[468] Y. Tian, X. Liu, Global dynamics of a virus dynamical model with general incidence rate1877

and cure rat, Nonlinear Analysis: Real World Applications 16 (2014) 17-26.1878

[469] S. Treibert, H. Brunner, M. Ehrhardt, Compartment models for vaccine effectiveness and1879

non-specific effects for Tuberculosis, Mathematical Biosciences and Engineering 16(6) (2019),1880

7250-7298.1881

[470] S. Treibert, H. Brunner, M. Ehrhardt, A nonstandard finite difference scheme for the1882

SVICDR model to predict COVID-19 dynamics, Mathematical Biosciences and Engineering1883

19 (2022) 1213-1238.1884

[471] D. Y. Trejos, J. C. Valverde, E. Venturino, Dynamics of infectious diseases: A review of1885

the main biological aspects and their mathematical translation, Applied Mathematics and1886

Nonlinear Sciences 7 (2022) 1-26.1887

[472] J. Tumwiine, J. Y. T. Mugisha, L. S. Luboobi, On global stability of the intra-host dynamics1888

of malaria and the immune system, Journal of Mathematical Analysis and Applications 3411889

(2008) 855-869.1890

[473] M. ur Rahman, M. Yavuz M. Arfan, A. Sami, Theoretical and numerical investigation of1891

a modified ABC fractional operator for the spread of polio under the effect of vaccination,1892

AIMS Biophysics 11(1) (2024) 97-120.1893

[474] P. van den Driessche, Some epidemiological models with delays, In: Differential Equations1894

and Applications to Biology and to Industry (Claremont, CA, 1994), pages 507-520. World1895

Scientific Publishing, River Edge, NJ (1996).1896

[475] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic1897

equilibria for compartmental models of disease transmission, Mathematical Biosciences 1801898

(2002) 29-48.1899

[476] P. van den Driessche, J. Watmough, Further Notes on the Basic Reproduction Number. In:1900

Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes1901

in Mathematics 1945, Springer, Berlin, Heidelberg, 2008.1902

[477] P. van den Driessche, Reproduction numbers of infectious disease models, Infectious Disease1903

Modelling 2 (2017) 288-303.1904

[478] G. A. K. van Voorn, B. W. Kooi, Smoking epidemic eradication in a eco-epidemiological1905

dynamical model, Ecological Complexity 14 (2013) 180-189.1906

[479] S. Vaz, Sandra, D. F. M. Torres, A dynamically-consistent nonstandard finite difference1907

scheme for the SICA model, arXiv preprint arXiv:2105.10826 (2021).1908



DIFFERENTIAL EQUATION MODELS FOR INFECTIOUS DISEASES 39

[480] C. Vargas-De-León, On the global stability of SIS, SIR and SIRS epidemic models with1909

standard incidence, Chaos, Solitons & Fractals 44 (2011) 1106-1110.1910

[481] A. K. Verma, M. K. Rawani, Numerical solutions of generalized Rosenau-KDV-RLW equa-1911

tion by using Haar wavelet collocation approach coupled with nonstandard finite difference1912

scheme and quasilinearization, Numerical Methods for Partial Differential Equations 39(2)1913

(2023) 1085-1107.1914

[482] A. Viguerie, A. Veneziani, G. Lorenzo, D. Baroli, N. Aretz-Nellesen, A. Patton, T. E.1915

Yankeelov, A. Reali, T. J. R. Hughes, F. Auricchio, Diffusion-reaction compartmental models1916

formulated in a continuum mechanics framework: application to COVID-19, mathematical1917

analysis, and numerical study, Computational Mechanics 66 (2020) 1131-1152.1918

[483] B. Wacker, J. C. Schluter, Time-continuous and time-discrete SIR models revisited: theory1919

and applications, Advances in Difference Equations 2020 (2020) 556.1920

[484] B. Wacker, J. C. Schluter, A non-standard finite-difference-method for a non-autonomous1921

epidemiological model: analysis, parameter identification and applications, Mathematical1922

Biosciences and Engineering 20(7) (2023) 12923-12954.1923

[485] G. D. Walters, Spontaneous remission from alcohol, tobacco, and other drug abuse: seeking1924

quantitative answers to qualitative questions, The American Journal of Drug and Alcohol1925

Abuse 26 (2000), 443-460.1926

[486] C. Wan, T. Li, W. Zhang, J. Dong, Dynamics of epidemic spreading model with drug-1927

resistant variation on scale-free networks, Physica A 493 (2018) 17-28.1928

[487] J. Wang, R. Zhang, T. Kuniya, A reaction-diffusion Susceptible-Vaccinated-Infected-1929

Recovered model in a spatially heterogeneous environment with Dirichlet boundary con-1930

dition, Mathematics and Computers in Simulation 190 (2021) 848-865.1931

[488] J. Wang, X. Wu, T. Kuniya, Analysis of a diffusive HBV model with logistic proliferation and1932

non-cytopathic antiviral mechanisms, Communications in Nonlinear Science and Numerical1933

Simulation 106 (2022) 106110.1934

[489] J. Wang, Z. Teng, B. Dai, Qualitative analysis of a reaction-diffusion SIRS epidemic model1935

with nonlinear incidence rate and partial immunity, Infectious Disease Modelling 8 (2023)1936

881-911.1937

[490] K. Wang, W. Wang, Propagation of HBV with spatial dependence, Mathematical Bio-1938

sciences 210 (2007) 78-95.1939

[491] K. Wang, A. Fan, A. Torres, Global properties of an improved hepatitis B virus model,1940

Nonlinear Analysis: Real World Applications 11 (2010) 3131-3138.1941

[492] L. Wang, L.-I. W. Roeger, Nonstandard finite difference schemes for a class of generalized1942

convection-diffusion-reaction equations, Numerical Methods for Partial Differential Equa-1943

tions 31 (2015) 1288-1309.1944

[493] L. Wang, H. Zhao, Modeling and dynamics analysis of Zika transmission with contaminated1945

aquatic environments, Nonlinear Dynamics 104 (2021) 845-862.1946

[494] W. Wang, X.-Q. Zhao, Basic Reproduction Numbers for Reaction-Diffusion Epidemic Mod-1947

els, SIAM Journal on Applied Dynamical Systems 11 (2012) 1652-1673.1948

[495] X.-Y. Wang, H.-F. Huo, Q.-K. Kong, W.-X. Shi, Optimal control strategies in an alcoholism1949

model, Abstract and Applied Analysis 2014 (2014) 1–18.1950

[496] H. Wei, X. Li, M. Martcheva, An epidemic model of a vector-borne disease with direct1951

transmission and time delay, Journal of Mathematical Analysis and Applications 342 (2008)1952

895-908.1953
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