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ABSTRACT. In two well-known studies [Mathematics and Computers in Sim-
ulation 79(2008) 622-633] and [Mathematics and Computers in Simulation
182(2021) 397-410], some nonstandard finite difference (NSFD) schemes for
an SIRC epidemic model of influenza A have been proposed. There have been
attempts to prove that these NSFD schemes can preserve the positivity of the
solutions, the invariance (conservation law) of the total population, equilibrium
points and their asymptotic stability of the continuous-time model, for all finite
values of the step size. Nevertheless, although the SIRC model possesses two
equilibrium points, a unique disease-free equilibrium (DFE) point and a unique
disease-endemic equilibrium (DEE) point, only the local asymptotic stability
(LAS) of the DFE point has been established theoretically, whereas the LAS of
the DEE point has only been confirmed through numerical simulations using
some specific parameter sets.

In this work, we construct a new class of NSFD schemes for the SIRC epi-
demic model, for which the LAS of the equilibrium points of the constructed
NSFD schemes is rigorously established from a theoretical perspective and val-
idated through numerical experiments. These NSFD schemes are constructed
based on a weighted approximation for linear terms and the renormalization of
the denominator function. Thereafter, we give dynamic consistency thresholds
that lead to easily-verified conditions, ensuring the NSFD schemes preserve all
the qualitative dynamical properties of the continuous-time model, regardless
of the values of the step size. In particular, thanks to the simple structure
of the constructed NSFD schemes, their LAS can be easily established by the
linearization method. Furthermore, they are capable of providing numerical
approximations with higher-order accuracy compared to the existing NSFD
schemes. Additionally, Richardson’s extrapolation technique can be conve-
niently applied to increase the accuracy of the constructed NSFD schemes.
Consequently, we obtain a new class of dynamically consistent NSFD schemes,
which is not only simple but also efficient for numerical simulation of the SIRC
model. Also, the constructed NSFD schemes improve those proposed in the
two aforementioned studies in terms of both qualitative analysis and compu-
tational efficiency.

Lastly, numerical experiments are conducted to support the theoretical
findings and demonstrate the advantages of the constructed NSFD schemes.

2020 Mathematics Subject Classification. 65L05, 65L12, 65P99, 65Z05.
Key words and phrases. Nonstandard finite difference, Dynamic consistency, Mathematical
epidemiology, Epidemic modeling, Influenza A.
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2 MANH TUAN HOANG

1. Introduction

In an early work [6], Casagrandi et al. proposed a system of nonlinear ordinary
differential equations to model the transmission mechanism of influenza A viruses.
The mathematical model is represented by

S=u(l-8)=BSI++C:= f1(S,I,R,C),

I =BSI+0BCI — (u+ a)l = f5(S,I,R,C),

(1) R=(1-0)BCI+al —(u+0)R:= f3(S,1,R,C),

C =6R—BCI — (u+~)C := f1(S,I,R,C).

In this model (see [6] and also [17])

e S(t), I(t), R(t) and C(t) are the proportions of the susceptible, infected,
recovered and cross-immune individuals at time ¢, respectively;

5 denotes the contact rate for the influenza disease, which is also called
the rate of transmission for susceptibles to infected individuals;

~~1 is the cross-immune period;

a~! represents for the infectious period;

~~1 is the total immune period;

o denotes the fraction of the exposed cross-immune individuals who are
recruited per unit time into the infected sub-population.

Further details of the model are presented in [6]. The mathematical analyses
in [6] have shown that possesses the following properties:

(Py) The positivity of the solutions: S(t),I(t), R(t),C(t) > 0 for all ¢ > 0 whenever
S5(0),1(0),R(0),C(0) > 0.

(P») The invariance (conservation law) of the total population: The total population
N(t)=5()+I(t)+ R(t) + C(t) (t > 0) satisfies

(1.2) N:u—uN,

consequently S(t) + I(t) + R(t) + C(t) =1 for all ¢ > 0.

(P5) The set of equilibrium points: A unique disease-free equilibrium (DFE) point
Ep = (1, 0, 0, 0) exists for all values of the parameters while a unique (positive)
disease-endemic equilibrium (DEE) point E, = (Si, I., R., C.) exists if and only
if the basic reproduction number R is greater than 1, where

B
a+p

Ro =

(Py) Asymptotic stability property of the DFE point: The DFE point is locally
asymptotically stable if Ry < 1 and unstable if Ry > 1.
(P5) Asymptotic stability property of the DEE point: The DEE point is locally
asymptotically stable if and only if it exists, i.e., Rg > 1.

In [1I7] and [19], the Mickens’ methodology [20}, 21}, 22, 23}, 24, 25] has been
applied to construct dynamically consistent nonstandard finite difference (NSFD)
schemes for . More clearly, Jédar et al. in [17] introduced two NSFD schemes
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NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A 3

for the model (1.1)). The first scheme is given by

Snt1— Sn

% At):N—,USnH—BSn+1In+WCn_5Sn+1+6S”’

It —In _ gg 1+ oBCLI = (u+ )l + BL, — B,
(1.3) oany  Pondnrr T B0y = (uF Onsr + Bl = flnts,

Cny1—Chy

% NG 0(1 = Cn = Sp = In) = BCni1ln — (1 +7)Crs1,

RnJrl =1- SnJrl - In+1 - Cn+1u

where At is the step size; X, is the intended approximation for X (¢,,) = X (to+nAt)
with X € {S, I, R, C}, respectively; ¢(At) is called a denominator function with
the property that ¢(At) = At + O(At?) as At — 0.

The second NSFD scheme is based on the Mickens’ techniques of conservation laws
(see |26, [27]) and is given by

Snat1 — Sp
W =Hn—- Msn+1 - BSn-i-lIn + ’cha
Cn - Cn
W - 6Rn - ﬁcn—i-lln - /f('Cn-i—l - 70n7
wy N
W = BSn—i-lIn + Uﬁcn—&-ljn - (U + O‘)Lt—i—lv
R,11— R,
W = Cpy1ly, — 0BCnt1ly + alpy1 — pRyy1 — OR,,.

Unlike the NSFD schemes (1.3) and (1.4]), Khalsaraei et al. in [19] proposed a
positive and elementary stable NSFD scheme of the form

Snt+1 — Sn

W =u— [L(?Sn+1 — Sn) — 6Sn+1In + "}/Cn,

L1 — I,

% = 6Sn+1-[n + Jﬂcn-[n - /~L(2In+1 - In) - Ol.[n+1,
sy RO

W = (1 - 0)8CuI, +aly, — p(2Rni1 — Rn) — 0Rns1,

OnJrl -C

a0t = BCuln = p(2Cns1 = Ca) =1Ch.

The positivity of the solutions, the invariance of the total population and the local
asymptotic stability (LAS) of the DEE points of , and have been
analyzed in [I7] and [19). A common feature of both works is that the stability
analysis has only been partially completed for the LAS of the DEE point, whereas
there has been no formal proof for the LAS of the DEE point, even though the
numerical experiments indicate that it is locally stable for any chosen step-size
At > 0.

Motivated and inspired by the above reason, we propose in this work a new
class of NSFD schemes for the STRC model , which is derived on a weighted
approximation for linear terms and the renormalization of the denominator func-
tion. By a rigorous mathematical analysis, we give dynamic consistency thresholds
that lead to easily-verified conditions under which the formulated NSFD schemes
preserve Properties (P;)-(Ps) regardless of the chosen step sizes. More clearly, the
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4 MANH TUAN HOANG

constructed NSFD schemes are dynamically consistent with respect to the prop-
erties (P;)-(Ps) if the denominator function is chosen appropriately or the weight
is sufficiently large. It is worth noting that thanks to the simple structure of the
proposed NSEFD schemes, their LAS can be easily established by the linearization
method [13]. Consequently, the stability analysis conducted in [I7] and [19] is
improved.

By error analysis, we show that the constructed NSFD schemes are convergent
of order 1 and give an error bound, in which the influence of the denominator func-
tion and the weight is analyzed. In fact, the denominator function and the weight
can be considered as control parameters to manage the errors. It is shown by
numerical experiments that the constructed NSFD schemes are capable of provid-
ing numerical approximations with higher-order accuracy compared to the NSFD
schemes —. Additionally, they can be easily combined with Richardson’s
extrapolation technique to produce highly accurate approximate solutions.

The idea of using weighted approximations for the linear terms have been used
in [17] and in [19] to construct (1.3) and (L5]), respectively. However, the weighted
approximation proposed in this work is more general, owing the fact that the weight
can take arbitrary values rather than being fixed as in and (see )
Besides, the influence of the weight on the global errors of the constructed NSFD
schemes is analyzed. A general approach for weighted approximations has been
proposed by Roeger in [29), [30] to construct NSFD schemes for Lotka-Volterra
systems. This approach was later applied by Dang and Hoang in [8] to design
NSFD schemes for a general predator-prey system. In these works, both linear and
nonlinear terms in the differential equation models are discretized using weighted
approximations. However, this type of discretization leads to very complex NSFD
schemes, which are therefore difficult to analyze their dynamical behaviour. On the
other hand, as pointed out by Mickens and Dula in [12] that the NSFD schemes in
[8l, 29], [30] have not used the full machinery of the NSFD methodology to determine
their particular discretizations of the counterpart differential equation models. In
Section [2] we show that the weighted approximation for the linear terms makes the
LAS analysis of the resulting NSFD schemes easier. As an important consequence,
the obtained NSFD schemes are simple, but still ensure the dynamic consistency
with respect to the continuous-time model.

In summary, we obtain a new class of dynamically consistent NSFD schemes
that are not only simple but also efficient for numerical simulation of the SIRC
model (L.I). They also improve the results in [17] and [19] in both qualitative
analysis and computational efficiency aspects. On the other hand, the used ap-
proach can be used in constructing efficient NSFD schemes for a wide range of
mathematical models, particularly those arising in epidemiology, and more gener-
ally, in real-world applications.

The plan of this work is as follows:

The new NSFD schemes are constructed in Section [2| in which their qualitative
properties and error analysis are analyzed in detail. In Section we conduct
numerical simulations to support the theoretical findings and demonstrate the ad-
vantages of the proposed NSFD schemes. Some concluding remarks and discussions
are provided in the last section.
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NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A 5

2. Construction of the nonstandard finite difference schemes

2.1. Formulation and dynamical analysis. In this section, we construct
dynamically consistent NSFD schemes for (1.1)), which use a non-local approxi-
mation for the linear terms. These NSFD schemes are proposed in the following
form

Sn+1 - Sn
T ndn n n 1- n|s
oo BSnIn +~Cp — p[1TSns1 + (1 —7)8,]
Iy — I,
W = BS,1, +opC, I, — al, — H[Tfm-l +(1- T)In],
(2.1) R R
W =(1-0)BCuI, + al, — 6Ry — p[TRpi1 + (1 — 7)Ry),
Cpy1—C

SaD = O = ACun =0 = u[rCasa + (1= 7)C),

where 7 is a real number, which plays the role as a weight.

REMARK 2.1. In 7 the linear term Y with Y € {S, I, R, C'} is nonlocally
approximated by [TXn+1 +(1 —T)Xn] , whereas the nonlinear terms SI and CI, and
the other linear terms Z (Z € {S,1,R,C} are all locally approximated by S, I,
C,I, and Z,,, respectively. In general, local approximations for nonlinear terms may
not guarantee the positivity of the resulting NSFD schemes; however, as pointed
out below, the positivity of is still guaranteed under suitable conditions on
¢(At) and 7, because the solutions generated by it remain bounded.

Our main objective at this stage is to analyze dynamics of the NSFD schemes
of the form (2.1). For this purpose, we give the following hypothesis:

(2.2) T2>0,
and
(2.3) ¢(At) < min {r1, k2, K3} forall At >0,
where
! if B+~v+ >0
T i Y+ pu—pr >0,
By+p—pr
K1 =
oo if B+y+pu—pur<0.
1
— if a+pu—pr>0,
o+ — Ut
Ro =
oo if a+4+pu—pur<0.
1
— if 4+ pu—pur >0,
O+ p— pr p=H
R3 1=
oo if 64 p—pur<0.

From this point onward, we always assume that (2.2]) and (2.3)) are satisfied. Let us
denote by F¢ and Fp the sets of equilibrium points of (1.1]) and (2.1]), respectively.
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6 MANH TUAN HOANG

THEOREM 2.2. The following assertions holds for the NSFD schemes of the
form (2.1)):
(i) The set Q defined by

(2.4) Q={(S,I,R,C) eRYS,I,R,C>0; S+I+R+C=1}
s a positively invariant set.

(i) Fp = Fe for all At > 0.

PRrOOF. Proof of Part (i). We prove this part by mathematical induction.
Assume that (Sp, I, Ry, Cy) € Q. We denote by N, = S, + I, + R, + Cp, (n > 0)
the total population of (2.1). Then, it follows from (2.1)) that

Nn + ¢p — pp(1 — 7)Ny op
(25) . = 1N
which implies that N,11 = 1 whenever N,, = 1.
Next, we rewrite (2.1)) in the form

b1+ Su[1 = 681, — ou(1 = 7)| +61Cn

Sn—i—l -

1+ dur ’
OBl + G0Cu L+ I [1 — b — b1~ 7)]
(2.6) In1 = 14 gur ’
é(1 — 0)8Cnl + dal, + Ry [1 — ¢ — pp(1 — T)}
Bn1 = 1+ ¢pr ’
[ 9Bt Cal1 = 681, — ¢y — gul1 - 1)
ntl = 1+ opr .

From (2.3) and the fact that Sy, I, R,, Cy, € [0, 1], we have

1_¢/81n_¢,u(1_7-) Z 1—¢(6+/L—T) Zoa

1= a—gu(l—7) > 1—gla+pu—7) >0,

1= 06— ou(l—7) > 1— 65 +p—7) >0,

L= ¢BL, — ¢y —dp(l=7) 21— ¢(B+y+p—7)>0.
Combining this estimate with (2.6) and (2.2)) leads to Sp+1, In+1, Rnt1, Crny1 >
0. Thus, we conclude by mathematical induction that S,,I,,R,,C, > 0 and
S, + I, + R, + C,, = 1 whenever Sy, Iy, Rg,Coy > 0 and Sg + Iy + Ry + Cy = 1.

This is the desired conclusion. The proof is complete.
Proof of Part (ii). It is easy to verify that (2.6) can be rewritten in the form

_ ¢
Sn+1 - Sn + 1 T ¢‘u7_fl(SnaInaancn)a
¢
In = In o . n»Inv ny ~n )
+1 + 1+¢mf2(5 Ry, Ch)
(2.7) ;
Rn+1 = Rn + WfB(Sna Ina an Cn)7
CVn+1 = Cn + ¢ f4(Sna Ianna Cn)a

14+ our
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NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A 7

where the functions f; (i = 1,2,3,4) are the right-hand side of (L.1)). Hence, any
equilibrium point of (2.1 is a solution of the system

fi(S7I7RaC):Oa i:17273a4'
This implies that the sets of equilibrium points of (1.1)) and (2.1]) are identical. The
proof of this part is complete. O

We now apply the method in [I] to compute the basic reproduction number
of the discrete-time model . First, we reorder the variables in as T, =
(I, Rp, Cpy Sp). Then, the DFE point Ej is transformed to 2o = (0,0,0,1). It
follows from that the Jacobian matrix of evaluated at x( is given by

_(F+T 0
= (30 e)

where
Pp
F— 1+ our :
0 0
1— ga— gu(l—7) .
14+ pur
T = b
. 1— 60— ou(1 = 7)
14 pur
1)
14 pur
A = )
—¢B
14 pur
1—¢y—op(l —7) 0
14 pur
C =
al 1—ou(l—1)
1+ our 1+ opr

It is easily verified that the submatrices F' and T are non-negative, F' + T is ir-
reducible, and p(C),p(T) < 1. Thus, the basic reproduction number of (2.1 is
computed by

B

a+p’
which equals to the basic reproduction number of (|1.1)).
As a direct consequence of [II Theorem 2.1], we obtain:

LEMMA 2.3. The DFE point of the discrete-time model (2.1)) is locally asymp-
totically stable if RY < 1 and is unstable if RY > 1.

Assume that Rg > 1. Then, the unique DEE point E, exists. We need to
analyze the LAS of F, with respect to the NSFD model (2.1)). For this purpose,
let us denote by J¢ the Jacobian matrix of the system valuated at E,. As
proven in [6], E, is locally asymptotically stable and

ReA® <0 forall A\ € Spec(JY),

RY = p(FIL- 1)) =
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8 MANH TUAN HOANG

where Spec(J©) is the set of eigenvalues of JC. For each eigenvalue A of Spec(J)
(i=1,2,3,4), we define
B 2(ReX¢)
2(ReX{ Y ur + |XE 2

if 2(ReA)ur + |22 > 0,

Wi =
00 if 2(ReA{)ut + |22 < 0.
THEOREM 2.4 (LAS of the DEE point). Let ¢(At) be a function that satisfies
(2.8) P(AL) < dras :=min{w;} for all At > 0.
K3

Then, the DEE point of the system (2.1)) is locally asymptotically stable if it exists.

PROOF. Let us denote by JP the Jacobian matrix of (2.1) evaluated at E,. It
follows from ({2.6]) that
¢ e

JP =1+
1+ ¢ur

)

which implies that

¢ c
I-JP) = I-1—
det(zI — J*) = det (z 1+¢MTJ

(e N\ [l c}
() [T e
1+ gpur

Therefore, AP is an eigenvalue of JP if and only if A\ =

(Ap — 1) is an
eigenvalue of J¢. Consequently,
NG
AP =14+ T )\
14 pur

From this relation, we obtain

2 2
|/\D|2—1:<1—|— ¢ Re/\c> +< ¢ Im)\c>,

(2.9) , 1+ our , 1+ our
= 2ReNC + ———|\¢ 2>,
1+¢,u7< ¢ 1+¢u7| |
which implies that [AP|? < 1 if and only if
2ReAC 4 — Y12 <.
14 pur

Thus, if ([2.8) holds, then |A\P| < 1 for all AP € Spec(JP). Hence, we obtain the
LAS of E, with respect to (2.1) by the linearization method (see [13]). The proof
is complete. (Il

Summarizing the results in this section leads to the following statements for
the dynamic consistency of the NSFD schemes of the form ([2.1)).

THEOREM 2.5 (Dynamically consistent NSFD schemes by renormalization of
the denominator functions). The following statements are true:

(i) Assume that Rg < 1 and (2.2) and (2.3) hold. Then, the NSFD schemes
of the form (2.1)) preserve Properties (P1)-(Ps) of the continuous-time
model (1.1)) for all finite values of the step size.
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(i) Assume that Ro > 1 and (2.2), (2.3) and (2.8) hold. Then, the NSFD
schemes of the form (2.1|) preserve Properties (Py)-(Ps) of the continuous-
time model (1.1)) for all finite values of the step size.

The following theorem is proved similarly to Theorems [2.2] and [2.4] and Lemma,
2.9

THEOREM 2.6 (Influence of the weight). Let ¢p(At) be any positive denominator
function with the property that ¢(At) = At + O(At?) as At > 0. The following
assertions hold for the NSFD model .'

(i) Assume that Rg < 1. Then, the NSFD schemes of the form (2.1) pre-
serve Properties (Py)-(Ps) of the continuous-time model for all finite
values of the step size if

(2.10) TzrDcszmax{ﬂ+7+“, atp 5+u}'

1 [ [
(i) Assume that Ro > 1 and (2.10)) is satisfied. Then, the NSFD schemes of
the form (2.1)) preserve Properties (Py)-(Ps) of the continuous-time model

(1.1) for all finite values of the step size if

A
2.11 > — _ AL
(211 = TEAS T (o Speets©) {2R6(A?>u

REMARK 2.7. (i) Since the total population is constant, and can
be reduced to three-dimensional systems. Then, the LAS of DEE point can be
analyzed based on the approaches used in [11, [3I] and [I5]. More clearly, one
can determine a positive constant ¢% that plays the role as a stability threshold,
such that the DEE point is locally asymptotically stable with respect to the NSFD
schemes if ¢(At) < ¢g for all At > 0. However, calculating this threshold is not
simple; therefore, it is more reasonable to use since the primary aim is to
construct a dynamically consistent discrete-time model for . As will be seen in
the next section, can provide approximations with higher accuracy compared
to (L.3)-(1.5) (see Subsection [3.3).

(ii) The conditions imposed on ¢(At) as stated in Theorem [2.5| can be represented
in the form

(2.12) d(At) < dpc  for all At > 0.

It is important to note that computing ¢pc is straightforward. One of the most
suitable denominator function satisfying (2.12)) is (see [20] 21])
1— —DAt 1
L » .

D $pc
(iii) The conditions imposed on 7 as stated in Theorem can be represented in
the form

(2.14) T 2 TDC,

which implies that the denominator function ¢(At) can be chosen arbitrarily if 7
is sufficiently large. Note that determining the value of 7p¢ is a simple task. A
simple choice for ¢(At) when 7 > Tpc is ¢(At) = At. In a numerical example
reported in the next section, we will show that the NSFD schemes using this de-
nominator functions can provide better errors compared to those associated with
other denominator functions (see Tables |§| and .

(2.13) H(AL) =
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10 MANH TUAN HOANG

If 7 =0, then (2.1) is simplified to

Sn+1 - Sn

— i = 1= BSnln +7Ch — Sy,
) 2 Y 2

In+1 - [n

(2.15) R R

n+1 — 4ln

— = (1~ nIn In*(s n 9y
S(A0) (1-0)BC,I,+ « R, — uR

CYn+1 - Cn

————— =6R,, — 5C, I, — vC), — uC,.
o(A1) Tk

This scheme is also known as the nonstandard explicit Euler scheme [9, IT]. As
pointed out in [17, M9] that the standard Euler scheme cannot preserve the dy-
namical properties of the continuous-time model for some given step sizes.
However, by re-normalizing the denominator function ¢(At), as presented in The-

orem the dynamic consistency of (2.15]) is guaranteed.

2.2. Convergence and error bounds. Before ending this section, we an-
alyze the convergence and error bounds for . Based on the error analysis
techniques presented in [7), 5], 16], we can show that is convergent of order
1. However, to give a detailed analysis of the influence of the weight 7 and the
denominator function ¢(At) on the errors of , thereby determining optimal
choices, we consider a special family of the denominator given by . Now, we
denote

y(t) = (S(t), 1(t), C(1), R(t))",
Yn = (Sn, I, Cn, Ry)",
F®) = (A ®), f2(y(0), FyE), faly®))".

Then, (1.1) can be rewritten in the form y(t) = f(y(t)). Also, by using (2.7)), one
can represent (2.1]) in the form

(2.16) Yn+1 = Yn + g(AL) f (yn),
where
(2.17) g(At) = m.

LEMMA 2.8. The function g(At) defined in satisfies
(2.18) g(At) = At + O(At?) as At — 0,
and for At > 0
(2.19) lg" (At)| < D+ 2p7.

PROOF. It is easy to verify that

¢'(At)
(1+ d(At)ur)?’

which implies (2.18) due to the fact that ¢(At) = At + O(At?) as At — 0.

g'(At) =
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On the other hand, we have

9 14+ (At ur)2¢" (At) — 2(¢' (AL))?ur(1 4+ ¢(A)
1" (A1) = ( (At)ur) ((1l¢(A(t)l(”)4)) 2 (At)u ‘
_ ¢" (At) _2(¢'(AY)Pur
(L+o(Atur)> (14 ¢(At)ur)?
< 9" (At) ‘ 2(¢' (At))*pur
(1 + ¢(At)ur)? (1 + ¢(At)ur)?
< " (AL)| + 2(4' (A1)

= De DAt+2/,LT( —QDAt) < D+2TM

Therefore, (2.19) is confirmed. The proof is complete. a

As in [2], we define the global error of (2.1) by e, = y, —y(t,) for n > 0. Since
y(t), yn € Q, where  is given in (2.4)), it is valid to define

of of

Ly :=
1 max 8y 8y

(y)

, Ly := max

(y)f(y)H-

Then, the following estimate hold

1f(y1) = fy)Il < Lallyr — w2l y1,92 € 9,
Iy )] < La,  t>0.

THEOREM 2.9. The NSFD model (2.1)) is convergent of order 1. Furthermore,
the following estimate holds for n > 0

Lo+ D+ 21p
2L,

PrROOF. First, it follows from Taylor’s expansion theorem and (2.16))-(2.18]
that

(2.20) leall < (el+ — 1)At.

At?
(2.21) Yn+1 = Un + Atf(yn) + 79"(5&)7 0 < &ar < At.

On the other hand, applying Taylor’s expansion theorem for the exact solution y(t)
gives

2
(222) y(tn+1) = y(tn) + Atf(y(tn)) + ATty/l(gn)v gn € (tnathrl)'
By combining ([2.21)) and ( -, we obtain
lentill = lymtr — y(tnsa)|
At2 1 1
= [y = y(ta)) + Atlf(yn) = F(y(ta))] + = (9" (€ae) = y7 (&)

At?
< lyn = y(tn)ll + AtLyllyn — y(tn)|| + — (D4 2p7 + Ls)

D+ 2ut + Lo

= (14 LiAb)|en]|| + AL, = 5
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We deduce from this estimate that
lentill < (1+ LiAt)|len | + AL < (14 LiA) [(1+ LiAt) en 1| + pAL] + AL

(223) = (1 + LAY |eps| + [1 + (1 LlAt)WmQ

<o < (1 LAY Jeol| + A2 > (1 + LAt

j=0
Since eg = 0, (2.23)) is simplified to
(2.24)
- , A A
||€n+1H < ¢At2 Z(l —|—L1At)J — M [(1 + LlAt)n+1 _ 1:| < M6L1At(n+1)—1_
Ly Ly

=0
Here, we have used the well-known inequality e* > 1 + z for z > 0 to obtain the

last estimate in (2.24)). Thus, if follows from ([2.24)) that

(VAN Lo+ D +2ur, ;,
, < thnt1 _ 1) = 1tnt1 _ 1)Af.
Jewall < 20 )= A )
Hence, the estimate (2.20) is proved. The proof is complete. O

REMARK 2.10. (i) As shown in Theorem the error bound is dependent on
D and 7, which suggests that D + 2u7 should be as small as possible. Note that D
is dependent of 7. In Section |3} we will give some numerical examples to show the
affects of D and 7 on the errors.
(ii) Tt is easy to verify that if ¢(A) = At, then is simplified to
Ly +21p
2L,

This estimate is valid whenever 7 > mp¢.

llenll < (el+1 — 1)At.

3. Numerical experiments

In this section, we report some numerical experiments to support the theoretical
findings. Also, the NSFD schemes of the form (2.1) will be compared with (1.3])-

[3).

3.1. Selected parameters and implemented NSFD schemes. In the nu-
merical simulations reported below, the following sets of the parameters, which are
taken from [17] but with time unit expressed in weeks instead of years, will be used:

TABLE 1. The parameters used in numerical examples

Set @ ¥ é I o B Ro

365 7 (1 7 7 1 7 7
1 <5>><365 <2)><365 1 gz <5O>X365 0.05 50 x gz 0.6847

365 7 1 7 7 1 7 7
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265 For the two sets of the parameters in Table [T} we determine the equilibrium
266 points, the Jacobian matrices of (L.1)) evaluated at the equilibrium points and their

267 eigenvalues as in Table

TABLE 2. Equilibrium point, Jacobian matrices and their eigen-

values
Set  LAS equilibrium point J¢ and o(J%)
1 —0.0004 —0.9589 0 0.0096
o c _ 0 —0.4415 0 0
! Eo= |y Jo(Bo) = 0 1.4000 —0.0196 0
0 0 0 0.0192  —0.0100
o(JC(Ep)) = { — 0.0004, —0.0100, —0.0196, —0.4415 }
0.3490 —0.0027 —1.3841 0 0.0096
| 0.0025 c | 0.0023 —0.0001 0 0.0001
2 Ee=10.3271 Jo(B) = 0 1.7070  —0.0196  0.0022
0.3214 0 —0.3232  0.0192 —0.0123
o(JO(E,)) = { —0.0017 + 0.0582i, —0.0309, —0.0004}
268 For each fixed value 7, we denote by "INSFD"” the resulting NSFD scheme

260 obtained from (2.1]) and by ¢pc” and 7pe the corresponding dynamic consistency
270 thresholds, which are determined from Theorems and respectively. Also,
2711 the corresponding denominator function is given by

1— efDTAt 1
sran === prs L
D~ DC
272 3.2. Numerical dynamics of the NSFD schemes. In this example, we

273 investigate dynamics of the NSFD schemes of the form (2.1)) using the parameters
274 listed in Table[I] The dynamic consistency thresholds for the used NSFD schemes,
275 which correspond to some specific values of 7, are computed as in the Table



MANH TUAN HOANG

14

V6881 €624°0 6€¢6°T 86TS0 69¢6°T G61S°0 ¥,26°1 88140 8LC6°T L81G°0 ¢
029€'T c¥eL0 G96€°T 19120 G86€'T 16720 0007°T E€V1L0 007 T 1710 !
(Z40)/T (001 = a9 (Cgo)/T_ o1 =470 W1 6=2"% (W1 (=" W1 _0=2"% s

L JO somnjeA owWoOS I0J SP[OYSsaIy} %UﬁwumwmQOO QMQHNQ%U UL, "¢ "IdV],



276
277
278

279
280
281
282
283
284
285
286
287
288

NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A 15
Also, we determine the dynamic consistency thresholds for the weight 7 as

in Table Because the denominator function can be chosen arbitrarily, we take

S(At) = At

TABLE 4. The dynamic consistency thresholds for the weight 7

Set of parameters 7pc Denominator function
1 3651 o(At) = At
2 5026 d(At) = At

Phase spaces of (1.1)) corresponding to some specific sets of initial data, which
are generated by sing three different step sizes At € {1072, 1, 2}, are de-
picted in Figures From these figures, we see that the used NSFD schemes
preserve the dynamical properties of the continuous-time model regardless of cho-
sen step sizes, and their numerical dynamics are independent of the step sizes. This
is consistent with the theoretical findings presented in Section[2] Hence, the advan-
tage of compared to standard numerical schemes it that is simple and efficient
to simulate dynamics of the continuous-time model over long time periods. In the
next subsection, we will show that can provide better errors compared to the

NSFD schemes (|1.3))-(|1.5).
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(A) At =0.01

0.7 —

FIGURE 1. The phase spaces of (1.1) generated by the NSFD

] — o~ 1454t
scheme NSEFD(r = 0), with ¢(At) =

W , for Set 1
of the parameters and ¢ € [0, 10%].
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(A) At =0.01

FIGURE 2. The phase spaces of (1.1) generated by the NSFD

1 — e—1.95A¢
scheme NSEFD(r = 0), with ¢(At) =

————— for Set 2
1.95
of the parameters and ¢ € [0, 10°].

17
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(A) At =0.01

0.7 —

(B) RK2 scheme using At = 1.0

0.7 —

FIGURE 3. The phase spaces of (1.1) generated by the NSFD
scheme NSF D365 (7 = 3651), with ¢(At) = At, for Set 1 of the
parameters and ¢ € [0, 103].
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(A) At =0.01

FIGURE 4. The phase spaces of (1.1) generated by the NSFD
scheme NSFD%26(r = 5026), with ¢(At) = At, for Set 2 of the
parameters and ¢ € [0, 107].

19
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3.3. Error Analysis and comparison of numerical schemes. The aim
of this subsection is to conduct detailed error analyses, in which errors generated
by the NSFD schemes and — are estimated and compared. Also, the
influence of the denominator function and weight on the errors are analyzed.

For the above purpose, we consider the model with the parameters given in
Set 1 of Table [1] and initial data (S(0), 1(0), R(0), C(0)) = (0.25, 0.25, 0.25, 0.25).
Because the exact solution cannot be determined, we admit a numerical approxi-
mation, which are generated by the classical four-stage Runge-Kutta method (see
[2]) using At = 10, as a reference solution. Then, we observe the global error
estimated at the time T = 10 that is computed by
error(At) = |S(T) =S| +|1(t)—In |+ R(T) = Ry |+|C(T)~Cx|, T =10, N = Zﬁt.
Besides, rate of convergence (ROC) is estimated by (see [2])

rate = log (error(At2)>
(At2> error(Aty) /)
131
We first consider the global errors generated by the NSFD schemes NSF D7
with 7 € {0, 1, 5, 10, 100}. The results are reported in Table [5| In this table, the
denominator functions are given by

s(an) = 1= 2

- - D™
D

= 7F
¢be

where D™ =

is determined as in Table
DC



21

NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A

0000T  L00-VPEF'T  0000T  L00-9ZIOF'T  0000°T  L00-9€66€T 0000°T  L00-08L6E'T  0000'T  L009L6E'T ¢ 01
0000'T  900-9CFEF'T  0000T  900-9ZTOF'T  0000°T  900-9¥66€'T  0000°T  900-96L6€'T  0000'T  9009GL6E'T ¢ 0T
66660  S00FVEF'T 66660  S00TIOF'T  6666°0 G00-9€66€'T 66660 S00-08L6E'T 66660  G009GL6E'T 5 0T
G866'0  F00-96EET'T  9866'0  F00-2L00F'T 98660  F00-9686€T  L866'0  F00-9VL6ET  L866'0  ¥00-20L6ET ¢ 0T
€G86°'0  £00-0062F'T  G986'0  €00-9L96E'T  G986'0  €00-09¥6ET  9986'0  £00-OTE6ET  9986'0  €00-0LT6ET o 0T
F29%°0  200-9SISE'T  6898°0  200-OVESE'T  €698°0  C00-961SE'T  9698°0  200-090SE'T  9698°0  200-F0SE'T [ 0T
100-92900°T 100-98000°T 100-9G000°T 100-92000° T 1002000'T T
DOM @ ASN 01 DOYM g dASN IO D04  dASNI0WW  DOM  (AASN 01D DO JASN 01D jy

{00T ‘OTGT ‘0} D« Y¥M TSN JO 9OUSSIOATOD JO S9fRel PUR SIOLI O], "G A1dV],



304
305
306
307

308
309
310
311
312
313

314
315
316
317
318
319
320

22 MANH TUAN HOANG

Now, we consider (2.1) for large values of 7. More clearly, as computed in
Table |4l ¢(At) can be chosen arbitrarily whenever 7 > 7pc = 3651. Hence, we
take ¢(At) = At. The errors and ROC of the NSFD™ with 7 > 3651 are given in
Table [6l

TABLE 6. The errors and rates of convergence of NSF D7 with
large values of 7

At  Error r=3651 ROC Error 7 =4000 ROC Error 7 =5000 ROC

1 1.2361e-001 1.2791e-001 1.3779e-001
107! 2.4482e-002  0.7032  2.6491e-002  0.6838  3.2018e-002  0.6338
1072 2.7149e-003  0.9551 2.9664e-003  0.9509  3.6836e-003  0.9391
1073 2.7448e-004  0.9952  3.0023e-004  0.9948  3.7399e-004  0.9934
10~ 2.7478e-005  0.9995  3.0060e-005  0.9995  3.7456e-005  0.9993
107° 2.7481e-006 1.0000  3.0063e-006 1.0000  3.7462e-006  0.9999
10-¢ 2.7482e-007  1.0000  3.0064e-007  1.0000  3.7463e-007  1.0000

From Tables [f] and [f] we see that the used NSFD schemes are all convergence
of order 1 and the errors becomes smaller as the value of 7 decreases. In the
computation in Table [7] below, we fix the value of 7 to 3651 but change from
H(AL) = At to ¢(At) =1 — eAt (as in [17]) and ¢(At) = tanh(At) (as in [19]).
It is clear that the NSFD scheme associated with ¢(At) = ¢ provides the better
€ITOrS.

TABLE 7. The error and rates of convergence of NSFD305! with
H(At) =1 — e™A and ¢(At) = tanh(At)

At ¢(At)=1-e2" ROC ¢(At) =tanh(At) ROC
1 1.3915e-001 1.3293e-001
107! 3.1891e-002 0.6398 2.4986e-002 0.7259
1072 3.6527e-003 0.9411 2.7211e-003 0.9629
1073 3.7066e-004 0.9936 2.7454e-004 0.9961
1074 3.7120e-005 0.9994 2.7479e-005 0.9996
10=° 3.7126e-006 0.9999 2.7481e-006 1.0000
106 3.7127e-007 1.0000 2.7482e-007 1.0000

Before ending this subsection, we consider the errors generated by the NSFD
schemes and with ¢(At) = 1—e~At [17] and the NSFD scheme with
¢(At) = tanh(At) [19]. From Table [§] we see that (1.3)-(L5) are all convergent
of order 1; however, the NSFD schemes NSF D7 in the form (2.1) yield the better
errors. Also, is simpler because it can be represented in the matrix form —
. In the next section, will be combined with Richardson’s extrapolation
technique to improve its accuracy.
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TABLE 8. The errors and ROC of the NSFD schemes constructed

in [I7] and [19]
Af NSFD (13) @ ROC NSFD (id) @] ROC NSFD (L5) 18] ROC
1 2.1209e-001 1.9229¢-001 1.8934e-001
10—t 3.6003e-002 0.7702 2.8134e-002 0.8347 2.0219e-002 0.9715
10~2 3.8783e-003 0.9677 2.9390e-003 0.9810 1.9957e-003 1.0057
10-3 3.9092¢e-004 0.9966 2.9521e-004 0.9981 1.9926e-004 1.0007
10~4 3.9124e-005 0.9997 2.9535e-005 0.9998 1.9923e-005 1.0001
10—5 3.9127e-006 1.0000 2.9536e-006 1.0000 1.9923e-006 1.0000
106 3.9128e-007 1.0000 2.9556e-007 0.9997 1.9914e-007 1.0002

3.4. NSFD schemes combined with Richardson’s extrapolation tech-
nique. Asshown in Subsection the NSFD schemes of the form are conver-
gent of order 1. In this subsection, we combine with Richardson’s extrapola-
tion method (see [3), 5], 18, [28]) to improve its errors. This approach has been used
in [14] to improve numerical approximations of population models, which include
differential equation models of phytoplankton-nutrient interaction under nutrient
recycling and whooping cough in the human population.

Let us denote by y2* and yﬁ t/2 (n > 1) the numerical approximations generated
by the first-order NSFD model with the step sizes At and At/2, respectively.
Then, we define (see [4])

At/2

(3.1) et =2y — gt

Then, {22!} provides an O(At?) approximate formula for the solutions of (T.1]).
By a similar way, we can obtain an O(At?) approximate formula by defining

At)2
At 4502 ZAt

(3.2) wp 3

Generally, it is possible to obtain higher-order approximate formulas by combining
lower-order formulas [4].

We next examine the continuous-time model with Set 1 of the parameters
given in Table In the following computations, we apply and for
(NSED', ¢(At) = (1 — e~ 14554 /1.45) and (NSFD3%%!, ¢(At) = At) to obtain
second-order and third-order extrapolated schemes. Table [0 and report the
global errors at T' = 10, which are generated by these resulting extrapolated NSFD
schemes. From these tables, we see that the approximate solutions generated by
the underlying first-order NSFD schemes are improved.
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TABLE 9. The global errors and rates of convergence of the 2nd
extrapolated NSFD schemes

At 2nd extrapolated NSFD ROC 2nd extrapolated NSFD ROC
(NSFD', ¢(At) = (1 — e 1-458%) /1.45) (NSFD3551 ¢(At) = At)
1 1.9082e-002 4.5969e-002
0.5 5.5863e-003 1.7723 1.9296e-002 1.2524
0.25 1.5086e-003 1.8887 6.6992e-003 1.5262
0.2 9.8045e-004 1.9311 4.6145e-003 1.6706
1071 2.5275e-004 1.9557 1.3493e-003 1.7740
1072 2.5982e-006 1.9880 1.5736e-005 1.9332
1073 2.6053e-008 1.9988 1.5992e-007 1.9930
1074 2.6085e-010 1.9995 1.6018e-009 1.9993
TABLE 10. The global errors and rates of convergence of the 3rd
extrapolated NSFD schemes
At 3rd extrapolated NSFD ROC 3rd extrapolated NSFD ROC
(NSFD', ¢(At) = (1 — e 1:4588) /1 45) (NSFD365L | ¢(At) = At)
1 1.0900e-003 1.0454e-002
0.5 1.4950e-004 2.8661 2.5055e-003 2.0609
0.25 1.9690e-005 2.9246 4.6699e-004 2.4236
0.2 1.0191e-005 2.9516 2.6114e-004 2.6048
1071 1.3017e-006 2.9688 3.9337e-005 2.7309
1072 1.3270e-009 2.9917 4.7155e-008 2.9213
1073 1.3443e-012 2.9944 4.8101e-011 2.9914
10~ 6.7436e-013 0.2996 1.6585e-013 2.4624

4. Concluding remarks and discussions

In this work, we have proposed and analyzed a new class of simple and effi-
cient NSFD schemes for an SIRC epidemic model of influenza A, which was first
constructed in [6]. The constructed NSFD schemes have used a weighted approx-
imation for the linear terms and the renormalization of the denominator function.
By a rigorous mathematical analysis, we have determined the dynamic consistency
thresholds that lead to easily-verified conditions ensuring that the NSFD schemes
preserve all qualitative dynamical properties of the continuous-time model regard-
less of the chosen step sizes (Theorems . In particular, thanks to the simple
structure of the proposed NSFD schemes, their LAS can be easily established by
the linearization method. As a consequence, we have obtained a new class of dy-
namically consistent NSFD schemes, which is not only simple but also efficient for
numerical simulation of the STRC model . They have also improved the results
in [I7] and [19] in terms of both qualitative analysis and computational efficiency.
More clearly, the constructed NSFD schemes are capable of providing numerical
approximations with higher-order accuracy compared to the NSFD schemes pro-
posed in [I7] and [19]. Additionally, they can be easily combined with Richardson’s
extrapolation technique to produce highly accurate approximate solutions. On the
other hand, the used approach can be used in constructing efficient NSFD schemes
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for a wide range of mathematical models, particularly those arising in epidemiology,
and more generally, in real-world applications.

The dynamic consistency of the proposed NSFD schemes are guaranteed by the
renormalization of denominator functions or sufficiently large weights. By the error
and convergence analysis in Section [3]and the numerical experiments in Section [4]
we identify the influence of the denominator function ¢(At) and the weigh 7 on
the global errors. In fact, ¢(At) and 7 can be considered as control parameters to
manage the errors.

In the near future, we will extend the obtained results to construct effective
NSFD schemes for mathematical models of infectious diseases. In particular, higher-
order NSEFD schemes for the STRC model will be also studied.
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