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Abstract. In two well-known studies [Mathematics and Computers in Sim-

ulation 79(2008) 622-633] and [Mathematics and Computers in Simulation
182(2021) 397-410], some nonstandard finite difference (NSFD) schemes for

an SIRC epidemic model of influenza A have been proposed. There have been

attempts to prove that these NSFD schemes can preserve the positivity of the
solutions, the invariance (conservation law) of the total population, equilibrium

points and their asymptotic stability of the continuous-time model, for all finite

values of the step size. Nevertheless, although the SIRC model possesses two
equilibrium points, a unique disease-free equilibrium (DFE) point and a unique

disease-endemic equilibrium (DEE) point, only the local asymptotic stability

(LAS) of the DFE point has been established theoretically, whereas the LAS of
the DEE point has only been confirmed through numerical simulations using

some specific parameter sets.
In this work, we construct a new class of NSFD schemes for the SIRC epi-

demic model, for which the LAS of the equilibrium points of the constructed

NSFD schemes is rigorously established from a theoretical perspective and val-
idated through numerical experiments. These NSFD schemes are constructed

based on a weighted approximation for linear terms and the renormalization of

the denominator function. Thereafter, we give dynamic consistency thresholds
that lead to easily-verified conditions, ensuring the NSFD schemes preserve all

the qualitative dynamical properties of the continuous-time model, regardless

of the values of the step size. In particular, thanks to the simple structure
of the constructed NSFD schemes, their LAS can be easily established by the

linearization method. Furthermore, they are capable of providing numerical

approximations with higher-order accuracy compared to the existing NSFD
schemes. Additionally, Richardson’s extrapolation technique can be conve-
niently applied to increase the accuracy of the constructed NSFD schemes.
Consequently, we obtain a new class of dynamically consistent NSFD schemes,
which is not only simple but also efficient for numerical simulation of the SIRC

model. Also, the constructed NSFD schemes improve those proposed in the
two aforementioned studies in terms of both qualitative analysis and compu-

tational efficiency.
Lastly, numerical experiments are conducted to support the theoretical

findings and demonstrate the advantages of the constructed NSFD schemes.

2020 Mathematics Subject Classification. 65L05, 65L12, 65P99, 65Z05.
Key words and phrases. Nonstandard finite difference, Dynamic consistency, Mathematical

epidemiology, Epidemic modeling, Influenza A.

1



2 MANH TUAN HOANG

1. Introduction4

In an early work [6], Casagrandi et al. proposed a system of nonlinear ordinary5

differential equations to model the transmission mechanism of influenza A viruses.6

The mathematical model is represented by7

Ṡ = µ(1− S)− βSI + γC := f1(S, I,R,C),

İ = βSI + σβCI − (µ+ α)I := f2(S, I,R,C),

Ṙ = (1− σ)βCI + αI − (µ+ δ)R := f3(S, I,R,C),

Ċ = δR− βCI − (µ+ γ)C := f4(S, I,R,C).

(1.1)

In this model (see [6] and also [17])8

• S(t), I(t), R(t) and C(t) are the proportions of the susceptible, infected,9

recovered and cross-immune individuals at time t, respectively;10

• β denotes the contact rate for the influenza disease, which is also called11

the rate of transmission for susceptibles to infected individuals;12

• γ−1 is the cross-immune period;13

• α−1 represents for the infectious period;14

• γ−1 is the total immune period;15

• σ denotes the fraction of the exposed cross-immune individuals who are16

recruited per unit time into the infected sub-population.17

Further details of the model (1.1) are presented in [6]. The mathematical analyses18

in [6] have shown that (1.1) possesses the following properties:19

(P1) The positivity of the solutions: S(t), I(t), R(t), C(t) ≥ 0 for all t > 0 whenever20

S(0), I(0), R(0), C(0) ≥ 0.21

(P2) The invariance (conservation law) of the total population: The total population22

N(t) = S(t) + I(t) +R(t) + C(t) (t ≥ 0) satisfies23

(1.2) Ṅ = µ− µN,

consequently S(t) + I(t) +R(t) + C(t) = 1 for all t ≥ 0.24

(P3) The set of equilibrium points: A unique disease-free equilibrium (DFE) point25

E0 = (1, 0, 0, 0) exists for all values of the parameters while a unique (positive)26

disease-endemic equilibrium (DEE) point E∗ = (S∗, I∗, R∗, C∗) exists if and only27

if the basic reproduction number R0 is greater than 1, where28

R0 =
β

α+ µ
.

(P4) Asymptotic stability property of the DFE point: The DFE point is locally29

asymptotically stable if R0 < 1 and unstable if R0 > 1.30

(P5) Asymptotic stability property of the DEE point: The DEE point is locally31

asymptotically stable if and only if it exists, i.e., R0 > 1.32

In [17] and [19], the Mickens’ methodology [20, 21, 22, 23, 24, 25] has been33

applied to construct dynamically consistent nonstandard finite difference (NSFD)34

schemes for (1.1). More clearly, Jódar et al. in [17] introduced two NSFD schemes35
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for the model (1.1). The first scheme is given by36

Sn+1 − Sn

ϕ(∆t)
= µ− µSn+1 − βSn+1In + γCn − βSn+1 + βSn,

In+1 − In
ϕ(∆t)

= βSnIn+1 + σβCnIn − (µ+ α)In+1 + βIn − βIn+1,

Cn+1 − Cn

ϕ(∆t)
= δ(1− Cn − Sn − In)− βCn+1In − (µ+ γ)Cn+1,

Rn+1 = 1− Sn+1 − In+1 − Cn+1,

(1.3)

where ∆t is the step size; Xn is the intended approximation forX(tn) = X(t0+n∆t)37

with X ∈ {S, I, R, C}, respectively; ϕ(∆t) is called a denominator function with38

the property that ϕ(∆t) = ∆t+O(∆t2) as ∆t→ 0.39

The second NSFD scheme is based on the Mickens’ techniques of conservation laws40

(see [26, 27]) and is given by41

Sn+1 − Sn

ϕ(∆t)
= µ− µSn+1 − βSn+1In + γCn,

Cn+1 − Cn

ϕ(∆t)
= δRn − βCn+1In − µCn+1 − γCn,

In+1 − In
ϕ(∆t)

= βSn+1In + σβCn+1In − (µ+ α)In+1,

Rn+1 −Rn

ϕ(∆t)
= βCn+1In − σβCn+1In + αIn+1 − µRn+1 − δRn.

(1.4)

Unlike the NSFD schemes (1.3) and (1.4), Khalsaraei et al. in [19] proposed a42

positive and elementary stable NSFD scheme of the form43

Sn+1 − Sn

ϕ(∆t)
= µ− µ

(
2Sn+1 − Sn

)
− βSn+1In + γCn,

In+1 − In
ϕ(∆t)

= βSn+1In + σβCnIn − µ
(
2In+1 − In

)
− αIn+1,

Rn+1 −Rn

ϕ(∆t)
= (1− σ)βCnIn + αIn − µ

(
2Rn+1 −Rn

)
− δRn+1,

Cn+1 − Cn

ϕ(∆t)
= δRn+1 − βCnIn − µ

(
2Cn+1 − Cn

)
− γCn.

(1.5)

The positivity of the solutions, the invariance of the total population and the local44

asymptotic stability (LAS) of the DEE points of (1.3), (1.4) and (1.5) have been45

analyzed in [17] and [19]. A common feature of both works is that the stability46

analysis has only been partially completed for the LAS of the DEE point, whereas47

there has been no formal proof for the LAS of the DEE point, even though the48

numerical experiments indicate that it is locally stable for any chosen step-size49

∆t > 0.50

Motivated and inspired by the above reason, we propose in this work a new51

class of NSFD schemes for the SIRC model (1.1), which is derived on a weighted52

approximation for linear terms and the renormalization of the denominator func-53

tion. By a rigorous mathematical analysis, we give dynamic consistency thresholds54

that lead to easily-verified conditions under which the formulated NSFD schemes55

preserve Properties (P1)-(P5) regardless of the chosen step sizes. More clearly, the56
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constructed NSFD schemes are dynamically consistent with respect to the prop-57

erties (P1)-(P5) if the denominator function is chosen appropriately or the weight58

is sufficiently large. It is worth noting that thanks to the simple structure of the59

proposed NSFD schemes, their LAS can be easily established by the linearization60

method [13]. Consequently, the stability analysis conducted in [17] and [19] is61

improved.62

By error analysis, we show that the constructed NSFD schemes are convergent63

of order 1 and give an error bound, in which the influence of the denominator func-64

tion and the weight is analyzed. In fact, the denominator function and the weight65

can be considered as control parameters to manage the errors. It is shown by66

numerical experiments that the constructed NSFD schemes are capable of provid-67

ing numerical approximations with higher-order accuracy compared to the NSFD68

schemes (1.3)-(1.5). Additionally, they can be easily combined with Richardson’s69

extrapolation technique to produce highly accurate approximate solutions.70

The idea of using weighted approximations for the linear terms have been used71

in [17] and in [19] to construct (1.3) and (1.5), respectively. However, the weighted72

approximation proposed in this work is more general, owing the fact that the weight73

can take arbitrary values rather than being fixed as in (1.3) and (1.5) (see (2.1)).74

Besides, the influence of the weight on the global errors of the constructed NSFD75

schemes is analyzed. A general approach for weighted approximations has been76

proposed by Roeger in [29, 30] to construct NSFD schemes for Lotka-Volterra77

systems. This approach was later applied by Dang and Hoang in [8] to design78

NSFD schemes for a general predator-prey system. In these works, both linear and79

nonlinear terms in the differential equation models are discretized using weighted80

approximations. However, this type of discretization leads to very complex NSFD81

schemes, which are therefore difficult to analyze their dynamical behaviour. On the82

other hand, as pointed out by Mickens and Dula in [12] that the NSFD schemes in83

[8, 29, 30] have not used the full machinery of the NSFD methodology to determine84

their particular discretizations of the counterpart differential equation models. In85

Section 2, we show that the weighted approximation for the linear terms makes the86

LAS analysis of the resulting NSFD schemes easier. As an important consequence,87

the obtained NSFD schemes are simple, but still ensure the dynamic consistency88

with respect to the continuous-time model.89

In summary, we obtain a new class of dynamically consistent NSFD schemes90

that are not only simple but also efficient for numerical simulation of the SIRC91

model (1.1). They also improve the results in [17] and [19] in both qualitative92

analysis and computational efficiency aspects. On the other hand, the used ap-93

proach can be used in constructing efficient NSFD schemes for a wide range of94

mathematical models, particularly those arising in epidemiology, and more gener-95

ally, in real-world applications.96

The plan of this work is as follows:97

The new NSFD schemes are constructed in Section 2, in which their qualitative98

properties and error analysis are analyzed in detail. In Section 3, we conduct99

numerical simulations to support the theoretical findings and demonstrate the ad-100

vantages of the proposed NSFD schemes. Some concluding remarks and discussions101

are provided in the last section.102
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2. Construction of the nonstandard finite difference schemes103

2.1. Formulation and dynamical analysis. In this section, we construct104

dynamically consistent NSFD schemes for (1.1), which use a non-local approxi-105

mation for the linear terms. These NSFD schemes are proposed in the following106

form107

Sn+1 − Sn

ϕ(∆t)
= µ− βSnIn + γCn − µ

[
τSn+1 + (1− τ)Sn

]
,

In+1 − In
ϕ(∆t)

= βSnIn + σβCnIn − αIn − µ
[
τIn+1 + (1− τ)In

]
,

Rn+1 −Rn

ϕ(∆t)
= (1− σ)βCnIn + αIn − δRn − µ

[
τRn+1 + (1− τ)Rn

]
,

Cn+1 − Cn

ϕ(∆t)
= δRn − βCnIn − γCn − µ

[
τCn+1 + (1− τ)Cn

]
,

(2.1)

where τ is a real number, which plays the role as a weight.108

Remark 2.1. In (2.1), the linear term µY with Y ∈ {S, I,R,C} is nonlocally109

approximated by
[
τXn+1+(1−τ)Xn

]
, whereas the nonlinear terms SI and CI, and110

the other linear terms Z (Z ∈ {S, I,R,C} are all locally approximated by SnIn,111

CnIn and Zn, respectively. In general, local approximations for nonlinear terms may112

not guarantee the positivity of the resulting NSFD schemes; however, as pointed113

out below, the positivity of (2.1) is still guaranteed under suitable conditions on114

ϕ(∆t) and τ , because the solutions generated by it remain bounded.115

Our main objective at this stage is to analyze dynamics of the NSFD schemes116

of the form (2.1). For this purpose, we give the following hypothesis:117

(2.2) τ ≥ 0,

and118

(2.3) ϕ(∆t) < min
{
κ1, κ2, κ3

}
for all ∆t > 0,

where119

κ1 :=


1

β + γ + µ− µτ
if β + γ + µ− µτ > 0,

∞ if β + γ + µ− µτ ≤ 0.

κ2 :=


1

α+ µ− µτ
if α+ µ− µτ > 0,

∞ if α+ µ− µτ ≤ 0.

κ3 :=


1

δ + µ− µτ
if δ + µ− µτ > 0,

∞ if δ + µ− µτ ≤ 0.

From this point onward, we always assume that (2.2) and (2.3) are satisfied. Let us120

denote by FC and FD the sets of equilibrium points of (1.1) and (2.1), respectively.121
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Theorem 2.2. The following assertions holds for the NSFD schemes of the122

form (2.1):123

(i) The set Ω defined by124

(2.4) Ω =
{
(S, I,R,C) ∈ R4|S, I,R,C ≥ 0; S + I +R+ C = 1

}
is a positively invariant set.125

(ii) FD = FC for all ∆t > 0.126

Proof. Proof of Part (i). We prove this part by mathematical induction.127

Assume that (Sn, In, Rn, Cn) ∈ Ω. We denote by Nn = Sn + In +Rn +Cn (n ≥ 0)128

the total population of (2.1). Then, it follows from (2.1) that129

(2.5) Nn+1 =
Nn + ϕµ− ϕµ(1− τ)Nn

1 + ϕτ
= Nn +

ϕµ

1 + ϕµ
(1−Nn),

which implies that Nn+1 = 1 whenever Nn = 1.130

Next, we rewrite (2.1) in the form131

Sn+1 =
ϕµ+ Sn

[
1− ϕβIn − ϕµ(1− τ)

]
+ ϕγCn

1 + ϕµτ
,

In+1 =
ϕβSnIn + ϕσβCnIn + In

[
1− ϕα− ϕµ(1− τ)

]
1 + ϕµτ

,

Rn+1 =
ϕ(1− σ)βCnIn + ϕαIn +Rn

[
1− ϕδ − ϕµ(1− τ)

]
1 + ϕµτ

,

Cn+1 =
ϕδRn + Cn

[
1− ϕβIn − ϕγ − ϕµ(1− τ)

]
1 + ϕµτ

.

(2.6)

From (2.3) and the fact that Sn, In, Rn, Cn ∈ [0, 1], we have132

1− ϕβIn − ϕµ(1− τ) ≥ 1− ϕ(β + µ− τ) ≥ 0,

1− ϕα− ϕµ(1− τ) ≥ 1− ϕ(α+ µ− τ) ≥ 0,

1− ϕδ − ϕµ(1− τ) ≥ 1− ϕ(δ + µ− τ) ≥ 0,

1− ϕβIn − ϕγ − ϕµ(1− τ) ≥ 1− ϕ(β + γ + µ− τ) ≥ 0.

Combining this estimate with (2.6) and (2.2) leads to Sn+1, In+1, Rn+1, Cn+1 ≥133

0. Thus, we conclude by mathematical induction that Sn, In, Rn, Cn ≥ 0 and134

Sn + In + Rn + Cn = 1 whenever S0, I0, R0, C0 ≥ 0 and S0 + I0 + R0 + C0 = 1.135

This is the desired conclusion. The proof is complete.136

Proof of Part (ii). It is easy to verify that (2.6) can be rewritten in the form137

Sn+1 = Sn +
ϕ

1 + ϕµτ
f1(Sn, In, Rn, Cn),

In+1 = In +
ϕ

1 + ϕµτ
f2(Sn, In, Rn, Cn),

Rn+1 = Rn +
ϕ

1 + ϕµτ
f3(Sn, In, Rn, Cn),

Cn+1 = Cn +
ϕ

1 + ϕµτ
f4(Sn, In, Rn, Cn),

(2.7)
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where the functions fi (i = 1, 2, 3, 4) are the right-hand side of (1.1). Hence, any138

equilibrium point of (2.1) is a solution of the system139

fi(S, I,R,C) = 0, i = 1, 2, 3, 4.

This implies that the sets of equilibrium points of (1.1) and (2.1) are identical. The140

proof of this part is complete. □141

We now apply the method in [1] to compute the basic reproduction number142

of the discrete-time model (2.1). First, we reorder the variables in (2.1) as xn =143

(In, Rn, Cn, Sn). Then, the DFE point E0 is transformed to x0 = (0, 0, 0, 1). It144

follows from (2.6) that the Jacobian matrix of (2.1) evaluated at x0 is given by145

J =

(
F + T 0
A C

)
,

where146

F =


ϕβ

1 + ϕµτ
0

0 0

 ,

T =


1− ϕα− ϕµ(1− τ)

1 + ϕµτ
0

0
1− ϕδ − ϕµ(1− τ)

1 + ϕµτ

 ,

A =


0

ϕδ

1 + ϕµτ

−ϕβ
1 + ϕµτ

0

 ,

C =


1− ϕγ − ϕµ(1− τ)

1 + ϕµτ
0

ϕγ

1 + ϕµτ

1− ϕµ(1− τ)

1 + ϕµτ

 .

It is easily verified that the submatrices F and T are non-negative, F + T is ir-147

reducible, and ρ(C), ρ(T ) < 1. Thus, the basic reproduction number of (2.1) is148

computed by149

RD
0 = ρ(F [I− T ]−1) =

β

α+ µ
,

which equals to the basic reproduction number of (1.1).150

As a direct consequence of [1, Theorem 2.1], we obtain:151

Lemma 2.3. The DFE point of the discrete-time model (2.1) is locally asymp-152

totically stable if RD
0 < 1 and is unstable if RD

0 > 1.153

Assume that R0 > 1. Then, the unique DEE point E∗ exists. We need to154

analyze the LAS of E∗ with respect to the NSFD model (2.1). For this purpose,155

let us denote by JC the Jacobian matrix of the system (1.1) evaluated at E∗. As156

proven in [6], E∗ is locally asymptotically stable and157

ReλC < 0 for all λC ∈ Spec(JC),
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where Spec(JC) is the set of eigenvalues of JC . For each eigenvalue λCi of Spec(JC)158

(i = 1, 2, 3, 4), we define159

ωi =


− 2(ReλCi )

2(ReλCi )µτ + |λCi |2
if 2(ReλCi )µτ + |λCi |2 > 0,

∞ if 2(ReλCi )µτ + |λCi |2 ≤ 0.

Theorem 2.4 (LAS of the DEE point). Let ϕ(∆t) be a function that satisfies160

(2.8) ϕ(∆t) < ϕLAS := min
i
{ωi} for all ∆t > 0.

Then, the DEE point of the system (2.1) is locally asymptotically stable if it exists.161

Proof. Let us denote by JD the Jacobian matrix of (2.1) evaluated at E∗. It162

follows from (2.6) that163

JD = I+
ϕ

1 + ϕµτ
JC ,

which implies that164

det(zI− JD) = det

(
zI− I− ϕ

1 + ϕµτ
JC

)
=

(
ϕ

1 + ϕµτ

)4

det

[
1 + ϕµτ

ϕ
(z − 1)I− JC

]
.

Therefore, λD is an eigenvalue of JD if and only if λC =
1 + ϕµτ

ϕ
(λD − 1) is an165

eigenvalue of JC . Consequently,166

λD = 1 +
ϕ

1 + ϕµτ
λC .

From this relation, we obtain167

|λD|2 − 1 =

(
1 +

ϕ

1 + ϕµτ
ReλC

)2

+

(
ϕ

1 + ϕµτ
ImλC

)2

,

=
ϕ

1 + ϕµτ

(
2ReλC +

ϕ

1 + ϕµτ
|λC |2

)
,

(2.9)

which implies that |λD|2 < 1 if and only if168

2ReλC +
ϕ

1 + ϕµτ
|λC |2 < 0.

Thus, if (2.8) holds, then |λD| < 1 for all λD ∈ Spec(JD). Hence, we obtain the169

LAS of E∗ with respect to (2.1) by the linearization method (see [13]). The proof170

is complete. □171

Summarizing the results in this section leads to the following statements for172

the dynamic consistency of the NSFD schemes of the form (2.1).173

Theorem 2.5 (Dynamically consistent NSFD schemes by renormalization of174

the denominator functions). The following statements are true:175

(i) Assume that R0 < 1 and (2.2) and (2.3) hold. Then, the NSFD schemes176

of the form (2.1) preserve Properties (P1)-(P5) of the continuous-time177

model (1.1) for all finite values of the step size.178
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(ii) Assume that R0 > 1 and (2.2), (2.3) and (2.8) hold. Then, the NSFD179

schemes of the form (2.1) preserve Properties (P1)-(P5) of the continuous-180

time model (1.1) for all finite values of the step size.181

The following theorem is proved similarly to Theorems 2.2 and 2.4 and Lemma182

2.3.183

Theorem 2.6 (Influence of the weight). Let ϕ(∆t) be any positive denominator184

function with the property that ϕ(∆t) = ∆t + O(∆t2) as ∆t > 0. The following185

assertions hold for the NSFD model (2.1):186

(i) Assume that R0 < 1. Then, the NSFD schemes of the form (2.1) pre-187

serve Properties (P1)-(P5) of the continuous-time model (1.1) for all finite188

values of the step size if189

(2.10) τ ≥ τDC := max

{
β + γ + µ

µ
,
α+ µ

µ
,
δ + µ

µ

}
.

(ii) Assume that R0 > 1 and (2.10) is satisfied. Then, the NSFD schemes of190

the form (2.1) preserve Properties (P1)-(P5) of the continuous-time model191

(1.1) for all finite values of the step size if192

(2.11) τ ≥ τLAS := max
λC
i ∈Spec(JC)

{
|λCi |

2Re(λCi )µ

}
.

Remark 2.7. (i) Since the total population is constant, (1.4) and (1.5) can193

be reduced to three-dimensional systems. Then, the LAS of DEE point can be194

analyzed based on the approaches used in [11, 31] and [15]. More clearly, one195

can determine a positive constant ϕ∗S that plays the role as a stability threshold,196

such that the DEE point is locally asymptotically stable with respect to the NSFD197

schemes if ϕ(∆t) < ϕS for all ∆t > 0. However, calculating this threshold is not198

simple; therefore, it is more reasonable to use (2.1) since the primary aim is to199

construct a dynamically consistent discrete-time model for (1.1). As will be seen in200

the next section, (2.1) can provide approximations with higher accuracy compared201

to (1.3)-(1.5) (see Subsection 3.3).202

(ii) The conditions imposed on ϕ(∆t) as stated in Theorem 2.5 can be represented203

in the form204

(2.12) ϕ(∆t) < ϕDC for all ∆t > 0.

It is important to note that computing ϕDC is straightforward. One of the most205

suitable denominator function satisfying (2.12) is (see [20, 21])206

(2.13) ϕ(∆t) =
1− e−D∆t

D
, D ≥ 1

ϕDC
.

(iii) The conditions imposed on τ as stated in Theorem 2.6 can be represented in207

the form208

(2.14) τ ≥ τDC ,

which implies that the denominator function ϕ(∆t) can be chosen arbitrarily if τ209

is sufficiently large. Note that determining the value of τDC is a simple task. A210

simple choice for ϕ(∆t) when τ ≥ τDC is ϕ(∆t) = ∆t. In a numerical example211

reported in the next section, we will show that the NSFD schemes using this de-212

nominator functions can provide better errors compared to those associated with213

other denominator functions (see Tables 6 and 7).214
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If τ = 0, then (2.1) is simplified to215

Sn+1 − Sn

ϕ(∆t)
= µ− βSnIn + γCn − µSn,

In+1 − In
ϕ(∆t)

= βSnIn + σβCnIn − αIn − µIn,

Rn+1 −Rn

ϕ(∆t)
= (1− σ)βCnIn + αIn − δRn − µRn,

Cn+1 − Cn

ϕ(∆t)
= δRn − βCnIn − γCn − µCn.

(2.15)

This scheme is also known as the nonstandard explicit Euler scheme [9, 11]. As216

pointed out in [17, 19] that the standard Euler scheme cannot preserve the dy-217

namical properties of the continuous-time model (1.1) for some given step sizes.218

However, by re-normalizing the denominator function ϕ(∆t), as presented in The-219

orem 2.5, the dynamic consistency of (2.15) is guaranteed.220

2.2. Convergence and error bounds. Before ending this section, we an-221

alyze the convergence and error bounds for (2.1). Based on the error analysis222

techniques presented in [7, 15, 16], we can show that (2.1) is convergent of order223

1. However, to give a detailed analysis of the influence of the weight τ and the224

denominator function ϕ(∆t) on the errors of (2.1), thereby determining optimal225

choices, we consider a special family of the denominator given by (2.13). Now, we226

denote227

y(t) =
(
S(t), I(t), C(t), R(t)

)T
,

yn =
(
Sn, In, Cn, Rn

)T
,

f(y(t)) =
(
f1(y(t)), f2(y(t)), f3(y(t)), f4(y(t))

)T
.

Then, (1.1) can be rewritten in the form ẏ(t) = f(y(t)). Also, by using (2.7), one228

can represent (2.1) in the form229

(2.16) yn+1 = yn + g(∆t)f(yn),

where230

(2.17) g(∆t) =
ϕ(∆t)

1 + ϕ(∆t)µτ
.

Lemma 2.8. The function g(∆t) defined in (2.17) satisfies231

(2.18) g(∆t) = ∆t+O(∆t2) as ∆t→ 0,

and for ∆t > 0232

(2.19) |g′′(∆t)| ≤ D + 2µτ.

Proof. It is easy to verify that233

g′(∆t) =
ϕ′(∆t)

(1 + ϕ(∆t)µτ)2
,

which implies (2.18) due to the fact that ϕ(∆t) = ∆t+O(∆t2) as ∆t→ 0.234
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On the other hand, we have235

|g′′(∆t)| =
∣∣∣∣ (1 + ϕ(∆t)µτ)2ϕ′′(∆t)− 2(ϕ′(∆t))2µτ(1 + ϕ(∆t)µτ

(1 + ϕ(∆t)µτ)4

∣∣∣∣
=

∣∣∣∣ ϕ′′(∆t)
(1 + ϕ(∆t)µτ)2

− 2(ϕ′(∆t))2µτ
(1 + ϕ(∆t)µτ)3

∣∣∣∣
≤

∣∣∣∣ ϕ′′(∆t)
(1 + ϕ(∆t)µτ)2

∣∣∣∣+ ∣∣∣∣ 2(ϕ′(∆t))2µτ
(1 + ϕ(∆t)µτ)3

∣∣∣∣
≤ |ϕ′′(∆t)|+ 2(ϕ′(∆t))2µτ

= De−D∆t + 2µτ(e−2D∆t) ≤ D + 2τµ.

Therefore, (2.19) is confirmed. The proof is complete. □236

As in [2], we define the global error of (2.1) by en = yn−y(tn) for n ≥ 0. Since237

y(t), yn ∈ Ω, where Ω is given in (2.4), it is valid to define238

L1 := max
y∈Ω

∥∥∥∥∂f∂y (y)
∥∥∥∥, L2 := max

y∈Ω

∥∥∥∥∂f∂y (y)f(y)
∥∥∥∥.

Then, the following estimate hold239

∥f(y1)− f(y2)∥ ≤ L1∥y1 − y2∥, y1, y2 ∈ Ω,

∥y′′(t)∥ ≤ L2, t > 0.

Theorem 2.9. The NSFD model (2.1) is convergent of order 1. Furthermore,240

the following estimate holds for n ≥ 0241

(2.20) ∥en∥ ≤ L2 +D + 2τµ

2L1
(etn+1 − 1)∆t.

Proof. First, it follows from Taylor’s expansion theorem and (2.16)-(2.18)242

that243

(2.21) yn+1 = yn +∆tf(yn) +
∆t2

2
g′′(ξ∆t), 0 < ξ∆t < ∆t.

On the other hand, applying Taylor’s expansion theorem for the exact solution y(t)244

gives245

(2.22) y(tn+1) = y(tn) + ∆tf(y(tn)) +
∆t2

2
y′′(ξn), ξn ∈ (tn, tn+1).

By combining (2.21) and (2.22), we obtain246

∥en+1∥ = ∥yn+1 − y(tn+1)∥

= ∥(yn − y(tn)) + ∆t[f(yn)− f(y(tn))] +
∆t2

2
(g′′(ξ∆t)− y′′(ξn))∥

≤ ∥yn − y(tn)∥+∆tL1∥yn − y(tn)∥+
∆t2

2
(D + 2µτ + L2)

= (1 + L1∆t)∥en∥+ ψ∆t2, ψ :=
D + 2µτ + L2

2
.
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We deduce from this estimate that247

∥en+1∥ ≤ (1 + L1∆t)∥en∥+ ψ∆t2 ≤ (1 + L1∆t)
[
(1 + L1∆t)∥en−1∥+ ψ∆t2

]
+ ψ∆t2

= (1 + L1∆t)
2∥en−1∥+

[
1 + (1 + L1∆t)

]
ψ∆t2

≤ · · · ≤ (1 + L1∆t)
n∥e0∥+ ψ∆t2

n∑
j=0

(1 + L1∆t)
j .

(2.23)

Since e0 = 0, (2.23) is simplified to248

(2.24)

∥en+1∥ ≤ ψ∆t2
n∑

j=0

(1 + L1∆t)
j =

ψ∆t

L1

[
(1 + L1∆t)

n+1 − 1
]
≤ ψ∆t

L1
eL1∆t(n+1)−1.

Here, we have used the well-known inequality ez ≥ 1 + z for z ≥ 0 to obtain the249

last estimate in (2.24). Thus, if follows from (2.24) that250

∥en+1∥ ≤ ψ∆t

L1
(eL1tn+1 − 1) =

L2 +D + 2µτ

2L1
(eL1tn+1 − 1)∆t.

Hence, the estimate (2.20) is proved. The proof is complete. □251

Remark 2.10. (i) As shown in Theorem 2.9, the error bound is dependent on252

D and τ , which suggests that D+2µτ should be as small as possible. Note that D253

is dependent of τ . In Section 3, we will give some numerical examples to show the254

affects of D and τ on the errors.255

(ii) It is easy to verify that if ϕ(∆) = ∆t, then (2.20) is simplified to256

∥en∥ ≤ L2 + 2τµ

2L1
(etn+1 − 1)∆t.

This estimate is valid whenever τ ≥ τDC .257

3. Numerical experiments258

In this section, we report some numerical experiments to support the theoretical259

findings. Also, the NSFD schemes of the form (2.1) will be compared with (1.3)-260

(1.5).261

3.1. Selected parameters and implemented NSFD schemes. In the nu-262

merical simulations reported below, the following sets of the parameters, which are263

taken from [17] but with time unit expressed in weeks instead of years, will be used:264

Table 1. The parameters used in numerical examples

Set α γ δ µ σ β R0

1

(
365

5

)
× 7

365

(
1

2

)
× 7

365
1× 7

365

(
1

50

)
× 7

365
0.05 50× 7

365
0.6847

2

(
365

5

)
× 7

365

(
1

2

)
× 7

365
1× 7

365

(
1

50

)
× 7

365
0.05 200× 7

365
2.7390



NSFD SCHEMES FOR AN SIRC MODEL OF INFLUENZA A 13

For the two sets of the parameters in Table 1, we determine the equilibrium265

points, the Jacobian matrices of (1.1) evaluated at the equilibrium points and their266

eigenvalues as in Table 2.267

Table 2. Equilibrium point, Jacobian matrices and their eigen-
values

Set LAS equilibrium point JC and σ(JC)

1 E0 =


1
0
0
0

 JC(E0) =


−0.0004 −0.9589 0 0.0096

0 −0.4415 0 0
0 1.4000 −0.0196 0
0 0 0.0192 −0.0100


σ(JC(E0)) =

{
− 0.0004,−0.0100,−0.0196,−0.4415

}

2 E∗ =


0.3490
0.0025
0.3271
0.3214

 JC(E∗) =


−0.0027 −1.3841 0 0.0096
0.0023 −0.0001 0 0.0001

0 1.7070 −0.0196 0.0022
0 −0.3232 0.0192 −0.0123


σ(JC(E∗)) =

{
− 0.0017± 0.0582i, −0.0309, −0.0004

}
For each fixed value τ , we denote by ”NSFDτ” the resulting NSFD scheme268

obtained from (2.1) and by ϕDC
τ and τDC the corresponding dynamic consistency269

thresholds, which are determined from Theorems 2.4 and 2.6, respectively. Also,270

the corresponding denominator function is given by271

ϕτ (∆t) =
1− e−Dτ∆t

Dτ
, Dτ >

1

ϕτDC

.

3.2. Numerical dynamics of the NSFD schemes. In this example, we272

investigate dynamics of the NSFD schemes of the form (2.1) using the parameters273

listed in Table 1. The dynamic consistency thresholds for the used NSFD schemes,274

which correspond to some specific values of τ , are computed as in the Table 3.275
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Also, we determine the dynamic consistency thresholds for the weight τ as276

in Table 4. Because the denominator function can be chosen arbitrarily, we take277

ϕ(∆t) = ∆t.278

Table 4. The dynamic consistency thresholds for the weight τ

Set of parameters τDC Denominator function
1 3651 ϕ(∆t) = ∆t
2 5026 ϕ(∆t) = ∆t

Phase spaces of (1.1) corresponding to some specific sets of initial data, which279

are generated by (2.1) using three different step sizes ∆t ∈ {10−2, 1, 2}, are de-280

picted in Figures 1-4. From these figures, we see that the used NSFD schemes281

preserve the dynamical properties of the continuous-time model regardless of cho-282

sen step sizes, and their numerical dynamics are independent of the step sizes. This283

is consistent with the theoretical findings presented in Section 2. Hence, the advan-284

tage of (2.1) compared to standard numerical schemes it that is simple and efficient285

to simulate dynamics of the continuous-time model over long time periods. In the286

next subsection, we will show that (2.1) can provide better errors compared to the287

NSFD schemes (1.3)-(1.5).288
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Figure 1. The phase spaces of (1.1) generated by the NSFD

scheme NSFD0(τ = 0), with ϕ(∆t) =
1− e−1.45∆t

1.45
, for Set 1

of the parameters and t ∈ [0, 103].
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Figure 2. The phase spaces of (1.1) generated by the NSFD

scheme NSFD0(τ = 0), with ϕ(∆t) =
1− e−1.95∆t

1.95
, for Set 2

of the parameters and t ∈ [0, 105].
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parameters and t ∈ [0, 103].
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3.3. Error Analysis and comparison of numerical schemes. The aim289

of this subsection is to conduct detailed error analyses, in which errors generated290

by the NSFD schemes (2.1) and (1.3)-(1.5) are estimated and compared. Also, the291

influence of the denominator function and weight on the errors are analyzed.292

For the above purpose, we consider the model (1.1) with the parameters given in293

Set 1 of Table 1 and initial data (S(0), I(0), R(0), C(0)) = (0.25, 0.25, 0.25, 0.25).294

Because the exact solution cannot be determined, we admit a numerical approxi-295

mation, which are generated by the classical four-stage Runge-Kutta method (see296

[2]) using ∆t = 106, as a reference solution. Then, we observe the global error297

estimated at the time T = 10 that is computed by298

error(∆t) = |S(T )−SN |+|I(t)−IN |+|R(T )−RN |+|C(T )−CN |, T = 10, N =
10

∆t
.

Besides, rate of convergence (ROC) is estimated by (see [2])299

rate = log(∆t2
∆t1

)(
error(∆t2)

error(∆t1)

)
.

We first consider the global errors generated by the NSFD schemes NSFDτ
300

with τ ∈ {0, 1, 5, 10, 100}. The results are reported in Table 5. In this table, the301

denominator functions are given by302

ϕ(∆t) =
1− e−Dτ∆t

Dτ
, Dτ =

1

ϕτDC

,

where Dτ =
1

ϕτDC

is determined as in Table 1.303
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Now, we consider (2.1) for large values of τ . More clearly, as computed in304

Table 4, ϕ(∆t) can be chosen arbitrarily whenever τ ≥ τDC = 3651. Hence, we305

take ϕ(∆t) = ∆t. The errors and ROC of the NSFDτ with τ ≥ 3651 are given in306

Table 6.307

Table 6. The errors and rates of convergence of NSFDτ with
large values of τ

∆t Error τ = 3651 ROC Error τ = 4000 ROC Error τ = 5000 ROC
1 1.2361e-001 1.2791e-001 1.3779e-001

10−1 2.4482e-002 0.7032 2.6491e-002 0.6838 3.2018e-002 0.6338
10−2 2.7149e-003 0.9551 2.9664e-003 0.9509 3.6836e-003 0.9391
10−3 2.7448e-004 0.9952 3.0023e-004 0.9948 3.7399e-004 0.9934
10−4 2.7478e-005 0.9995 3.0060e-005 0.9995 3.7456e-005 0.9993
10−5 2.7481e-006 1.0000 3.0063e-006 1.0000 3.7462e-006 0.9999
10−6 2.7482e-007 1.0000 3.0064e-007 1.0000 3.7463e-007 1.0000

From Tables 5 and 6, we see that the used NSFD schemes are all convergence308

of order 1 and the errors becomes smaller as the value of τ decreases. In the309

computation in Table 7 below, we fix the value of τ to 3651 but change from310

ϕ(∆t) = ∆t to ϕ(∆t) = 1 − e−∆t (as in [17]) and ϕ(∆t) = tanh(∆t) (as in [19]).311

It is clear that the NSFD scheme associated with ϕ(∆t) = t provides the better312

errors.313

Table 7. The error and rates of convergence of NSFD3651 with
ϕ(∆t) = 1− e−∆t and ϕ(∆t) = tanh(∆t)

∆t ϕ(∆t) = 1− e−∆t ROC ϕ(∆t) = tanh(∆t) ROC
1 1.3915e-001 1.3293e-001

10−1 3.1891e-002 0.6398 2.4986e-002 0.7259
10−2 3.6527e-003 0.9411 2.7211e-003 0.9629
10−3 3.7066e-004 0.9936 2.7454e-004 0.9961
10−4 3.7120e-005 0.9994 2.7479e-005 0.9996
10−5 3.7126e-006 0.9999 2.7481e-006 1.0000
10−6 3.7127e-007 1.0000 2.7482e-007 1.0000

Before ending this subsection, we consider the errors generated by the NSFD314

schemes (1.3) and (1.4) with ϕ(∆t) = 1−e−∆t [17] and the NSFD scheme (1.5) with315

ϕ(∆t) = tanh(∆t) [19]. From Table 8, we see that (1.3)-(1.5) are all convergent316

of order 1; however, the NSFD schemes NSFDτ in the form (2.1) yield the better317

errors. Also, (2.1) is simpler because it can be represented in the matrix form (2.16)-318

(2.17). In the next section, (2.1) will be combined with Richardson’s extrapolation319

technique to improve its accuracy.320
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Table 8. The errors and ROC of the NSFD schemes constructed
in [17] and [19]

∆t NSFD (1.3) [17] ROC NSFD (1.4) [17] ROC NSFD (1.5) [19] ROC
1 2.1209e-001 1.9229e-001 1.8934e-001

10−1 3.6003e-002 0.7702 2.8134e-002 0.8347 2.0219e-002 0.9715
10−2 3.8783e-003 0.9677 2.9390e-003 0.9810 1.9957e-003 1.0057
10−3 3.9092e-004 0.9966 2.9521e-004 0.9981 1.9926e-004 1.0007
10−4 3.9124e-005 0.9997 2.9535e-005 0.9998 1.9923e-005 1.0001
10−5 3.9127e-006 1.0000 2.9536e-006 1.0000 1.9923e-006 1.0000
10−6 3.9128e-007 1.0000 2.9556e-007 0.9997 1.9914e-007 1.0002

3.4. NSFD schemes combined with Richardson’s extrapolation tech-321

nique. As shown in Subsection 3.3, the NSFD schemes of the form (2.1) are conver-322

gent of order 1. In this subsection, we combine (2.1) with Richardson’s extrapola-323

tion method (see [3, 5, 18, 28]) to improve its errors. This approach has been used324

in [14] to improve numerical approximations of population models, which include325

differential equation models of phytoplankton-nutrient interaction under nutrient326

recycling and whooping cough in the human population.327

Let us denote by y∆t
n and y

∆t/2
n (n ≥ 1) the numerical approximations generated328

by the first-order NSFD model (2.1) with the step sizes ∆t and ∆t/2, respectively.329

Then, we define (see [4])330

(3.1) z∆t
n := 2y∆t/2

n − y∆t
n .

Then, {z∆t
n } provides an O(∆t2) approximate formula for the solutions of (1.1).331

By a similar way, we can obtain an O(∆t3) approximate formula by defining332

(3.2) w∆t
n :=

4z
∆t/2
n − z∆t

n

3
.

Generally, it is possible to obtain higher-order approximate formulas by combining333

lower-order formulas [4].334

We next examine the continuous-time model (1.1) with Set 1 of the parameters335

given in Table 1. In the following computations, we apply (3.1) and (3.2) for336

(NSFD1, ϕ(∆t) = (1− e−1.45∆t)/1.45) and (NSFD3651, ϕ(∆t) = ∆t) to obtain337

second-order and third-order extrapolated schemes. Table 9 and 10 report the338

global errors at T = 10, which are generated by these resulting extrapolated NSFD339

schemes. From these tables, we see that the approximate solutions generated by340

the underlying first-order NSFD schemes are improved.341
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Table 9. The global errors and rates of convergence of the 2nd
extrapolated NSFD schemes

∆t 2nd extrapolated NSFD ROC 2nd extrapolated NSFD ROC
(NSFD1, ϕ(∆t) = (1− e−1.45∆t)/1.45) (NSFD3651, ϕ(∆t) = ∆t)

1 1.9082e-002 4.5969e-002
0.5 5.5863e-003 1.7723 1.9296e-002 1.2524
0.25 1.5086e-003 1.8887 6.6992e-003 1.5262
0.2 9.8045e-004 1.9311 4.6145e-003 1.6706
10−1 2.5275e-004 1.9557 1.3493e-003 1.7740
10−2 2.5982e-006 1.9880 1.5736e-005 1.9332
10−3 2.6053e-008 1.9988 1.5992e-007 1.9930
10−4 2.6085e-010 1.9995 1.6018e-009 1.9993

Table 10. The global errors and rates of convergence of the 3rd
extrapolated NSFD schemes

∆t 3rd extrapolated NSFD ROC 3rd extrapolated NSFD ROC
(NSFD1, ϕ(∆t) = (1− e−1.45∆t)/1.45) (NSFD3651, ϕ(∆t) = ∆t)

1 1.0900e-003 1.0454e-002
0.5 1.4950e-004 2.8661 2.5055e-003 2.0609
0.25 1.9690e-005 2.9246 4.6699e-004 2.4236
0.2 1.0191e-005 2.9516 2.6114e-004 2.6048
10−1 1.3017e-006 2.9688 3.9337e-005 2.7309
10−2 1.3270e-009 2.9917 4.7155e-008 2.9213
10−3 1.3443e-012 2.9944 4.8101e-011 2.9914
10−4 6.7436e-013 0.2996 1.6585e-013 2.4624

4. Concluding remarks and discussions342

In this work, we have proposed and analyzed a new class of simple and effi-343

cient NSFD schemes for an SIRC epidemic model of influenza A, which was first344

constructed in [6]. The constructed NSFD schemes have used a weighted approx-345

imation for the linear terms and the renormalization of the denominator function.346

By a rigorous mathematical analysis, we have determined the dynamic consistency347

thresholds that lead to easily-verified conditions ensuring that the NSFD schemes348

preserve all qualitative dynamical properties of the continuous-time model regard-349

less of the chosen step sizes (Theorems 2.2-2.6). In particular, thanks to the simple350

structure of the proposed NSFD schemes, their LAS can be easily established by351

the linearization method. As a consequence, we have obtained a new class of dy-352

namically consistent NSFD schemes, which is not only simple but also efficient for353

numerical simulation of the SIRC model (1.1). They have also improved the results354

in [17] and [19] in terms of both qualitative analysis and computational efficiency.355

More clearly, the constructed NSFD schemes are capable of providing numerical356

approximations with higher-order accuracy compared to the NSFD schemes pro-357

posed in [17] and [19]. Additionally, they can be easily combined with Richardson’s358

extrapolation technique to produce highly accurate approximate solutions. On the359

other hand, the used approach can be used in constructing efficient NSFD schemes360
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for a wide range of mathematical models, particularly those arising in epidemiology,361

and more generally, in real-world applications.362

The dynamic consistency of the proposed NSFD schemes are guaranteed by the363

renormalization of denominator functions or sufficiently large weights. By the error364

and convergence analysis in Section 3 and the numerical experiments in Section 4,365

we identify the influence of the denominator function ϕ(∆t) and the weigh τ on366

the global errors. In fact, ϕ(∆t) and τ can be considered as control parameters to367

manage the errors.368

In the near future, we will extend the obtained results to construct effective369

NSFD schemes for mathematical models of infectious diseases. In particular, higher-370

order NSFD schemes for the SIRC model (1.1) will be also studied.371
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