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Abstract

We studied optimal linear approximations in terms of Kolmogorov, linear and
sampling n-widths, of functions with mixed smoothness on Rd, endowed with a
measure µ. We proved the right convergence rates of these n-widths of the µ-
measure-based function classes with Sobolev mixed smoothness W r

p(Rd;µ) in the

µ-measure-based Lebesgue space Lq(Rd;µ) for some cases of p, q satisfying the con-
dition 1 ≤ q ≤ p ≤ ∞. The underlying measure µ is defined via a density function of
tensor-product exponential weight. We introduced a novel method for constructing
linear algorithms which achieve the convergence rates of the Kolmogorov and lin-
ear n-widths. The right convergence rates of the sampling n-widths are established
through non-constructive methods.
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1 Introduction

The aim of this paper is to study optimal linear approximations in terms of of Kolmogorov,
linear and sampling n-widths for functions with mixed smoothness on Rd, endowed with
an exponential positive measure. In particular, we emphasize the right convergence rates
for classes with Sobolev mixed smoothness and constructive methods of optimal linear
approximation and sampling recovery.

We first introduce measure-based Sobolev spaces of mixed smoothness of functions on
Rd. Let

w(x) :=
d⊗
i=1

w(xi), x ∈ Rd, (1.1)
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be the tensor product of d copies of the generating univariate exponential weight

w(x) := exp
(
−a|x|λ + b

)
, (1.2)

where
λ > 0, a > 0, b ∈ R.

In what follows, we fix the weight w and hence the parameters λ, a, b.

Let Ω be a Lebesgue-measurable set on Rd. Let µ be the positive measure on Ω defined
by

µ(A) :=

∫
A

w(x)dx

for any measurable subset A in Ω, i.e., the weight w is the density function of µ. With
an abuse, we also write µ in the tensor product from as:

µ(x) :=
d⊗
i=1

µ(xi), x ∈ Rd. (1.3)

Let 1 ≤ q ≤ ∞. We denote by Lq(Ω;µ) the µ-measure-based Lebesgue space of all
measurable functions f on Ω such that the norm

‖f‖Lq(Ω;µ) :=

(∫
Ω

|f(x)|qdµ(x)

)1/q

=

(∫
Ω

|f(x)|qw(x)dx

)1/q

(1.4)

for 1 ≤ p <∞, and assuming f is continuous on Ω,

‖f‖L∞(Ω;µ) := ‖f‖C(Ω) := sup
x∈Ω
|f(x)| (1.5)

is finite.

For r ∈ N and 1 ≤ p ≤ ∞, the µ-measure-based Sobolev space W r
p (Ω;µ) of mixed

smoothness r is defined as the normed space of all functions f ∈ Lp(Ω;µ) such that the
weak partial derivative Dkf belongs to Lp(Ω;µ) for every k ∈ Nd

0 satisfying the inequality
|k|∞ ≤ r. The norm of a function f in this space is defined by

‖f‖W r
p (Ω;µ) :=

( ∑
|k|∞≤r

‖Dkf‖pLp(Ω;µ)

)1/p

. (1.6)

The well-known Gaussian-measure-measured spaces Lp(Rd; γ) and W r
p (Rd; γ) are used

in many applications. Here the standard Gaussian measure γ is defined via the density
function wg(x) := (2π)−d/2 exp(−|x|22/2).

Next, we introduce concepts of various n-widths, characterizations of optimal linear
approximations and sampling recovery of functions.
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Let n ∈ N and let X be a normed space and Φ a central symmetric compact set in X.
Then the Kolmogorov n-width of Φ is defined by

dn(Φ, X) = inf
Mn∈M(X)

sup
f∈Φ

inf
g∈Ln
‖f −Mn(f)‖X ,

where Mn(X) denotes the set of all operators Mn in X such that Mn(X) is a linear
subspace in X of dimension at most n. The linear n-width of the set Φ which is defined
by

λn(Φ, X) := inf
An∈An(X)

sup
f∈Φ
‖f − An(f)‖X ,

where An(X) denotes the set of all linear operators An in X of rank at most n.

The concepts of Kolmogorov n-widths and linear n-widths are related to linear ap-
proximation. Namely, dn(Φ, X) characterizes the optimal approximation of elements from
X by linear subspaces of dimension at most n, and λn(Φ, X) by linear methods of rank
at most n.

Let X be a normed space of functions on Ω. Given sample points x1, . . . ,xk ∈ Ω,
we consider the approximate recovery of a continuous function f on Ω from their values
f(x1), . . . , f(xk) by a linear sampling algorithm Sk on Ω of the form

Sk(f) :=
k∑
i=1

f(xi)hi, (1.7)

where h1, . . . , hk are given continuous functions on Ω. For convenience, we assume that
some of the sample points xi may coincide. The approximation error is measured by the
norm ‖f − Sk(f)‖X . Denote by Sn(Ω) the family of all linear sampling algorithms Sk of
the form (1.7) with k ≤ n.

Let Φ ⊂ X be a set of continuous functions on Ω. To study the optimality of linear
sampling algorithms from Sn(Ω) for Φ and their convergence rates we use the (linear)
sampling n-width

%n(Φ, X) := inf
Sn∈Sn(Ω)

sup
f∈Φ
‖f − Sn(f)‖X . (1.8)

Obviously, we have the inequalities

dn(Φ, X) ≤ λn(Φ, X) ≤ %n(Φ, X). (1.9)

A substantial strand of research is devoted to the problem of optimal unweighted linear
approximations and sampling recovery for functions with mixed smoothness on compact
domains. A central issue is the determination of optimal convergence rates for various
n-widths in linear approximation and sampling recovery of such functions, with particular
emphasis on the right convergence rate of these n-widths. For a comprehensive overview
and bibliography, see, for example, [3, 9, 17, 20, 5].

Furthermore, the problem of optimal linear approximation and sampling recovery in
terms of linear, Kolmogorov and sampling n-widths, of functions on Rd equipped with
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standard Gaussian measure has been investigated in [8, 6, 19]. In that context, we have
established in [8], in a constructive manner, the right convergence rate of the Kolmogorov
and linear n-widths for 1 ≤ q < p <∞,

dn
(
W r

p(Rd; γ), Lq(Rd; γ)
)
� λn

(
W r

p(Rd; γ), Lq(Rd; γ)
)
� n−r(log n)r(d−1), (1.10)

and

dn
(
W r

2(Rd; γ), L2(Rd; γ)
)
� λn

(
W r

2(Rd; γ), L2(Rd; γ)
)
� n−r/2(log n)r(d−1)/2. (1.11)

Here and in what follows, for a normed space X of functions on Ω, the boldface X
denotes the unit ball in X. In that context, for 2 < p ≤ ∞, we have established in [8], in
a non-constructive manner, the right convergence rate of the sampling n-widths

%n
(
W r

p(Rd; γ), L2(Rd; γ)
)
� n−r(log n)r(d−1), (1.12)

and
%n
(
W r

2(Rd; γ), L2(Rd; γ)
)
� n−r/2(log n)r(d−1)/2 (r ≥ 2). (1.13)

In the present work, we extend and generalize the results (1.10) and (1.11) as well as
(1.12) and (1.13) associated with the standard Gaussian measure γ to the measure µ with
density function of tensor-product exponential weight w.

The main results of the present paper are the right convergence rates of Kolmogorov,
linear and sampling n-widths of W r

p(Rd;µ) in the space Lq(Rd;µ) in some particular cases
of p, q satisfying the condition 1 ≤ q < p ≤ ∞. More precisely, we prove in constructive
manner, for 1 ≤ q < p ≤ ∞,

dn
(
W r

p(Rd;µ), Lq(Rd;µ)
)
� n−r(log n)r(d−1), (1.14)

and for 1 ≤ q < p <∞,

λn
(
W r

p(Rd;µ), Lq(Rd;µ)
)
� n−r(log n)r(d−1). (1.15)

and in a non-constructive manner, for 1 ≤ q ≤ 2 < p ≤ ∞,

%n
(
W r

p(Rd;µ), Lq(Rd;µ)
)
� n−r(log n)r(d−1). (1.16)

The linear approximation algorithms that achieve the upper bounds in (1.14) and
(1.15) are constructed through a process of assembling linear algorithms which are de-
signed for the related Sobolev spaces on the integer-shifted d-cubes which cover Rd. This
is a novel method for constructing linear algorithms for approximation of functions on Rd

endowed with measure. It crucially differs from classical methods of weighted polynomial
approximation functions based on orthonormal polynomial expansions, see, e.g., [13] for
a survey and bibliography on weighted polynomial approximation of function on R.

The convergence rate (1.8) is established in a non-constructive way by using (1.14)
and a result on sampling n-widths in the space L2(Rd;µ) proven in [11]. Concerning
constructive way, in [7], some sparse-grid linear sampling algorithms which achieve the
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worse upper bound %n
(
W r

p(Rd;µ), Lq(Rd;µ)
)
� n−r(log n)(r+1/2)(d−1) for 1 < q < p <∞,

have been constructed.

Notice that the right convergence rates of the n-widths in (1.14)–(1.8) coincide with
those of the same unweighted n-widths for functions defined on a compact domain (see,
e.g., [9, 5]).

It is worth emphasizing that in the results (1.14)–(1.8), the primary parameter λ – the
most influential factor shaping the properties of the associated weight w and measure µ
– is treated merely as a positive number. This substantially distinguishes our framework
from the classical theory of weighted approximation (see, e.g., [15], [14], [13]), where it is
typically assumed that λ > 1 in the weight w (Freud-type weight).

The problem of determining the right convergence rate of the sampling n-widths
%n(W r

p, Lp(Td)) for 1 ≤ p ≤ ∞ has long remained open (see Outstanding open prob-
lem 1.4 in [9, Page 12]). From recent results of [11] on inequality between the sampling
and Kolmogorov n-widths in reproducing kernel Hilbert spaces (RKHS) one can solve in
a non-constructive manner this problem in the case p = 2. This result allowed also to
establish the right convergence rate (1.13). In the present paper, extending the result
(1.13) to the measure µ generated from the Freud-type weight

w(x) := exp
(
−ax4 + b

)
, a > 0, b ∈ R, (1.17)

we prove the right convergence rate

%n(W r
2(Rd;µ), Lq(Rd;µ)) � n−3r/4(log n)3r(d−1)/4, (1.18)

for 1 ≤ q ≤ 2. A key role playing in the proof of this result is a RKHS structure of the
space W r

2 (Rd;µ), which is derived from some old results [1, 2, 12] on properties of the
orthonormal polynomials associated with the weight w2.

The paper is organized as follows. In Section 2, we prove the convergence rates of the
linear and Kolmogorov n-widths in (1.14) and (1.15). In Section 3, we prove the right
convergence rate of the sampling n-widths %n(W r

p(Rd;µ), Lq(Rd;µ)) for 1 ≤ q ≤ 2 < p ≤
∞ and 1 ≤ q ≤ p = 2.

Notation. Denote x =: (x1, ..., xd) for x ∈ Rd; 1 := (1, ..., 1) ∈ Rd; for 0 < λ < ∞ and

x ∈ Rd, |x|λ :=
(∑d

j=1 |xj|λ
)1/λ

and |x|∞ := max1≤j≤d |xj|. We use letter C to denote

general positive constants which may take different values. For the quantities An(f,k)
and Bn(f,k) depending on n ∈ N, f ∈ W , k ∈ Zd, we write An(f,k)� Bn(f,k), f ∈ W ,
k ∈ Zd (n ∈ N is specially dropped), if there exists some constant C > 0 independent
of n, f,k such that An(f,k) ≤ CBn(f,k) for all n ∈ N, f ∈ W , k ∈ Zd (the notation
An(f,k) � Bn(f,k) has the obvious opposite meaning), and An(f,k) � Bn(f,k) if
An(f,k) � Bn(f,k) and Bn(f,k) � An(f,k). Denote by |G| the cardinality of the set
G. For a Banach space X, denote by the boldface X the unit ball in X.

5



2 Optimal linear approximations

In this section, we prove the convergence rates in (1.14) and (1.15). We develop linear
sampling algorithms that attain the upper bounds for these convergence rates by assem-
bling a collection of linear methods, each tailored to the corresponding Sobolev spaces
defined on the unit d-cubes shifted by integers to cover Rd. Notably, established linear
schemes such as Smolyak-type algorithms based on hyperbolic-cross trigonometric ap-
proximations have been explicitly constructed for periodic functions with Sobolev mixed
smoothness (see, for example, [9, Section 4]). Adapting these constructions to generate
linear algorithms for functions on Rd with Sobolev smoothness requires modifying and
extending the underlying framework to fit the non-periodic measure-based setting.

Denote by C̃(Id), L̃q(Id) and W̃ r
p (Id) the subspaces of C(Id), Lq(Id) and W r

p (Id), re-
spectively, of all functions f on the d-unit cube Id := [0, 1]d, which can be extended to the
whole Rd as 1-periodic functions in each variable (denoted again by f). Let 1 ≤ q < p ≤ ∞
and α > 0, β ≥ 0. We use δn(F,X) to denote either dn(F,X) or λn(F,X), Fn(X) to
denote either Mn(X) or Fn(X), and Fn ∈ Fn(X) to denote elements Mn ∈ Mn(X) or

An ∈ Fn(X), respectively. Let Fn ∈ Fn
(
L̃q(Id)

)
. Assume it holds that

‖f − Fn(f)‖L̃q(Id) ≤ Cn−α(log n)β‖f‖W̃ r
p (Id), f ∈ W̃ r

p (Id). (2.1)

Then based on Fn, we will construct an operator belonging to Fn
(
Lq(Rd;µ)

)
, which ap-

proximates f ∈ W r
p (Rd;µ) with the same error bound as in (2.1) for the approximation

error measured in the norm of Lq(Rd;µ). Such an operator will be constructed by assem-
bling operators which are designed for the related Sobolev spaces on the integer-shifted
d-cubes which cover Rd. Let us present this construction.

Fix a number θ > 0 and put Idθ := [−θ, 1 + θ]d. Denote by C̃(Idθ), L̃q(Idθ) and W̃ r
p (Idθ)

the subspaces of C(Idθ), Lq(Idθ) and W r
p (Idθ), respectively, of all functions f which can be

extended to the whole Rd as (1 + 2θ)-periodic functions in each variable (denoted again

by f). A sampling algorithm Fn ∈ Fn
(
L̃q(Id)

)
induces the operator Fθ,n ∈ Fn

(
L̃q(Idθ)

)
defined for a function f ∈ C̃(Idθ) by

Fθ,n(f)(x) := Fn(f(x/(1 + 2θ) + θ1)), x ∈ Idθ. (2.2)

From (2.1) it follows that

‖f − Fθ,n(f)‖L̃q(Idθ) ≤ Cn−α(log n)β‖f‖W̃ r
p (Idθ), f ∈ W̃ r

p (Idθ).

We define for n ∈ N,

mn :=
(
δ−1α log n

)1/λ
, (2.3)

and for k ∈ Zd,

nk :=

{
b%ne−aδα |k|λλ + 1c if |k|λ < mn,

0 if |k|λ ≥ mn,
(2.4)
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where an appropriate fixed value of parameter δ > 0 will be chosen below,

%−1 := V d
λ

∞∑
s=0

sde−
aδ
α
sλ <∞,

and V d
λ denote the volume of the set

Bd
λ :=

{
x ∈ Rd : |x|λ ≤ 1

}
.

We write Idθ,k := k + Idθ for k ∈ Zd, and denote by fθ,k the restriction of f on Idθ,k for a

function f on Rd.

It is well-known that one can constructively define a unit partition {ϕk}k∈Zd such that

(i) ϕk ∈ C∞0 (Rd) and 0 ≤ ϕk(x) ≤ 1, x ∈ Rd, k ∈ Zd;

(ii) suppϕk are contained in the interior of Idθ,k, k ∈ Zd;

(iii)
∑

k∈Zd ϕk(x) = 1, x ∈ Rd;

(iv) ‖ϕk‖W r
p (Idθ,k) ≤ Cr,d,θ, k ∈ Zd,

(see, e.g., [18, Chapter VI, 1.3]).

We define the (1 + 2θ)-periodic functions f̃θ,k on Idθ for k ∈ Zd by

f̃θ,k := fθ,k(·+ k)ϕk(·+ k).

For n ∈ N, taking the sequence (nk)k∈Zd given as in (2.4) and satisfying the condition∑
|k|λ<mn

nk ≤ n,

we define the linear sampling algorithm F µ
θ,n ∈ Fn

(
Lq(Rd;µ)

)
generated from Fn by(

F µ
θ,nf

)
(x) :=

∑
|k|<mn

(
Fθ,nk

f̃θ,k

)
(x− k). (2.5)

where Fθ,nk
∈ Fnk

(
L̃q(Idθ)

)
are defined by (2.2).

Theorem 2.1 Let 1 ≤ q < p ≤ ∞ and α > 0, β ≥ 0, θ > 0. Assume that for any n ∈ N,

there is an operator Fn ∈ Fn
(
L̃q(Id)

)
such that the convergence rate (2.1) holds. Then for

any n ∈ N, based on this operator, one can construct an operator F µ
θ,n ∈ Fn

(
Lq(Rd;µ)

)
of the form (2.5) so that

‖f − F µ
θ,n(f)‖Lq(Rd;µ) ≤ Cn−α(log n)β‖f‖W r

p (Rd;µ), f ∈ W r
p (Rd;µ). (2.6)

7



Proof. This theorem can be established in a manner analogous to [7, Theorem 2.1], with
a few necessary modifications. For completeness, we present the proof. We auxiliarily
present a function in W r

p (Rd;µ) as a sum of functions on Rd having support contained in
integer translations of the d-cube Idθ. A suitable sampling algorithm for for W r

p (Rd;µ) can
be constructed as the sum of integer-translated dilations of Fn. From the items (ii) and
(iii) in the definition of unite partition it follows that

f =
∑
k∈Zd

fθ,kϕk, (2.7)

where fθ,k denotes the restriction of f to Idθ,k. Hence we obtain

‖f − F µ
θ,n(f)‖Lq(Rd;µ) ≤

∑
|k|λ<mn

∥∥∥fθ,kϕk − Fθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

+
∑
|k|λ≥mn

‖fθ,kϕk‖Lq(Idθ,k;µ) .
(2.8)

With the fixed θ, there exists a constant C depending p, λ, a, θ only such that w−1/p(x) ≤
w−1/p(k) for every x ∈ Idθ,k. Consequently,

‖fk(·+ k)‖W̃ r
p (Idθ) ≤ Cw−1/p(k)‖f‖W r

p (Idθ,k;µ) ≤ Cw−1/p(k)‖f‖W r
p (Rd;µ). (2.9)

Because W r
p (Id) is a multiplication algebra (see [16, Theorem 3.16]), from (2.9) and prop-

erty (iv) of the unit partition {ϕk}k∈Zd , we derive f̃θ,k := fθ,k(· + k)ϕk(· + k) ∈ W̃ r
p (Idθ),

and
‖f̃θ,k‖W̃ r

p (Idθ) ≤ C‖fθ,k(·+ k)‖W̃ r
p (Idθ) · ‖ϕk(·+ k)‖W̃ r

p (Idθ)

≤ Cw−1/p(k)‖f‖W r
p (Rd;µ).

(2.10)

Analogously,∥∥∥fθ,kϕk − Fθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

≤ Cw1/q(k)
∥∥∥f̃θ,k − Fθ,nk

(
f̃θ,k

)∥∥∥
L̃q(Idθ)

. (2.11)

Since q < p, from the definition of the weight w in (1.2) it follows that there are numbers
C and 0 < δ′ < a (1/q − 1/p) such that

w1/q−1/p(k) ≤ Ce−δ
′|k|λλ , k ∈ Zd. (2.12)

We select a number δ in (2.3), satisfying the condition

δmax (1, a/α) < δ′. (2.13)

Firstly, with this selection of δ, let us verify that F µ
θ,n ∈ Fn

(
Lq(Rd;µ)

)
. Indeed,

putting
Bd
λ(s) :=

{
x ∈ Rd : |x|λ ≤ s

}
,
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and denoting by V d
λ (s) the volume of Bd

λ(s), we have

m ≤
∑
|k|λ<mn

nk ≤
bmnc∑
|k|=1

%ne−
aδ
α
|k|λλ ≤ n%

bmnc∑
s=0

∑
k∈Bdλ(s)

e−
aδ
α
sλ

� n%

bmnc∑
s=0

V d
λ (s)e−

aδ
α
sλ � n%V d

λ

∞∑
s=0

sde−
aδ
α
sλ ≤ n.

(2.14)

Secondly, we establish the upper bound (2.6). By (2.4), (2.1) (2.10) and (2.11) we
deduce the estimates∥∥∥fθ,kϕk − Fθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

� w1/q(k)
∥∥∥f̃θ,k − Fθ,nk

(
f̃θ,k

)∥∥∥
L̃q(Idθ)

� w1/q(k)n−αk (log nk)β‖f(·+ k)ϕk(·+ k)‖W̃ r
p (Idθ)

� w1/q(k)w−1/p(k)n−α(log n)βeδ
a
α
|k|λλ‖f‖W r

p (Rd;µ),

where the numbers nk, k ∈ Zd, are defined as in (2.4). Hence, by (2.12) we get∥∥∥fθ,kϕk − Fθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

� e−ε|k|
λ
λn−α(log n)β‖f‖W r

p (Rd;µ),

where ε := δ′ − δa/α > 0 due to (2.13). This in a similar manner as (2.14) implies that∑
|k|λ<mn

∥∥∥fθ,kϕk − Fθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

�
∑
|k|λ<mn

e−ε|k|
λ
λn−α(log n)β‖f‖W r

p (Rd;µ)

≤ n−α(log n)β‖f‖W r
p (Rd;µ)

∑
|k|<mn

e−ε|k|
λ
λ

� n−α(log n)β‖f‖W r
p (Rd;µ).

Again in an analogous manner as (2.14) we have by (2.3), (2.12) and the inequality
δ′/δ > 1 provided with (2.13),∑

|k|λ≥mn

‖fθ,kϕk‖Lq(Idθ,k;µ) �
∑
|k|≥mn

w1/q(k)w−1/p(k)‖f‖W r
p (Rd;µ)

� ‖f‖W r
p (Rd;µ)

∑
|k|λ≥mn

e−δ
′|k|λλ

� ‖f‖W r
p (Rd;µ)

∑
s≥bmnc

V d
λ (s)e−δ

′sλ

� ‖f‖W r
p (Rd;µ) V

d
λ

∑
s≥bmnc

sde−δ
′sλ

� ‖f‖W r
p (Rd;µ)m

d
ne
−δ′mλn

∞∑
s=0

sde−
aδ
α
sλ

� ‖f‖W r
p (Rd;µ)(log n)d/λe−δ

′α logn/δ

∞∑
s=0

sde−
aδ
α
sλ

� n−α(log n)β‖f‖W r
p (Rd;µ).
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From the last two estimates and (2.8) we prove (2.6).

Lemma 2.2 Let 1 ≤ q < p < ∞ For every n ∈ N, one can construct an operator

Fn ∈ Fn
(
L̃q(Id)

)
such that

δn(W̃
r

p(Id), L̃q(Id)) � sup
f∈W̃ r

p(Id)

‖f − Fn(f)‖L̃q(Id) � n−r(log n)(d−1)r. (2.15)

Moreover, the statement still holds true if δn(W̃
r

p(Id), L̃q(Id)) = dn(W̃
r

p(Id), L̃q(Id)) and
p =∞.

Such an operator Fn ∈ Fn
(
L̃q(Id)

)
in this lemma can be constructed via Smolyak al-

gorithms based on hyperbolic cross approximations. For detail on the proof of Lemma 2.2
and the hyperbolic cross approximation see, e.g., in [9, Section 4].

Theorem 2.3 Let 1 ≤ q < p < ∞, θ > 0. Then for any n ∈ N, based on the operator

Fn ∈ Fn
(
L̃q(Id)

)
in Lemma 2.2, one can construct the operator F µ

θ,n ∈ Fn
(
Lq(Rd;µ)

)
as

in (2.5) so that there holds the right convergence rate

δn(W r
p(Rd;µ), Lq(Rd;µ)) � sup

f∈W r
p(Rd;µ)

‖f − F µ
θ,n(f)‖Lq(Rd;µ) � n−r(log n)(d−1)r. (2.16)

Moreover, the statement still holds true if δn(W r
p(Rd;µ), Lq(Rd;µ)) = dn(W r

p(Rd;µ), Lq(Rd;µ))
and p =∞.

Proof. The upper bounds in (2.16) follow from Lemma 2.2 and Theorem 2.1 with α = r
and β = (d− 1)r. Let us prove the lower bound in (2.16). If f is a 1-periodic function on
Rd and f ∈ W̃ r

p (Id), then one can immediately derive that

‖f‖W r
p (Rd;µ) � ‖f‖W̃ r

p (Id)

for 1 < p ≤ ∞. On the other hand,

‖f‖L̃q(Id) � ‖f‖Lq(Rd;µ).

Hence we get by Lemma 2.2

δn(W r
p(Rd;µ), Lq(Rd;µ))� δn(W̃

r

p(Id), L̃q(Id))� n−r(log n)r(d−1).

3 Convergence rate of sampling widths

In this section, we prove the right convergence rate of the sampling n-widths
%n(W r

p(Rd;µ), Lq(Rd;µ)) for d ≥ 2 and 1 < q ≤ 2 < p < ∞. We also prove the
RKHS structure of the space W r

2 (Rd;µ), and the right convergence rate of the sampling
n-widths %n(W r

2(Rd;µ), Lp(Rd;µ)) (d ≥ 2) for 1 < q ≤ p = 2 in the particular case of
measure µ when w is the univariate Freud-type weight given by (1.17).
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Assumption 3.1 Let F be a class of complex-valued functions on the measurable set
Ω ⊂ Rd. We say that F satisfies Assumption 3.1, if there is a metric on F such that
F is continuously embedded into the separable space with measure L2(Ω;µ), and for each
x ∈ Ω, the evaluation functional f 7→ f(x) is continuous on F .

The following lemma is a consequence of [11, Corollary 4].

Lemma 3.2 Assume that F satisfies Assumption 3.1 and that

dn(F,L2(Ω;µ)) � n−α log−β n (3.1)

for some α > 1/2 and β ∈ R. Then

%n(F,L2(Ω;µ)) � n−α log−β n. (3.2)

Theorem 3.3 Let r ∈ N and 1 ≤ q ≤ 2 < p ≤ ∞. Then there holds the right convergence
rate

%n(W r
p(Rd;µ), Lq(Rd;µ)) � n−r(log n)(d−1)r. (3.3)

Proof. The lower bound in (3.3) is implied from the inequalities (1.9) and Theorem 2.3 .
By the norm inequality ‖ · ‖Lq(Rd;µ) � ‖ · ‖L2(Rd;µ) for 1 ≤ q ≤ 2, it is sufficient to prove
the upper bound in (3.3) for q = 2. By (2.16) we have that

dn(W r
p(Rd;µ), L2(Rd;µ))� n−r(log n)(d−1)r. (3.4)

Notice that the separable normed space W r
p (Rd;µ) is continuously embedded into

L2(Rd;µ), and the evaluation functional f 7→ f(x) is continuous on the space W r
p (Rd;µ)

for each x ∈ Rd. This means that the set W r
p(Rd;µ) satisfies Assumption 3.1. By

Lemma 3.2 and (3.4) we prove the upper bound:

%n(W r
p(Rd;µ), L2(Rd;µ))� dn(W r

p(Rd;µ), L2(Rd;µ))� n−r(log n)(d−1)r.

Let (φm)m∈N0 be the sequence of orthonormal polynomials with respect to the univari-
ate Freud-type weight

v(x) := w2(x) = exp
(
−2a|x|λ + 2b

)
. (3.5)

For every multi-degree k ∈ Nd
0, the d-variate polynomial φk, we define

φk(x) :=
d∏
j=1

φkj(xj), x ∈ Rd.

The polynomials {φk}k∈Nd0 constitute an orthonormal basis of the Hilbert space L2(Rd;µ),

and every f ∈ L2(Rd;µ) can be represented by the polynomial series

f =
∑
k∈Nd0

f̂(k)φk with f̂(k) :=

∫
Rd
f(x)φk(x)w(x)dx (3.6)
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converging in the norm of L2(Rd;µ). Moreover, there holds Parseval’s identity

‖f‖2
L2(Rd;µ) =

∑
k∈Nd0

|f̂(k)|2.

For r > 0 and k ∈ Nd
0, we define

ρλ,r,k :=
d∏
j=1

(kj + 1)rλ .

Denote by Hrλ(Rd) the space of all functions f ∈ L2(Rd;µ) represented by the series (3.6)
for which the norm

‖f‖Hrλ (Rd) :=

∑
k∈Nd0

|ρλ,r,kf̂(k)|2
1/2

is finite. Notice that for r > λ
2(λ−1)

, we have rλ > 1/2 and therefore, Hrλ(Rd) is a separable
RKHS with the reproducing kernel

K(x,y) :=
∑
k∈Nd0

ρ−2
λ,r,kφk(x)φk(y). (3.7)

Theorem 3.4 We have for any λ > 1 and r > λ
2(λ−1)

,

%n(Hrλ(Rd), L2(Rd;µ)) � n−rλ(log n)rλ(d−1). (3.8)

Proof. The proof of theorem is similar to the proof of [8, Theorem 3.5]. For com-
pleteness, we shortly perform it. We need the following result on Kolmogorov widths
dn(Hrλ(Rd), L2(Rd;µ)) (see, e.g., [9, page 45] for the definition of Kolmogorov widths)
which can be proven in the same manner as the proof of [8, (3.18)]. We have for r > 0,

dn(Hrλ(Rd), L2(Rd;µ)) � n−rλ(log n)rλ(d−1). (3.9)

The lower bound of (3.8) follows from (3.9) and the inequality

%n(Hrλ(Rd), L2(Rd;µ)) ≥ dn(Hrλ(Rd), L2(Rd;µ)).

We check the upper bound of (3.8). By (3.9) we get

dn(Hrλ(Rd), L2(Rd;µ))� n−rλ(log n)rλ(d−1). (3.10)

From the orthonormality of the system {φk}k∈Nd0 it is easy to see that K(x,y) satisfies
the finite trace assumption ∫

Rd
K(x,x)w(x)dx < ∞. (3.11)

Hence by (3.10) and [11, Corollary 2] we obtain

%n(Hrλ(Rd), L2(Rd;µ))� dn(Hrλ(Rd), L2(Rd;µ))� n−rλ(log n)rλ(d−1).
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Lemma 3.5 Let λ be an even integer. Then we have the inequality

‖f‖W r
2 (R;µ) � ‖f‖Hrλ (R) , f ∈ W r

2 (R;µ). (3.12)

Proof. We will use the following representation of the derivative of the polynomials φm
for m ∈ N, which was proven in [1, Lemma 3]:

φ′m =
m−1∑

k=m−λ+1

am,kφk, (3.13)

where

am,k := λ

∫
R
φm(x)φk(x)xλ−1w(x)dx (3.14)

satisfying the inequalities

|am,k| ≤ Cm1−1/λ (3.15)

for some positive constant C independent of m, k.

We first prove the lemma for r = 1. Given f ∈ W 1
2 (R;µ), we denote g := f ′. From

Parseval’s identity and the equality (3.13) we have

g =
∑
m∈N0

f̂(m)φ′m =
∑
m∈N0

f̂(m)
m−1∑

k=m−λ+1

am,kφk =
∑
k∈N

φk

k+λ−1∑
m=k+1

am,kf̂(m), (3.16)

and consequently, for every k ∈ N,

ĝ(k) =
k+λ−1∑
m=k+1

am,kf̂(m). (3.17)

Hence, by (3.15)

|ĝ(k)|2 ≤ (λ− 1)
k+λ−1∑
m=k+1

|am,kf̂(m)|2 ≤ C(λ− 1)
k+λ−1∑
m=k+1

|m1−1/λf̂(m)|2. (3.18)

This and Parseval’s identity yield

‖g‖2
L2(R;µ) =

∑
k∈N0

|ĝ(k)|2 ≤ C(λ− 1)
∑
k∈N0

k+λ−1∑
m=k+1

|m1−1/λf̂(m)|2

≤ Cλ
∑
k∈N0

|k1−1/λ|f̂(k)|2

�
∑
k∈N0

|ρλ,1,kf̂(k)|2 = ‖f‖2
H1(R) ,

(3.19)
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which implies
‖f‖W 1

2 (R;µ) = ‖f‖L2(R;µ) + ‖g‖L2(R;µ) � ‖f‖H1(R) . (3.20)

This proves the lemma in the case r = 1. In the general case it can be obtained by
induction on r. Assuming that (3.12) is true for r − 1, we prove it for r. Again, given
f ∈ W r

2 (R;µ), we denote g := f ′ ∈ W r−1
2 (R;µ). From the induction assumption, in a way

similar to (3.19) we derive

‖g‖2
W r−1

2 (R;µ) � ‖g‖Hr−1(R) =
∑
k∈N0

|ρλ,r−1,kĝk|2

�
∑
k∈N0

|k1−1/λρλ,r−1,kf̂(k)|2 ≤ ‖f‖2
Hrλ (R) .

(3.21)

Hence,
‖f‖W r

2 (R;µ) � ‖f‖L2(R;µ) + ‖g‖W r−1
2 (R;µ) ≤ ‖f‖Hrλ (R) . (3.22)

We show the equivalence between the norm of the space W r
2 (R;µ) and the norm of

Hrλ
w (Rd) in the case λ = 4 in the weight (1.2) by proving the inequality inverse to (3.12).

In order to achieve this, it is necessary to employ certain properties of the polynomials
φm for this particular case. Denote by γm > 0 the leading coefficient of the polynomial
φm, i.e., φm(x) := γmx

m + ϕ for some ϕ ∈ Pm−1. We put αm := γm−1/γm for m ∈ N.
Then we have the following equalities for λ = 4.

(i)

φ′m =
m

αm
φm−1 + 4aαmαm−1αm−2 φm−3. (3.23)

(ii)
4aα2

m(α2
m+1 + α2

m + α2
m−1) = m. (3.24)

(iii)

lim
m→∞

(
12

m

)1/4

αm = 1. (3.25)

Here the parameter a is the same as in (1.2). The claims (i) and (ii) were proven in [2],
the claim (iii) in [12].

Theorem 3.6 Let λ = 4. Then we have the norm equivalence

‖f‖W r
2 (R;µ) � ‖f‖Hrλ (R) , f ∈ W r

2 (R;µ). (3.26)

Proof. Without loss of generality we can assume a = 1. Otherwise, we can achieve this
by changing variable y = a1/4x and considering an equivalent norm of W r

2 (R;µ). By the
inequality (3.12) of Lemma 3.5, to prove the theorem it is sufficient to show the inverse
inequality

‖f‖W r
2 (R;µ) � ‖f‖Hrλ (R) , f ∈ W r

2 (R;µ). (3.27)
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We first prove this inequality for r = 1. Given f ∈ W 1
2 (R;µ), we denote g := f ′. Put

bk :=
k

αk
, ck := 4αkαk−1αk−2,

where recall, a is the parameter in the definition (1.2) of the generating univariate weight
w. For any fixed m0 ∈ Z, from the equality limm→∞

m+m0

m
= 1, (3.24) and (3.25) it follows

that

lim
m→∞

(
12

m

)3/4

bm+m0 = 12, lim
m→∞

(
12

m

)3/4

cm+m0 = 4, (3.28)

and
bm+m0 � cm+m0 � m3/4, k ∈ N0. (3.29)

By using the equality (3.23) and

g =
∑
m∈N0

f̂(m)φ′m, (3.30)

we have for every k ∈ N0,

ĝ(k) = bk+1f̂(k + 1) + ck+3f̂(k + 3), k ∈ N0. (3.31)

By (3.24) there exists k0 ∈ N such that for any k > k0,(
12

k

)3/4

bk ≥ 9,

(
12

k

)3/4

ck ≤ 6, (3.32)

Hence by Parseval’s identity and (3.29) we obtain

‖g‖L2(R;µ) ≥

(∑
k≥1

|bkf̂(k)|2
)1/2

−

(∑
k≥3

|ckf̂(k)|2
)1/2

≥

(∑
k>k0

|bkf̂(k)|2
)1/2

−

(∑
k>k0

|ckf̂(k)|2
)1/2

−

(∑
k≤k0

|ckf̂(k)|2
)1/2

≥ 3(12)−3/4

(∑
k>k0

|k3/4f̂(k)|2
)1/2

− max
0≤k≤k0

|ck|

(∑
k≤k0

|f̂(k)|2
)1/2

≥ 3(12)−3/4

(∑
k∈N0

|k3/4f̂(k)|2
)1/2

− 3(12)−3/4k
3/4
0

(∑
k≤k0

|f̂(k)|2
)1/2

− max
0≤k≤k0

|ck|

(∑
k≤k0

|f̂(k)|2
)1/2

≥ C1 ‖f‖H1(R) − C2 ‖f‖L2(R;µ) ,

(3.33)

where
C1 := 3(12)−3/4 > 0, C2 := 3(12)−3/4k

3/4
0 + max

0≤k≤k0
|ck| > 0.
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This yields that

‖f‖W 1
2 (R;µ) � C2 ‖f‖L2(R;µ) + ‖g‖L2(R;µ)

≥ C2 ‖f‖L2(R;µ) + C1 ‖f‖H1(R) − C2 ‖f‖L2(R;µ) = C1 ‖f‖H1
w(R) .

(3.34)

This and (3.20) prove the theorem in the case r = 1. In the general case it can be
established by induction on r. Assuming that (3.27) is true for r − 1, we prove it for r.
Again, given f ∈ W r

2 (R;µ), we denote g := f ′ ∈ W r−1
2 (R;µ). From the induction

assumption and (3.31), in a way similar to (3.33) we derive

‖g‖W r−1
2 (R;µ) � ‖g‖Hr−1(R) =

(∑
k∈N0

ρλ,r−1,k|ĝ(k)|2
)1/2

≥

(∑
k≥1

ρλ,r−1,k|bkf̂(k)|2
)1/2

−

(∑
k≥3

ρλ,r−1,k|ckf̂(k)|2
)1/2

≥ 3(12)−3/4

(∑
k∈N0

ρλ,r−1,k|k3/4f̂(k)|2
)1/2

− 3(12)−3/4k
3/4
0 ρλ,r−1,k0

(∑
k≤k0

|f̂(k)|2
)1/2

− ρλ,r−1,k0 max
0≤k≤k0

|ck|

(∑
k≤k0

|f̂(k)|2
)1/2

≥ C1 ‖f‖Hrλ (R) − C2ρλ,r−1,k0 ‖f‖L2(R;µ) ,

(3.35)

where k0, C1 and C2 are the same constants as in (3.33). Hence, similarly to (3.34) we
obtain that

‖f‖W r
2 (R;µ) � C2ρλ,r−1,k0 ‖f‖L2(R;µ) + ‖g‖W r−1

2 (R;µ)

≥ C2ρλ,r−1,k0 ‖f‖L2(R;µ) + C1 ‖f‖Hrλ (R) − C2ρλ,r−1,k0 ‖f‖L2(R;µ)

= C1 ‖f‖Hrλ (R) .

(3.36)

For x ∈ Rd and e ⊂ {1, ..., d}, let xe ∈ R|e| be defined by (xe)i := xi, and x̄e ∈ Rd−|e|

by (x̄e)i := xi, i ∈ {1, ..., d} \ e. With an abuse we write (xe, x̄e) = x. For the proof of
the following lemma, see [4, Lemma 3.2].

Lemma 3.7 Let 1 ≤ p ≤ ∞, e ⊂ {1, ..., d} and r ∈ Nd
0. Assume that f is a function on

Rd such that for every k ≤ r, Dkf ∈ Lp(Rd;µ). Put for k ≤ r and x̄e ∈ Rd−|e|,

g(xe) := Dk̄
e

f(xe, x̄e).

Then Dsg ∈ Lp(R|e|;µ) for every s ≤ ke and almost every x̄e ∈ Rd−|e|.
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Theorem 3.8 Let λ be an even integer. Then we have the inequality

‖f‖W r
2 (Rd;µ) � ‖f‖Hrλ (Rd) , f ∈ W r

2 (Rd;µ). (3.37)

Moreover, we have the norm equivalence for λ = 4,

‖f‖W r
2 (Rd;µ) � ‖f‖Hrλ (Rd) , f ∈ W r

2 (Rd;µ). (3.38)

Proof. In the case d = 1, this theorem combines Lemma 3.5 and Theorem 3.6. Both the
relations (3.37) and (3.38) can be proven in the same way. For simplicity we prove (3.38)
for the case d = 2. The general case can be proven by induction on d.

Since the linear combinations of the polynomials φk, k = (k1, k2) ∈ N2
0, are dense

in the normed spaces W r
2,w(R2) and Hrλ(R2), it is sufficient to prove the case d = 2 for

polynomials f of the form

f =
N∑

k1,k2=0

f̂kφk.

Let f ∈ W r
2,w(R2) be such a polynomial. From Lemma 3.7 it follows that f(·, x2) ∈

W r
2 (R;µ), and consequently, by Theorem 3.6 f(·, x2) ∈ Hrλ(R) for almost everywhere

x2 ∈ R. We make use of the temporary notation:

hk2(x1) :=

∫
R
f(x1, x2)φk2(x2)dµ(x2).

By applying successively the case d = 1 of the lemma with respect to variables x2 and x1,
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and using Fubini’s theorem, we obtain

∥∥f∥∥2

W r
2,w(R2)

=
r∑

s1, s2=0

∫
R

∫
R

∣∣D(0,s2)(D(s1,0)f(x1, x2))
∣∣2dµ(x2)dµ(x1)

=
r∑

s1=0

∫
R

r∑
s2=0

∫
R

∣∣D(0,s2)(D(s1,0)f(x1, x2))
∣∣2dµ(x2) dµ(x1)

=
r∑

s1=0

∫
R

∥∥D(s1,0)f(x1, ·)
∥∥2

W r
2 (R;µ)

dµ(x1)

�
r∑

s1=0

∫
R

∥∥D(s1,0)f(x1, ·)
∥∥2

Hrλ (R)
dµ(x1)

�
r∑

s1=0

∫
R

N∑
k2=0

|ρλ,r,k2D(s1,0)hk2(x1)|2 dµ(x1)

�
N∑

k2=0

ρ2
λ,r,k2

r∑
s1=0

∫
R

∣∣D(s1,0)hk2(x1)
∣∣2 dµ(x1)

=
N∑

k2=0

ρ2
λ,r,k2

‖hk2‖
2
W r

2 (R;µ)

�
N∑

k2=0

ρ2
λ,r,k2

N∑
k1=0

|ρλ,r,k1ĥk2(k1)|2

=
N∑

k2=0

ρ2
λ,r,k2

N∑
k1=0

|ρλ,r,k1 f̂(k1, k2)|2 = ‖f‖2
Hrλ (R2) .

Notice that the norm equivalence (3.38) for λ = 2 has been proven in [8, Lemma 3.4]
(see also [10, pages 687–689]) .

Due to the norm equivalence (3.38) in Theorem 3.8, we identify W r
2 (Rd;µ) with

Hrλ(Rd) for the case when λ = 4 and r ∈ N. From Theorem 3.4 and the norm in-
equality ‖·‖Lp(Rd;µ) ≤ C ‖·‖L2(Rd;µ) for 1 ≤ p ≤ 2, we derive the following result on right
convergence rate of sampling n-widths.

Theorem 3.9 We have for 1 ≤ q ≤ 2, r ∈ N and λ = 4,

%n(W r
2(Rd;µ), Lq(Rd;µ)) � n−

3r
4 (log n)

3(d−1)r
4 . (3.39)

We finish this section with some conjectures.

Conjecture 3.10 We have for any r ∈ N and even integer λ > 4,

‖f‖W r
2 (Rd;µ) � ‖f‖Hrλ (Rd) , f ∈ W r

2 (Rd;µ). (3.40)
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If Conjecture 3.10 holds true, then from this conjecture and Theorems 3.8 and 3.4 we
can deduce the following results.

Conjecture 3.11 We have for any r ∈ N and even integer λ > 4,

‖f‖W r
2 (Rd;µ) � ‖f‖Hrλ (Rd) , f ∈ W r

2 (Rd;µ). (3.41)

Conjecture 3.12 We have for any d ≥ 2, r ∈ N and even integer λ > 4,

%n(W r
2(Rd;µ), L2(Rd;µ)) � n−rλ(log n)rλ(d−1).
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[5] D. Dũng. Sparse-grid sampling recovery and numerical integration of functions having
mixed smoothness. Acta Mathematica Vietnamica, 49:377–426, 2024.

[6] D. Dũng. Weighted sampling recovery of functions with mixed smoothness.
arXiv:2405.16400, 2024.
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