EFFECT OF THE VERTICAL MAGNETIC FIELD ON RAYLEIGH-TAYLOR

INSTABILITY FOR INCOMPRESSIBLE FLUIDS WITH AN UPPER FREE SURFACE

TIEN-TAI NGUYEN

ABSTRACT. In this paper, we consider a nonhomogeneous incompressible magnetohydrodynamic fluid
in a horizontally periodic domain, being bounded above by a free moving boundary and bounded below
by a fixed bottom. The governing equations are the gravity-driven incompressible Navier-Stokes equa-
tions interacting with a magnetic field and after using the Lagrangian transformation, we write the main
equations in a perturbed form in a fixed domain. The goal of this paper is to study the influence of the
vertical magnetic field on the nonlinear Rayleigh-Taylor (RT) instability result of a smooth increasing
RT density profile. Precisely, we prove that the nonlinear problem departing from the hydrostatic equi-
librium is nonlinearly unstable under L?-norm as the strength |m| of the steady vertical magnetic field
is lower than the critical value m., improving the nonlinear RT instability result of F. Jiang and S. Jiang
[12] under H?-norm. Our nonlinear result refines the abstract framework of Guo and Strauss [5] and
also of Grenier [8] with a wide class of initial data for the nonlinear problem, based on the finding of
infinitely many normal modes to the linearized equations via the operator method initiated by Lafitte
and Nguyen [22].
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1. INTRODUCTION

The Rayleigh—Taylor (RT) instability, studied first by Lord Rayleigh in [28] and then Taylor [29] is
well known as a gravity-driven instability in two semi-infinite inviscid and incompressible fluids when
the heavy one is on top of the light one. It has attracted much attention due to both its physical and
mathematical importance. Two applications worth mentioning are implosion of inertial confinement
fusion capsules [23] and core-collapse of supernovae [27]. For a detailed physical comprehension of
the linear RT instability, we refer to three survey papers [19, 33, 34]. Mathematically speaking, the
nonlinear study of classical RT instability is proven by Desjardins and Grenier [3]. For the inviscid
and incompressible fluid with a smooth density profile, the classical RT instability was investigated
by Lafitte [21], by Guo and Hwang [4] and by Helffer and Lafitte [15]. For the viscous linear RT
instability, one of the first studies can be seen in the book of Chandrasekhar [2, Chapter X]. He
considers two uniform viscous fluid separated by a horizontal boundary and generalize the classical
result of Rayleigh and Taylor. We refer the readers to mathematical viscous linear/nonlinear RT
studies for two (in-)compressible channel flows in [6], [32] and [10]. For the incompressible fluid
with a smooth density profile, we mention the results of Jiang et al. [13], of Lafitte and Nguyen [27],
and of Nguyen [26] respectively.

In this paper, we study the magnetohydrodynamic (MHD) influence on the RT instability of an
increasing RT density profile. Owing to the presence of the magnetic field, numerous results the RT
instability of continuous incompressible fluids cannot be extended straightforwardly. Let us mention
some previous results on the effect of magnetic field to linear Rayleigh-Taylor instability. In 1954,
Kruskal and Schwarzschild [20] investigated the effect of the horizontal magnetic field M = me;
(e; = (1,0,0)7T) to the linear instability problem for stratified MHD fluids on a horizontally periodic
domain. After that, the linear RT instability influenced by a vertical magnetic field M = me;s (e3 =
(0,0, l)T) was proven for a continuous incompressible MHD fluid by Hide [16] (see also the book
of Chandrasekhar [2, Chapter 4]). Considering the linearized problem in a bounded domain, Jiang
and Jiang [! 1] obtained the threshold m. of the vertical magnetic field for the linear instability as
|m| < m, and stability as |m| > m,..

One of the first nonlinear study on the continuous incompressible magnetic RT instability, was
given by Hwang [17] for the inviscid case. Then, Jiang, Jiang and Wang [ 4] extended Hwang’s result
to the viscous case by following the framework of Guo and Strauss [5]. Such magnetic RT instability
was also investigated by Wang for stratified incompressible MHD fluids [31]. For MHD fluids in a
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horizontally periodic domain with finite height, Jiang and Jiang [1”] studied the stabilizing effect of
the vertical magnetic field in the supercritical regime |m| > m, and for MHD fluids in a bounded
domain, they proved the nonlinear instability under H?-norm of the vertical magnetic field in the
subcritical regime |m| < m,, extending [ 1].

This motivates us to show in this paper an improved result of the nonlinear RT instability in the
subcritical regime |m| < m, under L?-norm. Let us present the precise formulation as follows.

We consider the fluid lying on a vertical gravity field, below some smooth interface separating it
from air. That means, at time ¢, the fluid occupies a horizontally periodic domain

Q(t) = {x = (21,29, 23) : (x1,22) € (27LT)?, —h < x5 < d(t, 21, 22)}, (1.1)
where d is smooth enough function of its arguments. We denote the upper free surface
[(t) = {x3 = d(t,x1, 22), (x1,22) € (27 LT)?*}

and the fixed bottom I';, = (2rLT)? x {x3 = —h}. The fluid dynamic is described by the gravity-
driven incompressible Navier-Stokes equations interacting with the magnetic field 1/, that read as

op + div(pa) = 0 in (),
Ou(pt) + div(pit @ ) + divS = —gpes  in Q(1),
M =V x (it x M) in Q(t),
divii = 0, divM =0 in Q(t).

The unknowns p := p(t,y), @ := u(t,y) and p := p(t,y) denote the density, the velocity and the

pressure of the fluid, respectively. In the second equation, —gpes is the gravity field with g > 0 the

acceleration of gravity and e3 the vertical unit vector. The stress tensor S consist of both fluid and

magnetic parts is given by

M ?
2

On the free surface I'(¢), we have the dynamic boundary condition without any effect of surface
tension (pum, 18 the given atmospheric pressure)

S = —u(Via + (Va)') + pld + Id— M@ M.

Sﬁ = PatmM,
and the kinematic boundary condition
8td = 2~L3 - fbl(‘)jld - ﬂgagd.

At the fixed bottom I'j,, we enforce the condition that the fluid velocity vanishes, © = 0. We formulate
the governing equations

(0,p+1-Vi=0 in Q(t),
P60t + @ - Vi) + divS = —gpes  in Q(1),
OM +1i-VM =M - Vi in Q(t),
{divii =0, divM =0 in Q(t), (1.2)
ST = ParmT on I'(t),
Ord = Uz — W1 01d — UgOad on I'(t),
(u=0 onl',.

To complete the statement of the problem (1.2), we must specify the initial conditions. We suppose
that the initial surface I'(0) is given, i.e. d|;—o = dj is given on (2w LT)?, which yields the open set
2(0). Hence, on €2(0), we specify the initial data for the density p(0) : ©Q(0) — R, the velocity
@(0) : ©(0) — R? and the magnetic field M/ (0) : Q(0) — R3.
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We now construct an equilibrium state to the system (1.2). Let d = 0, we define the equilibrium
surface
Iy = (2nLT)? x {0},
yielding d = 0 and n = eg, and thus define the fixed domain
Q = (27LT)* x (—h,0).

Hence, let m is an arbitrary constant, we have that a density profile py(3), a zero velocity u = 0 and
a vertical magnetic field M = meg (m is a constant) define a hydrostatic equilibrium with pressure
gradient balancing out the gravity field,

) d
po(0) = patmy and  Vpy = —gpoes, i.e. py = —gpo('= %) (1.3)
3
‘We assume that
po >0 (1.4)
and denote by
0 < p- = po(—h) < po(0) = ps < +0. (1.5)

In that way, we have heavier fluid above lighter one, and we are thus in the situation of Rayleigh-Taylor
instability occurs. The goal of this paper is to show that under the assumptions (1.4), (1.5) and under
the effect of magnetic field, the nonlinear RT instability in MHD flows happens in the subcritical
regime of vertical magnetic number

0
m| < m, := iy 98P0 — 9p0%(0)

1.6
peH ((—1,0)) 0 (¢)? (1

That means, we construct initial data of small size 9, giving rise to a solution defined up to some time
T, and which at that time has L?-norm bounded from below by a fixed constant (independent of §).
We refer to Section 2 for the precise statement of our main theorems and describe here our strategy of
the proof.

The first step in our proof is to construct a solution of the linearization at this stationary solution
of the nonlinear equations. We want this solution of the linearized equations (2.14) to have growing
normal modes and we look for it schematically as U (¢, z) = e*V (z), where ) is positive. The profile
V' is taken as an oscillatory function of the horizontal variables (z1, x5), with mode k = (ky, k2), the
rz-dependence being given in terms of unknown functions of (k,z3). Then U is a solution of the
linearized equations if some function z3 — ¢(k, z3) (from which U maybe reconstructed) solves a
fourth order ODE on the interval (—h,0), depending on k and A. Our first theorem asserts that, as
|m| < m,, one may find infinitely many solutions to that ODE and thus get infinitely many normal
mode solutions of the linearized equations. The line of investigation is the same as in [22], where the
case of a viscous nonhomogeneous incompressible fluid in the whole space has been treated.

The second part of the paper is to devoted to the proof of nonlinear instability. The spectral analysis
allows us to study the fully nonlinear perturbation equations (2.13). To this purpose, we follow the
same procedure as in [24] for RT problem in an infinite strip with Navier-slip boundary conditions,

Step 1. establish some a priori energy estimates to the nonlinear equations,

Step 2. formulate a linear combination of normal modes to the linearized equations (2.14) to set its
value at initial time ¢t = 0 of size 0 < 0 « 1 as an initial datum to the nonlinear perturbation
equations,

Step 3. obtain the difference between the local exact solution and the approximate solution in Step 2
and exploit some energy estimates for the difference,

Step 4. deduce the bound in time of the difference functions and prove the nonlinear instability.
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Our nonlinear study is inspired by the abstract frameworks of Guo and Strauss [5] and of Grenier
[2]. In the above frameworks, only the maximal normal mode was used in Step 2 to approximate the
nonlinear equations. Let us emphasize that, our nonlinear results show that a wide class of initial
data (related to a linear combination of normal modes) to the nonlinear problem departing from the
equilibrium is formulated in Step 2 and it gives rise to the nonlinear instability.

To finish the introduction part, we introduce the organization of this paper. In Section 2, from
the formulation in Eulerian coordinates of the governing equations (1.2), we derive the formulation
in Lagrangian coordinates, see (2.13). We introduce our main results, Theorem 2.1 describing the
spectral analysis of the linearized equations (2.14) and Theorem 2.2 proving the linear instability in
the subcritical regime |m| < m.. The proof of Theorems 2.1, 2.2 will be shown in Section 3. In
Section 4, we construct the a priori energy estimates to the nonlinear equations and in the last part,
Section 5, we conclude the nonlinear instability, Theorem 2.3, still in the subcritical regime |m| < m,.

2. REFORMULATION IN LAGRANGIAN COORDINATES AND MAIN RESULTS

2.1. Reformulation in Lagrangian coordinates. The movement of the free boundary I'(¢) and the
domain €)(t) raises numerous mathematical difficulties. To handle that, we will switch to coordinates
in which the domain stay fixed in time. Since we are interested in the nonlinear instability of the
equilibrium state, we will use €2 as the equilibrium domain. We assume that there exists an invertible
mapping (p : 2 — Q(0) such that

Fog=¢() and det(V{(p) = 1.
Define the flow maps ( as the solution to
atC(t7 33) = U(t, C(t7 .flf)),
¢(0,2) = Co(x).

We think of the Eulerian coordinates as (t,y) € R, x Q(t) with y = ((¢,x), whereas we think
of Lagrangian coordinates as the fixed (t,2) € R, x €. In order to switch back and forth from
Lagrangian to Eulerian coordinates we assume that ((¢, -) are invertible and

Q(t) = C(tu Q)u F(t) = C(ta FO): Fh = ((ta Fh)
If ¢ — Id is sufficiently small in an appropriate Sobolev norm, then ( is a diffeomorphism, i.e.

J = det(V() # 0.

2.1

This allows us to switch back and forth from Lagrangian to Eulerian coordinates and transform the
problem (1.2) to one in the fixed spatial domain 2. To this purpose, we define the matrix A =
(Aij)1<ij<s viaits transpose AT := (V()~! and define the following differential operators

Vaf = (Al f, Aokl f, Ase0rf)",  diva(Xy, Xo, Xs)" := Apdp Xy,  Auf = divaValf,

where we have used the Einstein convention of summation over repeated indices. We write
N = 0:¢ x 0ol|r, = JAes|r, (2.2)
for the non-unit normal to I'(¢) and
Sa(p,u) := —pDqu+pld, (Dau)ij = Aixlruj + AjiOku;.

With the above notations, we define the Lagrangian unknowns on (g, @, p, M ) by the compositions

P2
2

(s, p, M)(t, ) = (o p+ 5, M)(,(t,2))
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and derive from (1.2), the evolution equations for (p, u, p, M) in Lagrangian coordinates as follows

r

0 =u, 0op=0 in €2,

poru — A qu+ Vap = M -V o4 M — gpes in €2,

é’%M - M Vau=70 %n Q, (2.3)
div u = divyM =0 in (2,

Salp,u)N = (M -N)M on Ty,

(u= 0 onl',.

Clearly, (2.3), implies that p(t, -) is constant along time. We expect that converges to the equilib-
rium density profile p(z3) as t — oo. Hence,

p(t, ) = po(xs) forany (tz). (2.4)

Next, we eliminate M by expressing it in terms of (, and this can be achieved in the same manner as
in [12, 31]. From a direct computation, we have that

0;J = Jdiv u = 0. (2.5)

That implies J = 1 in €. Next, applying A” to (2.3),, we obtain
AjioM; = Aji M Aoy = AjiMpAnol(0¢) = —0.A;i My Awom; = —M;0iA;i.
This yields
O(ATM) =0, (2.6)
hence Aj M; = A, M. We get further
M;(t) = 0,¢; (1) A;(0)M;(0), ie. M(t) = V(t)AT(0)M(0). (2.7)

To obtain the asymptotic stability of the magnetic RT equilibrium state in time, we naturally expect
that

(¢, M) converges to (x, M) as t — 0.
Thus, we formally obtain from (2.7) that AT (0)M (0) = M, yielding
M=M-V¢ (2.8)
and
M -V 4M = M;A;x0.M = Myor(M;0,¢) = (M - V)?C. (2.9)
Note that, it follows from (2.2), (2.5) and (2.6) that
Opdiv M = J71o,div(JATM) = 0
and
(M -N) = 0,(M - JAes) = 0,(JM* Aes) =0 onT,.
Hence,
divyM = divM = 0in Qand M - N = M on T. (2.10)
Summing up the above calculations (2.4) (2.8), (2.9) and (2.10), and letting
n=¢C-xz, A" =(Id+Vn)
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we can transform (2.3) into a Navier—Stokes system in {2 with two force terms induced by the flow
map and the equilibrium density profile py:

(0 = u in §2,
poliu — pA qu + Vap = m?*05¢ — gpoes  in Q,
< divyqu =0 in €2, (2.11)
Sa(p,u)N = m?d3n on Iy,
lu=20 on ['.
Let
po = po(z3 +1n3) and  po = po(x3 + 13),
the equilibrium state (1.3) in Lagrangian coordinates reads as V 4py = —gpoes. That implies

Vapo = —gpoesz — Va(pPo — po)
= —gpoes — Va(po(s)ns) +
= —gpoes + gV alpons) + Qp,
where the quadratic term Q,, is given by

Q) = —VA<77§J

0

1 d2
(1-— S)@po([ﬂg + sn;;)ds).

We now define the modified pressure

q =D —Po+ gpons

and obtain that
Vap + gpoes = Vaq + g(po — po)es — Qp = Vaq — gpynzes — Qp — Qs

where the quadratic term Q, is given by

1 d2

Q, = g(ngjo (1-— S)Epo(xg + sn3)ds> es.

We deduce the evolution equations for (1, u, q) as

(0 = u in €2,
polstt — A qu +V ag — m?03n — gpynzes = Qp + Qy  in Q,

< divyqu =0 in 0, (2.12)
Salg, )N = m?03n + gpynsN on Ty,

Lu =10 on ['y.

Hence, around the trivial state U = (n,u,q) = 0, we consider from now on the following homoge-
neous linear form

(O = u in Q,
podiu — pAu + Vg — m?03n — gppmzes = Q1 in €,

{ divu = O, inQ, 2.13)
S(q, w)es = m?03n + gpynses + Qs on I,

lu=20 on [y,
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where the nonlinear terms Q;, Q> and Q3 are given by

Q1 == p(Aau— Au) = (Vag —Vq) + Q, +
Qy = divu — div qu,

Qs

Qs := (¢ — gp+n)ld - (e3 — N) — pSues + p(Sau)N

To investigate the nonlinear RT instability to (1.2) in the subcritical regime of vertical magnetic num-
ber, we move to prove the nonlinear instability of the trivial state U = (1, u,q) = 0 to the nonlinear

equations (2.13) in the above regime.

2.2. The linear instability. The linearized equations of (2.13) are

(O =u

podiu — pAu + Vq —m*5n = gpynzes,
< divu =0

(qId — pSu)es = m>0sn + gp,nses
Lu =0

As in [2, Chapter XI], we seek normal modes U (¢, z) = eV (z) of (2.14), which are

(0w, q)(t,2) = e*(w, v,7)(2).

We deduce the following system on (w, v, 1),

Aw =
Apov — pAv + Vr — m?03w + gphwses = 0

{ dive =0
(rld — (Vo + VoT))es = m?dsw + gp wses
v=20

That implies w = %v and

Npov + AVr — AuAv — m?d3v = gpjuses
divv = 0

in €2,
in (),
in €2,
onl'y,
onl,.

in €2,
in €2,
in €2,
on [y,
onl',.

in €2,
in €2,

(Arld — Au(Vo + Vol))es = m203v + gpvses on Ty,

v=20
Letk = (ky, ko) € (L7'Z\{0})?, we further assume that

vi(x) = sin(k121 + ko) (k, 23),
va(x) = sin(kiz1 + kawo)o(k, x3),
v (I) = )¢(k,$3),

3 COS(klfL’l + ]{321’2
(x) = cos(kyxy + koxo)m(k, x3).

<

Denote by k = |k| = 1/k? + k3, we deduce from (2.17) the system
Npot) — My + Ap(k*) — ") —m*y" =0
N2 pop — Mo + (k2o — ") —m2p” =0
Npod + A" + Au(k?¢ — ¢") — m*¢" = gpj¢
ki + kap +¢' =0

onI',.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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with the boundary conditions

Au(k19(0) —¢'(0)) = mzw’(O),
"(0)) = m*¢'(0),
0~ e t0) 0 0) - w0 &2
w(—h) = ¢(=h) = ¢(=h) = 0.
Note that L
™= 132( Apod — p(k*6 — ¢") + = =), (2:21)
That implies the fourth-order ordinary differential equation
N (Kpo¢p — (pod')') + Au(@'Y — 2k%¢" + k*9) = gk®php — m* (81 — K*¢"), (2.22)
with the boundary conditions
H(—1) = &/ (—h) =
Au(¢"(0) + k2¢(0)) = —m*¢"(0), (2.23)

A(¢"(0) = 3k2¢/(0)) + m?(¢"(0) — k2¢/(0)) = Ap1¢'(0) + ghk?p.6(0).

The finding of normal modes of the form (2.15) to Eq. (2.14) relies on the investigation of the
characteristic values A(k) € C (ReA > 0) as k fixed such that (2.22)-(2.23) has a nontrivial solution
¢ living at least in H*((—h,0)).

Following [24, Lemma 2.1], we have that all characteristic values A are real. Since our goal is to
study the instability, we only consider positive A and look for functions ¢ being real in what follows
in the linear analysis.

Lemma 2.1. For any k > 0, all characteristic values \ are always real. Let Ly = (| Z% Lo((=h0)))
be the characteristic length of density profile, all characteristic values \ satisfy that \ < , /Lio.

As k is fixed, we state the following k-subcritical regime of magnetic field to investigate the exis-
tence of infinitely many characteristic values, thanks to the operator method initiated by Lafitte and
Nguyén [22]. We state our first theorem solving the ODE (2.22)—(2.23).

Theorem 2.1. Let k be fixed and let py satisfying (1.4)—(1.5). We define

gk2§° . pho? — gk?p, ¢2(0)

me(k) := max : (2.24)
e (Chon 0, (672 + K20
Hence, let c, := 5-(gmax(_p ph) "2 and

0 < |m| <m.(k)— as k — +o0. (2.25)

there exists an infinite sequence (A, Op)n=1 With A, € (0
(2.22)~(2.23).

) and ¢, € H*((—h,0)) satisfying

9
Lo

In view of (2.25), we prove the linear instability in the subcritical regime of magnetic field (1.6),
showing the existence of infinitely many normal mode solutions to the linearized equations (2.14).

Theorem 2.2. Let |m| < m.. For some wave number k = (ky, ko) € (L7'Z)*\{0}, there exists
infinitely many normal mode solutions to the linearized equations (2.14).
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To close the linear section, we show that A defined by

0<A:=  sup Mk <,/Z, (2.26)
ke(L-12)2\{0} Lo

is the maximal growth rate of the linearized equations, see Proposition 3.6.

2.3. Nonlinear instability. The spectral analysis allows us to study fully nonlinear perturbation equa-
tions (2.13). To prove the nonlinear instability, we follow the procedure as in [24], explained below to
make our paper self-contained.

In the first step, we construct the a priori energy estimates in low regularity regime. To do that, we
introduce the following anisotropic Sobolev norm,

|l = D 1072052 - |ams).
a1+oa<k

Let us recall the perturbation terms U = (1, u, ¢) and let € € (0, 1) be arbitrary, but fixed. We define
the energy functional £(t) = £(U(t)) > 0 such that

E(t) =& i(t) + e&(1), (2.27)
where &1, & are given by

Ei(t) == |n(t)] a0 + H3377( Moae + [u®)]ose + [Fu(t)]oz0
E(t) = ()] a5 + Z |0 u(t)|am 2i(0) + 1023 ()]| 20

+ [a(t )HHS(Q) + [0 (®)] 1)
We also define the dissipation term D(t) = D(U(t)) > 0 such that
D(t) = Di(t) + eDs(t), (2.28)
where Dy, D, are given by

Di(t) = |0sn(t) 04,0 + [u(t)|1a0 + [Gu(t)]o2e0,
Dy(t) = [n(t) | ms () + |w(t) |7y + 10cu(t)|Fs 0y + [07u(t) |70 0
+ a0y + 10:a(t) 7720y

The local existence of regular solution to (2.13) follows from [7, Theorem 6.3]. That means, there
exists g > 0 sufficiently small such that for any 0 € (0, dy), Eq. (2.13) with the initial data (1, ug)
satisfying the appropriate compatibility conditions and &£;(0) + &(0) < d, has a unique solution
(n,u, q) existing on the time interval [0, T}, ) and 7 is a C?-diffeomorphism for each t € [0, Tipay)-
With that regular solution (7, u, ¢) of (2.13) on a finite time interval [0, T}, ), We aim at showing the
a priori energy estimates for the nonlinear equations (2.13).

Proposition 2.1. Let ¢ € (0,1) be arbitrary, but fixed. If supoc,<,(E1 + &)(s) « 1, there exists
Co > 0 independent of ¢ such that the following inequality holds

t t
+ J D?(s)ds < C.E%(0) + C.E%(t) + C’oaj E%(s)ds
0 0 (2.29)

t

+ Coe™ f [(n,u)(5) 220y ds + CEJ E(E? + D?)(s)ds.

0
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In the second step, in view of getting infinitely many characteristic values of the linearized equa-
tions (2.14), we formulate appropriate initial data to Eq. (2.13). Thanks to (2.26), we define the
non-empty set

2A
Sy = {k e (L712)2\{0} : M\ (k) > ?}.

We further fix a k € S). Hence, there is a unique P € N* such that
2A
A= N(k)> Aa(k) > > Ap(k) > 5 > Apri(k) > .. .. (2.30)

In view of getting infinitely many characteristic values of the linearized problem, we consider a linear
combination of normal modes

N
UN(t,z) = Z c;eV'V;(z)  (for any natural number N) (2.31)
j=1

to be an approximate solution to the nonlinear equations (2.13), with constants c; being chosen such
that

at least one of ¢; (1 < j < N) is non-zero (2.32)
and
1 . o .
§’ijH|uijL2(Q) > Z cillluglze@)  (Jm :=min{j : 1 <j < N,c; # 0}). (2.33)
j>j77L+1

We would like to use UN(0, z) as the initial data for the nonlinear equations (2.13). Unfortunately,
UN(0, z) does not satisfy the compatibility conditions in general due to the incompressibility of the
linearized equations. Hence, using an abstract argument from [9, Section 5C], which was also used in
[32, 31], we obtain the modified initial data UN(0, z).

Proposition 2.2. There exist a number oy > 0 and a family of initial data
UN(z) = 6UMN(0, ) + 6°UN(2) (2.34)
for o € (0,6) such that
(1) E(UIN(t)) < CFy < oo, with Cy; being independent of 5,
2) Ug’N satisfies the nonlinear compatibility conditions required for a solution UN to the non-
linear problem (2.13) to exist in the norm | - ||g := E(-).
In the third step, with the solution U N we now define the difference function
Ut =uN—ou.

Since U%N solves the nonlinear equations (2.13) and UM solves the linearized equations (2.14), we
obtain that U¢ is a solution to the nonlinear equations

(0n? = u? in 2,
podud — pAu? + Vg — m202n? — gpinles = Q,(U?) in Q,

{divut = Qy(U%) inQ, (2.35)
(¢"Id — pS(u?))es = m*dsn? + gpynies + Qs(U?) on 'y,

(ud =0 on ['y,

with the initial data
U*(0) = (", u, ¢")(0) = *U}™. (2.36)
For ¢ small enough, we deduce the following bound in time (see Proposition 5.1),
N 3
(¢ u) @) ey < (Y legle™’ +max(0,N=P) max [e;led)

—_— P+1<j<N
J=Jm
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That relies on some energy estimates of Eq. (2.35) and the bound in time of a suitable Sobolev norm of
U%M (t) (see Lemma 5.1), which we obtain thanks to the a priori energy estimate (2.29). Combining
those estimates, we obtain the following nonlinear instability result.

Theorem 2.3. Let pq satisfy (1.4)—(1.5) and let |m| < m.. Let N be an arbitrary integer, there exist
two positive constants vy, 0q sufficiently small and another constant mq > 0, so that for any ¢ € (0, )
the nonlinear equations (2.13) with the initial data (2.34), i.e.

N
3y ¢Vila) + UM (),
j=1

satisfying (2.32)-(2.33) admits a unique local strong solution U*N such that
[*™M(T?) |2y = move, 2.37)

where T° € (0, Tyax) is given by

N S
8> eled™ = vy,
j=1

3. THE LINEAR INSTABILITY

3.1. Auxillary operators. We begin with some useful operators.

Proposition 3.1. Let us define the function space

and the bilinear form on H?((—h,0))
0

0
B0, 0) = AJ po(K*00 +9'0") + HJ (0" + K29)(0" + k?0) + 4k*0' o)
—h —h
3.1)
2 0 k2
+ ’”—f (00" + K20'0) + T 9(0)0(0).
Ao A
Let (H2((—h,0))) be the dual space of H2((—h,0)), which is associated with the norm +/ B \(-, ),
there exists a unique operator

Yk,)\ € ‘C(HE((_hv O))a (HE((_hv O))),)a
that is also bijective, such that for all ¥, o € H?((—h, 0)),
P (0, 0) = (Yind, 0). (3.2)

The proof of Proposition 3.1 is straightforward thanks to Riesz’s representation theorem, hence we
omit details. The next proposition is to devoted to studying the properties of Y}, ».

Proposition 3.2. For all ¥ € H?((—h,0)), we have
2

Viad = ME2po? — (po?")) + pu(0W — 2k%9" + k%) + m7(19<4> — k") inD'((—h,0)).
Let f € L?((—h,0)) be given, there exists a unique ¥ € H2((—h,0)) such that
Yend = fin (HZ((=h,0)))" (3.3)
Moreover, ) € H*((—h,0)) and satisfies the boundary conditions (2.23).

The proof of Proposition 3.2 is due to a bootstrap argument, which is followed by [22, Proposition
3.3]. Hence we refer the details to [25, Proposition 3.3]. We have the following proposition on Yk_;
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Proposition 3.3. The operator Y,y : L*((—h,0)) — L*((—h,0)) is compact and self-hdjoint.

We prove Proposition 3.2 thanks to the continuous injection from H*((—h,0)) to L?((—h,0)), in
the same line of [22, Proposition 3.4].

Let M be the multiplication by \/pT) . We now study the operator S, \ := /\/lYk_AlM Owing to
Proposition 3.3, we obtain the following.

Proposition 3.4. The operator Sy : L*((—h,0)) — L*((—h,0)) is compact and self-adjoint.
3.2. A sequence of characteristic values. As a result of the spectral theory of compact and self-
adjoint operators, the point spectrum of Sy, is discrete, i.e. is a positive sequence {7,,(\, k)},>1 of

eigenvalues of S}, decreasing towards 0 as n — o0, associated with normalized orthogonal eigen-
functions {,,},>1 in L*((—h,0)). That means

V(A k)@, = Spaw, = MY, [ Mw,.
So that with ¢,, = Y, { Mw, € H*((—h,0)) satisfying (2.23), one has

In order to verify that ¢, is a solution of (2.22)-(2.23), we are left to look for real values of A,
satisfying

A
n( A k) = —. 3.5
V(A k) . (3.5)
To solve (3.5), we need the three following lemmas.
Lemma 3.1. There holds o
k2§, 0% 4p?
S— =—- (3.6)
OeH ((— hO)) 0(—h S (0/) T

The proof of Lemma 3.1 is due to Lagrangian multiplier method. Hence, we omit the details here.

Lemma 3.2. For each n, v,(\, k) and ¢,, are differentiable in \.

The proof of Lemma 3.2 is the same as [22, Lemma 3.2], we omit the details here.

Lemma 3.3. For each n, v,(\, k) is strictly decreasing in A > 0.

Proof. Let z, = 49 it follows from (3.4) that

ax
2 1 d 1
Yieazn + k*podn — (pody,) — %(@(3‘) — k*¢)) = %PB% + a(%)%(ﬁn-
That implies
0 m2 (© 0
|| = et e = 5 | (6 = 60+ | (isz)an
- h - (3.7)
_ 1 ‘ / d 1 0 / 2
= % J;h pozn¢n + ﬁ(/y_n) f—h :00¢n'
Note that
zn(—h) = z,(=h) = 0,
A((0) + K22,(0)) + m221(0) = —p(6(0) + K2n(0)), 8
A2 (0) = 3k%2,,(0)) + m?(27(0) — k%2,,(0)) — N?p.2,,(0) — gk?py.2,,(0) '

— 22,6, (0) — ul(!1(0) — 3k36/,(0)).
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Using the integration by parts and (2.23)-(3.8), we have

0 0
J (Yk,kzn)gbn = J (Yk,A¢n)2n + (U( " — 3k%z /)¢ - U(Z:z/ + kQZn)dL - APOZ;L¢7L> (0)
—h —h
= (6l = 326120 — (&), + K200)0), — Moo,z ) (0)

2

2
(= K260 = 26,) (0) = = (6 = K26, ) 20 — 91121) (0)
0
= | o+ 200,0004(0) = §6(0) = 3820,00)6,(0
+ £(61(0) + K6,(0) ¢, (0).
In the same manner, we have
0 m2 0
|| @mon = ooty =55 | 010 = o,
0
= [ w2t + 600 - a0 - 5 [ 02602+ )
—h

2

— 25 ((971(0) = K26/,(0))6u(0) — #1,(0)¢,(0))

Combining those above integrals, we deduce
2 0

|| @omon — (puit10, = 55 | (00 = K6, + [ (inza,
= p+6/,(0)6(0) — $(61(0) - k%()WAm+§wmm+k%amwum

~ 55 ((610) = 126.,(0))00,(0) — (0}, (0))
el @0 -5 | 027+ o)

zgww%>ﬁfm%+wﬁ—%ﬁﬁww+ww

From the definition of m.(k), we get further

d 1 ’ / ’ / ‘ " /
)\25(%) f—h p0¢i = )\2 J_h po(k2¢721 + (¢n>2) - <9k2p+¢i(0) + m2 J_h((¢n)2 + k2(¢n)2))
0

20 [ (k6 + (6h7) + mi0) = m) [ ()" + (01"

—h
0
—gk2f Podn-
—h
Now, using Lemma 3.1, we obtain
0 2k,4
[ srwmse] wr=Ts [ as=af wne

0

d 0
0 [ et > (m) -t = 1) [ gkl

—h

Consequently,
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For m satisfying (2.25), we deduce that

d 1 0 / 2
itn )f_hpo¢n>o.

That implies 7, is a decreasing function in A > 0. U

>\2

Now we are in position to solve (3.5).

Proposition 3.5. For eachn > 1, there exists a unique )\,, > 0 solving (3.5). In addition, \,, decreases
towards 0 as n goes to .

Proof. Using (3.4), we know that

0 0
~ (/1\ ]{?) J—h p{)gbid'r?) = J; (Yk,A¢n)¢nd$3 = '%k,)\(ﬁbn, gzﬁn)’

Keep in mind (3.1), we deduce that

1 0 / 2 fo 2 2 JO 4 4,2
_ drs = \ k dxs + k*¢s dxs,
f)/n()\, k) Jh p0¢n 3 L poqbn 3 M o ¢n 3

that implies
- )\]{32 :U’k4
L07n<A7 k) P+
Hence
hm gk? 3.9)

)\
Since 7, (A, k) is a decreasing function, we have that ~,,(\, k) > %(%4/ k) forall A < 4, /4. It
yields,

ir% % lim + = 0. (3.10)
=0 (A k) 0 (34 /2, K)
Combining (3.9), (3.10) and the fact that ~,, is decreasing in A, we obtain a unique \,, solving (3.5).

We prove that the sequence (A, ),>1 is decreasing. Indeed, if A, < A1 for some m > 1, we have
YAy k) > Y (Am+1, k). Meanwhile, we also have v, (Ams1, k) > Vm+1(Am+1, k). That implies

Am

gk?

)\m-i-l
= Im )\m7k3 m )\m ,kf = .
Yon( ) > Y1 (Amir, k) gk?

That contradiction tells us that ()\,),>; is a decreasing sequence.

To conclude Proposition 3.5, we prove that lim,,_,, A,, = 0. Indeed, suppose that lim, ,, \,, =

co > 0, one has that \,, > ¢, for all n > 1. This yields
)\ Co

n ) k >\n7 k = —.

Tulen ) 2 a0, k) = T >

Letting n — o0, we obtain that 0 > kQ, which is a contradiction. Hence, lim,, ,,, A,, = 0. Proposition
3.5 is proven. 0
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3.3. Proof of Theorems 2.1, 2.2. Thanks to Proposition 3.5, we are able to prove our linear result.

Proof of Theorem 2.1. For each \,, being found in Proposition 3.5, let ¢,, = Y,g)\ln./\/lwn (x3). There-
fore, the function ¢,, € H*((—h, 0)) is a solution of (2.22) satisfying (2.23) as A = \,, foreachn > 1.
Using a bootstrap argument, we have ¢,, € H*((—h,0)). Proof of Theorem 2.1 is complete. O

Once we get infinite many solutions (A, ¢, )n>1 to (2.22)-(2.23), we go back to the linearized
equations (2.14).

Proof of Theorem 2.2. For each solution A, € (0, 4 /=) of (3.5), we have a solution ¢,, in H*((=h,0))

of (2.22) as A = A, being found in Theorem 2.1. Furthermore, ¢,, € H*((—h,0)). We find uniquely
7, € H*((—h,0)) from (2.21) such that

1 m2
= (“Aapod, — ke, — 91) + =
To look for v,,, we rewrite (2.19) as a second order ODE,

— b + (Anpotn + k>, — ki) = 0.

By the ODE theory on a bounded interval, we obtain a unique solution v,, € H*((—h,0)), where
the solution 1, depends on the known functions ¢,, and m,. We get ¢, in a similar way. Hence,
(Vs Ony O, Tn) € (HP((—h,0)))* is a solution of (2.19)-(2.20).

Following (2.18), we now construct the functions
vin(k, ) = sin(kizy + koxo) (K,
van(k, ) = sin(kyz1 + kaxa) oy (K,
vgn(k, 2) = cos(k1x1 + kawa)n (K,
)7 (k

o (K, 23) = ) (K, z3).

3:3)7
,Tg),
xs3),

x3)
7$3),

(
Tn(k Ig) COS(kll'l + k‘gl’g Tn
) =

wn (K, ! —up(k, z).

n

Hence, for eachn > 1,

(nn (t7 k7 x)? un(t7 k7 ./,C)7 qn(t7 k? $)) = eAn(k)t(w'nﬁ UTL? rn)(k7 x)
is a real-valued and smooth solution to (2.14). The proof of Theorem 2.2 is finished. ]
3.4. Maximal growth rate. We state the following property on the largest characteristic value \;

found in Theorem 2.2, whose proof is followed by using the self-adjointness of Sj, » and is similar to
[24, Lemma 4.2].

Lemma 3.4. Let us recall the bilinear form %, on H*((—h,0)) (3.1) and (A1, ¢1) from Theorem
2.2. We have that

0
B (3.11)
gk?  eeB2(=h0) A1 By, (6, 0)

and the extremal problem (3.11) is attained by ¢, restricted on (—h,0) up to a constant.

Taking horizontal Fourier transform and using (3.11) and the definition of A (2.26), we follow [32,
Lemma 2.6] or [25, Lemma 3.7] to get the following inequality.

Lemma 3.5. For any u such that divu = 0, there holds

, 1
f gphlusl* — mQJ |O3ul? < J gp|usl® + Azf polul® + 5/\] p|Sul?. (3.12)
Q Q To Q Q
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Thanks to Lemmas 3.4, 3.5, we are able to get that A is the maximal growth rate of the linearized
equations (2.14) in the following sense:

Proposition 3.6. For arbitrary solution ({,u,n) of the linearized equations (2.14), the following
inequality holds

t
[, W) (@) 70+ |u(t)][ ) + f [u(s) 1 @yds < C(10u(0)]Z2() + [u(0) 7 (@)e™,  (3.13)
0
for some universal constant C' > (.

The line of proving (3.13) is as same as that one in [32, Theorem 2.7], [1 |, Proposition 5.2] or [25,
Proposition 3.8]. Hence, we omit details.

4. A PRIORI ENERGY ESTIMATES

We employ the Einstein convention of summing over repeated indices. Throughout this section, we
will employ the notation ¢ < b to mean that a < Cb for a universal constant C' > 0 independent.
When a constant C' depends on ¢, we will write C' = C. or a <, b.

4.1. Temporal estimates. In this section, we establish the temporal estimates for the velocity. Ap-
plying the temporal differential operator ¢; (j = 0) to (2.12), the resulting equations are

r@gﬂn = du in Q,
pOat u + VA(/tq — NAA(/t —m 02%77 gpoain3€3 = FY in 2,
 divadlu = F>9 in Q, 4.1)
(6] qld — S 40]u)N = gp olnsN + F*3 on T,
(u=0 on I,
where
EM = 01(Q, + Q) Z C! L (A Or (0L A 07 Ot + LA 0k (Al Ot ))
o<I<jy
— > GAwd o,
0<i<y
F¥ == > ClolAnon(d ),
0<i<y
F39 =y Z C’l (AN )(3kot Upy + O mk./\/'m)@ko{ u;) Z C’lalN(?J l(gp+77—q)
0<I<j o<I<j

Proposition 4.1. For j = 0 or 1, the following inequality holds

() By + [885n(8) 220 f |8 u(s) s s
“4.2)

< CLEX(0) + C J (5 15) () |2y s + C f £(£2 + DY)(s)ds.
0 0
We also have

t
Hatzu(t)H%Q(Q) + Hatzasﬁ(t)”%%g) + f H&fu(s)\@p(mds
0 (4.3)

t

< C.E(0) + C.E¥) + C L (3, 43) () gy + C- f E(E2 + D?)(s)ds.

0
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To prove Proposition 4.1, we need the two following lemmas.

Lemma 4.1. For any j > 0, one has

1d . . . 1 .
4 f po|azu|2+m2f @adinl + f gp-loim?) + 3 f uS adiul?
th Q Q To 2 0

- f 9ph s + j FY . g + j F29 . alq - j F3 . ol — j gpsdimdiu- (N — e3).
Q Q Q Ty

o
4.4)
Proof. For j > 0, we multiply (4.1)2 by 8{ u to get that
1d jo2 J i A
Sdt poldiul” + | (Vadiq — pAadiu) - dju
’ ’ - o | .5)
i [ el dfu— | gpdimaius = | 792l
Q Q Q
For any scalar function ¥ € R and any vector function ¢ € R? such that g|r, = 0, there holds
| a0 [ oo | ddivae 46)
Q To Q

due to the integration by parts and the identities A;30; = N - o and 0;Ai; = 0. One deduces from
(4.5) that

f Vadlq-dlu —f pdiv4S4dlu - 0w
Q Q

= J (01 qld — S 40Ju)N - dlu —J
o

o 1 ,
divadiu)dig + 3 f (]S 407 ul? 4.7)
Q Q

:f g,o+8§773./\/-8§u+J F?”J-@Zu—f F2’36§q+—f IS adiul?.
T'o T'o Q 2 Jo
Using the integration by parts and inserting (4.7) into (4.5), we obtain (4.4). 0

Lemma 4.2. The following inequalities hold

[(F5Y PPN |2 + 12 2y <e €2,

4.8)
(2, F22) | 2@y + [0 ca@y + [F*|c2qee) 5= EE + D).

Proof. For ¥ = Q or Iy, all quadratic terms || X X5 z2(x) or cubic ones || XX, X3/ 12, appearing in
F7with 1 < j < 5 will be bounded by using Sobolev embedding. Precisely, we have

1Xai Xo|r2s) < [Xal o) | Xal 2wy < 1 Xllmzes) | Xal 22
and
1 X1 Xo X5 2(s) S [ Xallze )l Xolle )| Xsllze) S |1 X1 w2 | Xel m2m) 1 Xsll22x)-

The proof of Lemma 4.2 is followed by that one of [3 ], Lemma 4.4]. ]

Now, we are in position to prove Proposition 4.1.
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Proof. Using (4.4), and Sobolev embedding and Cauchy-Schwarz’s inequality, we get

d
GO bl e [ o+ | apelnl) + | plSad
To Q
= J 9poNsus + f gp+nzt - (N — e3)
Q To

S HTI3HL2(Q)HU3HL2(Q) + Hn3”L2(F0)HUHL2(F0)”N - €3HH3(Q)

Note that thanks to [12, Section 2.1], we have

|V — es]

ms) = [(A—1d)es]

@) S [0l a )

yielding

d
%(J polul® + mZJ |03m]? +f gmlns\z) +J 1|S aul®
Q Q o Q

< Clnslze o lusl 22 ) + C.E(E* + D).

Thanks to the above inequality and Korn’s inequality, we integrate in time to obtain (4.2);—o. The
proof (4.2),-; follows the same pattern.

Now, we prove (4.3). Let us use (4.4);_, and the trace theorem to get

1 d 2,12 2 2 12 2 2 1 2 12
2dt<Lp°|5t“’ +m L|535t77| + Fogm\@mgl ) +3 Q;L|SA6tu|

= J gpousfius + J FY2 . 02u + J F%%.02q — J F3%. 02y — f gp02n302u - (N — e3)
Q Q Q Lo Lo
< Juall 2@l Geusl 2) + (IF|r2@) + 1522 2200)) 107wl 110

sl ol @V = esliy + | P20
Q
Using (4.8), we obtain
li 62 2 2 a 82 2 a 1 S 82 2
poldiul” +m™ | |dsdim|” + gp+| sl 1[Sad;ul
< CHU3HL2(Q)HatU3HL2(Q) + Cf F2’2at2q + ng<(€2 + D2)
Q
Integrating in time, that implies
t
|07 u() |72 + 107 03n()|F2() + 10715 (8) | 72(ry) +J |07 u(s) |7 oy ds
0
< O(||dFu(0)|3 O30, (0)]]7 oyuz(0)]3 Ct 7
(07 u( N z2e) + 1030:u(0) |72y + [ Prus( )HL2(FO)) + [us(s) 720
0
t t t
+ C’f H(?tug(s)Hiz(Q) + C'gf E(E* + D*)(s)ds + J f (F*202q)(s)ds
0 0 0 Ja

Since 0?¢ does not appear in £ and D, we use the integration in time to obtain

Lth(F“@tQQ)(S)dS=L(F2’28tq)() f (F220,9)(0 ffatq (5)0,F22(s)ds.



20 TIEN-TAI NGUYEN

As a result, we observe

t
f L(Fmaqus)ds < 10l 2y F>2 (1) |2 + 10:0(0) 12 |F*2(0)]L2(an
0

t
n j 10,4(5)| 2y |2 F>(5) ey s

< E2(0) + E%(1) + Jt E(E* + D*)(s)ds.

Consequently,

t
[67u) 2 + 16, 0sn (L) + [0/ [22r,) + L 67 u(s) (e ds

(4.9)

t t t
< CLEX(0) + C.E(t) + C f Jus(3)|2agy + C f |0vus(3) oy + C- f E(£2 + D?)(s)ds.
0 0

0

Combining the above inequality with (4.2),_,, we get (4.3). The proof of Proposition 4.1 is finished.

O

4.2. Horizontal spatial estimates. In this subsection, we establish the estimates of horizontal spatial
derivatives. Let 5 = (01, 82) € N2 and let us apply the horizontal derivative 0 = /' 05> to (2.13),

we obtain the following equations since py only depends on x3.

(0,001 = d)u in 2,
podiOiu + Vol q — pAdPu — m20200n — gphdinses = 07 Q; inQ,

{ dive)u = 07 Q, in Q,
((9,€qu - ,uS&,fu)eg = m283(3,€7) + gp+8,€n363 + 85Q3 on Iy,

ﬁfu =0 on [',.

Lemma 4.3. The following inequalities hold

(@1, Qo, Qg)HH4(9) + (0, Q1, 6, Qa, atQS)HHQ(Q) <: £(E+ D).
Proposition 4.2. The following inequalities hold

t
[u®)5 a0 + 1050540 + 17305 4x, + L [u(s)IF 40ds

t
0

t
< C.E(0) 1 C2 f (15(8) gy + J1a(3) ) + C f 115(5) 22

+ C. Jt E(E% + D?)(s)ds,

0

and

t

|0cu(®)|5 20 + 105u(t)[52.0 + us() 52, + J [0eu(s)| 20ds
0

t

< CLE2(0) + C& J

t
) (lus(5) | Ers () + [etis(5) 72 ds + C€4JO Jus(5) |20 ds

+ C; JtE(EZ + D?)(s)ds.

(4.10)

(4.11)

(4.12)

(4.13)
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Proof. Let us prove (4.12) first. For any 8 € N? with 0 < || < 4, we compute that

Ld
24t ),
= J 900305 us +f 79y - dlu.
Q Q

mloul + [ (Vala— udoju) - ofu—w? | aialn- o
Q Q

Using the integration by parts and the boundary conditions (4.10), 5, we get

1 d B, 2 2 B8, 12 5] 2 1 8 12

5%( polOyul” +m™ | |00, m" + | gp+|dyns| ) + 35 ©|SA, ul
Q Q To a

= J 9Ph0r 30 us — a,fgg-a,/fwf 07 g0y Qg + f rQy - dlu.
Q Q Q

1)

Using Cauchy-Schwarz’s inequality and (A.4),

L 9000 ms0us < |nslmae luslmae < e Inslzeg) + €Il + luslinm).

For the second term, by the trace theorem

0y Qs - Opu < | Qs a1z sl misi2 gy < Qs gy llus| s ) <e E(E2 + D?)
To

For other terms, using the estimate (4.11) and the trace theorem, we get

f 02438 Q; + f 221 - Pu < lal o] Qalary + 1 Qs el o
Q Q
<. (82 + D).

Combining the above estimates and integrating in time, we observe

t
||55U(t)”%2(9) + \\535577@)”%2(9) + Hazfﬁ?)(t)uiz’(ro) + J Ha}ﬁzu(S)H%ﬂ(ﬂ)d‘s
0
t

< C(”@BLU(ON%?(Q) + Hazsafn(o)\\%%m + H5£7]3(0)|\2L2(F0)) + Ce? L (’\773(5)”1%15(9) + H“S(S)H%ﬂ(m)

t t
+ CeSL Hng(s)H%g(Q) + C’EJ E(E* + D*)(s)ds,

0
that implies (4.12).

Second, we prove (4.13). To do that, we take the derivative in time to (4.10); to get that for
BeN?0<|f] <2,

po0200u + V8,00 q — pAe) dyu — m2030, 0 — gphdr dmses = 0p0,Qy  in Q,

divo) dyu = 07 6,Q, in Q,

-8 5 27 B 8 8 (4.14)
(0, Opqld — S0, Oyu)es = m*030, On + gp4+ 0y, Oynzes + 0, 04 Qs on T,
558,511 =0 onl',.

Hence,
1
Q 0 Q

= J gpé)al/faﬂhagatu?) + J 65(%@1 . 6,€8tu
Q Q
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Using the integration by parts and the boundary conditions (4.14), 5, we get

1d 1
5 (| i v [ |cioa + | goulofu) + 5 | piseiou
th 0 Q To 2 Q

= J 9Pa0 oM dpus — | 070,Qs - 05 dpu + f 0y 04q0y 0, Qo + f 070:Q, - 0 0su.
Q Q Q

o

Using again Cauchy-Schwarz’s inequality and (A.4),
f PO 0msOnorus S sl oyl G| o) < € usl T2 + & (lusls o) + 10| q))-
For the second integral,
L 00,Qs- 000 < 10: Qsll grio1-1720o) O]l a2 gy < 1102 Qs 20y | Ot 302 <e E(E* +D?).
0
For the other terms, using the estimate (4.11) and the trace theorem, we get
L a}fé’tqazfat% + L &f&th ) (?f&tu S HatQHHQ(Q)HatQ2HH2(Q) + II@thHmmHﬁtuHm(m

<. (&2 + DY),

Combining the above inequalities and Korn’s inequality, we obtain (4.13). Proposition 4.2 is proven.
O

Proposition 4.3. There holds

£2(0) + Jult >|04Q+ef 19(5)] 2o

(4.15)
vt [ o) + [ €7+ D)

t
()2 10 + f 237(3)12 . 0ds <

Proof. Note that |y, = 0, using the integration by parts, we have for any 5 € N?,0 < |3| < 4
fpoétéﬁu oo+ = 5 JQS(ﬁﬂ u) : S(7n) + m f |0s0,m[> + f gp+lenmsl® —J apylonmsl®
I

= | an- aﬁgg+f 0 q86Q2+f Q- aln.

To

Since 0,7 = u, we obtain
d
| mo@)-ain =5, | wu-ain— | oo

= poaﬁu Oy — fpolan\Q»

[ sctor st = L2 [ st

Those equalities, with similar estimates in the proof of (4.12) imply

d
G (). 18+ [ o ain) | (03l + | apsleim?
Q T

0

and

< C’J poldul® + CJ gpp|00ns|? + CLE(E* + D?).
0
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Integrating in time and using Korn’s inequality, we obtain

t t
\%Mﬂ%mn+LH%ﬁM@ﬁmn+fH%m@ﬂémﬂs

23

t
< C.E%(0) —CJ podiu(t) - n(t) +CJ GX7 HLz +Cgf E(E? + D?)(s)ds
Q

0
< CE2(0) + v[[ogn(t) 720y + Cv | 0gu(®) |22

t t
+ CJ 17(5) ey + csf E(£2 + DY)(s)ds.
0 0

Let v be sufficiently small, we use (A.4) to obtain further
Ol + [ 10006 + [ 108060 s

< CLE2(0) + CJoult) oo +0J 820(5) By + C- L€(52+D2)(s)ds

t
<@9@+cmﬁw@@+cﬁ;M$%@+05ﬂﬂmmm@

t
+ CEJ E(E* + D?)(s)ds.
0
that is (4.15). The proof of Proposition 4.3 is complete.

4.3. Elliptic estimates. We use the elliptic estimates (A.1), (A.2) to derive some inequalities.

Proposition 4.4. We have

mm#@+zwmﬁm+f<mw@mmm+mwﬂ@@m5
+£ﬁ«@@@+aMﬂm@ws
<Cw%®+0f(WWW%hmh+@M@ﬁmms
+cjn& ms-w#<ﬂmmwwu7f8#+96ud

To do that, we need the following lemma.
Lemma 4.4. For 1 < j < 5, we have
fulj—15-5r0 < luliae,
and for 1 < j < 3, we have

l0vullj-1 55 = 01 20-

Proof. For any s > 0, there holds
L | g2y S 1 F Lz + Z HafﬁszHW(Fo)-
BeN,||=s
Since T'y = T? x {0}, we exploit the definition of the Sobolev norm on T? to have that

ey ~ Dy L+ Y2 f ()P,
ne(L—1Z)2

(4.16)

4.17)

(4.18)

(4.19)
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where f is the Fourier series of f. By Cauchy-Schwarz’s inequality, one has

[flermey < 2, A+ PP+ )] Z 1+In| )20’ f ()7,

ne(L—1Z)2 BeN2,|B|=s ne(

which immediately yields (4.19).

Using (4.19) and the trace theorem, we have

[ulyoyasrn S 2 (1ulmeey+ Y 10 Pulme,)

BEN21|ﬂ|<5_‘7 ’76N21|"/|:J_1
< ) lgulmegg + D I0ulmecy < ), laulaie),
ﬁ€N27|B|<57] IB€N27‘IB|<4 BEN2a|ﬁ|<4
yielding (4.17). The proof of (4.18) is similar, we omit details. Ul

Thanks to the above lemmas, we prove Proposition 4.4.

Proof of Proposition 4.4. Let w = pu + m?n, rewriting (2.13) as

—A(pu +m?n) + Vg = —m?*(0in + d5n) — podru + gpynzes + Q1 in €,

divw = Qy + m3divn in ©, 420)
w = QU on [y,
w=20 onl',.

For 2 < j < 5, applying 05 with 3 € N? so that |3| < 5 — j to the problem (4.20), and then applying
the elliptic estimate (A.2), we have

Hw is—jot HVCIH —25-5,0 ~ HV 77H —25-j0 T 1(Ceu, 773)” —25— jQ + ||QIH] 2,5—5,Q

+ [/(Q2, diV??)H
<360+ H(@eU, 773)||H3(Q)
+ Hdivn\ﬁ#(g) + HQ1H§{3(Q) + HQ?H%J“(Q)'

J** 5— J,Fo

It can be seen that

o d
Hw||j5 -0 = ]5 ]Q+m4H/’7 7,5— jQ+lum dt“” 7,5—7,80"

Using the advantages of Jacobian identity det(/ + Vn) = 1 asin [3], Lemma 4.6] or [12, Page 18],
we obtain the boundedness of divn, that is

Together with (4.11), we get further

7,5— ]Q_‘_qunj 2,5—7,Q2

C(Inl5-16-50 + 1@, 1) s ) + |

d
EHU”?,E)—]’,Q + [[(n, w7
2.0) + CE(E+ D).

A suitable combination of the above inequalities for 2 < 7 < 5 implies that

(Cru, 173)||H3 ) + C.E(E* + D).

d
E”W“%ﬁ(ﬁ) + H(%U)”?ﬁ(m + HQ||12H4(Q) < O(”(%“)
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Integrating in time, we deduce
4

\\77(15)\\12715(9) + L (H(W,u)(S)H%S(Q) + HCJ(S)H%(Q))CZS

t t

< Cln(0) |30y + CJ (102, w)(8)[1F a2 + 1(Cere, m3) (8) 73y ds) + CEJ E(E* + D*)(s)ds.

0 0
“4.21)
Next, we have
—A(Gyw) + Vg = —m?(0%u + 03u) — podiu + gphuses + ;9 in Q,
divo,w = 0,Qy + m3divu in Q, 422)
Jyw = poyu on Iy,
orw = 0 onl,.

Mimicking the above arguments to d;w satisfying (4.22) and using (4.18), we observe

d
%Hath%ﬁ(Q) + [[(am, atu)”?ﬁ(ﬂ) + ||5tQ\\12r12(Q)
< C(l0ml3 + 107w, 0ms) ey + [0l 20) + C-E(E* + D?).
That implies
d
S0z + 1w, ) [igs ) + [0dli2(@) < O, W) [F2g + [0 ulin @) + C-£(€° + D7),

As a result,
t

u(t) sy + j (1, 801) () sy + 120(5) By )

0
. . (4.23)
< Clu(0)[Fs(ey + CL (1 (@ru, ) (5)|F 2.0 + 07 u(s) |31 () ) s + CeJO E(E? + D*)(s)ds.
Thanks to (4.21) and (4.23), we get our desired estimate (4.16). ]

Proposition 4.5. There holds
[l Fragy + lalFrs ) + 10l Friy + 10l F @) < CU(Fu, w)72) + [nlFa@)) + C-£°. (4.24)

Proof. We derive from (2.13) that
—pAdu + Vg = —podiu + m?d3u + gpyuzes + 09y in Q,
divé’tu = é’t QQ in Q,
(0rqld — uSdyu)es = m%dsu + gpyuzes + ; Qs on Iy,
ou =0 onl},.

(4.25)

Applying the elliptic estimate (A.1) to (4.25), it tells us that

HatUHfH?(Q) + Hé‘tqllin(m S H@?UH%Q(Q) + [[(G5u, U3)H%2(Q) + (5, U3)||§{1/2(r0)

+ ”ath“%?(Q) + ”atQZH%Tl(Q) + HatQSHfm/z(rO)-
Due to the trace theorem, we have
||atuH%12(Q) + HatCIH?Hl(Q) S ||53UH%2(Q) + ||(5§U>U3)H§11(Q)
+ 01720 + 10Dl () + 10: Qs (-
Due to (4.11), this yields
l0cultrz () + |0l < C (107 uliz) + lulfaq) + CE" (4.26)
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Meanwhile, we rewrite (2.13) as

—Au + Vq = —podiu + m?d3n + gpymzes + Q1 in Q,

divu = 9, in (2, 4.27)
(qld — pSu)es = m*d3n + gpimzes + Qs on Iy, '
u=0 onlY,.

Owing to (4.11) and by applying the elliptic estimate (A.1) again to (4.27), we observe that

HUH%{‘l(Q) + HQH%{:%(Q) 5 ”(}tqu%ﬂ(Q) + ”(032)777773)”?{2(9) + Hgl”?q?(sz)
+ Qa0 + 10051, 1) 7520y + Q313752 1y (4.28)
C(Hatu”?{?(ﬂ) + H77H%14(Q)) +C.EN

Combining (4.26) and (4.28) and using (4.11), one has

[ull sy + lalzs @) + |0uliz@) + 10l @
< Cl0Fulia) + lulfs@) + 17 @) + CE*
< Clfuliaio) + viuliisg + v lulia@) + InlEs@) + CE

Let v > 0 be sufficiently small, (4.24) thus follows. Proof of Proposition 4.5 is complete. U

4.4. Proof of Proposition 2.1. From Propositions 4.1, 4.4, we combine (4.2), (4.3) and (4.16) to get
that

t
In(®) 7 (@) + lulFsq) + (0w, G2u) () |720) + J (I, ) s 0y + 0ru(s) sy ) ds
0

t t
n f 1a(5) By + 1000(5) 2y s + f I(ut, 2yt 2u)(8) s s

t t (4.29)
< C.E0) + C f (0 ()2 s + [20(3)]2 p0)ds + C f 1, 0)(3) Byl
t
+ C’EJ E(E% + D?)(s)ds.
0
Using (4.2), (4.3) again and using also (4.24),
2 .
S (1) oy + 130500 Baey) + 9@ + 10y
7=0
[ 12 ) s @30
0

t t
< CE%(0) + Clln(t) |73 + C£7(t) + CL [(n, @) ()20 + Csfo E(E% +D?)(s)ds.
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Thanks to (4.29) and (4.30), we obtain

() s @ +Z 07wt Fgamss ) + 107030() 7)) + a7y + 12:a(D) |7 o)

¢ 2t
b ) By + a5 By + 10a(5) s+ 35 | 1000
0 j=0"0 (4.31)

t t
< C.E(0) + C.E(H) + C j () () a0 + [20u(s) 2 2 0)ds + C f 1, 0)(8) sy

t
+ CEJ E(E? + D?)(s)ds.
0
Meanwhile, thanks to Propositions 4.2, 4.3, a suitable linear combination of (4.12), (4.13) and (4.15)

gives us that

[T 10 + 105016 40 + [u@®)]5 40 + 0u®)]5 20

1
+ L (I0sn()5.40 + [u(s)]F 40 + [0u(s)[3 2.0)ds

t (4.32)
< C£%(0) + C€2f (In(s) s + () + 100a(s) |32y )ds

t
L e f 7,10)(5) 2 + C f E(E? + D*)(s)ds
0
Chaining the above inequalities (4.31) x € 4 (4.32), we conclude our desired estimate (2.29).
5. NONLINEAR INSTABILITY

In this section, to indicate some constants being referred later, we will denote them in particular by
Ci,i > 1.

Let |U|¢ := £(U), which is defined as in (2.27). Let

N N
Fn(t) = D leiledt = ) lejle,
=1 J=im
and 0 < vy « 1 be fixed later (5.26). There exists a unique T? such that § Fy (T(S ) = 1p. Let
= [UN0)]e,  Co = (0", u")(0)]z2(0)- (5.1)
We define
T = sup {t & (0,7 U™ (1) < 2C140},
(5.2)
T = supft € (0,7 ) || ("™, u™)(t) 20 < 2C50Fu (1)}
Note that
[T (0)]e < 8[UM(0)]le + [U(0)]le < C18 + Cyo* < 2C16p,
we then have 7™ > 0. Similarly, we have 7T** > 0.
Next, we derive the bound in time of | (7%, u?)| 2.
Proposition 5.1. For all t < min{T°, T*,T**}, there holds
P
d ) dy ()2 3 At _
[0, ) Oy < Cod*(( Y lesle™ +max(ON =) max felef) 53)

J=jm
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In order to prove Proposition 5.1, we need the following bound in time of ||U%N|¢.

Lemma 5.1. For all t < min{T°, T*,T**}, there holds
|UN (@) < CadFn(t). (5.4)

Proof. We fix a sufficiently small constant ¢ such that Cye < TN Hence, it follows from (2.29) that

U(SN J DZ U(5N >\N J gZ(UéN( ))dS + C)\N (52(U67N<0)) + 53(U5,N(t)))
0
t t
+ Oy, (f E2(UN(s))ds + f E(E% +D*)(UN(s))ds).
" ’ (5.5)
Refining 4y, we get 2C'\,C16p < % and 2C),C19p < 5N, one thus has

15 U(5N f D2 U6N
2

A t t
< O U0 + (2 +2CAN015) | Ewonenas + [ 160N O yds
0 0

by t t
< CoE(UN0) + 5 [ 0N )ds + C [ 100N s
0 0

Hence,

t 1
UN0)E < 200 UNO)E + dw | 105N 6) s + 200 [ 1600 0) s

t
< f [UN(s) ds + Cs8 F2(8).
0

Applying Gronwall’s inequality, the resulting inequality tells us that

t
U@z < (PR + 3 |

M(t=s) 2 (s)ds) . (5.6)
0

Note that Ay < Aj forall 1 < 7 < N — 1, we have

t N t N 6(2)\j7}\N)t
f M=) F3(5)ds < N2 ) J Mg Perds < NP Y PSS (s)

0 j=jm 0 i=im g N
Substituting (5.7) into (5.6), this yields (5.4). We deduce Proposition 5.1. [

Proof. Differentiating (2.35), 4 with respect to ¢ and then eliminating the terms

pod?ut — uAdut + Vorq? — m202u? — gpjudes = ,Q:(U%) in,

diVatUd = @ QQ(Ud) in Q, (5 8)
(0,q1d — pS(0;u?))es = m20zu + gp,ules + 0,Q3(U?) on Iy, '
out =0 onl,
Multiplying both sides of (5.8); by d;u, we obtain that
1d
o7 p0|8tud| + f (Vorq® — pAdu?) - d,u?
(5.9)

- mQJ 2u - ou — J gphuioud = J 0,Q1(UN) - o,u,
0 Q
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Using the integration by parts, we deduce from the resulting equality that

ld d|2 /d(2 QJ di2 K f d|2
2dt<L poloyu’| L gpplusl” + m . |O3u”| ) + 2 ISu’|
+ J ((ﬁtqld — uSout)es — m253ud) ot = J Orqtdivou? + f 0, Q1 (UNY - oud.
To Q Q

Substituting (5.8), 3 into (5.9), we obtain

1d 1
5@([ Po|5tud\2 - f QPG\Ug 2+ J gp+\u§ 2+ mQJ |53Ud|2> + §f \S&tud\Q
Q Q I Q Q

= f ﬁth(U(s’N) . é’tud + f @tqdatQQ(Ud’N) — §tQ3(U5’N) . é’tud
Q Q

o
< ([0: QUM 2@ + 10:Q3(UN) [ 11 (@) (| 06u™ [ 12 (@) + 0]l @ | 111 e))
+ [0 Qa(U™) | 20 (0™ | 20 + 61100 [ 2(0)
In view of (4.11), (5.1) and the definition of UM, we deduce

t
| mlewtr + || wisatco)pas
Q 0 JQ

(5.10)
<m+ J gplul(t)? — j gp+ru§<t>|2—m2f 5l + CedFA(2),
Q Ty Q

where
- j poldu(0)]? - f 9P ut(0)? + J 9p [ud(0) 2.
Q Q Ty

Note that u? is not divergence-free, we cannot apply Lemma 3.5 directly. In view of [31, Lemma A.9],

we thus decompose u? as

ul = w+ W

such that w is divergence-free and w satisfies that

divid = Q(U") and @] 5= < | Q2(U™™)]

gs-1() forany s > 1.

We thus have

f gp{]!ug2—f gp+|ugl> —m f |Ogu)?

Q To

— / 2 2 2 2 / ~ /N2

= (J gpo|w| —J gp+|w|” —m J | 05w ) +2J gpow-wﬂtf gpo|w| (5.11)
Q To 0 Q Q

2| gpewd | gpilf - 2m? | At | il
T'o To (9] Q

and

A 1 . . ~
AQJ polus|* + —f p|Sud? = Azf polw|* + —AJ 1|Sw|? +A2<2f POQ'M+J p0|w|2>
0 2 Ja Q 2 Jo Q Q
A . ~ 19
+§<2JQMSQ.Sw+Ju]Sw| )

(5.12)
We apply Lemma 3.5 to w to obtain

1
| gt = | oot~ m? | ot <47 [ gl 50 [ wisul s3)
Q r Q Q Q
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By the trace theorem and (4.11)-(5.4), we have

.1 . ~ R )
_Azf pow-w——AJ MS&ZSWJ gpéw'w—f gp+w-w—m2f 03w - O30
@ 2 Q Q To Q
< @ 0] () + @7
~ H(Q) H(Q) H()
< ([u® @) + 61uM a1 @) [Q2(UM) 20y + Q2 (U™)[72(q)
S OER,
and
~ 1 N R R ~
_Azf pol @ — §AJ pISTI* + f el @1 + f gp+|@* + mQJ EXolk
@ Q Q 1) Q
< @310y S 1Q2(UM) 720y < 0*F,

Plugging (5.13), (5.14) and (5.15) into (5.11), (5.12) we arrive at

1
f gpolug|® — J gp+|ugl® — mzf |O5u?? < A2J polud|? + §AJ p|Sud® + CH8° F3.
Q To Q Q Q

It follows from (5.16) and (5.10) that

t 1
f polord (D) + f f HSoc (s)Pds < 2 + A? f polu (O + A f uSu ()
Q 0 JQ Q 2 Q
+ (CG + 07)(53}7,3@)

Using Cauchy-Schwarz’s inequality, we have that

Lu!Sud(t)\ J p|Su(0)|* + ZJ J pSu(s) : Sou’(s)ds

< | usuto)r + KLJ msau<>|ds+A”u|Su s)[ds

and that
d PO\U 2 < L pol du[? +AJ polu]?.
dt Ao Q

Three above inequalities (5.17), (5.18) and (5.19) imply that

d 1
e OF + 5 j s < 2 4 f HISut(0)2 + 2A j polu ()P

4
+ AJ J p|Su’(s)|?ds + (Cs + C7)8* Fi (t),
0 Jo
It follows from U%(0) = §2U2N that z; < 6%, this yields
% +f ulSud(0)? < o,
Q

Hence, the inequality (5.20) implies

dt

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

1 t
e OF + 5 [ psalOF <20 | mhoF <A || pisut(s)as + i)
0

(5.21)
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In view of Gronwall’s inequality, we obtain from (5.21) that

|, eolor + HMSu ) ds<0863f0 2A=5) F3(5)ds

(5.22)
Cgfsgj‘ 2A(t- SFN(?)S)d
0

Due to (2.30), we obtain for 1 < j < P,

t 1 1
(3)‘j*2A)5d — (BX;—2A)t _ 1) < (3\;—2A)t
L ‘ YW TNG ATV
and forj > P + 1,
Jt (3)\~_2A)sd 1 ( (3M\;—2A)t 1) 1
e\ § = ——(e\"V
0 3N, — 2A 2N 3\,

Substituting the two above estimates into (5.22), we observe that

+ P
d 2 d 2 3 ‘ J’ 3>\t | J’ 2At
lu (t)|L2(Q)+JO [Vul(s)|32(qds < Cod ( Z 7, A + Z T ) (5.23)

j=P+1
To estimate of [7%(t)||.2(q), note that
d
I Ol < l0m @) r20) = [ul12@)-
Hence, we have that |n9(t) H%Q(Q) is bounded above like (5.23). Proposition 5.1 is proven. O
Now, we are able to conclude the nonlinear RT instability.

Proof of Theorem 2.3. Since j,, = min{j : 1 < j < P,c; # 0}, we have

[N ) g = Zc Poy+2 Y el fu

i=jm Im<i<j<N
N
= Z C]2'62)\jt||uj‘|%2(ﬂ) +2 Z CZ‘CjG()\i—i_)‘j)tf U; - U]
J=im JmA1<i<j<N Q
N
- \cij\uijLz(m( > ycj\nuj”m(m) N+ i 4108
j=jm+1

By Cauchy-Schwarz’s inequality, we obtain

2 ), Cicje(Ai+Aj)tfui'uj>—2 D1 laillegle@meFime2 | 12 ) ug] 20
Q

Im+1<i<j<N Im<i<j<N
N 2
>_€(Ajm+1+)\jm+2)t( Z ’CjH"U/j”LQ(Q)).
This implies
N N 2
Ol > 3} el = cnr (3] folluli)

N

= Jjule®om im0y, [z (D Iesllulez )-
Jj=Jjm+1
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Due to the assumption (2.33), we deduce that

[ () [72(q) Z G |72y — 5, eQim PN a2
J=Jm
= Qim0
This yields
A 1 1 _
||uN (t)”%z(m = C?m <62)\gmt ePim T Ajm+1)t _ Ze(AJmH-&-/\JmH)t) Hujm”%Q(Q)
N
+ Z cFe*X |uj] 720
Notice that for all t > 0,
62>‘.7mt _ 1 (>‘Jm+>‘]m+l) _ le(Ajm+1+)\jm+2)t > l€2>‘jmt
4 4
Hence, for all t < min{7?,T*, T**}, we have
|uN@®)]|2(0) = CroFn(t). (5.24)
Let ¢(N) = maxp1<j<n |c| “ 0. Now, we show that
Jm
T° < min{T*, T**} (5.25)
by choosing
2C16 C2 C?
vo <min( 1% 2 10_ 2). (5.26)
Cy 03(1 + NC(N)) 403(1 + NC(N))

Indeed, if T* < T°, we have from (5.4) that
|UPN(T*) e, < Ca6FN(T™) < Cad FN(T?) = Cyvg < 2016y,

which contradicts the definition of 7* in (5.2). If T** < T°, we obtain from the definition of Cs (5.1)
and the inequality (5.3) that

[ (7]6"\'7 Ué’N)(Té) HL2(Q)
< (0%, u) (T 2@ + 0| (AN, uM)(T?) | L2y

P
</ 036%( 2 |cj|e’\fT5 + (N — P)( max |cj\>62AT6/3>3/2 + Co0 Fn(T).

— P+1<j<N
J=Im

Notice from (2.30) that for P + 1 < 7 <N,

(5.27)

Cj

‘C]m‘

(8]c;, |edm T’y < LCJ" SF(T®) = 191,

2 1)
Ic;|0e3M T <
’ |Cjm [

Then, it follows from (5.27) that
[N N (T) oy < CabFn(T°) + v/Co6¥2(1 + NE(N))* 2 Fiy (T?)
< Chvy + A/Cs(1 + NE(N))¥2572,
Using (5.26) again, we deduce
[N, MU (T) |20y < 20510 = 206 Fn(T°),
which also contradicts the definition of 7™* in (5.2). So, (5.25) holds.
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Once we have (5.25), it follows from (5.3) and (5.24) that
[u*™(T)] 20
> 0[u™(T?) | 12(0) — [u(T°)] 120

P

/2

5y 3/2 AT _ ( ) 2AT5/3)3

> CLod Fn(T°) — A/Csd (Z el + (N =P) (, max [;])e .
J=Jm

Thanks to (5.26) again, we conclude that
1
[u™(T%) |2y = Crovo — /C(1 + NE(N))*2p > 5010% > 0.

Theorem 2.3 follows by taking 1/ satisfying (5.26) and mg = %Cm- We complete the proof. U
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APPENDIX A. SOME USEFUL ESTIMATES
Elliptic estimates. Let 7 > 2and ¢ € H""%(Q),¢ € H"'(Q) and o € H"~%?(T"). There exist unique
ue H"(Q) and ¢ € H™1(Q) solving

—Au+Vqg=¢ in €,
divu = 9 in €2,
(gId — uSu)es = o on Ty,
u =0 onl,.

Moreover, we have
HUHJQLI’“(Q) + HCIH%H(Q) S H¢H%{r72(9) + IIwa{H(Q) + HaHér—w(r)' (A.1)
thanks to [7, Lemma A.15] for example.

We also recall the classical regularity theory for the Stokes problem with Dirichlet boundary
conditions (see [30, Theorem 2.4] after using the domain expansion technique). Let » > 2 and
feH%(Q),ge H Q) and h e H~Y/2(I'y) such that

J g= J h - v, where v is the outward unit normal vector to the boundary.
Q T'o

There exist uniquely u € H"(Q2) and g € H"~1(Q) solving
—Au+Vqg=f inQ,

divu = g in 2,
u=nh on [y,
u=20 onl',.

There also holds

HuHiF(Q) + HQH%H(Q) S HfH?{H(Q) + HQH%IH(Q) + HhH%ﬂ—l/Q(F)' (A.2)
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Korn’s inequality. The following Korn’s inequality is proven in [ 18, Theorem 5.12],

IVuliz@) < [SulZ2q

Interpolation inequality. It can be found in [ |, Chapter 5] that

1 1 1
[ull sy < lull i Tl iy

That implies for € > 0, there is a universal constant C'(j) such that

||UHHJ'(Q) < 5HUHHJ‘+1(Q) + C(j)g_j\\u\\L2(Q)

35

(A.3)

(A4)
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