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Abstract

This paper examines the performance and optimality of sparse-grid linear sam-
pling algorithms for the approximate reconstruction of functions possessing mixed
smoothness on Rd based a set of n sampled values. The target functions belong to
Sobolev spaces with measure W r

p (Rd;µ) of mixed smoothness. The approximation

error is measured by the norm of the Lebesgue space with measure Lq(Rd;µ) for
1 ≤ q < p ≤ ∞. The underlying measure µ is defined via a density function of
tensor-product exponential weight. The optimality of linear sampling algorithms is
investigated in terms of sampling n-widths. We introduced a novel method for con-
structing sparse-grid linear sampling algorithms which achieve upper bounds of the
corresponding sampling n-widths and moreover, the right convergence rate in the
case d = 1. As consequences, we derived from these results on sapling recovery con-
vergence rates of the generated quadratures for numerical integration of functions
in W r

p (Rd;µ).
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smoothness; Sparse-grid Smolyak grids; Numerical integration; Quadrature; Con-
vergence rate.
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1 Introduction

The present paper investigates the performance and optimality of linear algorithms for
the approximate recovery and quadrature of functions with mixed smoothness on Rd,
endowed with an exponential positive measure. We examine how effectively these sam-
pling algorithms and quadrature formulas can reconstruct functions and their integrals
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from a finite set of sampled values, with a focus on theoretical efficiency and provable
approximation guarantees.

We first introduce Sobolev spaces with measure of mixed smoothness of functions on
Rd. Let

w(x) :=
d⊗
i=1

w(xi), x ∈ Rd, (1.1)

be the tensor product of d copies of the generating univariate exponential weight

w(x) := exp
(
−a|x|λ + b

)
, λ > 0, a > 0, b ∈ R. (1.2)

In what follows, we fix the weight w and hence the parameters λ, a, b.

Let Ω be a Lebesgue-measurable set on Rd. Let µ be the positive measure on Ω defined
by

µ(A) :=

∫
A

w(x)dx

for any measurable subset A in Ω, i.e., the weight w is the density function of µ. With
an abuse, we also write µ in the tensor product from as:

µ(x) :=
d⊗
i=1

µ(xi), x ∈ Rd. (1.3)

Let 1 ≤ q ≤ ∞. We denote by Lq(Ω;µ) the Lebesgue space of all measurable functions
f on Ω such that for 1 ≤ q <∞, the norm

‖f‖Lq(Ω;µ) :=

(∫
Ω

|f(x)|qdµ(x)

)1/q

=

(∫
Ω

|f(x)|qw(x)dx

)1/q

(1.4)

is finite, and assuming f is continuous on Ω for q =∞, the norm

‖f‖L∞(Ω;µ) := ‖f‖C(Ω) := sup
x∈Ω
|f(x)| (1.5)

is finite. For r ∈ N and 1 ≤ p ≤ ∞, the Sobolev space W r
p (Ω;µ) of mixed smoothness r

is defined as the normed space of all functions f ∈ Lp(Ω;µ) such that the weak partial
derivative Dkf belongs to Lp(Ω;µ) for every k ∈ Nd

0 satisfying the inequality |k|∞ ≤ r.
The norm of a function f in this space is defined by

‖f‖W r
p (Ω;µ) :=

( ∑
|k|∞≤r

‖Dkf‖pLp(Ω;µ)

)1/p

. (1.6)

The well-known Gaussian-measured spaces Lp(Rd; γ) and W r
p (Rd; γ) are used in many

applications. Here the standard Gaussian measure γ is defined via the density function
wg(x) := (2π)−d/2 exp(−|x|22/2).
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Let X be a normed space of functions on Ω. Given sample points x1, . . . ,xk ∈ Ω,
we consider the approximate recovery of a continuous function f on Ω from their values
f(x1), . . . , f(xk) by a linear sampling algorithm Sk on Ω of the form

Sk(f) :=
k∑
i=1

f(xi)hi, (1.7)

where h1, . . . , hk are given continuous functions on Ω. For convenience, we assume that
some of the sample points xi may coincide. The approximation error is measured by the
norm ‖f − Sk(f)‖X . Denote by Sn(Ω) the family of all linear sampling algorithms Sk of
the form (1.7) with k ≤ n. Let F ⊂ X be a set of continuous functions on Ω. To study
the optimality of linear sampling algorithms from Sn(Ω) for F and their convergence rates
we use the (linear) sampling n-width

%n(F,X) := inf
Sn∈Sn(Ω)

sup
f∈F
‖f − Sn(f)‖X . (1.8)

A significant body of research has been dedicated to the problem of unweighted lin-
ear sampling recovery of functions possessing mixed smoothness on compact domains.
In particular, Smolyak sparse-grid sampling algorithms have been widely employed in
both approximation theory and numerical analysis, especially for the sampling recovery
of functions with mixed smoothness on domains such as cubes and tori. These algorithms
have proven to be highly effective, with numerous investigations addressing various as-
pects including theoretical approximation properties and numerical implementation. For
a thorough overview and bibliography, see [2, 11, 21, 25, 7]. Specifically, understand-
ing the asymptotic behavior of the sampling n-widths %n

(
W r

p(Td), Lq(Td)
)
, where Td

denotes the d-dimensional torus, constitutes a key research focus. Here and in what fol-
lows, for a normed space X of functions on Ω, the boldface X denotes the unit ball in
X. For a detailed survey and bibliography, see [7, 11]. It is noteworthy that, for the
cases 1 < p < q ≤ 2, 2 ≤ p < q < ∞ and p = 2, q = ∞, the optimal convergence
can be attained by Smolyak sparse-grid algorithms. To date, no alternative algorithms
have been demonstrated to achieve such asymptotic optimality. One can also, in a non-
constructive manner, deduce the right convergence rate of these sampling n-widths for
the case 1 < q ≤ 2 ≤ p ≤ ∞ (for detail see, e.g., [7]).

Furthermore, the problem of optimal sampling recovery of functions on Rd equipped
with standard Gaussian measure has been investigated in [10, 8, 24]. In that context, we
have established in [10], again in a non-constructive manner, the right convergence rate
of the sampling n-widths

%n
(
W r

p(Rd; γ), L2(Rd; γ)
)
� n−r(log n)r(d−1) (1.9)

for 2 < p ≤ ∞, and

%n
(
W r

2(Rd; γ), L2(Rd; γ)
)
� n−r/2(log n)r(d−1)/2 (1.10)

which is obtained by using inequalities between sampling widths and Kolmogorov widths
and the right convergence rate of Kolmogorov widths proven in the same paper [10]. Let
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1 < p <∞, λ > 1 and rλ := r(1− 1/λ). Then we have recently proven in [8] that

n−rλ(log n)rλ(d−1) � %n(W r
p(Rd;µ), Lp(Rd;µ))� n−rλ(log n)(rλ+1)(d−1). (1.11)

In the present work, we focus on the construction of sparse-grid linear sampling
algorithms for the approximate recovery of functions with mixed smoothness on Rd.
Specifically, we consider functions belonging to Sobolev spaces equipped with a mea-
sure W r

p (Rd;µ), and we measure the approximation error in the norm of the Lebesgue
space Lq(Rd;µ). Here, the parameters p and q may differ and vary satisfying the condi-
tion 1 ≤ q < p ≤ ∞. The case 1 ≤ p < q ≤ ∞ is excluded from consideration since
in this case we do not have a continuous embedding of W r

p (Rd;µ) into Lq(Rd;µ). The
case 1 ≤ p = q ≤ ∞ has been investigated in [8] for λ > 1. Our investigation centers
on the asymptotic optimality of these linear sampling algorithms, evaluated in terms of
the relevant sampling n-widths. It is worth emphasizing that this framework of sampling
recovery is highly relevant to various theoretical and applied fields, particularly those
involving standard Gaussian measure γ and other probability measures.

We briefly describe the main results of the present paper.

Let 1 ≤ q < p ≤ ∞, r > 1/p. Then, we prove that

%n(W r
p(Rd;µ), Lq(Rd;µ))�

{
n−r(log n)(r+1/2)(d−1) if 1 < q < p <∞,
n−r(log n)(r+1)(d−1) if either q = 1 or p =∞,

(1.12)

and
%n(W r

p(Rd;µ), Lq(Rd;µ))� n−r(log n)r(d−1) if 1 ≤ q < p ≤ ∞. (1.13)

In the one-dimensional case, we prove the right convergence rate

%n(W r
p(R;µ), Lq(R;µ)) � n−r if 1 ≤ q < p ≤ ∞ and r > 1/p. (1.14)

The sparse-grid linear sampling algorithms that achieve the upper bounds (1.12) for
the case 1 < q < p <∞ are constructed through a process of assembling B-spline quasi-
interpolation Smolyak sampling algorithms which are designed for the related Sobolev
spaces on the integer-shifted d-cubes which cover Rd. This is a novel method for con-
structing sparse-grid linear sampling algorithms for approximate reconstruction of func-
tions on Rd endowed with measure. It crucially differs from classical methods of weighted
sampling reconstruction of functions based on polynomial interpolation, see, e.g., [17] for
a survey and bibliography on weighted polynomial interpolation of function on R.

The lower bounds in (1.13) are derived from known lower bounds of Kolmogorov n-
widths dn

(
W r

p(Td), Lq(Td)
)
. Differing from the case 1 < p = q < ∞, the convergence

rates of the sampling n-widths in (1.12) and (1.14) in the case 1 ≤ q < p ≤ ∞ do not
depend on the main parameter λ in the weight w, the density function of the measure µ,
and coincide with those of the related unweighted sampling n-widths (see, e.g., [11]).

The gap between the upper bounds (1.12) and the lower bounds in (1.13) for the sam-
pling n-widths, is a logarithmic factor if d ≥ 2. The main parameter r in the convergence
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rates is the same as that in the convergence rates of the related unweighted sampling
n-widths (for detail, see, e.g., [7, Theorem 2.9]).

We are interested in approximation of integrals∫
Rd
f(x) dµ(x) (1.15)

for functions f lying in the space W r
p (Rd;µ). To approximate them we use weighted

quadratures of the form

Qnf :=
n∑
i=1

ωif(xi), (1.16)

where x1, . . . ,xn ∈ Rd are the integration nodes and ω1, . . . , ωn the integration weights.

Let F be a set of continuous functions on Rd. Denote by Qn(Rd) the family of all
quadratures Qk of the form (1.16) with k ≤ n. The optimality of quadratures from
Qn(Rd) for f ∈ F is measured by

Intn(F ) := inf
Qn∈Qn(Rd)

sup
f∈F

∣∣∣∣ ∫
Rd
f(x) dµ(x)−Qnf

∣∣∣∣. (1.17)

Observe that every sampling algorithm Sn ∈ Sn(Rd) generates the weighted quadrature
Qn ∈ Qn(Rd) by integrating Sn(f) with measure µ over Rd. Moreover, the integration
error can be estimated by the error of sampling recovery by Sn(f) in the norm of L1(Rd;µ)
(for detail, see Section 3). Due to this observation, from the main results on sampling
reconstruction we obtain the following.

For 1 < p <∞, we prove the upper and lower bounds

n−r(log n)r(d−1)/2 � Intn(W r
p(Rd;µ))� n−r(log n)(r+1)(d−1). (1.18)

(The upper bound still holds true for p =∞.) In the one-dimensional case, for 1 < p ≤ ∞,
r > 1/p, we prove the right convergence rate

Intn(W r
p(R;µ)) � n−r. (1.19)

We shortly give comments on some works related to the results (1.21) and (1.19).
There is a large number of works on high-dimensional unweighted integration over the
unit d-cube Id := [0, 1]d for functions having a mixed smoothness (see [11, 13, 25] for results
and bibliography). However, there are only a few works on high-dimensional weighted in-
tegration for functions having a mixed smoothness. The problem of numerical integration
(1.15)–(1.17) has been studied in [15, 16, 12, 6, 10, 14] for functions in the Gaussian-
measured space W r

p (Rd; γ). Recently, in [10, Theorem 2.3] for the space W r
p (Rd, γ) with

r ∈ N and 1 < p < ∞, we have constructed asymptotically optimal quadratures Qγ
n of

the form (1.16) which achieve the right convergence rate:

sup
f∈W r

p(Rd;γ)

∣∣∣∣ ∫
Rd
f(x)dγ(x)−Qγ

nf

∣∣∣∣ � Intn
(
W r

p(Rd; γ)
)
� n−r(log n)(d−1)/2. (1.20)
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In constructing the asymptotically optimal quadrature Qγ
n in (1.20), we used a technique

assembling a quadrature for the Sobolev spaces on the unit d-cube to the integer-shifted
d-cubes. This technique is extended and developed in the present paper to constructing
sampling algorithms. For the set W r

1(Rd;µ) with λ > 1, the upper and lower bounds

n−rλ(log n)rλ(d−1) � Intn(W r
1(Rd;µ))� n−rλ(log n)(rλ+1)(d−1) (1.21)

have been proven in [6].

Finally, it is worth emphasizing that in all the results on sampling recovery and numer-
ical integration with the measure µ of the present paper, the primary parameter λ which
is the most significant in shaping the properties of the associated weight w and measure µ,
is assumed simply a positive number. This significantly distinguishes our setting from the
classical theory of weighted approximation (see, e.g., [19], [18], [17]), where it is typically
assumed that λ > 1 in the weight w (Freud-type weight).

The paper is organized as follows. In Section 2, we prove upper and lower bounds
of %n(W r

p(Rd;µ), Lq(Rd;µ)) for d ∈ N, 1 ≤ q < p ≤ ∞, and construct linear sampling
algorithms which achieve the upper bound for d ≥ 2 and the right convergence rate for
d = 1. In Section 3, as consequences, we derived from the results on sapling recovery
convergence rates of the generated quadratures for numerical integration of functions in
W r
p (Rd;µ).

Notation. Denote x =: (x1, ..., xd) for x ∈ Rd; 1 := (1, ..., 1) ∈ Rd; for 0 < λ < ∞ and

x ∈ Rd, |x|λ :=
(∑d

j=1 |xj|λ
)1/λ

and |x|∞ := max1≤j≤d |xj|. We use letter C to denote

general positive constants which may take different values. For the quantities An(f,k)
and Bn(f,k) depending on n ∈ N, f ∈ W , k ∈ Zd, we write An(f,k)� Bn(f,k), f ∈ W ,
k ∈ Zd (n ∈ N is specially dropped), if there exists some constant C > 0 independent
of n, f,k such that An(f,k) ≤ CBn(f,k) for all n ∈ N, f ∈ W , k ∈ Zd (the notation
An(f,k) � Bn(f,k) has the obvious opposite meaning), and An(f,k) � Bn(f,k) if
An(f,k) � Bn(f,k) and Bn(f,k) � An(f,k). Denote by |G| the cardinality of the set
G. For a Banach space X, denote by the boldface X the unit ball in X.

2 Sparse-grid sampling algorithms

In this section, we establish upper and lower bounds of %n
(
W r

p(Rd;µ), Lq(Rd;µ)
)

for
1 ≤ q < p ≤ ∞, and construct linear sampling algorithms which achieve the upper
bounds. In the one dimensional case (d = 1), we obtain the right convergence rate of
%n
(
W r

p(R;µ), Lq(R;µ)
)
.

We construct linear sampling algorithms that achieve the upper bounds (1.12) through
a process of assembling sampling algorithms which are tailored for the related Sobolev
spaces on the integer-shifted d-cubes which cover Rd. Some important linear sampling
algorithms such as Smolyak sampling algorithms based on trigonometric interpolation
or periodic B-spline quasi-interpolations, have been constructively designed for periodic
functions with Sobolev mixed smoothness (for detail, see [11, Section 5]). To employ
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these constructions for for constructing linear sampling algorithms for functions on Rd

with Sobolev smoothness, it is necessary to adapt and modify the underlying algorithms
accordingly.

Denote by C̃(Id), L̃q(Id) and W̃ r
p (Id) the subspaces of C(Id), Lq(Id) and W r

p (Id), re-
spectively, of all functions f on the d-unit cube Id := [0, 1]d, which can be extended to the
whole Rd as 1-periodic functions in each variable (denoted again by f). Let 1 ≤ q < p ≤ ∞
and α > 0, β ≥ 0. Let Sn ∈ Sn(Id) be a sampling algorithm. Assume it holds that

‖f − Sn(f)‖L̃q(Id) ≤ Cn−α(log n)β‖f‖W̃ r
p (Id), f ∈ W̃ r

p (Id). (2.1)

Then based on Sn, we will construct a sampling algorithm belonging to Sn(Rd), which
approximates f ∈ W r

p (Rd;µ) with the same error bound as in (2.1) for the approximation
error measured in the norm of Lq(Rd;µ). Such a sampling algorithm will be constructed
by assembling sampling algorithms which are designed for the related Sobolev spaces on
the integer-shifted d-cubes which cover Rd. Let us process this construction.

Fix a number θ > 0 and put Idθ := [−θ, 1 + θ]d. Denote by C̃(Idθ), L̃q(Idθ) and W̃ r
p (Idθ)

the subspaces of C(Idθ), Lq(Idθ) and W r
p (Idθ), respectively, of all functions f which can be

extended to the whole Rd as (1 + 2θ)-periodic functions in each variable (denoted again
by f). A sampling algorithm Sn ∈ Sn(Id) induces the sampling algorithm Sθ,n ∈ Sn(Idθ)
defined for a function f ∈ C̃(Idθ) by

Sθ,n(f)(x) := Sn(f(x/(1 + 2θ) + θ1)), x ∈ Idθ.

From (2.1) it follows that

‖f − Sθ,n(f)‖L̃q(Idθ) ≤ Cn−α(log n)β‖f‖W̃ r
p (Idθ), f ∈ W̃ r

p (Idθ).

We define for n ∈ N,

mn :=
(
δ−1α log n

)1/λ
, (2.2)

and for k ∈ Zd,

nk :=

{
b%ne−aδα |k|λλ + 1c if |k|λ < mn,

0 if |k|λ ≥ mn,
(2.3)

where an appropriate fixed value of parameter δ > 0 will be chosen below,

%−1 := V d
λ

∞∑
s=0

sde−
aδ
α
sλ <∞,

and V d
λ denote the volume of the set

Bd
λ :=

{
x ∈ Rd : |x|λ ≤ 1

}
.

We write Idθ,k := k + Idθ for k ∈ Zd, and denote by fθ,k the restriction of f on Idθ,k for a

function f on Rd.

It is well-known that one can constructively define a unit partition {ϕk}k∈Zd such that
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(i) ϕk ∈ C∞0 (Rd) and 0 ≤ ϕk(x) ≤ 1, x ∈ Rd, k ∈ Zd;

(ii) suppϕk are contained in the interior of Idθ,k, k ∈ Zd;

(iii)
∑

k∈Zd ϕk(x) = 1, x ∈ Rd;

(iv) ‖ϕk‖W r
p (Idθ,k) ≤ Cr,d,θ, k ∈ Zd,

(see, e.g., [23, Chapter VI, 1.3]).

Due to the item (ii), we can define the (1+2θ)-periodic functions f̃θ,k on Rd for k ∈ Zd
by putting

f̃θ,k(x) := fθ,k(x + k)ϕk(x + k), x ∈ Idθ.
For n ∈ N, taking the sequence (nk)k∈Zd given as in (2.3) and satisfying the condition∑

|k|λ<mn

nk ≤ n,

we define the linear sampling algorithm Sµθ,n ∈ Sn(Rd) generated from Sn by(
Sµθ,nf

)
(x) :=

∑
|k|<mn

(
Sθ,nk

f̃θ,k

)
(x− k). (2.4)

Theorem 2.1 Let 1 ≤ q < p ≤ ∞ and α > 0, β ≥ 0, θ > 0. Assume that for any
n ∈ N, there is a linear sampling algorithm Sn ∈ Sn(Id) such that the convergence rate
(2.1) holds. Then for any n ∈ N, based on this sampling algorithm, one can construct a
sampling algorithm Sµθ,n ∈ Sn(Rd) of the form (2.4) so that

‖f − Sµθ,n(f)‖Lq(Rd;µ) ≤ Cn−α(log n)β‖f‖W r
p (Rd;µ), f ∈ W r

p (Rd;µ). (2.5)

Proof. We preliminarily decompose a function in W r
p (Rd;µ) into a sum of functions on Rd

having support contained in integer translations of the d-cube Idθ. Then a desired sampling
algorithm for W r

p (Rd;µ) will be the sum of integer-translated dilations of Sn. Notice that

Rd =
⋃
k∈Zd

Idθ,k,

where Idθ,k := Idθ + k. From the items (ii) and (iii) in the definition of unit partition it is
implied that

f =
∑
k∈Zd

fθ,kϕk, (2.6)

where fθ,k denotes the restriction of f to Idθ,k. Hence we have

‖f − Sµθ,n(f)‖Lq(Rd;µ) ≤
∑
|k|λ<mn

∥∥∥fθ,kϕk − Sθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

+
∑
|k|λ≥mn

‖fθ,kϕk‖Lq(Idθ,k;µ) .
(2.7)
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For the fixed θ, there exists a constant C depending p, λ, a, θ only such that w−1/p(x) ≤
w−1/p(k) for every x ∈ Idθ,k. Therefore,

‖fk(·+ k)‖W̃ r
p (Idθ) ≤ Cw−1/p(k)‖f‖W r

p (Idθ,k;µ) ≤ Cw−1/p(k)‖f‖W r
p (Rd;µ). (2.8)

Since W r
p (Id) is a multiplication algebra (see [20, Theorem 3.16]), from (2.8) and prop-

erty (iv) of the unit partition {ϕk}k∈Zd , we have that f̃θ,k := fθ,k(·+k)ϕk(·+k) ∈ W̃ r
p (Idθ),

and
‖f̃θ,k‖W̃ r

p (Idθ) ≤ C‖fθ,k(·+ k)‖W̃ r
p (Idθ) · ‖ϕk(·+ k)‖W̃ r

p (Idθ)

≤ Cw−1/p(k)‖f‖W r
p (Rd;µ).

(2.9)

Similarly,∥∥∥fθ,kϕk − Sθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

≤ Cw1/q(k)
∥∥∥f̃θ,k − Sθ,nk

(
f̃θ,k

)∥∥∥
L̃q(Idθ)

. (2.10)

Because q < p, from the definition of the univariate weight w in (1.2) it follows that there
are numbers C and 0 < δ′ < a (1/q − 1/p) such that

w1/q−1/p(k) ≤ Ce−δ
′|k|λλ , k ∈ Zd. (2.11)

We choose a number δ in (2.2), satisfying the condition

δmax (1, a/α) < δ′. (2.12)

Firstly, with this choice of δ, let us check that Sµθ,n ∈ Sn(Rd), i.e., m ≤ n where m
denotes the number of sample points in Sµθ,n. Indeed, denoting

Bd
λ(s) :=

{
x ∈ Rd : |x|λ ≤ s

}
,

and V d
λ (s) the volume of Bd

λ(s), we get

m ≤
∑
|k|λ<mn

nk ≤
bmnc∑
|k|=1

%ne−
aδ
α
|k|λλ ≤ n%

bmnc∑
s=0

∑
k∈Bdλ(s)

e−
aδ
α
sλ

� n%

bmnc∑
s=0

V d
λ (s)e−

aδ
α
sλ � n%V d

λ

∞∑
s=0

sde−
aδ
α
sλ ≤ n.

(2.13)

Secondly, we prove the bound (3.3). By (2.3), (2.1) (2.9) and (2.10) we derive the
estimates∥∥∥fθ,kϕk − Sθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

� w1/q(k)
∥∥∥f̃θ,k − Sθ,nk

(
f̃θ,k

)∥∥∥
L̃q(Idθ)

� w1/q(k)n−αk (log nk)β‖f(·+ k)ϕk(·+ k)‖W̃ r
p (Idθ)

� w1/q(k)w−1/p(k)n−α(log n)βeδ
a
α
|k|λλ‖f‖W r

p (Rd;µ),
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where the numbers nk, k ∈ Zd, are defined as in (2.3). Hence, by using the inequality
(2.11) we get∥∥∥fθ,kϕk − Sθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

� e−ε|k|
λ
λn−α(log n)β‖f‖W r

p (Rd;µ),

where ε := δ′ − δa/α > 0 due to (2.12). This in a similar manner as (2.13) implies that∑
|k|λ<mn

∥∥∥fθ,kϕk − Sθ,nk

(
f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k;µ)

�
∑
|k|λ<mn

e−ε|k|
λ
λn−α(log n)β‖f‖W r

p (Rd;µ)

≤ n−α(log n)β‖f‖W r
p (Rd;µ)

∑
|k|<mn

e−ε|k|
λ
λ

� n−α(log n)β‖f‖W r
p (Rd;µ).

Again in a similar manner as (2.13) we have by (2.2), (2.11) and the inequality δ′/δ > 1
provided with (2.12),∑

|k|λ≥mn

‖fθ,kϕk‖Lq(Idθ,k;µ) �
∑
|k|≥mn

w1/q(k)w−1/p(k)‖f‖W r
p (Rd;µ)

� ‖f‖W r
p (Rd;µ)

∑
|k|λ≥mn

e−δ
′|k|λλ

� ‖f‖W r
p (Rd;µ)

∑
s≥bmnc

V d
λ (s)e−δ

′sλ

� ‖f‖W r
p (Rd;µ) V

d
λ

∑
s≥bmnc

sde−δ
′sλ

� ‖f‖W r
p (Rd;µ)m

d
ne
−δ′mλn

∞∑
s=0

sde−
aδ
α
sλ

� ‖f‖W r
p (Rd;µ)(log n)d/λe−δ

′α logn/δ

∞∑
s=0

sde−
aδ
α
sλ

� n−α(log n)β‖f‖W r
p (Rd;µ).

From the last two estimates and (2.7) we obtain (3.3).

We introduce Smolyak sampling algorithms for 1-periodic functions on Rd based B-
spline quasi-interpolation, which satisfy (2.1). For a given number ` ∈ N, denote by M`

the cardinal B-spline of order ` with support [0, `] and knots at the points 0, 1, ..., `. We
fixed an even number ` ∈ N and take the cardinal B-spline M := M` of order `. Let
Λ = {λ(j)}|j|≤µ be a given finite even sequence, i.e., λ(−j) = λ(j) for some µ ≥ `

2
− 1.

We define the linear operator Q for functions f on R by

Q(f)(x) :=
∑
s∈Z

Λ(f, s)M(x− s+ `/2), (2.14)

where
Λ(f, s) :=

∑
|j|≤µ

λ(j)f(s− j). (2.15)

10



The operator Q is local and bounded in C(R) (see [4, p. 100–109]). An operator Q of the
form (2.14)–(2.15) is called a quasi-interpolation operator in C(R) if it reproduces P`−1,
i.e., Q(f) = f for every f ∈ P`−1, where P`−1 denotes the set of d-variate polynomials of
degree at most `− 1 in each variable.

We present two well-known examples of quasi-interpolation operator. A piecewise
linear quasi-interpolation operator is defined as

Q(f)(x) :=
∑
s∈Z

f(s)M(x− s+ 1),

where M is the piecewise linear B-spline with support [0, 2] and knots at the integer
points 0, 1, 2. It is related to the classical Faber-Schauder basis of the hat functions
Another example is the cubic quasi-interpolation operator

Q(f)(x) :=
∑
s∈Z

1

6
{−f(s− 1) + 8f(s)− f(s+ 1)}M(x− s+ 2),

where M is the symmetric cubic B-spline with support [0, 4] and knots at the integer
points 0, 1, 2, 4. For more examples of B-spline quasi-interpolation operators, see, e.g.,
[1, 4].

Since M(` 2kx) = 0 for every k ∈ N0 and x /∈ (0, 1), we can extend the restriction
to the interval [0, 1] of the B-spline M(` 2k·) to an 1-periodic function on the whole R.
Denote this periodic extension by Nk and define

Nk,s(x) := Nk(x− h(k)s), k ∈ Z+, s ∈ I(k),

where
I(k) := {0, 1, ..., `2k − 1}.

Then we have for 1-periodic functions f on R,

Qk(f)(x) =
∑

s∈I(k)

ak,s(f)Nk,s(x), ∀x ∈ R. (2.16)

For convenience we define the univariate operator Q−1 by putting Q−1(f) := 0.

We define the univariate B-spline Nk,s by

Nk,s(x) :=
d⊗
i=1

Nki,si(xi), k ∈ Zd+, s ∈ I(k),

where

I(k) :=
d∏
i=1

I(ki).

Let the operators qk be defined by

qk :=
d∏
i=1

(
Qki −Qki−1

)
, k ∈ Zd+.

11



where the univariate operator Qki − Qki−1 is applied to the univariate function f by
considering f as a function of variable xi with the other variables held fixed.

From the refinement equation for the B-spline M (see, e.g., [4, (4.3.4)]), in the uni-
variate case, we can represent the component functions qk(f) as

qk(f) =
∑

s∈I(k)

ck,s(f)Nk,s, (2.17)

where where the coefficient functionals ck,s(f) are explicitly constructed as linear combi-
nations of at most m0 of function values of f for some m0 ∈ N which is independent of
k, s and f .

For m ∈ N, the well known periodic Smolyak grid of points Gd(m) is defined as

Gd(m) := {x = 2−ks : k ∈ Nd, |k|1 = m, s ∈ I(k)}.

Here and in what follows, we use the notations: xy := (x1y1, ..., xdyd) and 2x :=
(2x1 , ..., 2xd) for x,y ∈ Rd.

For m ∈ N0, we define the operator Rm by

Rm(f) :=
∑
|k|1≤m

qk(f) =
∑
|k|1≤m

∑
s∈I(k)

ck,s(f)Nk,s.

From (2.17) one can see that for a functions f on Id, Rm defines a sampling algorithm on
Id of the form (1.7):

Rm(f) =
∑

2−ks∈Gd(m)

f(2−ks)ϕk,s,

where n := |Gd(m)|, and ϕk,s are explicitly constructed as linear combinations of at most
at most m0 B-splines Nk,j for some m0 ∈ N which is independent of k, s,m and f . The
operator Rm is also called Smolyak (sparse-gird) sampling algorithm initiated and used by
him [22] for quadrature and interpolation for functions with mixed smoothness. It plays
an important role in sampling recovery of multivariate functions and its applications (see
[2, 11] for comments and bibliography).

Lemma 2.2 Let 1 ≤ q ≤ p ≤ ∞ and 1/p < r < `. For n ∈ N, let mn be the largest
integer number such that |Gd(mn)| ≤ n. Then we have Rmn ∈ Sn(Id) and

sup
f∈W̃ r

p(Id)

∥∥f −Rmn(f)
∥∥
L̃q(Id)

�

{
n−r(log n)(r+1/2)(d−1), 1 < q ≤ p <∞;

n−r(log n)(r+1)(d−1), either q = 1 or p =∞.
(2.18)

Proof. The case 1 < q ≤ p < ∞ in (2.18) was proven in [5, Corollary 4.1]. We consider
the case when either q = 1 or p =∞ in (2.18). Let H̃r

p(Id) be the Hölder-Nikol’skii space

of 1-periodic functions on Rd of mixed smoothness r bounded in the space L̃p(Id) (see,
e.g., [11] for the definition). Then the bound (2.18) follows from the embedding W̃ r

p (Id)
into H̃r

p(Id) and the bound

sup
f∈H̃r

p(Id)

∥∥f −Rmn(f)
∥∥
L̃q(Id)

� n−r(log n)(r+1)(d−1),

12



which can be proven in the same way as the non-periodic version [9, Theorem 3.3] .

If Sn = Rmn where the operator Rmn is defined as in Lemma 2.2, we write Sµθ,n := Rµ
θ,n.

Let n ∈ N and let X be a Banach space and F a central symmetric compact set in X.
Then the Kolmogorov n-width of F is defined by

dn(F,X) := inf
Ln

sup
f∈F

inf
g∈Ln
‖f − g‖X ,

where the left-most infimum is taken over all subspaces Ln of dimension ≤ n in X. If X
is a normed space of functions on Ω and F ⊂ X is a set of continuous functions on Ω,
then from the definitions we have

%n(F,X) ≥ dn(F,X). (2.19)

This inequality will be employed to establish lower bounds for sampling n-widths,

Lemma 2.3 Let 1 ≤ q < p ≤ ∞ Then we have

dn(W̃
r

p(Id), L̃q(Id)) � n−r(log n)(d−1)r. (2.20)

For detail on the proof of this lemma see, e.g., in [11, Theorems 4.2.5, 4.3.1, 4.3.6 & 4.3.7]
and related comments on the asymptotic optimality of the hyperbolic cross approximation.

Theorem 2.4 Let 1 ≤ q < p ≤ ∞, 1/p < r < ` and θ > 0, and denote

%n := %n(W r
p(Rd;µ), Lq(Rd;µ)).

Then for any n ∈ N, based on the sampling algorithm Sn := Rmn ∈ Sn(Id) in Lemma 2.2,
then one can construct a sampling algorithm Rµ

θ,n ∈ Sn(Rd) of the form (2.4) so that

%n ≤ sup
f∈W r

p(Rd;µ)

∥∥f −Rµ
θ,n(f)

∥∥
Lq(Rd;µ)

�

{
n−r(log n)(r+1/2)(d−1), 1 < q < p <∞;

n−r(log n)(r+1)(d−1), either q = 1 or p =∞.
(2.21)

Moreover,
%n � n−r(log n)r(d−1). (2.22)

Proof. For a fixed θ > 0, we define Rµ
θ,n := Sµθ,n ∈ Sn(Rd) as the sampling algorithm

described in Theorem 2.1 with Sn = Rmn ∈ Sn(Id). The upper bounds (2.21) follow from
Lemma 2.2 and Theorem 2.1 with α = r and β = (d − 1)(r + 1/2) for 1 < q < p < ∞,
and β = (d− 1)(r + 1) for the other cases.

We next prove the lower bound (2.22). If f is a 1-periodic function on Rd and f ∈

13
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Figure 1: Different sparse grids on function domains (d = 2)

W̃ r
p (Id), then for 1 < p <∞,

‖f‖p
W r
p (Rd;µ)

=
∑
|r|∞≤r

∫
Rd
|Drf(x)|pw(x)dx

=
∑
|r|∞≤r

∑
k∈Zd

∫
Id
|Drf(x + k)|pw(x + k)dx

�
∑
|r|∞≤r

∫
Id
|Drf(x)|pdx

∑
k∈Zd

w(|k − (signk)|)

� ‖f‖p
W̃ r
p (Id)

.

The bound ‖f‖W r
∞(Rd;µ) � ‖f‖W̃ r

∞(Id) can be proven similarly with a slight modification.
On the other hand,

‖f‖L̃q(Id) = ‖f(·+ 1)‖L̃q(Id) � ‖f‖Lq(Rd;µ),

where recall, 1 := (1, 1, ..., 1) ∈ Rd. Hence we get by the inequality (2.19) and Lemma 2.3
the lower bound (2.22):

%n(W r
p(Rd;µ), Lq(Rd;µ)) ≥ dn(W r

p(Rd;µ), Lq(Rd;µ))

� dn(W̃
r

p(Id), L̃q(Id))� n−r(log n)r(d−1).

The sampling algorithms Rµ
θ,n ∈ Sn(Rd) of the form (2.4) in Theorem 2.4, are based

on very sparse sample points contained in the set{
x ∈ Rd : |x|λ ≤ C(log n)1/λ

}
14



(see Figure 1), and completely different from the sample points in step hyperbolic cross
for the case 1 < p = q < ∞ considered in [8]. In Figure 1, a classical Smolyak grid on
the domain [−1, 1]2 is in the left picture, and an assembled grid in the two-dimensional
function domain R2 for the weight w(x1, x2) := exp(−x2

1 − x2
2) in the right picture, is

designed on classical Smolyak grids.

In the one-dimensional case, we have the following refined result.

Corollary 2.5 Let 1 ≤ q < p ≤ ∞, 1/p < r < ` and θ > 0. For any n ∈ N, based on the
sampling algorithm Rmn ∈ Sn(I) in Lemma 2.2, one can construct the sampling algorithm
Rµ
θ,n ∈ Sn(R) as in (2.4) so that

%n(W r
p(R;µ), Lq(R;µ)) � sup

f∈W r
p(R;µ)

∥∥f −Rµ
θ,n(f)

∥∥
Lq(Rd;µ)

� n−r. (2.23)

Here we point out that, in constructing the sampling algorithm Sµθ,n = Rµ
θ,n as in (2.4),

one could replace the B-spline sampling algorithms Sn = Rmn and Lemma 2.2 with their
trigonometric modifications. In particular, a related version of Lemma 2.2, proven in [3],
can be employed to obtain the same bounds for convergence rate of the sampling recovery
as in Theorem 2.4 and Corollary 2.5.

3 Numerical integration

Notice that every sampling algorithm Sn ∈ Sn(Rd) of the form (1.7) generates in a natural
way a weighted quadrature Qn ∈ Qn(Rd) by the formula

Qnf :=

∫
Rd
Snf(x) dµ(x) dx =

n∑
i=1

ωif(xi) (3.1)

with the integration weights

ωi :=

∫
Rd
hi(x) dµ(x). (3.2)

Moreover, the error of numerical integration by the quadrature Qn can be estimated via
the error in the norm L1(Rd, µ) of the sampling recovery by Sn. More precisely, it holds
the inequality ∣∣∣∣∫

Rd
f(x) dµ(x)−Qnf

∣∣∣∣ ≤ ‖f − Sn(f)‖L1(Rd;µ).

These observations together with the inequality (2.19) and the results on Kolmogorov
n-widths in Lemma 2.3 allow to derive from the results on sampling recovery in Section 2
the following results.

Corollary 3.1 Let 1 < p ≤ ∞ and α > 0, β ≥ 0, θ > 0. Assume that for any n ∈ N,
there is a linear sampling algorithm Sn ∈ Sn(Id) such that the convergence rate (2.1)
holds. Let the sampling algorithm Sµθ,n ∈ Sn(Rd) be constructed by the formula (2.4) as
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in Theorem 2.1. For any n ∈ N, let Qµ
θ,n ∈ Qn(Rd) be the quadrature constructed by the

formula (3.1)–(3.2). Then we have∣∣∣∣∫
Rd
f(x) dµ(x)−Qµ

θ,nf

∣∣∣∣ ≤ Cn−α(log n)β‖f‖W r
p (Rd;µ), f ∈ W r

p (Rd;µ). (3.3)

Proof. Let f ∈ W r
p (Rd;µ). We have by Theorem 2.1 for q = 1,∣∣∣∣∫

Rd
f(x) dµ(x)−Qµ

θ,nf

∣∣∣∣ ≤ ‖f − Sµθ,n(f)‖L1(Rd;µ) ≤ Cn−α(log n)β‖f‖W r
p (Rd;µ)

Corollary 3.2 Let 1 < p ≤ ∞, 1/p < r < ` and θ > 0. Let the sampling algorithm
Rµ
θ,n ∈ Sn(Rd) be constructed by the formula (2.4) as in Theorem 2.4 for Sn := Rmn ∈
Sn(Id) as in Lemma 2.2. For any n ∈ N, let Qµ

θ,n ∈ Qn(Rd) be the quadrature constructed
by the formula (3.1)–(3.2). Then we have

Intn(W r
p(Rd;µ)) ≤ sup

f∈W r
p(Rd;µ)

∣∣∣∣∫
Rd
f(x) dµ(x)−Qµ

θ,nf

∣∣∣∣� n−r(log n)(r+1)(d−1). (3.4)

Moreover, if in addition, p <∞,

Intn(W r
p(Rd;µ))� n−r(log n)r(d−1)/2. (3.5)

Proof. The upper bounds (3.4) follow from Lemma 2.2 and Corollary 3.2 with α = r and
β = (r + 1)(d− 1). We next prove the lower bound (3.5). In the proof of Theorem 2.4 it
has been proven that

‖f‖W r
p (Rd;µ) � ‖f‖W̃ r

p (Id) , f ∈ W̃ r
p (Id). (3.6)

Hence we get by the lower bound (3.5) for 1 < p <∞:

Intn(W r
p(Rd;µ))� Intn(W̃

r

p(Id))� n−r(log n)r(d−1)/2.

Here, for the last inequality, see, e.g., [11, Theorem 8.2.1].

Corollary 3.3 Under the assumption and notation of Corollary 3.2 we have for d = 1,

Intn(W r
p(R;µ)) � sup

f∈W r
p(R;µ)

∣∣∣∣∫
R
f(x) dµ(x)−Qµ

θ,nf

∣∣∣∣ � n−r. (3.7)

Proof. This corollary in the case 1 < p < ∞ as well as the upper bound in (3.7) in the
case p =∞ follow from Corollary 3.2. The lower bound bound in (3.7) in the case p =∞
is derived from the inequalities (3.6) and

Intn(W r
∞(R;µ))� Intn(W̃

r

∞(I))� n−r(log n)r(d−1)/2.
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Here, for the last inequality, see, e.g., [25, Theorem 2.25].
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[10] D. Dũng and V. K. Nguyen. Optimal numerical integration and approximation of
functions on Rd equipped with Gaussian measure. IMA Journal of Numer. Anal.,
44:1242–1267, 2024.
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