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Abstract
The paper continues our recent work (Cuong et al. in Optimization 73(12):3593–3607, 2024)
where another extension of the extremal principle has been established. We demonstrate its
applicability to set-valued optimization problems with general preferences, weakening the
assumptions of the known results and streamlining their proofs.

Keywords Extremal principle · Separation · Optimality conditions · Set-valued
optimization

Mathematics Subject Classification 49J52 · 49J53 · 49K40 · 90C30 · 90C46

1 Introduction

The paper continues our recent work [7] where a new extremality model involving collec-
tions of arbitrary families of sets has been studied and another extension of the extremal
principle has been established.

We consider applications of the latter result to set-valued optimization problems of the
type

minimize F(x) subject to x ∈ Ω, (P )
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where F : X ⇒ Y is a set-valued mapping between normed vector spaces, Ω is a subset of
X, and the space Y is equipped with a general preference relation determined by an abstract
level-set mapping L : Y ⇒ Y , as well as more general problems with set-valued constraints.

The conventional special case of importance is when Y is equipped with a partial order
determined by a nontrivial pointed convex cone, and optimality is understood in the sense
of Pareto.

Definition 1.1 (Pareto optimality) Let X and Y be normed spaces, F : X ⇒ Y , Ω ⊂ X,
x̄ ∈ Ω and ȳ ∈ F(x̄). The point (x̄, ȳ) is a (local) Pareto solution to (P ) with respect to a
nontrivial pointed convex cone K ⊂ Y if there is a δ ∈ (0,+∞] such that F(Ω ∩ Bδ(x̄)) ∩
(ȳ − K) = {ȳ}.

The conventional extremal principle [12, 14, 16] covers a wide range of problems in
optimization and variational analysis as demonstrated, e.g., in the books [4, 14, 15]. The
advantages of employing the extremal principle as the main tool when deducing neces-
sary optimality conditions in vector and set-valued optimization problems compared to the
scalarization and other traditional techniques were emphasized in [15, Sect. 5.3 and 5.5.18].
At the same time, there exist multiobjective problems with more general preference rela-
tions, which “may go far beyond generalized Pareto/weak Pareto concepts of optimality”
[15, p. 70] that cannot be covered by traditional techniques or within the framework of
the conventional extremal principle using linear translations. The first example of this kind
was identified in Zhu [23]. Fortunately, such problems can be handled with the help of a
more flexible extended version of the extremal principle using nonlinear perturbations (de-
formations) of the sets defined by set-valued mappings. Such an extension was developed
in Mordukhovich et al. [17] (see also [4, 15]) and applied to various multiobjective prob-
lems [2, 13, 21]. Below is our interpretation of the corresponding definitions from [15, 17]
complying with the notation and terminology adopted in the current paper.

Definition 1.2 (Extremality: set-valued perturbations) Let Ω1, . . . ,Ωn be subsets of a
normed space X, x̄ ∈ ⋂n

i=1 Ωi , and, for each i = 1, . . . , n, Si : Mi ⇒ X be a set-valued
mapping from a metric space (Mi, di) to X and Si(s̄i ) = Ωi for some s̄i ∈ Mi . The collec-
tion {Ω1, . . . ,Ωn} is extremal at x̄ with respect to {S1, . . . , Sn} if there exists a ρ ∈ (0,+∞]
such that, for any ε > 0, there exist si ∈ Mi (i = 1, . . . , n) such that max1≤i≤n di(si , s̄i ) < ε,
max1≤i≤n d(x̄, Si(si)) < ε and

⋂n

i=1 Si(si) ∩ Bρ(x̄)= ∅.

The model in Definition 1.2 exploits non-intersection of perturbations of given sets
Ω1, . . . ,Ωn. The perturbations are chosen from the respective families of sets Ξi := {Si(s) |
s ∈ Mi} (i = 1, . . . , n) determined by given set-valued mappings Si : Mi ⇒ X (i = 1, . . . , n)

on metric spaces. In the particular case of linear translations, i.e., when, for all i = 1, . . . , n,
(Mi, di) = (X,d) and Si(a) = Ωi − a (a ∈ X), the model reduces to the conventional ex-
tremal principle. It was shown by examples in [15, 17] that the framework of set-valued
perturbations is richer than that of linear translations. With minor modifications in the proof,
the conventional extremal principle was extended to the set-valued setting producing a more
advanced model.

Definition 1.2 talks about extremality of a collection of sets, but in fact it is about certain
properties of a collection of set-valued mappings Si : Mi ⇒ X (i = 1, . . . , n), loosely con-
nected with the given sets. This model has been refined in [7], making it more flexible and,
at the same time, simpler. Instead of the set-valued mappings S1, . . . , Sn, the refined model
studies extremality and stationarity of nonempty families Ξ1, . . . ,Ξn of arbitrary sets and
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is applicable to a wider range of variational problems. The next definition and theorem are
simplified versions of [7, Definition 3.2 and Theorem 3.4], respectively.

Definition 1.3 (Extremality and stationarity: families of sets) Let Ξ1, . . . ,Ξn be families of
subsets of a normed space X, and x̄ ∈ X. The collection {Ξ1, . . . ,Ξn} is

(i) extremal at x̄ if there is a ρ ∈ (0,+∞] such that, for any ε > 0, there exist Ai ∈ Ξi

(i = 1, . . . , n) such that max1≤i≤n d(x̄,Ai) < ε and
⋂n

i=1 Ai ∩ Bρ(x̄) = ∅;
(ii) stationary at x̄ if, for any ε > 0, there exist a ρ ∈ (0, ε) and Ai ∈ Ξi (i = 1, . . . , n) such

that max1≤i≤n d(x̄,Ai) < ερ and
⋂n

i=1 Ai ∩ Bρ(x̄) = ∅;
(iii) approximately stationary at x̄ if, for any ε > 0, there exist a ρ ∈ (0, ε), Ai ∈ Ξi and xi ∈

Bε(x̄) (i = 1, . . . , n) such that max1≤i≤n d(xi,Ai) < ερ and
⋂n

i=1(Ai −xi)∩ (ρB) = ∅.

Theorem 1.1 Let Ξ1, . . . ,Ξn be families of closed subsets of a Banach space X, and x̄ ∈ X.
If {Ξ1, . . . ,Ξn} is approximately stationary at x̄, then, for any ε > 0, there exist Ai ∈ Ξi ,
xi ∈ Ai ∩ Bε(x̄), and x∗

i ∈ NC
Ai

(xi) (i = 1, . . . , n) such that

∥
∥
∥

n∑

i=1

x∗
i

∥
∥
∥ < ε and

n∑

i=1

‖x∗
i ‖ = 1.

If X is Asplund, then NC in the above assertion can be replaced by NF .

The symbols NC and NF in the above theorem denote, respectively, the Clarke and
Fréchet normal cones. Recall that a Banach space is Asplund if every continuous convex
function on an open convex set is Fréchet differentiable on a dense subset [18], or equiva-
lently, if the dual of each its separable subspace is separable. We refer the reader to [14, 18]
for discussions about and characterizations of Asplund spaces. All reflexive, particularly, all
finite dimensional Banach spaces are Asplund. Most assertions involving Fréchet normals,
subdifferentials and coderivatives are only valid in Asplund spaces; see [16].

Remark 1.1 (i) Part (ii) of Definition 1.3 is the explicit form of [7, Definition 3.2 (iii)],
while part (iii) is a particular case of [7, Definition 3.2 (ii)] with Ω1 = · · · = Ωn := X,
thus, representing the weakest version of the property in [7, Definition 3.2 (ii)].

(ii) It is easy to see that (i) ⇒ (ii) ⇒ (iii) in Definition 1.3. Hence, the necessary conditions
in Theorem 1.1 are also valid for the stationarity and extremality.

(iii) Theorem 1.1 shows that approximate stationarity of a given collection of families of
closed sets implies its fuzzy (up to ε) separation. Note that, unlike the general model
discussed in [5], not only the points xi and x∗

i (i = 1, . . . , n) usually involved in fuzzy
separation statements depend on ε, but also the sets A1, . . . ,An.

(iv) For each i = 1, . . . , n, the sets Ai making the family Ξi in Definition 1.3 can be con-
sidered as perturbations of some given set Ωi . With this interpretation in mind, Defini-
tion 1.3 (i) covers Definition 1.2. Note that the “perturbation” sets in Definition 1.2 are
rather loosely connected with the given sets.

Example 1.1 Let Ξ1 consist of a single one-point set {0} ⊂ R, and Ξ2 be a family of sin-
gletons {1/n} for n ∈ N. It is easy to see that {Ξ1,Ξ2} is extremal at 0 in the sense of
Definition 1.3 (i) (even with ρ = +∞). The subsets of Ξ1, Ξ2 may be considered as “per-
turbations” of the sets Ω1 = Ω2 := R in the sense of Definition 1.2. The pair {Ω1,Ω2} is
clearly not extremal at 0 in the conventional sense of [12, 14].
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The more general (and simpler) model in Definition 1.3 and Theorem 1.1 is capable of
treating a wider range of applications. In this paper, we demonstrate the applicability of
Theorem 1.1 to set-valued optimization problems of the type (P ) and more general ones.
This allows us to expand the range of set-valued optimization models studied in earlier
publications, weaken their assumptions and streamline the proofs.

We study extremality/stationarity properties of the triple {F,Ω,Ξ}, where F : X ⇒ Y

is a set-valued mapping between normed spaces, Ω is a subset of X, and Ξ is a nonempty
family of subsets of Y . The latter family may, in particular be determined by an abstract
level-set mapping defining a preference relation on Y .

Members of Ξ do not have to be simply translations (deformations) of a fixed set (or-
dering cone). Extremality/stationarity properties of the triple {F,Ω,Ξ} reduce to the corre-
sponding properties of the two special families of subsets of X × Y :

Ξ1 := {gphF } and Ξ2 := {Ω × A | A ∈ Ξ}. (1.1)

The first family consists of the single set gphF , and the first component of each member of
the second family is always the given set Ω; only the second component varies.

The properties are illustrated by examples. Application of Theorem 1.1 yields necessary
conditions for approximate stationarity and, hence, also stationarity and extremality. Natural
qualification conditions in terms of Clarke or Fréchet coderivatives and normal cones are
provided, which allow one to write down the necessary conditions in the form of an abstract
multiplier rule. The statements cover the corresponding results in [17, 20, 21].

Requirements on preference relations defined by level-set mappings, making them mean-
ingful in optimization and applications, are discussed. A certain subset of properties, which
are satisfied by most conventional and many other preference relations, is established. The
properties are shown to be in general weaker than those used in [2, 10, 15], but still sufficient
for the corresponding set-valued optimization problems to fall within the theory developed
in the current paper. Several multiplier rules for problems with a single set-valued mapping,
and then with multiple set-valued mappings are formulated.

The structure of the paper is as follows. Sect. 2 recalls some definitions and facts used
throughout the paper. The applicability of Theorem 1.1 is illustrated in Sects. 3–5 consid-
ering set-valued optimization problems with general preference relations. A model with a
single set-valued mapping is studied in Sect. 3. A particular case of this model when the
family Ξ is determined by an abstract level-set mapping is considered in Sect. 4. A more
general model with multiple set-valued mappings is briefly discussed in Sect. 5.

2 Preliminaries

Our basic notation is standard, see, e.g., [8, 9, 14, 19]. Throughout the paper, if not explicitly
stated otherwise, X and Y are normed spaces. Products of normed spaces are assumed to be
equipped with the maximum norm. The topological dual of a normed space X is denoted
by X∗, while 〈·, ·〉 denotes the bilinear form defining the pairing between the two spaces.
The open ball with center x and radius δ > 0 is denoted by Bδ(x). If (x, y) ∈ X × Y , we
write Bε(x, y) instead of Bε((x, y)). The open unit ball is denoted by B with a subscript
indicating the space, e.g., BX and BX∗ . Symbols R and N stand for the real line and the set
of all positive integers, respectively.

The interior and closure of a set Ω are denoted by intΩ and clΩ, respectively. The
distance from a point x ∈ X to a subset Ω ⊂ X is defined by d(x,Ω) := infu∈Ω ‖u − x‖, and
we use the convention d(x,∅) = +∞.
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Given a subset Ω of a normed space X and a point x̄ ∈ Ω, the sets (cf. [6, 11])

NF
Ω (x̄) :=

{
x∗ ∈ X∗ | lim sup

Ωx→x̄, x �=x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
, (2.1)

NC
Ω(x̄) := {

x∗ ∈ X∗ | 〈x∗, z
〉 ≤ 0 for all z ∈ T C

Ω (x̄)
}

(2.2)

are the Fréchet and Clarke normal cones to Ω at x̄, where T C
Ω (x̄) stands for the Clarke

tangent cone to Ω at x̄:

T C
Ω (x̄) := {

z ∈ X | ∀xk→x̄, xk ∈ Ω, ∀tk ↓ 0, ∃zk → z

such that xk + tkzk ∈ Ω for all k ∈ N
}
.

The sets (2.1) and (2.2) are nonempty closed convex cones satisfying NF
Ω (x̄) ⊂ NC

Ω(x̄). If Ω

is a convex set, they reduce to the normal cone in the sense of convex analysis:

NΩ(x̄) := {
x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Ω

}
.

By convention, we set NF
Ω (x̄) = NC

Ω(x̄) := ∅ if x̄ /∈ Ω.
A set-valued mapping F : X ⇒ Y between two sets X and Y is a mapping, which assigns

to every x ∈ X a (possibly empty) subset F(x) of Y . We use the notations gphF := {(x, y) ∈
X × Y | y ∈ F(x)} and dom F := {x ∈ X | F(x) �= ∅} for the graph and the domain of
F , respectively, and F−1 : Y ⇒ X for the inverse of F . This inverse (which always exists
with possibly empty values at some y) is defined by F−1(y) := {x ∈ X | y ∈ F(x)}, y ∈ Y .
Obviously domF−1 = F(X).

If X and Y are normed spaces, the Clarke coderivative D∗CF (x, y) of F at (x, y) ∈
gphF is a set-valued mapping defined by

D∗CF (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ NC
gphF (x, y)}, y∗ ∈ Y ∗. (2.3)

Replacing the Clarke normal cone in (2.3) by the Fréchet one, we obtain the definition of
the Fréchet coderivative.

Definition 2.1 (Aubin property) A mapping F : X ⇒ Y between metric spaces has the
Aubin property at (x̄, ȳ) ∈ gphF with constant τ > 0 if there exists a δ > 0 such that

d(y,F (x)) ≤ τd(x, x ′) for all x, x ′ ∈ Bδ(x̄), y ∈ F(x ′) ∩ Bδ(ȳ). (2.4)

Aubin property (sometimes referred to as the locally Lipschitz-like property) is among
the most widely used properties of set-valued mappings in variational analysis (see, e.g.,
[1, 8, 9, 14, 19]). It is known, in particular, to be equivalent to the metric regularity of the
inverse mapping. It also yields estimates for the normals to the graph of the (given) mapping.

Lemma 2.1 Let X and Y be normed spaces, F : X ⇒ Y , and (x̄, ȳ) ∈ gphF .

(i) If F has the Aubin property at (x̄, ȳ) with constant τ > 0, then there is a δ > 0 such
that

‖x∗‖ ≤ τ‖y∗‖ for all (x, y) ∈ gphF ∩ Bδ(x̄, ȳ), (x∗, y∗) ∈ NF
gphF (x, y). (2.5)

(ii) If dimY < +∞, then NF in the above assertion can be replaced by NC .
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Proof (i) is well known; see, e.g., [14, Theorem 1.43(i)]. (The latter theorem is formulated
in [14] in the Banach space setting, but the proof is valid in arbitrary normed spaces.)

(ii) Suppose dimY < +∞, and F has the Aubin property at (x̄, ȳ) with constant τ > 0,
i.e., condition (2.4) is satisfied for some δ > 0. Let (x, y) ∈ Bδ(x̄, ȳ) ∩ gphF and
(x∗, y∗) ∈ NC

gphF (x, y). Take any sequences (xk, yk) ∈ gphF and tk > 0 such that
(xk, yk) → (x, y) and tk ↓ 0 as k → +∞. Fix an arbitrary u ∈ X. Without loss of gen-
erality, we can assume that xk, xk + tku ∈ Bδ(x̄) and yk ∈ Bδ(ȳ) for all k ∈N. By (2.4),
for each k ∈ N, there exists a point y ′

k ∈ F(xk + tku) such that ‖y ′
k − yk‖ ≤ τ tk‖u‖.

Set vk := (y ′
k − yk)/tk . Then ‖vk‖ ≤ τ‖u‖. Passing to subsequences, we can suppose

that vk → v ∈ Y . Observe that (u, vk) → (u, v) as k → +∞, and (xk, yk) + tk(u, vk) ∈
gphF for each k ∈ N. Thus, (u, v) ∈ T C

gphF (x, y), and ‖v‖ ≤ τ‖u‖. By the definition
of the Clarke normal cone, we have 〈x∗, u〉 ≤ −〈y∗, v〉 ≤ τ‖y∗‖‖u‖. Since vector u is
arbitrary, it follows that ‖x∗‖ ≤ τ‖y∗‖. □

3 Set-Valued Optimization: A Single Mapping

Let X and Y be normed spaces, Ω ⊂ X, F : X ⇒ Y , x̄ ∈ Ω and ȳ ∈ F(x̄). To model the set-
ting of Definition 1.3, we consider a nonempty family Ξ of subsets of Y , and two families of
subsets of X ×Y given by (1.1). To emphasize the structure of the pair (1.1), when referring
to the corresponding properties in Definition 1.3, we will talk about extremality/stationarity
of the triple {F,Ω,Ξ}.

Definition 3.1 The triple {F,Ω,Ξ} is extremal (resp., stationary, approximately stationary)
at (x̄, ȳ) if the pair (1.1) is extremal (resp., stationary, approximately stationary) at (x̄, ȳ).

The next proposition is a direct consequence of Definitions 1.3 and 3.1.

Proposition 3.1 The triple {F,Ω,Ξ} is

(i) extremal at (x̄, ȳ) if and only if there is a ρ ∈ (0,+∞] such that, for any ε > 0, there
exists an A ∈ Ξ such that d(ȳ,A) < ε, and

F(Ω ∩ Bρ(x̄)) ∩ A ∩ Bρ(ȳ) = ∅; (3.1)

(ii) stationary at (x̄, ȳ) if and only if for any ε > 0, there exist a ρ ∈ (0, ε) and an A ∈ Ξ

such that d(ȳ,A) < ερ, and condition (3.1) is satisfied;
(iii) approximately stationary at (x̄, ȳ) if and only if, for any ε > 0, there exist a ρ ∈

(0, ε), an A ∈ Ξ, and (x1, y1), (x2, y2) ∈ Bε(x̄, ȳ) such that d((x1, y1),gphF) < ερ,
d(x2,Ω) < ερ, d(y2,A) < ερ, and

F(x1 + (Ω − x2) ∩ (ρBX)) ∩ (y1 + (A − y2) ∩ (ρBY )) = ∅.

Remark 3.1 Definition 3.1 gives rather general concepts of extremality/stationarity. In the
particular case when F is single-valued and Ξ := {K + F(x̄) − y | y ∈ Y } for some subset
K ⊂ Y containing 0, thanks to Proposition 3.1 (i), the extremality in the sense of Defini-
tion 3.1 means that there is a ρ ∈ (0,+∞] and a sequence {yk} ⊂ Y such that d(yk,K) → 0
as k → +∞, and

F(x) − F(x̄) /∈ (K − yk) ∩ (ρB) for all x ∈ Ω ∩ Bρ(x̄) and k ∈ N.
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Clearly, d(yk,K) → 0 if yk → 0, in which case the above condition becomes a constrained
(on Ω) localized (in the image space) version of the (F,K)-optimality in [15, Defini-
tion 5.53]. As commented in [15, p. 70], when K is a convex cone, the latter property covers
the conventional notion of local Pareto optimality as well as local weak Pareto optimality if
intK �= ∅.

The next example illustrates relations between the properties in Definition 3.1.

Example 3.1 Let X = Y = Ω := R, Ξ := {(−∞, t] | t ∈ R}, and F1, F2, F3, F4 : R⇒ R be
given by

F1(x) := [0,+∞) for all x ∈R, F2(x) :=
{

[x + 1,+∞) if x < −1,

[0,+∞) if x ≥ −1,

F3(x) := [−x2,+∞) for all x ∈R, F4(x) :=
{

[x,+∞) if x < 0,

[−x2,+∞) if x ≥ 0.

Then 0 ∈ Fi(0) for all i = 1,2,3,4. The following assertions hold true:

(i) {F1,R,Ξ} is extremal at (0,0) with ρ = +∞;
(ii) {F2,R,Ξ} is extremal at (0,0) with some ρ ∈ (0,+∞) but not with ρ = +∞;

(iii) {F3,R,Ξ} is stationary but not extremal at (0,0);
(iv) {F4,R,Ξ} is approximately stationary at (0,0) but not stationary at (0,0).

The assertions are straightforward. We only prove assertion (iv). Let ε ∈ (0,1). Choose
any ρ ∈ (0, ε) and t ∈ (ερ,ρ). Then −t ∈ ρBR, −t ∈ F4(−t) and −t ∈ A for any A :=
(−∞,−η] ∈ Ξ with d(0,A) < ερ (i.e., for any η < ερ). By Proposition 3.1 (ii), {F4,R,Ξ}
is not stationary at (0,0).

Let ε > 0. Choose a ρ ∈ (0,min{ε,1}/3) and points (x1, y1) := (ρ,−ρ2) ∈ gphF4 ∩
(εBR2), x2 := 0 ∈ εBR, y2 := 0 ∈ εBR. Observe that A := (−∞,−3ρ2] ∈ Ξ satisfies
d(0,A) < ερ. Then

F4(x1 + (ρBR)) = F4(0,2ρ) = (−4ρ2,+∞),

y1 + (A − y2) ∩ (ρBR) = −ρ2 + (−ρ,−3ρ2] = (−ρ2 − ρ,−4ρ2],
and consequently, F4(x1 + (ρBR)) ∩ (y1 + (A − y2) ∩ (ρBR)) = ∅. By Proposition 3.1 (iii),
{F4,R,Ξ} is approximately stationary at (0,0).

The following example shows that the family of sets Ξ plays an important role in deter-
mining the properties.

Example 3.2 Let X = Y = Ω :=R and F : R⇒R be given by

F(x) :=
{

{x√
2} if x is rational,

{x} otherwise.

Then 0 ∈ F(0).
Let Ξ := {(−∞, t] | t ∈ R} and ε ∈ (0,1). Choose any ρ ∈ (0, ε), (x1, y1) ∈ gphF ,

x2 ∈ R, y2 ∈ (−ε,0] and A := (−∞,−t] ∈ Ξ with d(y2,A) < ερ (i.e., t < ερ − y2). Then
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x1 + (Ω − x2) ∩ (ρBX) = Bρ(x1), A − y2 = (−∞,−τ ], where τ := y2 + t < ερ, and con-
sequently, y1 + (A − y2) ∩ (ρBY ) ⊃ (y1 − ρ,y1 − ερ). We next show that F(Bρ(x1)) ∩
(y1 − ρ,y1 − ερ) �= ∅. If x1 is rational, then y1 = x1

√
2, and choosing a rational number

x̂ ∈ (x1 −ρ/
√

2, x1 − ερ/
√

2) ⊂ Bρ(x1), we get ŷ := x̂
√

2 ∈ F(x̂)∩ (y1 −ρ,y1 − ερ). If x1

is irrational, then y1 = x1, and choosing an irrational number x̂ ∈ (x1 −ρ,x1 −ερ) ⊂ Bρ(x1),
we get ŷ := x̂ ∈ F(x̂) ∩ (y1 − ρ,y1 − ερ). By Proposition 3.1 (iii), {F,R,Ξ} is not approx-
imately stationary at (0,0).

Let Ξ := {{−1/n} | n ∈ N}. Since F(R) only contains irrational numbers, we have
F(R) ∩ A = ∅ for all A ∈ Ξ. By Proposition 3.1 (i), {F,R,Ξ} is extremal at (0,0) (with
ρ = +∞).

Application of Theorem 1.1 yields necessary conditions for approximate stationarity and,
hence, also stationarity and extremality.

Theorem 3.1 Let X and Y be Banach spaces, the sets Ω, gphF and all members of Ξ be
closed. If the triple {F,Ω,Ξ} is approximately stationary at (x̄, ȳ), then, for any ε > 0,
there exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ), x2 ∈ Ω ∩ Bε(x̄), A ∈ Ξ, y2 ∈ A ∩ Bε(ȳ), (x∗

1 , y∗
1 ) ∈

NC
gphF (x1, y1), x∗

2 ∈ NC
Ω(x2) and y∗

2 ∈ NC
A (y2) such that

‖(x∗
1 , y∗

1 ) + (x∗
2 , y∗

2 )‖ < ε and ‖(x∗
1 , y∗

1 )‖ + ‖(x∗
2 , y∗

2 )‖ = 1.

If X and Y are Asplund, then NC in the above assertion can be replaced by NF .

The normalization condition ‖(x∗
1 , y∗

1 )‖ + ‖(x∗
2 , y∗

2 )‖ = 1 in Theorem 3.1 ensures that
normal vectors (x∗

1 , y∗
1 ) to gphF remain sufficiently large when ε ↓ 0, i.e., x∗

1 and y∗
1 cannot

go to 0 simultaneously. The case when vectors y∗
1 are bounded away from 0 (hence, one can

assume ‖y∗
1‖ = 1) is of special interest as it leads to a proper multiplier rule. A closer look

at the alternative: either y∗
1 are bounded away from 0 as ε ↓ 0, or they are not (hence, vectors

x∗
1 remain large), allows one to formulate the following consequence of Theorem 3.1.

Corollary 3.1 Let X and Y be Banach spaces, the sets Ω, gphF and all members of Ξ be
closed. If the triple {F,Ω,Ξ} is approximately stationary at (x̄, ȳ), then one of the following
assertions holds true:

(i) there is an M > 0 such that, for any ε > 0, there exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ),
x2 ∈ Ω ∩ Bε(x̄), A ∈ Ξ, y2 ∈ A ∩ Bε(ȳ), and y∗ ∈ NC

A (y2) + εBY ∗ such that ‖y∗‖ = 1
and

0 ∈ D∗CF (x1, y1)(y
∗) + NC

Ω(x2) ∩ (MBX∗) + εBX∗ ; (3.2)

(ii) for any ε > 0, there exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ), x2 ∈ Ω ∩ Bε(x̄), x∗
1 ∈

D∗CF (x1, y1)(εBY ∗) and x∗
2 ∈ NC

Ω(x2) such that ‖x∗
1 + x∗

2‖ < ε and ‖x∗
1‖ + ‖x∗

2 ‖ = 1.

If X and Y are Asplund, then NC and D∗C in the above assertions can be replaced by
NF and D∗F , respectively.

Proof Let the triple {F,Ω,Ξ} be approximately stationary at (x̄, ȳ). By Theorem 3.1,
for any j ∈ N, there exist (x1j , y1j ) ∈ gphF ∩ B1/j (x̄, ȳ), x2j ∈ Ω ∩ B1/j (x̄), Aj ∈ Ξ,
y2j ∈ Aj ∩ B1/j (ȳ), (x∗

1j , y
∗
1j ) ∈ NC

gphF (x1j , y1j ), x∗
2j ∈ NC

Ω(x2j ) and y∗
2j ∈ NC

Aj
(y2j ) such

that ‖(x∗
1j , y

∗
1j )‖ + ‖(x∗

2j , y
∗
2j )‖ = 1 and ‖(x∗

1j , y
∗
1j ) + (x∗

2j , y
∗
2j )‖ < 1/j . We consider two

cases.
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Case 1. lim supj→+∞ ‖y∗
1j‖ > α > 0. Note that α < 1. Set M := 1/α. Let ε > 0.

Choose a number j ∈ N so that j−1 < αε and ‖y∗
1j‖ > α. Set x1 := x1j , y1 := y1j ,

x2 := x2j , A := Aj , y2 := y2j , y∗ := −y∗
1j /‖y∗

1j‖, x∗
1 := x∗

1j /‖y∗
1j‖, x∗

2 := x∗
2j /‖y∗

1j‖ and
y∗

2 := y∗
2j /‖y∗

1j‖. Then (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ), x2 ∈ Ω ∩ Bε(x̄), y2 ∈ A ∩ Bε(ȳ),
x∗

1 ∈ D∗CF (x1, y1)(y
∗), x∗

2 ∈ NC
Ω(x2), ‖y∗‖ = 1, y∗

2 ∈ NC
A (y2), ‖x∗

2‖ < 1/α = M . Further-
more, ‖y∗ − y∗

2‖ = ‖y∗
1j + y∗

2j‖/‖y∗
1j‖ < 1/(αj) < ε, hence, y∗ ∈ NC

A (y2) + εBY ∗ ; and
‖x∗

1 + x∗
2 ‖ = ‖x∗

1j + x∗
2j‖/‖y∗

1j‖ < 1/(αj) < ε, hence, condition (3.2) is satisfied. Thus,
assertion (i) holds true.

Case 2. limj→+∞ ‖y∗
1j‖ = 0. Then y∗

2j → 0, x∗
1j + x∗

2j → 0 and 1 ≥ ‖x∗
1j‖ + ‖x∗

2j‖ →
1 as j → +∞. Let ε > 0. Choose a number j ∈ N so that ‖x∗

1j‖ + ‖x∗
2j‖ > 0 and

max{j−1,‖y∗
1j‖,‖x∗

1j + x∗
2j‖/(‖x∗

1j‖ + ‖x∗
2j‖)} < ε. Set x1 := x1j , y1 := y1j , x2 := x2j ,

x∗
1 := x∗

1j /(‖x∗
1j‖+‖x∗

2j‖) and x∗
2 := x∗

2j /(‖x∗
1j‖+‖x∗

2j‖). Then (x1, y1) ∈ gphF ∩Bε(x̄, ȳ),
x2 ∈ Ω∩Bε(x̄), x∗

1 ∈ D∗CF (x1, y1)(εBY ∗), x∗
2 ∈ NC

Ω(x2), ‖x∗
1 ‖+‖x∗

2‖ = 1, and ‖x∗
1 +x∗

2 ‖ <

ε. Thus, assertion (ii) holds true.
If X and Y are Asplund, then NC and D∗C in the above arguments can be replaced by

NF and D∗F , respectively. □

Remark 3.2 (i) Part (i) of Corollary 3.1 gives a kind of fuzzy multiplier rule with y∗ play-
ing the role of the vector of multipliers. If F is single-valued and Lipschitz continuous
around x̄, then D∗F (x1,F (x1))(y

∗) = ∂F 〈y∗,F 〉(x1) for all y∗ ∈ Y ∗ and all x1 suffi-
ciently close to x̄ (see, e.g., [14, Theorem 1.90]). If, additionally, Ω = X, the Asplund
space version of condition (3.2) becomes 0 ∈ ∂F 〈y∗,F 〉(x1) + εBX∗ .

(ii) Part (ii) corresponds to ‘singular’ behaviour of F on Ω. It involves ‘horizontal’ normals
to the graph of F ; the y∗ component vanishes, and consequently, Ξ plays no role.

The following condition is the negation of the condition in Corollary 3.1 (ii).

(QC)C there is an ε > 0 such that ‖x∗
1 + x∗

2 ‖ ≥ ε for all (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ),
x2 ∈ Ω ∩ Bε(x̄), x∗

1 ∈ D∗CF (x1, y1)(εBY ∗) and x∗
2 ∈ NC

Ω(x2)) such that ‖x∗
1‖ +

‖x∗
2 ‖ = 1.

It excludes the singular behavior mentioned in Remark 3.2 (ii) and serves as a qualification
condition ensuring that only the condition in part (i) of Corollary 3.1 is possible. We denote
by (QC)F the analogue of (QC)C with NF and D∗F in place of NC and D∗C , respectively.

Corollary 3.2 Let X and Y be Banach spaces, Ω, gphF and all members of Ξ be closed.
Suppose that the triple {F,Ω,Ξ} is approximately stationary at (x̄, ȳ). If condition (QC)C

is satisfied, then assertion (i) in Corollary 3.1 holds true.
If X and Y are Asplund and condition (QC)F is satisfied, then assertion (i) in Corol-

lary 3.1 holds true with NF and D∗F in place of NC and D∗C , respectively.

The next proposition provides two typical sufficient conditions for the fulfillment of con-
ditions (QC)C and (QC)F .

Proposition 3.2 Let X and Y be normed spaces.

(i) If F has the Aubin property at (x̄, ȳ), then (QC)F is satisfied. If, additionally, dimY <

+∞, then (QC)C is satisfied too.
(ii) If x̄ ∈ intΩ, then both (QC)C and (QC)F are satisfied.
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Proof (i) If F has the Aubin property at (x̄, ȳ), then, by Lemma 2.1, condition (2.5) is
satisfied with some τ > 0 and δ > 0, and, if dimY < +∞, then the latter condition is
also satisfied with NC in place of NF . Hence, (QC)F is satisfied with ε := 1/(2τ + 1),
as well as (QC)C if dimY < +∞. Indeed, if (x1, y1) ∈ gphF ∩ Bδ(x̄, ȳ) and x∗

1 ∈
D∗F(x1, y1)(y

∗
1 ) (where D∗ stands for either D∗C or D∗F ), x∗

2 ∈ X∗, ‖x∗
1 ‖ + ‖x∗

2‖ = 1
and ‖y∗

1 ‖ < ε, then ‖x∗
1 + x∗

2 ‖ ≥ ‖x∗
2‖ − ‖x∗

1‖ = 1 − 2‖x∗
1‖ > 1 − 2τε = ε.

(ii) If x̄ ∈ intΩ, then NC
Ω(x2) = NF

Ω (x2) = {0} for all x2 near x̄, and consequently, for any
normal vector x∗

2 to Ω at x2 and any x∗
1 ∈ X∗, condition ‖x∗

1 ‖ + ‖x∗
2 ‖ = 1 yields ‖x∗

1 +
x∗

2 ‖ = 1. Hence, both (QC)C and (QC)F are satisfied with any sufficiently small ε. □

As a consequence of Corollary 3.1, we obtain dual necessary conditions for the (local)
Pareto optimality covering [20, Theorems 3.1 and 4.1], [21, Corollary 3.1] and [17, Propo-
sition 5.1].

Corollary 3.3 Let X and Y be Banach spaces, Ω and gphF be closed. If (x̄, ȳ) is a (local)
Pareto solution to (P ) with respect to a nontrivial pointed closed convex cone K ⊂ Y , then
either there is an M > 0 such that, for any ε > 0, there exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ),
x2 ∈ Ω ∩ Bε(x̄), and y∗ ∈ Y ∗ such that 〈y∗, y〉 ≥ 0 for all y ∈ K , ‖y∗‖ = 1, and

0 ∈ D∗CF (x1, y1)(y
∗ + εBY ∗) + NC

Ω(x2) ∩ (MBX∗) + εBX∗ ,

or assertion (ii) in Corollary 3.1 holds true.
If X and Y are Asplund, then NC and D∗C in the above assertion can be replaced by NF

and D∗F , respectively.

Proof (Sketch) Set Ξ := {K + ȳ −y | y ∈ Y } and observe that the conditions in Definition 1.1
ensure that the triple {F,Ω,Ξ} is approximately stationary at (x̄, ȳ). Deducing the conclu-
sion from Corollary 3.1 requires straightforward renorming of the involved dual vectors. □

Remark 3.3 In view of Proposition 3.2 (ii), if x̄ ∈ intΩ, then only the first alternative in
Corollary 3.3 is possible; cf. [20, Theorems 3.1 and 4.1].

The next example illustrates the verification of the necessary conditions for approximate
stationarity in Corollaries 3.1 and 3.2 for the triple {F4,Ω,Ξ}, where F4 is defined in Ex-
ample 3.1.

Example 3.3 Let X = Y = Ω := R, and F4 and Ξ be as in Example 3.1. Thus, the triple
{F4,Ω,Ξ} is approximately stationary at (x̄, ȳ), and the conclusions of Corollary 3.1 must
hold true. Moreover, the assumptions in both parts of Proposition 3.2 are satisfied, and con-
sequently, condition (QC)F holds true. By Corollary 3.2, assertion (i) in Corollary 3.1 holds
true with NF and D∗F in place of NC and D∗C , respectively. We now verify this assertion.

Let M > 0 and ε > 0. Choose a t ∈ (0,min{ε,1}). Set (x1, y1) := (t/2,−t2/4) ∈
gphF4 ∩ (εBR2), x2 := 0 ∈ Ω ∩ (εBR), A := (−∞,−t] ∈ Ξ, y2 := −t ∈ A ∩ (εBR) and
y∗ := 1. Thus, NF

Ω (x2) = {0}, y∗ ∈ NF
A (y2) and D∗F F4(x1, y1)(y

∗) = {−t}. Hence,

D∗F F4(x1, y1)(y
∗) + NF

Ω (x2) ∩ (MBR) = {−t} ∈ εBR,

i.e., assertion (i) in Corollary 3.1 holds true (in terms of Fréchet normals and coderivatives).
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4 Abstract Level-Set Mapping

We now consider a particular case of the model in Sect. 3 when the family Ξ is determined
by an abstract level-set mapping L : Y ⇒ Y . The latter mapping defines a preference relation
≺ on Y : v ≺ y if and only if v ∈ L(y); see, e.g., [10, p. 67].

Given a point y ∈ Y , we employ below the following notations:

L◦(y) := L(y) \ {y}, L−(y) := L(y) ∪ {y}. (4.1)

Certain requirements are usually imposed on L in order to make the corresponding pref-
erence relation meaningful in optimization and applications; see, e.g., [10, 15, 17, 23]. In
this section, we discuss the following properties of L at or near the reference point ȳ:

(O1) lim inf
L◦(ȳ)y→ȳ

d(ȳ,L(y)) = 0;

(O2) ȳ ∈ clL◦(ȳ);
(O3) ȳ /∈ L(ȳ);
(O4) y ∈ clL(y) for all y near ȳ;
(O5) if y ∈ L◦(ȳ) and v ∈ clL(y), then v ∈ L◦(ȳ);
(O6) if y ∈ L(ȳ) and v ∈ clL(y), then v ∈ L(ȳ).

Some characterizations of the properties and relations between them are collected in the
next proposition.

Proposition 4.1 Let L : Y ⇒ Y , L◦ be given by (4.1), and ȳ ∈ Y . The following assertions
hold true.

(i) (O1) ⇔ {y ∈ Y | d(ȳ,L(y)) < ε} ∩ L◦(ȳ) ∩ Bε(ȳ) �= ∅ for all ε > 0.
(ii) (O1) ⇒ (O2).

(iii) (O3) ⇔ [L(ȳ) = L◦(ȳ)].
(iv) (O2) & (O4) ⇒ (O1).
(v) (O3) & (O4) ⇒ (O2).

(vi) (O3) ⇒ [(O5) ⇔ (O6)].

Proof (i) (O1) ⇔ infy∈L◦(ȳ)∩Bε(ȳ) d(ȳ,L(y)) = 0 for any ε > 0 ⇒ for any ε > 0,
there is a y ∈ L◦(ȳ) ∩ Bε(ȳ) such that d(ȳ,L(y)) < ε. This proves the ‘⇒’ im-
plication. Conversely, let δ := infy∈L◦(ȳ)∩Bε(ȳ) d(ȳ,L(y)) > 0 for some ε > 0. Then
{y ∈ Y | d(ȳ,L(y)) < δ}∩L◦(ȳ)∩Bε(ȳ) = ∅, and consequently, {y ∈ Y | d(ȳ,L(y)) <

ε′} ∩ L◦(ȳ) ∩ Bε′(ȳ) = ∅, where ε′ := min{ε, δ}. The implication ‘⇐’ follows.
(ii) (O1) ⇒ there exists a sequence {yk} ⊂ L◦(ȳ) with yk → ȳ ⇔ (O2).

(iii) The assertion is a consequence of the definition of L◦ in (4.1).
(iv) Suppose conditions (O2) and (O4) are satisfied. Let ε > 0. Thanks to (O4), we

can choose a ξ ∈ (0, ε) such that y ∈ clL(y) for all y ∈ Bξ(ȳ). If y ∈ Bξ(ȳ), then
d(ȳ,L(y)) = d(ȳ, clL(y)) ≤ ‖y − ȳ‖ < ξ . Thus, Bξ(ȳ) ⊂ {y ∈ Y | d(ȳ,L(y)) < ξ}.
Thanks to (O2), we have

{y ∈ Y | d(ȳ,L(y)) < ε} ∩ L◦(ȳ) ∩ Bε(ȳ) ⊃ L◦(ȳ) ∩ Bξ(ȳ) �= ∅.

Since ε is an arbitrary positive number, in view of (i), this proves (O1).
(v) (O4) ⇒ ȳ ∈ clL(ȳ). The conclusion follows thanks to (iii).

(vi) The assertion is a consequence of (iii). □
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Remark 4.1 Properties (O4) and (O6) are components of the definition of closed preference
relation (see [15, Definition 5.55], [2, p. 583], [10, p. 68]) widely used in vector and set-
valued optimization. They are called, respectively, local satiation (around ȳ) and almost
transitivity. Note that the latter property is actually stronger than the conventional transi-
tivity. It is not satisfied for the preference defined by the lexicographical order (see [15,
Example 5.57]) and some other natural preference relations important in vector optimiza-
tion and its applications including those to welfare economics (see [10, Sect. 15.3]). Closed
preference relations are additionally assumed in [2, 10, 15] to be nonreflexive, thus, satis-
fying, in particular, property (O3). In view of Proposition 4.1, if a preference relation satis-
fies properties (O3), (O4) and (O6), it also satisfies properties (O1), (O2) and (O5). In this
section, we employ the weaker properties (O1) and (O5), which are satisfied by most con-
ventional and many other preference relations. This makes our model applicable to a wider
range of multiobjective and set-valued optimization problems compared to those studied in
[2, 10, 15].

The next proposition addresses some reasonably conventional settings.

Proposition 4.2 Let L(y) := y − K for some K ⊂ Y and all y ∈ Y . Let ȳ ∈ Y . Denote
K◦ := K \ {0}, K− := K ∪ {0}. Suppose that 0 ∈ clK◦. Then

(i) L◦(y) = y − K◦ and L−(y) = y − K− for all y ∈ Y ;
(ii) properties (O1), (O2) and (O4) are satisfied;

(iii) if 0 /∈ K , then property (O3) is satisfied;
(iv) if K is an open convex cone and K �= Y , then K◦ = K and properties (O5) and (O6)

are satisfied;
(v) if K is a closed convex cone, then K− = K and property (O6) is satisfied.

Proof (i) is obvious.
(ii) Let yk ∈ L◦(ȳ) (k ∈N) and yk → ȳ as k → +∞. By (i), ck := ȳ − yk ∈ K (k ∈N) and

ck → 0 as k → +∞. Then vk := yk − ck ∈ L(yk) (k ∈ N) and vk → ȳ as k → +∞.
This proves (O1). Since 0 ∈ clK◦, it follows from (i) that ȳ ∈ clL◦(ȳ). This proves
(O2). By the assumption, 0 ∈ clK , and consequently, y ∈ y − clK = clL(y) for all
y ∈ Y . Property (O4) follows.

(iii) is a consequence of (i).
(iv) Let K be an open convex cone and K �= Y . Then 0 /∈ K , and consequently, K◦ = K . If

y ∈ L◦(ȳ) and v ∈ clL(y), then ȳ −y ∈ K and y −v ∈ clK ; hence, ȳ −v ∈ K +clK =
K = K◦, i.e., v ∈ L◦(ȳ) = L(ȳ).

(v) Let K be a closed convex cone. Then 0 ∈ K , and consequently, K− = K . If y ∈ L(ȳ)

and v ∈ clL(y), then ȳ − y ∈ K and y − v ∈ K ; hence, ȳ − v ∈ K + K = K , i.e.,
v ∈ L(ȳ). □

Corollary 4.1 Let K be a nontrivial open convex cone, and L(y) := y − K for all y ∈ Y . Let
ȳ ∈ Y . Then properties (O1)–(O6) are satisfied.

The next two examples illustrate some characterizations of the level-set mapping.

Example 4.1 Let L(y) := {y} for all y ∈ Y . Then L◦(y) = ∅. Thus, properties (O4) and (O5)
are obviously satisfied, while properties (O1) and (O2) are violated.
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Example 4.2 Let L :R2 ⇒R
2 be defined by

L(y1, y2) :=
{

{(v1, v2) ∈R
2 | v1 < y1, v2 < y2} if (y1, y2) �= (0,0),

{(0,0)} otherwise.

Let ȳ := (0,0). Then L◦(y1, y2) = L(y1, y2) if (y1, y2) �= ȳ and L◦(ȳ) = ∅. As in Exam-
ple 4.1, properties (O4) and (O5) are satisfied, while properties (O1) and (O2) are violated.

Given a level-set mapping L, a point ȳ ∈ Y and a number δ > 0, we are going to employ
in our model the ‘localized’ family of sets

Ξδ := {clL(y) | y ∈ L−(ȳ) ∩ Bδ(ȳ)}. (4.2)

Note that members of Ξδ are not simply translations (deformations) of the fixed set L(ȳ)

(or L◦(ȳ)); they are defined by sets L(y) where y does not have to be equal to ȳ.

Remark 4.2 Given a set K containing 0 one can naturally define the level-set mapping by
L(y) = y + K for all y ∈ Y . Then (4.2) defines the family of perturbations as the traditional
collection of translations of clK , i.e., Ξδ = {y + ȳ + clK | y ∈ K ∩ (δB)}.

In the current setting, the properties in Proposition 3.1 take the following form.

Proposition 4.3 Let δ > 0, and Ξδ be given by (4.2). The triple {F,Ω,Ξδ} is

(i) extremal at (x̄, ȳ) if and only if there is a ρ ∈ (0,+∞] such that, for any ε > 0, there
exists a y ∈ L−(ȳ) ∩ Bδ(ȳ) such that d(ȳ,L(y)) < ε, and

F(Ω ∩ Bρ(x̄)) ∩ clL(y) ∩ Bρ(ȳ) = ∅; (4.3)

(ii) stationary at (x̄, ȳ) if and only if, for any ε > 0, there exist a ρ ∈ (0, ε) and a y ∈
L−(ȳ) ∩ Bδ(ȳ) such that d(ȳ,L(y)) < ερ, and condition (4.3) is satisfied;

(iii) approximately stationary at (x̄, ȳ) if and only if, for any ε > 0, there exist a ρ ∈ (0, ε), a
y ∈ L−(ȳ) ∩ Bδ(ȳ), and (x1, y1), (x2, y2) ∈ Bε(x̄, ȳ) such that d((x1, y1),gphF) < ερ,
d(x2,Ω) < ερ, d(y2,L(y)) < ερ, and

F(x1 + (Ω − x2) ∩ (ρBX)) ∩ (y1 + (clL(y) − y2) ∩ (ρBY )) = ∅.

The statements of Theorem 3.1 and its corollaries can be easily adjusted to the current
setting. For instance, Corollary 3.2 can be reformulated as follows.

Corollary 4.2 Let X and Y be Banach spaces, Ω and gphF be closed, x̄ ∈ Ω, ȳ ∈ F(x̄), δ >

0, and Ξδ be given by (4.2). Suppose condition (QC)C is satisfied. If the triple {F,Ω,Ξδ}
is approximately stationary at (x̄, ȳ), then there is an M > 0 such that, for any ε > 0, there
exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ), x2 ∈ Ω ∩ Bε(x̄), y ∈ L−(ȳ) ∩ Bδ(ȳ), y2 ∈ clL(y) ∩ Bε(ȳ),
and y∗ ∈ NC

clL(y)(y2) + εBY ∗ such that ‖y∗‖ = 1, and condition (3.2) holds true.
If X is Asplund and condition (QC)F is satisfied, then the above assertion holds true

with NF and D∗F in place of NC and D∗C , respectively.

The properties in Definition 3.1 are rather general. They cover various optimality and
stationarity concepts in vector and set-valued optimization. With Ω, F and L as above, and
points x̄ ∈ Ω and ȳ ∈ F(x̄), the next definition seems reasonable.
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Definition 4.1 The point (x̄, ȳ) is extremal for F on Ω if there is a ρ ∈ (0,+∞] such that

F(Ω ∩ Bρ(x̄)) ∩ L◦(ȳ) ∩ Bρ(ȳ) = ∅. (4.4)

Definition 4.1 covers both local (ρ < +∞) and global (ρ = +∞) extremality. The above
concept is applicable, in particular, to solutions of the set-valued minimization problem (P ),
and the conventional Pareto optimality implies the extremality in the sense of Definition 4.1.
Indeed, if (x̄, ȳ) is a (local) Pareto solution to (P ) with respect to a nontrivial pointed convex
cone K ⊂ Y , then, by Definition 1.1, there is a ρ ∈ (0,+∞] such that F(Ω ∩ Bρ(x̄)) ∩
L◦(ȳ) = ∅, where L◦(ȳ) := (ȳ − K) \ {ȳ}. The latter condition obviously implies condition
(4.4). Hence, (x̄, ȳ) is an extremal point for F on Ω.

Remark 4.3 (i) The concept in Definition 4.1 is broader than just (local) minimality as
F is not assumed to be an objective mapping of an optimization problem. It can, for
instance, be involved in modeling constraints.

(ii) The property in Definition 4.1 is similar to the one in the definition of fully localized
minimizer in [3, Definition 3.1] (see also [10, p. 68]). The latter definition uses the
larger set clL(ȳ) \ {ȳ} in place of L◦(ȳ) in (4.4). Unlike many solution concepts in
vector optimization, the above definition involves “image localization” (hence, is in
general weaker). It has proved to be useful when studying locally optimal allocations
of welfare economics; cf. [3, 10].

We next show that, under some mild assumptions on the level-set mapping L, the ex-
tremality in the sense of Definition 4.1 can be treated in the framework of the extremality in
the sense of Definition 3.1 (or its characterization in Proposition 4.3 (i)).

Proposition 4.4 Let x̄ ∈ Ω, ȳ ∈ F(x̄), δ > 0, and Ξδ be given by (4.2). Suppose L satisfies
conditions (O1) and (O5). If (x̄, ȳ) is extremal for F on Ω, then the triple {F,Ω,Ξδ} is
extremal at (x̄, ȳ).

Proof In view of (O1), it follows from Proposition 4.1 (i) that

{y ∈ Y | d(ȳ,L(y)) < ε} ∩ L◦(ȳ) ∩ Bε(ȳ) �= ∅ for all ε > 0. (4.5)

Suppose {F,Ω,Ξδ} is not extremal at (x̄, ȳ). Let ρ ∈ (0,+∞]. By Proposition 4.3 (i), there
exists an ε > 0 such that, for any y ∈ L−(ȳ) ∩ Bδ(ȳ) with d(ȳ,L(y)) < ε, it holds

F(Ω ∩ Bρ(x̄)) ∩ clL(y) ∩ Bρ(ȳ) �= ∅. (4.6)

In view of (4.5), there is a point y ∈ L◦(ȳ) ∩ Bδ(ȳ) ⊂ L−(ȳ) ∩ Bδ(ȳ) with d(ȳ,L(y)) < ε,
and we can choose a point ŷ belonging to the set in (4.6). Thus, y ∈ L◦(ȳ) and ŷ ∈ clL(y).
Thanks to (O5), we have ŷ ∈ L◦(ȳ), and consequently, ŷ ∈ F(Ω ∩ Bρ(x̄)) ∩ L◦(ȳ) ∩ Bρ(ȳ).
Since ρ ∈ (0,+∞] is arbitrary, (x̄, ȳ) is not extremal for F on Ω. □

Thanks to Proposition 4.4, if the level-set mapping L satisfies conditions (O1) and (O5),
then extremal points of problem (P ) satisfy the necessary conditions in Theorem 3.1 and its
corollaries. In particular, the next statement holds true.

Corollary 4.3 Let X and Y be Banach spaces, Ω and gphF be closed, x̄ ∈ Ω, ȳ ∈ F(x̄), and
δ > 0. Suppose that condition (QC)C is satisfied as well as conditions (O1) and (O5) for
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some mapping L : Y ⇒ Y . If (x̄, ȳ) is extremal for F on Ω, then there is an M > 0 such that,
for any ε > 0, there exist (x1, y1) ∈ gphF ∩ Bε(x̄, ȳ), x2 ∈ Ω ∩ Bε(x̄), y ∈ L−(ȳ) ∩ Bδ(ȳ),
y2 ∈ clL(y) ∩ Bε(ȳ), and y∗ ∈ NC

clL(y)(y2) + εBY ∗ such that ‖y∗‖ = 1, and condition (3.2)
holds true.

If X is Asplund and condition (QC)F is satisfied, then the above assertion holds true
with NF and D∗F in place of NC and D∗C , respectively.

5 Set-Valued Optimization: Multiple Mappings

It is not difficult to upgrade the model used in Definition 3.1 and the subsequent statements to
make it directly applicable to constraint optimization problems: instead of a single mapping
F : X ⇒ Y with ȳ ∈ F(x̄) for some x̄ ∈ Ω ⊂ X and a single family Ξ of subsets of Y , one
can consider finite collections of mappings Fi : X ⇒ Yi between normed spaces together
with points ȳi ∈ Fi(x̄), and nonempty families Ξi of subsets of Yi (i = 1, . . . , n).

This more general setting can be viewed as a structured particular case of the set-valued
optimization model considered in Sect. 3 if one sets

Y := Y1 × · · · × Yn, F := (F1, . . . ,Fn), ȳ := (ȳ1, . . . , ȳn) and Ξ := Ξ1 × · · · × Ξn.

Thus, ȳ ∈ F(x̄), and A ∈ Ξ means that A = A1 × · · · × An and Ai ∈ Ξi (i = 1, . . . , n).
To shorten the notation, we keep talking in this section about extremality/stationarity of the
triple {F,Ω,Ξ} at (x̄, ȳ).

Definition 5.1 The triple {F,Ω,Ξ} is extremal (resp., stationary, approximately stationary)
at (x̄, ȳ) if the collection of n + 1 families of sets:

Ξ̂i := {Ωi} (i = 1, . . . , n) and Ξ̂n+1 := {Ω × A | A ∈ Ξ}.

is extremal (resp., stationary, approximately stationary) at (x̄, ȳ), where Ωi := {(x, y1, . . . ,

yn) ∈ X × Y1 × · · · × Yn | yi ∈ Fi(x)} (i = 1, . . . , n).

With the notation introduced above, Definitions 1.3 and 5.1 lead to characterizations of
the extremality and stationarity of the triple {F,Ω,Ξ} given in parts (i) and (ii) of Proposi-
tion 3.1. The corresponding characterization of the approximate stationarity is a little differ-
ent. It is formulated in the next proposition.

Proposition 5.1 The triple {F,Ω,Ξ} is approximately stationary at (x̄, ȳ) if and only if, for
any ε > 0, there exist a ρ ∈ (0, ε), Ai ∈ Ξi (i = 1, . . . , n), xi ∈ Bε(x̄) (i = 1, . . . , n + 1),
and yi, vi ∈ Bε(ȳi) (i = 1, . . . , n) such that d((xi, yi),gphFi) < ερ, d(vi,Ai) < ερ (i =
1, . . . , n), d(xn+1,Ω) < ερ and, for each x ∈ Ω ∩ Bρ(xn+1), there is an i ∈ {1, . . . , n} such
that

Fi(xi + x − xn+1) ∩ (
yi + (Ai − vi) ∩ (ρBY )

) = ∅.

Application of Theorem 1.1 in the current setting produces necessary conditions for ap-
proximate stationarity and, hence, also stationarity and extremality extending Theorem 3.1
and its corollaries. Condition (QC)C can be extended as follows:
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(Q̂C)C there is an ε > 0 such that
∥
∥∑n+1

i=1 x∗
i

∥
∥ ≥ ε for all (xi, yi) ∈ gphFi ∩ Bε(x̄, ȳi),

x∗
i ∈ D∗CFi(xi, yi)(εBY ∗

i
) (i = 1, . . . , n), xn+1 ∈ Ω ∩ Bε(x̄) and x∗

n+1 ∈ NC
Ω(xn+1)

such that
∑n+1

i=1 ‖x∗
i ‖ = 1,

while the corresponding extension (Q̂C)F of condition (QC)F is obtained by replacing NC

and D∗C in (Q̂C)C by NF and D∗F , respectively. An extension of Corollary 4.2 takes the
following form.

Theorem 5.1 Let X, Y1, . . . , Yn be Banach spaces, Ω and, for each i = 1, . . . , n, the graph
gphFi and all members of Ξi be closed. Suppose {F,Ω,Ξ} is approximately stationary at
(x̄, ȳ). If condition (Q̂C)C is satisfied, then there is an M > 0 such that, for any ε > 0,
there exist (xi, yi) ∈ gphFi ∩ Bε(x̄, ȳi), Ai ∈ Ξi , vi ∈ Ai ∩ Bε(ȳi), y∗

i ∈ NC
Ai

(vi) + εBY ∗
i

(i = 1, . . . , n), and xn+1 ∈ Ω ∩ Bε(x̄) such that
∑n

i=1 ‖y∗
i ‖ = 1 and

0 ∈
n∑

i=1

D∗CFi(xi, yi)(y
∗
i ) + NC

Ω(xn+1) ∩ (MBX∗) + εBX∗ .

If X is Asplund and condition (Q̂C)F is satisfied, then the above assertion holds true
with NF and D∗F in place of NC and D∗C , respectively.

Remark 5.1 (i) Proposition 3.2 (with F = (F1, . . . ,Fn) in part (i)) gives two typical suffi-
cient conditions for the fulfillment of conditions (Q̂C)C and (Q̂C)F .

(ii) Theorem 5.1 covers [21, Theorems 3.1 and 3.2]. In view of the previous item, it also
covers [21, Corollary 3.2].

(iii) Theorem 5.1 is a consequence of the dual necessary conditions for approximate sta-
tionarity of a collection of sets in Theorem 1.1. The latter theorem can be extended to
cover a more general quantitative notion of approximate α-stationarity (with a fixed
α > 0), leading to corresponding extensions of Theorem 5.1 and its corollaries cov-
ering, in particular, dual conditions for ε-Pareto optimality in [22, Theorems 4.3 and
4.5].

Employing the multiple-mapping model studied in this section, one can consider a more
general than (P ) optimization problem with set-valued constraints:

minimize F0(x) subject to Fi(x) ∩ Ki �= ∅ (i = 1, . . . , n), x ∈ Ω, (P)

where Fi : X ⇒ Yi (i = 0, . . . , n) are mappings between normed spaces, Ω ⊂ X, Ki ⊂ Yi

(i = 1, . . . , n), and Y0 is equipped with a level-set mapping L. The “functional” constraints
in (P) can model a system of equalities and inequalities as well as more general operator-
type constraints.

Using the set of admissible solutions
Ω̂ := {x ∈ Ω | Fi(x) ∩ Ki �= ∅, i = 1, . . . , n},

we say that (x̄, ȳ0) ∈ X × Y0 is an extremal point of problem (P) if it is extremal for F0

on Ω̂. This means, in particular, that x̄ ∈ Ω, ȳ0 ∈ F0(x̄), and there exist ȳi ∈ Fi(x̄) ∩ Ki

(i = 1, . . . , n).
We are going to employ the model studied in the first part of this section with n+1 objects

in place of n. There are n+1 mappings F0, . . . ,Fn and n sets K1, . . . ,Kn in (P). As in (4.2),
we define Ξδ

0 := {clL(y) | y ∈ Lδ(ȳ0)} (δ > 0), where Lδ(ȳ0) = (L(ȳ0)∩Bδ(ȳ))∪{ȳ}. Now,
set

Y := Y0 × · · · × Yn, F := (F0, . . . ,Fn), ȳ := (ȳ0, . . . , ȳn) and
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Ξδ := Ξδ
0 × K1 × · · · × Kn.

Using the same arguments, one can prove the next extension of Proposition 4.4.

Proposition 5.2 Let x̄ ∈ Ω, ȳ0 ∈ F0(x̄), ȳi ∈ Fi(x̄) ∩ Ki (i = 1, . . . , n), δ > 0, and F , ȳ

and Ξδ be defined as above. Suppose L satisfies conditions (O1) and (O5). If (x̄, ȳ0) is an
extremal point of problem (P), then {F,Ω,Ξδ} is extremal at (x̄, ȳ).

Condition (Q̂C)C in the current setting is reformulated as follows:

(Q̂C)′
C there is an ε > 0 such that

∥
∥

∑n+1
i=0 x∗

i

∥
∥ ≥ ε for all (xi, yi) ∈ gphFi ∩ Bε(x̄, ȳi),

x∗
i ∈ D∗CFi(xi, yi)(εBY ∗

i
) (i = 0, . . . , n), xn+1 ∈ Ω ∩ Bε(x̄) and x∗

n+1 ∈ NC
Ω(xn+1)

such that
∑n+1

i=0 ‖x∗
i ‖ = 1,

while the corresponding reformulation (Q̂C)′
F of condition (Q̂C)F is obtained by replacing

NC and D∗C in (Q̂C)′
C by NF and D∗F , respectively. In view of Proposition 5.2, Theo-

rem 5.1 yields the following statement.

Corollary 5.1 Let X, Y0, . . . , Yn be Banach spaces, the sets Ω, gphFi (i = 0, . . . , n) and
Ki (i = 1, . . . , n) be closed, and δ > 0. Suppose L satisfies conditions (O1) and (O5). If
(x̄, ȳ0) is an extremal point of problem (P) and condition (Q̂C)′

C is satisfied, then there is an
M > 0 such that, for any ε > 0, there exist (xi, yi) ∈ gphFi ∩Bε(x̄, ȳi) (i = 0, . . . , n), xn+1 ∈
Ω∩Bε(x̄), y ∈ Bδ(ȳ0), v0 ∈ clL(y)∩Bε(ȳ0), y∗

0 ∈ NC
clL(y)(v0)+ εBY ∗

0
, vi ∈ Ki ∩Bε(ȳi) and

y∗
i ∈ NC

Ki
(vi) + εBY ∗

i
(i = 1, . . . , n) such that

∑n

i=0 ‖y∗
i ‖ = 1 and

0 ∈
n∑

i=0

D∗CF (xi, yi)(y
∗
i ) + NC

Ω(xn+1) ∩ (MBX∗) + εBX∗ .

If X is Asplund and condition (Q̂C)′
F is satisfied, then the above assertion holds true

with NF and D∗F in place of NC and D∗C , respectively.
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