Trường hè về lý thuyết biểu diễn của các nhóm hữu hạn và p-adic

Thời gian: 14:00 đến 16:30 ngày 01/09/2016, 09:00 đến 11:30 ngày 01/09/2016,

Địa điểm: C2-714

Mục đích: Lý thuyết biểu diễn đóng vai trò trung tâm trong toán học hiện đại, như Gelfand đã từng nói rằng tất cả những gì thuộc toán học đều là lý thuyết biểu diễn (all mathematics is representation theory). Mục tiêu của Trường hè là cung cấp một số kiến thức cơ bản về lý thuyết biểu diễn. Trường hè phù hợp với nghiên cứu sinh cũng như sinh viên có kiến thức vững về đại số và hình học.

Tóm tắt:

Morning (9:00-11:30) and Afternoon (14:00 - 16:30) lectures everyday
Participants: Open to researchers, graduate and advanced undergraduate students

1) Lý thuyết Deligne-Lusztig (Phạm Hữu Tiệp)

Tóm tắt:

Nhóm đại số và các tương tự hữu hạn của chúng – nhóm hữu hạn kiểu Lie – đóng một vai trò quan trọng trong toán học nói chung và trong lý thuyết nhóm và lý thuyết số nói riêng. Theo Định lý Phân loại Nhóm đơn (classification theorem of finite simple groups – CFSG), đa số các nhóm đơn hữu hạn xuất phát từ nhóm hữu hạn kiểu Lie. Một trong những thành tựu cơ bản nhất trong lĩnh vực này là Lý thuyết Deligne-Lusztig về biểu diễn phức của nhóm hữu hạn kiểu Lie.

CFSG và Lý thuyết Deligne-Lusztig đã giúp giải quyết nhiều vấn đề có ứng dụng quan trọng bên ngoài lý thuyết nhóm, cụ thể là trong lý thuyết số và hình học đại số.

Mục đích của các bài giảng này là để giới thiệu một số ý tưởng cơ bản của Lý thuyết Deligne-Lusztig. 


2) Tính chất của nhóm hữu hạn và compact (Ngô Bảo Châu)

Tóm tắt:

Phần bài giảng này giới thiệu về lý thuyết biểu diễn của các nhóm hữu hạn và compact nhấn mạnh về các tính chất. Sách của Barry Simon là tài liệu tham khảo chính của phần này.

Download Lecture